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Abstract

There is a growing gap between the impressive
results of deep image generative models and clas-
sical algorithms that offer theoretical guarantees.
The former suffer from mode collapse or mem-
orization issues, limiting their application to sci-
entific data. The latter require restrictive assump-
tions such as log-concavity to escape the curse of
dimensionality. We partially bridge this gap by
introducing conditionally strongly log-concave
(CSLC) models, which factorize the data dis-
tribution into a product of conditional probabil-
ity distributions that are strongly log-concave.
This factorization is obtained with orthogonal
projectors adapted to the data distribution. It
leads to efficient parameter estimation and sam-
pling algorithms, with theoretical guarantees, al-
though the data distribution is not globally log-
concave. We show that several challenging multi-
scale processes are conditionally log-concave us-
ing wavelet packet orthogonal projectors. Numer-
ical results are shown for physical fields such as
the <,04 model and weak lensing convergence maps
with higher resolution than in previous works.

1. Introduction

Generative modeling requires the ability to estimate an ac-
curate model of a probability distribution from a training
dataset, as well as the ability to efficiently sample from
this model. Any such procedure necessarily introduces er-
rors, due to limited expressivity of the model class, learning
errors of selecting the best model within that class, and sam-
pling errors due to limited computational resources. For
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high-dimensional data, it is highly challenging to control all
errors with polynomial-time algorithms. Overcoming the
curse of dimensionality requires exploiting structural proper-
ties of the probability distribution. For instance, theoretical
guarantees can be obtained with restrictive assumptions of
log-concavity, or with low-dimensional parameterized mod-
els. In contrast, recent deep-learning-based approaches such
as diffusion models (Ramesh et al., 2022; Saharia et al.,
2022; Rombach et al., 2022) have obtained impressive re-
sults for distributions which do not satisfy these assumptions.
Unfortunately, in such cases, theoretical guarantees are lack-
ing, and diffusion models have been found to memorize
their training data (Carlini et al., 2023; Somepalli et al.,
2022), which is inappropriate for scientific applications.
The disparity between these two approaches highlights the
need for models which combine theoretical guarantees with
sufficient expressive power. This paper contributes to this
objective by defining the class of conditionally strongly log-
concave distributions. We show that it is sufficiently rich to
model the probability distributions of complex multiscale
physical fields, and that such models can be sampled with
fast algorithms with provable guarantees.

Sampling and learning guarantees. While the theory
for sampling log-concave distributions is well-developed
(Chewi, 2023), simultaneous learning and sampling guar-
antees for general non-log-concave distributions are less
common. Block et al. (2020) establish a fast mixing rate of
multiscale Langevin dynamics under a manifold hypothe-
sis. Koehler et al. (2022) studies the asymptotic efficiency
of score-matching compared to maximum-likelihood es-
timation under a global log-Sobolev inequality, which is
not quantitative beyond globally log-concave distributions.
Chen et al. (2022b;a) establish polynomial sampling guar-
antees for a reverse score-based diffusion, given a suf-
ficiently accurate estimate of the time-dependent score.
Sriperumbudur et al. (2013); Sutherland et al. (2018);
Domingo-Enrich et al. (2021) study density estimation with
energy-based models under different infinite-dimensional
parametrizations of the energy. They use various metrics
including score-matching to establish statistical guarantees
that avoid the curse of dimensionality, under strong smooth-
ness or sparsity assumptions of the target distribution. Fi-
nally, Balasubramanian et al. (2022) derive sampling guaran-
tees in Fisher divergence of Langevin Monte-Carlo beyond
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log-concave distributions. While these hold under a general
class of target distribution, such Fisher guarantees are much
weaker than Kullback-Leibler guarantees. Bridging this gap
requires some structural assumptions on the distribution.

Multiscale generative models. Images include structures
at all scales, and several generative models have relied on
decompositions with wavelet transforms (Yu et al., 2020;
Gal et al., 2021). More recently, Marchand et al. (2022)
established a connection between the renormalization group
in physics and a conditional decomposition of the probabil-
ity distribution of wavelet coefficients across scales. These
models rely on maximum likelihood estimations with iter-
ated Metropolis sampling, which leads to a high compu-
tational complexity. They have also been used with score
matching (Guth et al., 2022; Kadkhodaie et al., 2023) in the
context of score-based diffusion models (Song et al., 2021),
which suffer from memorisation issues.

Conditionally strongly log-concave distributions. We
consider probability distributions whose Gibbs energy is
dominated by quadratic interactions,

p(x) = %e_E(x) with E(z) = %.’ETKCE + V(z).
The matrix K is positive symmetric and V' is a non-quadratic
potential. If V' is non-convex, then p is a priori not log-
concave. However, the Hessian of £ may be dominated by
the large eigenvalues of K, whose corresponding eigenvec-
tors define directions in which p is log-concave. For mul-
tiscale stationary distributions, K is a convolution whose
eigenvalues have a power-law growth at high frequencies.
As a result, the conditional distribution of high frequencies
given lower frequencies may be log-concave.

Section 2 introduces factorizations of probability distribu-
tions into products of conditional distributions with arbitrary
hierarchical projectors. If the projectors are adapted to ob-
tain strongly log-concave factors, we prove that maximum
likelihood estimation can be replaced by score matching,
which is computationally more efficient. The MALA sam-
pling algorithm also has a fast convergence due to the con-
ditional log-concavity. Section 3 describes a class of multi-
scale physical processes that admit conditionally strongly
log-concave (CSLC) decompositions with wavelet packet
projections. This class includes the <p4 model studied in
statistical physics. These results thus provide an approach
to provably avoid the numerical instabilities at phase transi-
tions observed in such models. We then show in Section 4
that wavelet packet CSLC decompositions provide accurate
models of cosmological weak lensing images, synthesized
as test data for the Euclid outer-space telescope mission
(Laureijs et al., 2011).

The main contributions of the paper are:

* The definition of general CSLC models, which provide
learning guarantees by score matching and sampling
convergence bounds with MALA.

e CSLC models of multiscale physical fields using
wavelet packet projectors. We show that @4 and weak
lensing both satisfy the CSLC property, which leads to
efficient and accurate generative modeling.

The code to reproduce our numerical experiments is avail-
able athttps://github.com/Elempereur/WCRG.

2. Conditionally Strongly Log-Concave Models

Section 2.1 introduces conditionally strongly log-concave
models, by factorizing the probability density into condi-
tional probabilities. For these models, Sections 2.2 and 2.3
give upper bounds on learning errors with score match-
ing algorithms, and Section 2.4 on sampling errors with a
Metropolis-Adjusted Langevin Algorithm (MALA). Proofs
of the mathematical results can be found in Appendix E.

2.1. Conditional Factorization and Log-Concavity

We introduce a probability factorization based on orthogonal
projections on progressively smaller-dimensional spaces.
The projections are adapted to define strongly log-concave
conditional distributions.

Orthogonal factorization. Let x € R A probability
distribution p(x) can be decomposed into a product of au-
toregressive conditional probabilities

d

p(x) = p(all]) [T plali] |21, ali = 1]). (D)

=2

However, more general factorizations can be obtained by
considering blocks of variables in an orthogonal basis. We
initialize the decomposition with (g = 2. For j = 1to J,
we recursively split z;_; in two orthogonal projections:

xj = ijjfl and Jjj = ijj*17

where G and G are unitary operators such that G;f G, +
G7G; = 1d. It follows that

Since the decomposition is orthogonal, for any probability
distribution p we have

p(zj_1) = p(z;,Z;) = p(x;)p(T;|x;).
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Cascading this decomposition .J times gives

J
H (z;]z;), 3)

which generalizes the autoregressive factorization (1). The
properties of the factors p(z,|z;) depend on the choice of
the orthogonal projectors G; and G ;, as we shall see below.

Model learning and sampling. A parametric model py ()
of p(x) can be defined from Equation (3) by computing
parametric models of p(x ;) and each p(Z;|z;):

<

Po() = po, a:JH GHERN @

Learning this model then amounts to optimizing the pa-
rameters 6 7, (6’ ); from available data, so that the resulting
distributions are close to the target. We measure the associ-
ated learning errors with the Kullback-Leibler divergences

€§ = KLzJ(p(mJ) ||p0J (z)) and

_L _ _ .
& =By, [KLq, (0(2;]2;) | pg, (35]2,))], j < J.

Once the parameters have been estimated, we sample from
P as follows. We first compute a sample x ; of py . The

sampling introduces an error, which we measure with 6§ =
KL, , (Do, (zs) || Po, (7)), where py , is the law of the sam-
ples returned by the algorithm. For each j < J, given the
sampled x;, we compute a sample Z; of pj, (Z|x;) and
TECOVET T_4 with Equation (2), up to j = 1, where it com-
putes z = x,. Let ﬁgj be the law of computed samples 7.
It also introduces an error

& =B, [KLs, (g, (312;) || pg, (3512,)) |, 5 < 7.

