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Abstract

There is a growing gap between the impressive

results of deep image generative models and clas-

sical algorithms that offer theoretical guarantees.

The former suffer from mode collapse or mem-

orization issues, limiting their application to sci-

entific data. The latter require restrictive assump-

tions such as log-concavity to escape the curse of

dimensionality. We partially bridge this gap by

introducing conditionally strongly log-concave

(CSLC) models, which factorize the data dis-

tribution into a product of conditional probabil-

ity distributions that are strongly log-concave.

This factorization is obtained with orthogonal

projectors adapted to the data distribution. It

leads to efficient parameter estimation and sam-

pling algorithms, with theoretical guarantees, al-

though the data distribution is not globally log-

concave. We show that several challenging multi-

scale processes are conditionally log-concave us-

ing wavelet packet orthogonal projectors. Numer-

ical results are shown for physical fields such as

the φ4
model and weak lensing convergence maps

with higher resolution than in previous works.

1. Introduction

Generative modeling requires the ability to estimate an ac-

curate model of a probability distribution from a training

dataset, as well as the ability to efficiently sample from

this model. Any such procedure necessarily introduces er-

rors, due to limited expressivity of the model class, learning

errors of selecting the best model within that class, and sam-

pling errors due to limited computational resources. For
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high-dimensional data, it is highly challenging to control all

errors with polynomial-time algorithms. Overcoming the

curse of dimensionality requires exploiting structural proper-

ties of the probability distribution. For instance, theoretical

guarantees can be obtained with restrictive assumptions of

log-concavity, or with low-dimensional parameterized mod-

els. In contrast, recent deep-learning-based approaches such

as diffusion models (Ramesh et al., 2022; Saharia et al.,

2022; Rombach et al., 2022) have obtained impressive re-

sults for distributions which do not satisfy these assumptions.

Unfortunately, in such cases, theoretical guarantees are lack-

ing, and diffusion models have been found to memorize

their training data (Carlini et al., 2023; Somepalli et al.,

2022), which is inappropriate for scientific applications.

The disparity between these two approaches highlights the

need for models which combine theoretical guarantees with

sufficient expressive power. This paper contributes to this

objective by defining the class of conditionally strongly log-

concave distributions. We show that it is sufficiently rich to

model the probability distributions of complex multiscale

physical fields, and that such models can be sampled with

fast algorithms with provable guarantees.

Sampling and learning guarantees. While the theory

for sampling log-concave distributions is well-developed

(Chewi, 2023), simultaneous learning and sampling guar-

antees for general non-log-concave distributions are less

common. Block et al. (2020) establish a fast mixing rate of

multiscale Langevin dynamics under a manifold hypothe-

sis. Koehler et al. (2022) studies the asymptotic efficiency

of score-matching compared to maximum-likelihood es-

timation under a global log-Sobolev inequality, which is

not quantitative beyond globally log-concave distributions.

Chen et al. (2022b;a) establish polynomial sampling guar-

antees for a reverse score-based diffusion, given a suf-

ficiently accurate estimate of the time-dependent score.

Sriperumbudur et al. (2013); Sutherland et al. (2018);

Domingo-Enrich et al. (2021) study density estimation with

energy-based models under different infinite-dimensional

parametrizations of the energy. They use various metrics

including score-matching to establish statistical guarantees

that avoid the curse of dimensionality, under strong smooth-

ness or sparsity assumptions of the target distribution. Fi-

nally, Balasubramanian et al. (2022) derive sampling guaran-

tees in Fisher divergence of Langevin Monte-Carlo beyond
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Conditionally Strongly Log-Concave Generative Models

log-concave distributions. While these hold under a general

class of target distribution, such Fisher guarantees are much

weaker than Kullback-Leibler guarantees. Bridging this gap

requires some structural assumptions on the distribution.

Multiscale generative models. Images include structures

at all scales, and several generative models have relied on

decompositions with wavelet transforms (Yu et al., 2020;

Gal et al., 2021). More recently, Marchand et al. (2022)

established a connection between the renormalization group

in physics and a conditional decomposition of the probabil-

ity distribution of wavelet coefficients across scales. These

models rely on maximum likelihood estimations with iter-

ated Metropolis sampling, which leads to a high compu-

tational complexity. They have also been used with score

matching (Guth et al., 2022; Kadkhodaie et al., 2023) in the

context of score-based diffusion models (Song et al., 2021),

which suffer from memorisation issues.

Conditionally strongly log-concave distributions. We

consider probability distributions whose Gibbs energy is

dominated by quadratic interactions,

p(x) =
1

Z
e−E(x)

with E(x) =
1

2
xTKx+ V (x).

The matrix K is positive symmetric and V is a non-quadratic

potential. If V is non-convex, then p is a priori not log-

concave. However, the Hessian of E may be dominated by

the large eigenvalues of K, whose corresponding eigenvec-

tors define directions in which p is log-concave. For mul-

tiscale stationary distributions, K is a convolution whose

eigenvalues have a power-law growth at high frequencies.