Let p be the (joint) law of the computed samples x. The
following proposition relates the total variation distance
TV (p, p) with the learning and sampling errors for each j.

Proposition 2.1 (Error decomposition).

J

J

. 1 _ _

TV(p,p)S\ﬁ e?—i—Zef—k e§+Zef
=1 :

The overall error depends on the sum of learning and sam-
pling errors for each conditional probability distribution.
Therefore, to control the total error, we need sufficient con-
ditions ensuring that each of these sources of error is small.
We introduce CSLC models for this purpose.

=
8
IS8
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Figure 1. A globally log-concave distribution is conditionally log-
concave (fop left), but the converse is not true (fop right): a non-
convex support can have convex vertical slices (and horizontal
projection). Conditional log-concavity also depends on the choice
of orthogonal projectors: a distribution can fail to be conditionally
log-concave in the canonical basis (bottom left) but be conditionally
log-concave after a rotation of 45 degrees (bottom right).

Conditional strong log-concavity. We recall that a dis-
tribution p is strongly log-concave (SLC) if there exists
B[p] > a[p] > 0 such that

alplld < —V3logp(z) = B[plld, Va. )

Definition 2.1. We say that p(z) = p(x ;) HJJ 1 (T j|zy) i
conditionally strongly log-concave (CSLC) if each p(z |z
is strongly log-concave in T for all ;.

)

Conditional log-concavity is a weaker condition than (joint)
log-concavity. If p(x) is log-concave, then it has a convex
support. On the other hand, conditional log-concavity only
constraints slices (through conditioning) and projections
(through marginalization) of the support of p(x). Figure 1
illustrates that a jointly log-concave distribution is condition-
ally log-concave (and p(z ;) is furthermore log-concave),
but the converse is not true. Conditional log-concavity also
depends on the choice of the orthogonal projections G ; and
G; which need to be adapted to the data. A major issue is
to identify projectors that define a CSLC decomposition, if
it exists. We show in Section 3 that this can be achieved for
a class of physical fields with wavelet packet projectors.

The following subsect10ns pr0V1de bounds on the learning
and sampling errors e] and € e for CSLC models. To sim-
plify notations, in the followmg we drop the index j and
replace pg (7;]x;) with pg(Z|z). We shall suppose that
the dimension d; = dim(z ) is sufficiently small so that
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z; can be modeled and generated with any standard algo-
rithm with small errors e? and e}g (d; = 1 in our numerical
experiments).

2.2. Learning Guarantees with Score Matching

Fitting probabilistic models pg(Z|x) by directly minimizing
the KL errors € is computationally challenging because of
intractable normalization constants. Strong log-concavity
enables efficient yet accurate learning via a tight relaxation
to score matching.

There exist several frameworks to fit a parametric probabilis-
tic model to the data, most notably the maximum-likelihood
estimator of a general energy-based model pg(Z|x) =

Zgl(x)efEé(z’f), where Ej is an arbitrary parametric
class. This is computationally expensive due to the need
to estimate the gradients of the normalization constants
—Vglog Z5 = K, [V5E;] during training, which requires
the ability to sample from p;(Z|«). An appealing alterna-
tive which has enjoyed recent popularity is score matching
(Hyvirinen & Dayan, 2005), which instead minimizes the

Fisher Divergence FI:
- 1
406) = E. | 5L (p(alo) [ ) ]

1
_E,, [ |~V log p(alar) —

Eate. D).

_ 1 _ _
0) = v |5 IVaBall = AaFg| 4st, ©

With a change of variables we obtain

showing that £(6) can be minimized from available samples
without estimating normalizing constants or sampling from
pg. Indeed, given ii.d. samples {@" ", ..., @", ")}
from p(z, x), the empirical risk ¢(f) associated with score
matching on p(Z|z) is given by

(0 1 = 1 n % -

006) = %31V Esle' )P - Aata's ). )

i=1

The score-matching objective avoids the computational bar-
riers associated with normalization and sampling in high-
dimensions, at the expense of defining a weaker metric than
the KL divergence. This weakening of the metric is quan-
tified by the log-Sobolev constant p[p] associated with p.
It is the largest p > 0 such that KL(g|| p) < ;—pFI(q | p)
for any ¢. Learning via score matching can therefore be
seen as a relaxation of maximum-likelihood training, whose
tightness is controlled by the log-Sobolev constant of the
hypothesis class (Koehler et al., 2022). This constant can
be exponentially small for general multimodal distributions,
making this relaxation too weak. A crucial exception, how-
ever, is given by SLC distributions (or small perturbations

of them), as shown by the Bakry-Emery criterion (Bakry
et al., 2014, Definition 1.16. 1) if alpg(Z|x)] > a > 0
for all z, or equivalently if V2 ~E; = ald for all x, Z, then
plpg(Z|x)] > a for all x, and therefore

£(6). 8)

We remark that while Equation (8) does not make explicit
CSLC assumptions on the reference distribution p, a consis-
tent learning model implies that the conditional distribution
p(Z|x) is arbitrarily well approximated (in KL divergence)
with SLC distributions—thus justifying the structural CSLC
assumption on the target.

2.3. Score Matching with Exponential Families

In numerical applications, one cannot minimize the true
score-matching loss £ as only a finite amount of data is avail-
able. We now show that a similar control as Equation (8)
can be obtained for the empirical loss minimizer, whenever
prior information enables us to define low-dimensional ex-
ponential models for pg(Z|x) with good accuracy. It also
provides a control on the critical parameter &, addressing
the optimization and statistical errors.

We consider a linear model Ej(z, %) = 0" ®(x,z) with a
fixed potential vector ®(x,z) € R™ (m is thus the num-
ber of parameters), and the corresponding minimization of
the (conditional) score matching objective in Equation (7).
Thanks to this linear parameterization, it becomes a convex
quadratic form ((0) = %éTﬁé — 0" §, with

ﬁ:72v<b o', 7YV 0(a",7')T e R™,

=1
*ZA‘I’ Lt

It can be minimized in closed-form by inverting the Hessian

Nt
||

matrix: § = H " g. As discussed, the sampling and learning
guarantees of the model critically rely on the CSLC property,

which is ensured as long as 0 € ©,, := {0| V2Ey(z,7) =
ald, ¥ (z,z)} with & > 0.

The following theorem leverages the finite-dimensional lin-
ear structure of the score-matching problem to establish fast
non-asymptotic rates of convergence, controlling the excess
risk in KL divergence.

Theorem 2.1 (Excess risk for CSLC exponential models).
Let §* = arg min £(6) and 6= arg min /(6). Assume:

(i) 6* € O, for some & > 0,

(i) H = E[viévféﬂ > n1d with 7 > 0,
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(iii) the sufficient statistics ® satisfy moment conditions
E.2, regularity conditions E.3, and V®,(z, ) is Mg-
Lipschitz for any k < m and all x (see Appendix E).

Then when n. > m, the empirical risk minimizer 0 satisfies

56 @& Wl'lhE(fz: xz)[é] > &O(Tllﬂm), O]
) n

and, for t < /ml(0"),

“o

e < 7)(1 +t) (10)

with probability greater than 1 —
exp{—0(nlog(tn/\/m))} over the draw of the training
data. The constants in Q() only depend on moment and

regularity properties of ®.

The theorem provides learning guarantees for the empirical

risk minimizer 0 (compare Equations (8) and (10)), and
hinges on three key properties: the ability of the exponential
family to approximate the true conditionals at each block
(i) with small Fisher approximation error £(6"), (ii) with a
sufficiently large strong log-concavity parameter &, and (iii)
with a well-conditioned kernel H. In numerical applications,
the number of parameters m should be small enough to
control the learning error for finite number of samples n,
and to be able to compute and invert the Hessian matrix H.
We will define in Section 3 low-dimensional models that
can approximate a wide range of multiscale physical fields.

The proof uses concentration of the empirical covariance H,
and combines both upper and lower tail probability bounds
(Mourtada, 2022; Vershynin, 2012) to bound the expecta-
tion, similarly as known results for least-squares (Mour-
tada, 2022; Hsu et al., 2012). The statistical properties of
score matching under exponential families have been stud-
ied in the infinite-dimensional setting by Sriperumbudur
et al. (2013); Sutherland et al. (2018), where kernel ridge
estimators achieve non-parametric rates n”_ °, s < 1. Com-
pared to these, as an intermediate result, we achieve the
optimal rate in F1 divergence in nt directly with the ridge-
less estimator (Equation (36)). The key assumption is (i),
namely that the optimal model in the exponential family
is SLC. Since our structural assumption on the target p is
precisely that its conditionals are SLC, it is reasonable to
expect this to be generally true. For instance, this is the case
if the model is well specified (p = ps+).

2.4. Sampling Guarantees with MALA

We illustrate the efficient sampling properties of CSLC dis-
tributions by focusing on a reference sampler given by the
Metropolis-Adjusted Langevin Algorithm (MALA) with
algorithmic warm-start, which enjoys well-understood con-
vergence properties in this case:

Proposition 2.2 (MALA Sampling, Altschuler & Chewi
(2023, Theorem 5.1)). Suppose that ald < V2 Eg(|x) <
BId for all %,z, and let d = dim(z). Then N steps of
MALA produce a sample T with conditional law pg(Z|z)

satisfying
& < exp<—0<‘ /\/;i%[/d)).

MALA can thus be used to sample from CSLC distribu-
tions with an exponential convergence, whose mixing time
O(Vdp/a) is sublinear in the dimension d and linear in the
condition number 3/a of the Hessian V2 Ej. We also note
that similar guarantees will hold for other high-precision
Metropolis-Hastings samplers, such as Hamilton Monte-
Carlo. Together, Propositions 2.1 and 2.2 and Theorem 2.1
imply a control on the total accumulated error for CSLC
exponential models.

3. Wavelet Packet Conditional Log-Concavity

The CSLC property depends on the choice of the projec-
tors (G, G;) which need to be adapted to the data. We
show that for a class of stationary multiscale physical pro-
cesses, CSLC models can be obtained with wavelet packet
projectors. These models exploit the dominating quadratic
interactions at high frequencies by splitting the frequency
domain in sufficiently narrow bands. It reveals a powerful
mathematical structure in this class of complex distributions.

3.1. Energies with Scalar Potentials

In the following, x € R is a vd x Vd image or two-
dimensional field. We denote x[i] the value of z at pixel
or location ¢. An important class of stationary probability
distributions p(x) = Z71e E(®) are defined in physics
from an energy composed of a two-point interaction term
K plus a potential that is a sum of scalar potentials v:

E(z) = %xTKa:—FZv(x[i]). (11)

The matrix K is a positive symmetric convolution opera-
tor. Equation (11) generalizes both zero-mean Gaussian
processes (if v = 0 then K is the inverse covariance) and
distributions with i.i.d. components (if K = 0 then v is
the negative log-density of the pixel values). The energy
Hessian is given by

V2E(x) = K + diag (v (z[i]))..

K2

(12)

If v"(t) < 0 for some ¢t € R then we may get negative
eigenvalues for some z, in which case the energy is not
convex.
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Equation (11) provides models of a wide class of physi-
cal phenomena (Marchand et al., 2022), including ferro-
magnetism. An important example is the <p4 energy in
physics, which is a non-convex energy allowing to study
phase transitions and explain the nature of numerical insta-
bilities (Zinn-Justin, 2021). It has a kinetic energy term
defined by K = —fSA where A is a discrete Laplacian
that enforces spatial regularity, and its scalar potential is
v(t) = t* — (1 + 28)t°. It has a double-well shape which
pushes the values of each z[i] towards +1 and —1, and is
thus non-convex. (3 is an inverse temperature parameter. In
the thermodynamic limit d — oo of infinite system size,
the g04 energy has a phase transition at 3, ~ 0.68 (Kaupuzs
et al., 2016). At small temperature (5 > [3,), the local inter-
actions in the energy give rise to long-range dependencies.
Gibbs sampling then “critically slows down” (Podgornik,
1996; Sethna, 2021) due to these long-range dependencies.

Fast sampling can nevertheless be obtained by exploiting
conditional strong log-concavity. Assume that there exists
v > 0 such that v (t) > —~ for all t € R. It then follows
that ViE > K — ~vId. We can thus obtain a convex en-
ergy by restricting K over a subspace where its eigenvalues
are larger than . The convolution K is diagonalized by
the Fourier transform, with positive eigenvalues that we
write K (w) at all frequencies w. The value K (w) typi-
cally increases when the frequency modulus |w| increases.
A convex energy is then obtained with a projector over a
space of high-frequency images, as shown in the following
proposition.

Proposition 3.1 (Conditional log-concavity of scalar poten-
tial energies). Consider the energy defined in Equation (11)
and assume that —y < v" < 6 for some 7,6 > 0 and
that K (w) = MNw|? for some n > 0. Let G, be an or-
thogonal projector over a space of signals whose Fourier
transform have a support included over frequencies w such
that |w| > |wo| with |wo| > (7/A)*". Then the conditional
probability p(Z,|x,) is strongly log-concave for all x.

The proof is in Appendix F and relies on a direct calculation
of the Hessian of the conditional energy. This proposition
proves that we obtain a strongly log-concave conditional
distribution p(Z|z,) with a sufficiently high-frequency fil-
ter G;. It is illustrated in the bottom row of Figure 1 on a
simplified two-dimensional example inspired from the <p4
energy. The distribution has two modes z = (1,1) and
x = (—1,—1), and the Fourier coefficients are computed
with a 45 degrees rotation: x; = (z[1] + z[2])/v/2 and
7y = (x[2] — 2[1])/+/2, which leads to a log-concave con-
ditional distribution.

Multiscale physical fields with scalar potential energies (11)
are often self-similar over scales, in the sense that lower-
frequency fields x; can also be described with an energy
in the form of Equation (11), with different parameters

(Wilson, 1971). This explains why Proposition 3.1 can be
iterated to obtain a CSLC decomposition. For <p4 energies,
the range of G is non-empty as soon as 3 > %, which
includes the critical temperature 3, = 0.68 (though § = c0).
At the critical temperature, x; is further described by the
same parameters K and v as z, so that a complete CSLC
decomposition is obtained by iteratively selecting projectors
G ; which isolate the highest frequencies of x;_;.

Proposition 3.1 can be extended to general energies

E(z) = %ECTKLL' + V(z),
by assuming that the Hessian V>V (z) is bounded above
and below. Conditional log-concavity may then be found by
exploiting dominating quadratic energy terms with a PCA of
K. We believe that this general principle may hold beyond
the case of scalar potential energies (11) considered here.

3.2. Wavelet Packets and Renormalization Group

We now define wavelet packet projectors G; and @j, which
are orthogonal projectors on localized zones of the Fourier
plane. They are computed by convolutions with conjugate
mirror filters and subsamplings (Coifman et al., 1992), de-
scribed in Appendix A. These filters perform a recursive
split of the frequency plane illustrated in Figure 2.

The wavelet packet G¢ ; is a projector on a high-frequency
domain, whereas G is a projection on the remaining lower-
frequency domain. An orthogonal wavelet transform is a
particular example, which decomposes the Fourier plane
into annuli of about one octave bandwidth, as shown in the
top left and bottom panels of Figure 2. However, it may
not be sufficiently well localized in the Fourier domain to
obtain strictly convex energies. The frequency localization
is improved by refining this split, as illustrated on the top
right panel of Figure 2. Each G‘j then performs a projec-
tion over a frequency annulus whose bandwidth is a half
octave. Wavelet packets can adjust the frequency bandwidth
to 2~ M+ octave for any integer M > 1. It allows reducing
the support of Gj, which is necessary to obtain a CSLC
decomposition according to Proposition 3.1.

3.3. Multiscale Scalar Potentials

The probability distribution p(z) is approximated by
po(x) = Do, (zy) H}]:1 P, (Z|x;), where each ; and 7
are computed with wavelet packet projectors G'; and G T
We introduce a parameterization of p; with scalar poten-
tial energies, following Marchand et al. (2022). We shall
suppose that the dimension d; = dim(x ;) is sufficiently
small so that p(z ;) may be approximated with any standard
algorithm (d; = 1 in our numerical experiments).

The self-similarity property of multiscale fields with scalar
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w2

Band Width =1 Band Width = 1/2

Figure 2. Top: frequency localization of the decomposition
(zs,Zs,...,%,) with wavelet packet projectors of 1 (left) and
1/2 (right) octave bandwidths. Botrom. iterative decomposition of
x = xo with (G ;» G ;) implementing a wavelet packet transforma-
tion over J = 2 layers of 1 octave bandwidth.

energies motivates the definition of each pg (Z;|2;) with an
interaction energy '

Eéj (‘rj7jj) =

which derives from the fact that p(z;_ ) defines an energy
of the form (11) (Marchand et al., 2022). ®; captures the in-
teraction terms and performs a parametrized approximation
of v;, defined in Appendix B.1.

The parameters G_j are estimated from samples by invert-
ing the empirical score matching Hessian as in Section 2.3.
We generate samples from the resulting distribution py by
sampling from pj , and then iteratively from each P, with
MALA. The learning and sampling algorithms are summa-
rized in Appendix B.2. Additionally, Appendix D explains
that a parameterized model of the global energy (11), which
is crucial for scientific applications, can be recovered with
free-energy score matching.

4. Numerical Results

This section demonstrates that a wavelet packet decomposi-
tion of <p4 scalar fields and weak-lensing cosmological fields
defines strongly log-concave conditional distributions. It
allows efficient learning and sampling algorithms, and leads
to higher-resolution generations than in previous works.

4.1. 504 Scalar Potential Energy

We learn a wavelet packet model of go4 scalar fields at dif-
ferent temperatures, using the decomposition and models
presented in Section 3. The wavelet packet exploits the con-
ditionally strongly log-concave property of <p4 scalar fields
(Proposition 3.1) to obtain a small error in the generated
samples, as shown in Section 2. We first verify qualitatively
and quantitatively that this error is small.

We evaluate the wavelet packet model at three different
temperatures, which have different statistical properties:
B = 0.50, the “disorganized” state, § = 0.68 ~ [, the
critical point, and 5 = 0.76 the “organized” state. The com-
putational efficiency of our approach enables generating
high-resolution 128 x 128 images, as opposed to 32 x 32 in
Marchand et al. (2022). Indeed, learning the model parame-
ters for 64 x 64 images with score matching takes seconds
on GPU, whereas doing the same with maximum likelihood
takes hours on CPU (as sequential MCMC steps are not
easily parallelized). The generated samples are shown in
Figure 3 and are qualitatively indistinguishable from the
training data. The experimental setting is detailed in Ap-
pendix C.

A distribution p(z) having a scalar potential energy (11)
is a maximum-entropy distribution constrained by second-
order moments and hence by the power spectrum, and by
the marginal distribution of all z[i]. These statistics specify
the matrix K and the scalar potential v(¢). Our model p,
also has a scalar potential energy in this case. To guarantee
that py = p, it is thus sufficient to show that they have the
same power spectrum and same marginal distributions. We
perform a quantitative validation of generated samples by
comparing their marginal densities and Fourier spectrum
with the training data. Figure 3 shows that these statistics
are well recovered by our model.

4.2. Conditional Log-Concavity

We numerically verify that <p4 at critical temperature is
CSLC (Definition 2.1), with appropriate wavelet packet
projectors. It amounts to verifying that the eigenvalues of
the conditional Hessian V% Egj (z;,2;) are positive for all
x; and Z;. We can restrict z; to typical samples from p(x;).
However, it is important that the Hessian be positive even
for z; outside of the support of p(Z,|x;). Indeed, negative
eigenvalues occur at local directional maxima of the energy,
rather than minima which would correspond to most likely
samples. We thus evaluate the Hessian at z; = 0, which is
expected to be such an adversarial point.

Figure 4 shows distributions of eigenvalues of V;j Egj for

decompositions (G ;G ;) of various frequency bandwidths.
It shows that the smallest eigenvalues become larger and
eventually cross zero as the frequency bandwidth of G ;
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Figure 3. Comparison between training and generated samples for
@4 energies. In columns: training samples, generated samples,
histograms of marginal distributions p(z[i]) and power spectrum.
In rows: disorganized state 5 = 0.50, critical point 8 = 0.68 ~
B., and organized state 5 = 0.76.

becomes narrower, as predicted by Proposition 3.1. Further-
more, the condition number of the Hessian becomes smaller
as eigenvalues concentrate towards their mean.

As shown in Equation (12), both the quadratic part K and
the scalar potential v contribute to the Hessian. As a way to
visualize both contributions, we define the equivalent scalar
potential v as v°(t) = v(t) + TrQ(dK)tQ. It corresponds to
extracting the mean quadratic value Tr(K)/2d ||z|” from
the quadratic part and reinterpreting it as a scalar potential.
This allows visualizing the average energy on a pixel value
when neglecting spatial correlations. The right panel of
Figure 4 compares these equivalent scalar potentials for the
energy F; of x; and the conditional energy Ej. It shows that
the non-convex double-well potential in the global energy
becomes convex after the conditioning. It verifies Proposi-
tion 3.1, as the mean quadratic value becomes larger when
we restrict K to a subspace of high-frequency signals.

We also verify the sampling efficiency predicted by Proposi-
tion 2.2. As we cannot evaluate the KL divergences €}, we
rather compute the decorrelation mixing time 7, a measure
of the number of steps of conditional MALA to reach a
given fixed error threshold averaged over all scales j. The
precise definition is given in Appendix C.3. We compare
it with the decorrelation mixing time 7 of MALA on the
non-convex global energy F.

Sampling maps of size v/d x \/d from the global 504 energy
E' at the critical temperature requires a number of steps
7~ dt (Zinn-Justin, 2021). This phenomena is known
as critical slowing down (Podgornik, 1996; Sethna, 2021),

10 20 -1 0 1
Eigenvalues of V; Ej, ¢

Figure 4. Conditional strong log-concavity of g04 at critical tem-
perature. All scales j yield similar results. Left: distribution of
eigenvalues of V;j Ej for different frequency bandwidths (j = 1
is shown). Right: equivalent scalar potentials v; and ¥; (j = 3 is
shown).
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Figure 5. Mixing times for direct (7) and conditional (7) sampling
for <p4 at critical temperature.

a consequence of long-range correlations. We numerically
show that our algorithm does not suffer from it. Figure 5 in-
deed demonstrates an empirical scaling 7 ~ d’3°. Note that
this is not directly comparable with Proposition 2.2 as the
decorrelation mixing time defines a different convergence
rate than the KL mixing time.

4.3. Application to Cosmological Data

We now apply our algorithm to generate high-resolution
weak lensing convergence maps (Bartelmann & Schneider,
2001; Kilbinger, 2015) with an explicit probability model.
Weak lensing convergence maps measure the bending of
light near large gravitational masses on two-dimensional
slices of the universe. We used simulated convergence maps
computed by the Columbia lensing group (Zorrilla Matilla
et al., 2016; Gupta et al., 2018) as training data. They simu-
late the next generation outer-space telescope Euclid of the
European Space Agency (Laureijs et al., 2011), which will
be launched in 2023 to accurately determine the large scale
geometry of the universe governed by dark matter. Estimat-
ing the probability distribution of such maps is therefore an
outstanding problem (Marchand et al., 2022). We demon-
strate that the CSLC property is surprisingly verified in this
real-world example, and can be used to efficiently model
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Figure 6. Comparison between training and generated samples for
weak-lensing maps. Upper left: histograms of marginal distri-
butions p(z[i]). Lower left: power spectrum. Center: training
samples. Right: generated samples.

and generate these complex fields.

We use the same models and algorithms as for the <p4 energy.
The experimental setting is detailed in Appendix C. Figure 6
shows that our generated samples are visually highly similar
to the training data. Quantitatively, they have nearly the
same power spectrum. The marginal distribution of all z[i]
are also nearly the same, with a long tail corresponding to
high amplitude peaks, which are typically difficult to re-
produce. As opposed to microcanonical simulations with
moment-matching algorithms (Cheng & Ménard, 2021), we
compute an explicit probability distribution model, which is
exponential. As a maximum-entropy model, it has a higher
entropy than the true distribution, and therefore does not suf-
fer from lack of diversity. By relying on the CSLC property,
we can use the fast score-matching algorithm and compute
128 x 128 images, at four times the 32 x 32 resolution than
with a maximum-likelihood algorithm used in Marchand
et al. (2022).

Figure 7 shows the equivalent scalar potentials of the condi-
tional energies at all scales, which are all convex and thus
verify the CSLC property of weak lensing model. It demon-
strates that this property can be used to efficiently model
and generate high-resolution complex data.

5. Discussion

We introduced conditionally strongly log-concave (CSLC)
models and proved that they lead to efficient learning with
score matching and sampling with MALA, while control-
ling errors. These models rely on iterated orthogonal pro-
jections of the data that are adapted to its distribution. We
showed mathematically and numerically that complex multi-
scale physical fields satisfy the CSLC property with wavelet

150

=N W Uty N

T N
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Figure 7. Equivalent scalar potentials v; at each scale j for weak-
lensing maps (normalized for viewing purposes).

packet projectors. The argument is general and relies on
the presence of a quadratic (kinetic) energy term which en-
sures strong log-concavity at high-frequencies. It provides
high-quality and efficient generation of high-resolution
fields even when the underlying distribution is unknown.
The CSLC property guarantees diverse generations without
memorization issues, which is critical in scientific applica-
tions.

CSLC models can be extended by introducing latent vari-
ables. The guarantees of Section 2 extend to the case where
the data is a marginal of a CSLC distribution. A notable
example is a score-based diffusion model, for which the data
2 = x is a marginal of a higher-dimensional process (),
whose conditionals p(x,_s|x,) are approximately Gaussian
white when § is small, thus introducing a tradeoff between
the number of terms in the CSLC decomposition and the
condition number of its factors. Score diffusion is a generic
transformation, but it assumes that the score V,, log p(z;)
can be estimated with deep networks at any ¢ > 0 (Song
et al., 2021; Ho et al., 2020). For high-resolution images,
the score estimation often uses conditional multiscale de-
compositions with or without wavelet transforms (Saharia
etal., 2021; Ho et al., 2022; Dhariwal & Nichol, 2021; Guth
et al., 2022). Understanding the log-concavity properties of
natural image distributions under such transformations is a
promising research avenue to understand the effectiveness
of score-based diffusion models.
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A. Definition of Wavelet Packet Projectors

The fast wavelet transform (Mallat, 1989) splits a signal in frequency into two orthogonal coarser signals, using two
orthogonal conjugate mirror filters g and g.

We review the construction of such filters in Appendix A.1. A description of the fast wavelet transform is then given in
Appendix A.2. Finally, we define in Appendix A.3 the wavelet packet (Coifman et al., 1992) projectors (G, ;) used in the
numerical section 3.

A.1. Conjugate Mirror Filters
Conjugate mirror filters g and g satisfy the following orthogonal and reconstruction conditions:
T._ T
ng=ng=0, (14)
g g+g g=1Id.
In one dimension, the conditions (14) are satisfied (Mallat, 1989) by discrete filters (¢(n)),ez; (§(1))nez Whose Fourier
transforms g(w) =, g(n)e” "™ and g(w) = >, g(n)e” " satisfy

G+ g+ m)F =2,
0) =2, (15)

—iWw A

w)=e “glw+m).

We first design a low-frequency filter g such that §(w) satisfies (15), and then compute g with
g(n) = (=1)'"g(1 = n). (16)

The choice of a particular low pass filter g is a trade-off between a good localization in space and a good localization
in the Fourier frequency domain. Choosing a perfect low-pass filter g(w) = 1,c[—r/2,~/2) leads to Shannon wavelets,
which are well localized in the frequency domain but have a slow decay in space. On the opposite, a Haar wavelet filter
g(n) =21, {0,1y has a small support in space but is poorly localized in frequency. Daubechies filters (Daubechies, 1992)
provide a good joint localization both in the spatial and Fourier domains. The Daubechies-4 wavelet is shown in Figure 8.

In two dimensions (for images), wavelet filters which satisfy the orthogonality conditions in (14) can be defined as separable
products of the one-dimensional filters g and g (Mallat, 2009), applied on each coordinate. It defines one low-pass filter g,
and 3 high-pass filters g, = (g§)1§k§3:

92(”1,712; = g(n1)g(ny),
G2(n1,ny) = g(ny)g(ny),
32 (m1.m3) = gy )g(ny), (an
5 (n1,ma) = g(n1)g(ny)
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Daubechies-4 Orthogonal Filters
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Figure 8. Fourier transform of Daubechies-4 orthogonal filters §(w) (in green) and §(w) (in orange).

For simplicity we shall write g and g the filters g, and g,. g outputs the concatenation of the 3 filters g’; .

A.2. Orthogonal Frequency Decomposition

We introduce the orthogonal decomposition of a signal x;_; with the low pass filter g and the high pass filter g, followed by
a sub-sampling. It outputs (x;, Z;), which has the same dimension as ;_;, defined in one dimension by

zilp] = > gln —2plz; 1[n],

B neR? B (18)
xj[p] = >, gln— 2p]$j—1[”}-
n€R2
The inverse transformation is
zilpl = > glp—2nlzjaln]+ X0 glp — 2n]z; 4, (0] (19)
neRr? neR?

The orthogonal frequency decomposition in two dimensions is defined similarly. It decomposes a signal z of size v/d x v/d

. . . . . VA o Va
into a low frequency signal and 3 high frequency signals, each of size 5% x 5%,

A.3. Wavelet Packet Projectors

An orthogonal frequency decomposition projects a signal into high and low frequency domains. In order to refine the
decomposition (by separating different frequency bands), wavelet packets projectors are obtained by cascading this
orthogonal frequency decomposition.

The usual fast wavelet transform starts from a signal Z of dimension d, decomposes it into a low-frequency x; and a high
frequency 71, and then iterates this decomposition on the low-frequency z; only. It iteratively decomposes z;_; into the
lower frequencies x; and the high-frequencies Z ;. The resulting orthogonal wavelet coefficients are (Z;,2 ;) <;<. The
resulting decomposition remains of dimension d.

To obtain a finer frequency decomposition, we use the M/ -band wavelet transform (Mallat, 2009), a particular case of wavelet
packets (Coifman et al., 1992). It first applies the fast wavelet transform to the signal, and obtains (Z;,2 ;)<< . Each
high-frequency output Z; undergoes an orthogonal decomposition using g and g. Then both outputs of the decomposition
are again decomposed, and so on, (M — 1)-times. The coefficients are then sorted according to their frequency support, and
also labeled as (a?j, J;J)1<j<J/, with J' = J2M71, also referred to as .J in the main text.

The wavelet packet decomposition corresponds to first decomposing the frequency domain dyadically into octaves, and then
each dyadic frequency band is further decomposed into M-t frequency annuli. We say this decomposition corresponds to a
1/ 2M=1 octave bandwidth. Precisely, if j = j’QM_l + r, then T; has a frequency support over an annulus in the frequency

13
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Figure 9. In one dimension, a wavelet packet transform is obtain by cascading filterings and subsamplings with the filters g and g along a
binary splitting tree which outputs x ; and z; for j > J.

L I I3 Iy Ty
% oL
i

64 x 64

128 x 128

Figure 10. Low-frequency maps x; for M = 2 for a <p4 realization.

domain, with frequencies with modulus of order 27 /ﬂ'(l — 27 M+ (r — 1/2)). A two-dimensional visualization of the
frequency domain can be found in Figure 2, for M = 1 and M = 2, corresponding to 1 and 1/2 octave bandwidths.

Figure 9 shows the iterative use of g and g used to obtain the decomposition, in one dimension, for M = 2. Note that the
filters g and g successively play the role of low- and high-pass filters because of the subsampling (Mallat, 2009).

We now introduce the corresponding orthogonal projectors GG; and G ;- defined such that

x j = Gj X j—15
where the (Ej) o sorted in frequency, have been obtained trough the M -band wavelet transform, as described above, and T
refers to the signal reconstructed using (z ;, jj’)j'Zj 41~ Let us emphasize that the image x;_; is reconstructed from z; and
the higher frequencies z ;, and defined on a spatial grid which is either the same as x; or twice larger. For M = 2, Figure 10
shows that z; and z; are defined on the same grid, although z; has a lower-frequency support. Similarly z, and x5 are both
represented on the same grid, which is twice smaller, and so on.

The orthogonal projectors satisfy GJTG 5+ G’;-F G 7 = Id. We then have the following inverse formula:

jo1 =G+ G @1)

This decomposition using G'; and C_}j recursively splits the signal in frequencies, from high to low frequencies.
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Figure 11. Sub-bands of Z; for a wavelet packet decomposition with a half-octave bandwidth.

B. Score Matching and MALA Algorithms for CSLC Exponential Families
B.1. Multiscale Energies

This section introduces the explicit parametrization of the energies Eg, and Ey .

The conditional energies E(;j (z;,2;) are defined with a bilinear term which represents the interaction between x; and 7
and a scalar potential:

- Iore
By, (2, 3;) = 57, Kyt; + ) 7 Ki ;7 J+Z+Zv 2 4li (22)
>3

withz;_; = G T+ G x;. Equation (22) is an equivalent reparametrization of Equation (13). Considering (Z,); ; instead
of x; allows ﬁxmg some coefﬁc1ents of the K] j to zero instead of learning them. First, we set K] ; =0ifz;and 7,
are not defined on the same spatial grid. In the sequel, sums over [ only refer to theses terms, which differ dependlng on
the wavelet decomposition. We enforce spatial stationarity by averaging the bilinear interaction terms across space. We
further kept only the non-negligible terms which correspond to neighboring frequencies and nelghbormg spatial locations.
As displayed in Figure 11, Z; is composed of sub-bands xj. We kept the interaction terms w?[ 25 T, +l *li 4 6i] for I € {0,1},

0k € {0,1}, and 67 € {0,1,2,3, 4}2, which correspond to local interactions in both space and frequency.

The scalar potential v,(t) is decomposed on a family of predefined functions pj, ;(t):
v;(t) = de,j P, (t)- (23)
k

pj i is defined in order to expand the scalar potential v; which captures the marginal distributions of the x;_; [i], which do
not depend on ¢ due to stationarity. We divide this marginal into /N quantiles. Each py, ; is chosen to be a regular bump
function having a finite support on the k-th quantile. This parametrization performs a pre-conditioning of the score matching

Hessian.

Let p be a bump function with a support in [—1/2,1/2]. For each j, let a; ;, and [, ;, be respectively the center and width of
the k-th quantile of the marginal distribution of Z ;, we define

t—a;
Pri(t) = VN p( l,k”’“), (24)
7>
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with the condition

2 1
Hp/Hz: =2 (25)
16511
in order to balance the magnitude of the scalar potentials with the quadratic potentials.
The potential vector is thus
= - k+5k
(2, 7;) = (Z i)z i+ 6] Zpk ) (26)
i 0<I<1,0<6k<1,0<6,<4,1<k’'<N
Similarly, we define Ey , as the sum of a quadratic energy and a scalar potential:
1 7 ;
Ey,(x;) = ixJKJxJ + ZUJ(CUJ[Z])~ 27

The bilinear interaction terms are averaged across space to enforce stationarity. The scalar potential v ;(t) is also decomposed
over a family of predefined functions pj, ;(t):

= Z g, g P, (t), (28)
%

defined similarly as above. This yields a potential vector

®(zy) = (Z x sliz ;i + i, pi J(%)) ) (29

0<8i<4,1<k<N
leading to

By, (x7) = 059, (), (30)
with 07 = (K, o, 1)

B.2. Pseudocode

The procedure to learn the parameters (éj) of the conditional energies E(;j( by score matching is detailed in

J Js ])
Algorithm 1. The procedure to generate samples from the distribution py(2) with MALA is detailed in Algorithm 2.

Algorithm 1 Score matching for exponential families with CSLC distributions

Require: Training samples (l‘i)léign.
Initialize 2 = 2" for 1 < i < n.
for j = 1to J do . ‘ ‘
Decompose z; < G;x;_; and Z; < G;a_; for1 <i < n.

Compute the score matching quadratic term H; «+ £ 37 Vs, <i> ( )T e ™™,

g7 j)v (I) (
e R™.

S

Tj Xj
Compute the score matching linear term g; < %L S Ag, P, (x]

end for B

return Model parameters (6, );.

]7 j)
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Algorithm 2 MALA sampling from CSLC distributions

Require: Model parameters (6;);, an initial sample x ; from p(z ;), step sizes (d;);, number of steps (77),.
for j =Jtoldo
Initialize Z; o = 0.
fort =1to T} do
Sample gj,t ~ N(‘fj,tfl - (%sz,?EgJ (.TJ, 'fj,tfl)v 26JId) .
_ 2 _ 2
seta = |[Vz, By (@5 55.0)|| + |[ Vs, Bo, (@5, 750-)]| -
Setb = <?3j,t —Zjt-1, ijEéj (7;,754) — VijEé] (7;,%,1) ).
Set ¢ = Eg (%, ¥;) — Eg, (5, %54-1)-
Compute acceptance probability p = exp (—%a + %b — c) .
Set x; , = ¥, with probability p and 7, , = Z; ,_, with probability 1 — p.
end for B
Reconstruct x;_; = G;—F.rj + GjTa*:j’Ti.
end for ‘
return a sample x, from py(x).

C. Experimental Details
C.1. Datasets

Simulations of 4,94. We used samples from the <p4 model generated using a classical MCMC algorithm, for 3 different
temperatures, at the critical temperature . ~ (.68, above the critical temperature at 8 = 0.50 < f3.., and below the critical
temperature at 3 = 0.76 > f3... For § = 0.76, we break the symmetry and only generate samples with positive mean. For
each temperature, we generate 10* images of size 128 x 128.

Weak lensing. We used down-sampled versions of the simulated convergence maps from the Columbia Lensing Group
(http://columbialensing.org/; Zorrilla Matilla et al., 2016; Gupta et al., 2018). Each map, originally of size
1024 x 1024, is downsampled twice with local averaging. We then extract random patches of size 128 x 128.

To pre-process the data, we subtract the minimum of the pixel values over the entire dataset, and then take the square root.
This process is reversed after generating samples. We also do not consider the outliers (less than 1% of the dataset) with
pixels above a certain cutoff, in order to reduce the extent of the tail and attenuate weak lensing peaks. Our dataset is made
of ~ 4 x 10° images.

C.2. Experimental Setup

Wavelet filter. We used the Daubechies-4 wavelet (Daubechies, 1992), see the filter in Figure 8.

Wavelet packets. We implemented wavelet packets in PyTorch, inspired from the PyWavelets software (Lee et al., 2019).
The source code is available at https://github.com/Elempereur/WCRG.

Score matching. We pre-condition the score matching Hessian H; by normalizing its diagonal before computing H;- ! 9;
in Algorithm 1. After this normalization, we obtain condition numbers K, which satisfy Kg, <2x 10% at all 7.

Sampling. The MALA step sizes d; are adjusted to obtain an optimal acceptance rate of ~ 0.57. Depending on the scale
J» the stationary distribution is reached in T); ~ 20-400 iterations from a white noise initialization. We used a qualitative
stopping criterion according to the quality of the matching of the histograms and power spectrum.

C.3. Mixing Times in MALA

Sampling from p, requires sampling from py , and then conditionally sampling from P, (|2 ;). This last step is performed
with a Markov chain whose stationary distribution is P, (z;|x;) for a given x;. It generates successive samples () where

17
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t is the the step number in the Markov chain.
‘We introduce the conditional auto-correlation function:

E[(z;(t) — Elz; | z;]) (2;(0) — Elz; | z;])]
E[6z7] '

Ajt) =

The expected value E is taken with respect to both x; and the sampled Z;. A;(t) has an exponential decay. Let 7; be the
mixing time defined as the time it takes for the Markov chain to generate two independent samples:

A (t) = A, (0) exp (:J)

T

; is computed by regressing log(A;(t)) over .

Each iteration of MALA with Pa, (Z; | x;) computes a gradient of size Jj. In order to estimate the real computational cost

of the sampling of py, we average 7; proportionally to the dimension Jj:

where d is the dimension of x.

D. Energy Estimation with Free-Energy Modeling

This section explains how to recover an explicit parametrization of the negative log-likelihood — log py from the param-
eterized energies Ee We introduce a parameterization of the normalization constant of the Gibbs energies for each j
and describe an efficient score- matching algorithm to learn the parameters. This leads to a decomposition of the negative
log-likelihood — log py over scales.

D.1. Free-Energy Score Matching

From the decomposition

<

po(z) = py, (T H (@]a5),

we obtain

M*\

—logpy(x) = By, (25) + Y By (@), ;) +log Zg, (x;)) + est, (1)

1

J

x;,Z;). To retrieve the global negative log-likelihood — log py(x), we

thus compute an approximation of — log Z0 () Wlth a parametric family F~

where Zgj () is the normalization constant for Eg (z

The parameters 9~j of the approximation of the normalizing factors Z 5 can be learned in a manner similar to denoising score
J
matching. Indeed, using the identity

—V,, log Zéj (z;) = E{V%Eéj (7;,7;) |1'J}7

which can be proven by a direct computation of the gradient, the parameters éj can be estimated by minimizing

0,(0;) = {Hv Fy vijejHQ]. 32)

For an exponential model F; = ?(I)j with a fixed potential vector &)j, Equation (32) is quadratic in 6 and admits a
J
closed-form solution:

0.

-1
o S
;=E|[V, 8V, 8| E|v, &V, 5]

18
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We finally obtain the energy decomposition

J
—logpy(w) = Ey (v ;) + Z(Egj (r,2;) — Fy, (xj)) + cst. (33)

Jj=1

This score-based method is much faster and simpler to implement than likelihood-based methods such as the thermodynamic
integration of Marchand et al. (2022), which requires generation of many samples while varying the parameters 6; of the
conditional energy E@j .

D.2. Parameterized Free-Energy Models

The potential vector <i>j is modeled in the class of Equation (11), following Marchand et al. (2022) and similarly to
Appendix B.1:

which gives éj = (f( j» @ )i, and an associated potential vector
~ 1 T -
(bj(xj) =\ 5% apj,k(xj) .
k

D.3. Multiscale Energy Decomposition

‘We now expand the models for the conditional energies Egj and the so-called free energies Fj; in Equation (33). All the

quadratic terms (K ;, K s K ;) can be regrouped in an equivalent quadratic term /. We then have

~logpy(e) = 5o K+ 3 o Coglil) + 32 (0551 ll) = 35(2,1)

%xTKx—FZ 1 (woli]) + 3 (B4 1) = () |

with ¥ 7, = v;. This defines multiscale scalar potentials V;:
Vi =041 — Uy,
‘/b = 1_}17
such that we have the global negative log-likelihood or energy function:
1 J
T .
—logpy(x) = 2% Kz + Z Z Vi(x;[i])-
j=0 i

For g04 at critical temperature, as derived in (Marchand et al., 2022), the only non-zero scalar potential will be V;). The other
V;; potentials are zero, up to a quadratic term.

As a numerical test, Figure 12 verifies that on <p4 at critical temperature, ¥;,, and ¥, indeed cancel out so that V; = 0
for j > 0. In order to ensure that the quadratic difference mentioned above vanishes, we subtract to ©; the quadratic
interpolation of v; — U;4.
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Scalar Potentials

15
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Figure 12. For @4 at /3., the conditional potentials ¥, and free-energy potential ; cancel out. Only j = 1 is shown, other scales show
similar behavior.

E. Proofs of Section 2
E.1. Proof of Proposition 2.1

Proposition 2.1 (Error decomposition).

J J

R 1 _ _

TV(p,p)Sﬁ e§+26f+ 65—&-2]5
j=1 j=1

Proof. We use the following decomposition of KL divergence in terms of conditional distributions:

Lemma E.1. Ler p(z) = p(x.])szlp(iﬂxj) and q(z) = q(zy) Hj q(z;|lz;).  We have KL(p|q) =
> Eo, o pKL(p(|25) [ q(-25)) -

Using Lemma E.1 we obtain that KL(p || pg) = €5 + > EJL and KL(p || pg) = €5 + > e“Sj. We conclude with the
Pinsker inequality

TV(,p) < TV(.p9) + TV(5.0) < —= (VLG 2] + VELG ) -

2

S

Proof of Lemma E.1. We proceed by induction over .J. Observe that log p(z) = log p(Z,|z,) + log p(x;), so

KL(p |l q) = E,[log(p) — log(q)]
= E,[logp(z,) — log q(x1)]+
Eqg, mp(@) Bz, mp(3, |2, 108 D(Z1|71) — log q(Z4|z1)]
= KL(p(z,) H q(z1))
+ Euymp(ep KL(p(|21) [ ¢(|21)) -

The first term KL(p(x,) || ¢(x1)) now involves J — 1 factors, and hence we can apply the induction step to conclude. [J
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E.2. Proof of Theorem 2.1

We will use a general concentration result of the empirical covariance for general distributions with mild moment assumptions
(Vershynin, 2018), as well as anticoncentration properties of the random design (Mourtada, 2022). Together, they provide
enough control on the probability tails so that the inverse covariance concentrates to the precision matrix in expectation.

Assumption E.1. Let X € R™*? be a random matrix. Assume that there exists K > 1 such that | X || p < KI[*][||X||2F]1/2
almost surely.

Theorem E.1 (General Covariance Estimation with High Probability, (Vershynin, 2018, Theorg:m 5.6.1, Ex 5.6.4)). Let
X € R™* be a random matrix satisfying assumption E.1. Let ¥ = E[XXT], and for any n let ¥, = L 3", X, X, be the
sample covariance matrix, where X, are n iid copies of X. There exists an absolute constant C' such that for any 6 > 0, it
holds

1]l (34)

5 <0 \/sz(log(mT)L+ log(2/%)) Kgm(log(mT)L+ log(2/6))

with probability at least 1 — 0.

Assumption E.2 (Moment Condition). Assume that there exists K x and Ky such that X := (Va®h(Z,2))k<m € R™*4
andY = (A; @ (Z, x)) k<, € R™ satisfy Assumption E.1 with constants K x and Ky respectively, where (Z,x) ~ p(Z, x).

Assumption E.3 (Anticoncentration Condition, (Mourtada, 2022, Assumption 1)). The random matrix X =
(Va@p(Z,2)) k<im € R™*? satisfies the following: there exists constants C > 1 and v € (0,1] such that for every

9 cR™\{0}andt>0,P(0" XX 0 <t*0"E[XX"]0) < (Ct)".

Theorem E.2 ((Mourtada, 2022, Corollary 3)). Let X € R™ % be a random matrix satisfying Assumption E.3 and such
that B[|| X ||%] < oo, with > = E[XX ). Then, if m/n < v/6, for every t € (0,1), the empirical covariance matrix 3,
obtained from an iid sample of size n satisfies

3, = t8

with probability with probability greater than 1 — (C’t)”"/ 6 where C only depends on C' and v in Assumption E.3.

Theorem E.3 (Excess risk for CSLC exponential models, Theorem 2.1 restated). Let §* = argmin/(f) and b =
arg min /(). Assume:

(i) 6* € O, for some & > 0,
(i) H = E[viévjiﬂ = n1d with ) > 0,

(iii) the sufficient statistics ® satisfy moment conditions E.2, regularity conditions E.3, and NV ®,(z, T) is Mg-Lipschitz for
any k < m and all x.

Then when n > m, the empirical risk minimizer 0 satisfies:

é S @& with E(Eiyxi) [54] > o — 0(77_1 7::), (35)
5] < 199 0o

and, for t < /ml(0"), _
e < @(1 +t) (37)

with probability greater than 1 — exp{—0(nlog(tn//m))} over the draw of the training data. The constants in O(-) only

depend on moment and regularity properties of ®.

Proof. We can rewrite the score-matching population risk in terms of a joint distribution (X,Y) € R™*% x R™:
1 1
min ((0) = E(x,y) 5QTXXTQ -0'Y| = §0TH0 -0'g,
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where H = E[X X "] and g = E[Y]. The empirical objective is the quadratic form
1 A
min-0"Ho—-0"g, (38)
6 2
with # = 15" XX, andg= 13,V
We want to control the expected excess risk E£(@) — £(6*) and the norm ||§ — 6™ || , where
0=H"'g,0"=H""g.
Since £(6) is quadratic and 6™ is its global minimum, observe that
*\ kN T * 1 *\ 1 w2 * *
00) —£(07) =Vot(0") (6 —0 )+§(9—9 ) Val(67)(0—0")
1
= §(e—a*)TH(e—e*), (39)
which shows that the excess risk can be bounded from the mean-squared error E[|§ — 0*||* with
A * H A *
EL(0) — (%) < HT”EHH— 0% |7 . (40)
Letv:=g—gand Y = AH'—H" By definition, we have

0—0"=H "(g+v)—H 'g="Tg+H v, 41)

SO
E|§ —6"|1* < 2Bl llgll* + 2Bl H o). (42)

Let us begin with the first term in the RHS of (42), involving Y. We claim that there exists Cy, only depending on the
assumption parameters in E.2 and E.3, such that

H72 3
B[ Sco|”+0<mg>~ 43)
n n

The main technical ingredient is to exploit upper and lower tail bounds of H= fIn to establish a control on expectation, via
the following Lemma.

Lemma E.2 (From tail bounds to Expectation). Suppose the empirical covariance in satisfies the following lower and
upper tail bounds:

™M
IA

(14 $)X with probability greater than 1 —n,,(s) ,s > 0,

n

3, = (1 — )X with probability greater than 1 —6,(t) , t € (0,1) . (44)

(5 (8 (1))

([ (g )as+ [ (125) ). @)
el [ g (2 o (2)a9)

57 ( [ 0 (25 )as+ [ (25 )as) 2

Thanks to assumptions E.3 and E.1, the tail bounds of Theorems E.1 and E.2 apply, yielding

Then

IA

E|E," -7

E|s, -7

IA

8, (1) = min((C(1 — )" 2mexp(—n*t*/Cm)) , n.(s) = 2mexp(—n’s®/Cm) . (47)
We now apply Lemma E.2 with these values. Let us first address the term 7,,. We have
1a(8/(1 = B)) = 2mexp(—n*B*(1 — §)*/(Cm)) ,
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and hence

1 1
/0 Bun(8/(1— B))d = 2m / Bexp(—n2BA(1 — B)~2/(Cm))dp

< om / Bexp(—n2B2/(Cm))dp

v Cm/2
= QmﬁTEZwN(O,Cm/(QnQ))HZH (48)
3
<% (49)
n
Let us now study the term in J,,. For any 3" we have
00 B* o
[ a0+ 000 <2 [ pexp(ntaao4 oy cman+ [ a0 0)7 s,
0 0
& 2 n2 *\—2 Cun/ﬁ *\—vn/6+2
<2m | Bexp(—n"B7(1+57)"/(Cm))dp + (1+87)
0 vn/6 — 2
< 2(/rC(1+ 5*)2’”—3 + ot (148770
= VT n?  vn/6—2 '
Picking 8* = C above gives
00 B C~1 m3
/ @AMHW)WMS+O<2>, (50)
0 n n
where C only depends on v, C, C. From (48) and (50) we conclude that

N H?

(S
n
proving (43).
Let us now bound the second term in the RHS of (42). We have
=112 Fr—2 2
[H ol < [[H o]l
so by Cauchy-Schwartz we obtain
. . 1/2 1/2
- —4 4
ENA ol < (BOAN) T (ElllY) (52)
By assumption, we have
4\ /2 2 Ky 2
(Blol) ™ < KyEllol®) = ZXEY)?. (53)
Finally, we use the following lemma, showing that E[|| A ~*||] is bounded.

Lemma E.3 (Finite Second and Fourth Moments of "), Assume n > 24 Jv. Then

E[|H*|] < CollH |

*and B[|H|) < CyllH*.
From (52), (53) and (54) we obtain

(54)

e SJCIET RN )
B[IA o)) < - ,

(55)
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which, together with (43) yields
L H E[Y]||? + KyE[||Y]?
T ||2§0< B + Ky E1Y] ]))7 56)
and therefore
; HEY]? + KyE[| Y]
B1(0) ¢ < O(nn GBI + KyERYIFY) .
proving (36) as claimed.
Let us now control & such that f € © . From log py(Z|z) = 0 ®(x, Z) we directly obtain
V= logpy(z|r) = V2 log py- (&) +Z (0, — 07)V>® (z]2)
k=1
and thus, for any (Z, x)
IV* log py(z|z) = V*log py- (z|2)|| < D 10k — O]V @1 (2[2)|
k
<16 - 07 |[IV*®(z|2)] .
<10 = 0"|lvmMsg (58)
and Mz = maxy, sup,, ; V2@, (z|2)|| < oo by assumption (ii). It follows
16 — 6% ||v/mMsg . (59)

where [|VZ®(z[2)|* := YL, |V @y (z]2)
from (58) that
inf Apyin (V2 logps(Z,x))
We will now use tail probability bounds for the norm ||§ — 67|, captured in the following lemma

< Fut/IHT),

(16 =67 > 1) <

Lemma E.4 (Tail bounds for ||§ — 87||). We have
P
+

(s/2lgl))? s
<s/<2||g||>>>2cm>’(C(ZCY) )

ﬁxs)érmﬂ[%nexp< 2@
, C vn/6
- 2mexp(-n(s/2lgl)*/Cm) + ()

with
fn(s) = exp(=O(n(log n + log s)))

where C,C, Cy, ||g|l, v are constants from Assumptions E.3, E.2. Moreover, for s < 1, we have

1

(o) + 10— 0" 1P

oo
)+ 16 — 67111 H |
10 — 07|l vmMg

Q

)

E,KL(p| py)

From (39) and (59) we obtain
(0
@ —
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and therefore

P

) (1 bt +£(67) || H |1t* )] > P[l|6 - 67| < 1]
- & a—bt - a

>1— f(t/IHY),

where b = /mMg. As a result, for t < /mMg(*||H||™" we have

oo b Ot colE """
et < O (1) 1 amenp (- C ) o (ALY
=1—exp(—O(n(logt + logn — log v/m))) ,
proving (37).
Finally, let us prove (35). From (41) we have
16— 67(1 < I lllgll + 12 ol -
The same argument leading to (51) can be now applied to the first moment E||Y||, yielding

/ mn(8/(1— 8))dB = 2m /0 exp(—n?B2(1 — B)~2/(Cm))dp

0

1
<om / exp(—n2B2/(Cm))dp

3/2

< v27TCm

, and

oo ﬂ* IS )
| aus+ a8 <2m [ exp(-ng 1+ )2 Cnas+ [ TGy,
0 0 5

~vn/6

vn/6—1
3/2 éun/G

< 2yTVC(1 + ﬁ*)mn vy Lo gyt

5
< 2m/0 exp(—n2ﬁ2(1 +ﬁ*)72/(Cm))d6 4 (1 _’_5*)71171/6«#1

Picking again 8" = C above gives
oo . Cym3/2
| asa+ 5y s < o
0

n

1302
E|T||=0(';”” .

From (67), using (70) and again Cauchy-Schwartz, we obtain

and therefore

VE [||Ifr2|u 4

)

E|§ —6"|l < ElITI]llgll +

(|H |

25

proving (35).
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Proof of Lemma E.2. Using a crude union bound, we have
(1-HE <%, <(1+s)% (72)
with probability greater than 1 — 6,,(¢) — 7,,(s). Under the event (72), we equivalently have
(1+s) 2=t <a-0)'n7t,

and hence .
IS =27 < 1= max(|1 — (14+s) ", 1 =1 =)' .

Denoting Z = ||, ' — 7|, we thus have
B(Z < [2718) 2 P((1 — ts)S < £, < (1+35)) 73)
where s3,t5 are defined such that
1= (L+sp) =8, [1-(1—tg) | =5.

We thus obtain s3 = % for 3 € (0,1),and tg = % for 8 € (0, 00). For a non-negative random variable Z with c.d.f.
F(8) =P(Z < ) we have

EZ* — /0 B (8)ds = /0 8- F(5)ds

and therefore
82— [ 501~ F(3)ds
0
=572 [ 8- F(IZI 7 B)ds
0

[e%s) 1
< ||22||( | snasiaapas+ [ e ﬂ))d6> .

O
Proof of Lemma E.3. By directly applying Theorem E.2, we have
PO < e HIETY) = 1= (G0 (75)
If F(8) = P(||H,, || < B), it follows that
Bl = [ B @s = [ 50 F(9)ds
o ) 0
<4 Fmin(t, (CH 87" s
0
=4|lHY|*C! / min(1, 5°7"/%)dp
0
=Gyl
where we used vn/6 > 4 in the last step. The second moment is treated analogously. O

Proof of Lemma E.4. As we argued previously, from (41) we have that
A * r—1
16 =671 < ITIHlgll + I H [l -
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77| and ||v|| and combine them with a crude union bound to yield the desired tail

control. Recall from eq (73) that

P < 178 2 1= (t) (76)
where
6 (15) + (7)WL=,
Yu(t) b o , (77)
on | T2 otherwise,
with -
8,(s) = min((C(1 — $))"™° 2mexp(—n?s*/Cm)) , n,(s) = 2mexp(—n?s>/Cm) . (78)
We also obtained in (75) X
P(IE M <t HH) 2 1= F,(2) (79)
with 3
Fu(t) = min(L, (Ct1)"™/°) | (80)
2
and by Assumption E.2 we know that ||[v] < %ﬂ'y”] almost surely. Therefore, via a union bound we obtain

B(I6 - 07| < | t) > P[max(nrnngn, ||f?r1||Ky\/En|Y||21/n) < ||H—1t/2} s1)

> 1= 7,(t/2lgll) — 3 (Vnt/(2Cy)) , (82)

and hence P(||0 — 6% > s) < fn(

Fa(8) =7 (s/Qllllgl) +Fn (Vns/(2Cy)) -

Finally, we verify that
Fu(8) = 1 (s/2llg]l)) + min(1, (C(2Cy)s ™ n~/2)"™/6)

vn /6
— s/ 2ol + ()
2l

< min [Qm exp <n2 (s/ )
(14 (s/(2llgll)

vn/6
+ 2mexp(—n®(s/(2llg]))*/C'm) +( )

2

. n Cls —1\vn/6

= min [exp| —————— +1log(2m) |, (Cys
[ p( (1+Cys)°Cm Bl )> (Cos)

2

),(é(zcy)sl)”"/6 +

)
))’C

2~2 2 vn/6
n“Cis Cy
+exp< O +log(2m)> + (s\/ﬁ> .

Finally, we verify that if log s < 1, the last term dominates as n increases, showing (64).

F. Proof of Proposition 3.1
We directly compute the Hessian
V2, Togplas o) = Gy V2 log p(a) G
= Gy (K — diag((v"([1]))),) GT,

where we have used
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Both terms in the Hessian can now be bounded from below. The assumption on the range of Gi; implies that
GlKG? i )\|(J.)()|nld7
and the assumption on v" implies that

G’ldiag((v”(gc[i})))i@rf = -GG = —11d,

where we have used the fact that G4 is an orthogonal projector.

Combining the two then gives
~Vz, log p(Z1]21) = (Awo|" = 7)1d,
and the assumption on |w,| guarantees that \|wy|” — v > 0. Similarly, the assumption v < § implies that
—V3, log p(Z|z,) < (A" + 6)Id,

where {2 = sup |w| is the maximum frequency, which concludes the proof.
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