As a result, the conditional distribution of high frequencies

given lower frequencies may be log-concave.

Section 2 introduces factorizations of probability distribu-

tions into products of conditional distributions with arbitrary

hierarchical projectors. If the projectors are adapted to ob-

tain strongly log-concave factors, we prove that maximum

likelihood estimation can be replaced by score matching,

which is computationally more efficient. The MALA sam-

pling algorithm also has a fast convergence due to the con-

ditional log-concavity. Section 3 describes a class of multi-

scale physical processes that admit conditionally strongly

log-concave (CSLC) decompositions with wavelet packet

projections. This class includes the φ4
model studied in

statistical physics. These results thus provide an approach

to provably avoid the numerical instabilities at phase transi-

tions observed in such models. We then show in Section 4

that wavelet packet CSLC decompositions provide accurate

models of cosmological weak lensing images, synthesized

as test data for the Euclid outer-space telescope mission

(Laureijs et al., 2011).

The main contributions of the paper are:

• The definition of general CSLC models, which provide

learning guarantees by score matching and sampling

convergence bounds with MALA.

• CSLC models of multiscale physical fields using

wavelet packet projectors. We show that φ4
and weak

lensing both satisfy the CSLC property, which leads to

efficient and accurate generative modeling.

The code to reproduce our numerical experiments is avail-

able at https://github.com/Elempereur/WCRG.

2. Conditionally Strongly Log-Concave Models

Section 2.1 introduces conditionally strongly log-concave

models, by factorizing the probability density into condi-

tional probabilities. For these models, Sections 2.2 and 2.3

give upper bounds on learning errors with score match-

ing algorithms, and Section 2.4 on sampling errors with a

Metropolis-Adjusted Langevin Algorithm (MALA). Proofs

of the mathematical results can be found in Appendix E.

2.1. Conditional Factorization and Log-Concavity

We introduce a probability factorization based on orthogonal

projections on progressively smaller-dimensional spaces.

The projections are adapted to define strongly log-concave

conditional distributions.

Orthogonal factorization. Let x ∈ R
d
. A probability

distribution p(x) can be decomposed into a product of au-

toregressive conditional probabilities

p(x) = p(x[1])

d∏

i=2

p(x[i] |x[1], . . . , x[i− 1]). (1)

However, more general factorizations can be obtained by

considering blocks of variables in an orthogonal basis. We

initialize the decomposition with x0 = x. For j = 1 to J ,

we recursively split xj−1 in two orthogonal projections:

xj = Gjxj−1 and x̄j = Ḡjxj−1,

where Gj and Ḡj are unitary operators such that GT
j Gj +

ḠT
j Ḡj = Id. It follows that

xj−1 = GT
j xj + ḠT

j x̄j . (2)

Let dj = dim(xj) and d̄j = dim(x̄j), then dj−1 = dj + d̄j .

Since the decomposition is orthogonal, for any probability

distribution p we have

p(xj−1) = p(xj , x̄j) = p(xj)p(x̄j |xj).

2
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Cascading this decomposition J times gives

p(x) = p(xJ)

J∏

j=1

p(x̄j |xj), (3)

which generalizes the autoregressive factorization (1). The

properties of the factors p(x̄j |xj) depend on the choice of

the orthogonal projectors Gj and Ḡj , as we shall see below.

Model learning and sampling. A parametric model pθ(x)
of p(x) can be defined from Equation (3) by computing

parametric models of p(xJ) and each p(x̄j |xj):

pθ(x) = pθJ (xJ)

J∏

j=1

pθ̄j (x̄j |xj), (4)

with θ = (θJ , θ̄j)j≥J .

Learning this model then amounts to optimizing the pa-

rameters θJ , (θ̄j)j from available data, so that the resulting

distributions are close to the target. We measure the associ-

ated learning errors with the Kullback-Leibler divergences

ϵLJ = KLxJ
(p(xJ) ∥ pθJ (xJ)) and

ϵ̄Lj = Exj

[
KLx̄j

(p(x̄j |xj) ∥ pθ̄j (x̄j |xj))
]
, j ≤ J.

Once the parameters have been estimated, we sample from

pθ as follows. We first compute a sample xJ of pθJ . The

sampling introduces an error, which we measure with ϵSJ =
KLxJ

(p̂θJ (xJ) ∥ pθJ (xJ)), where p̂θJ is the law of the sam-

ples returned by the algorithm. For each j ≤ J , given the

sampled xj , we compute a sample x̄j of pθ̄j (x̄j |xj) and

recover xj−1 with Equation (2), up to j = 1, where it com-

putes x = x0. Let p̂θ̄j be the law of computed samples x̄j .

It also introduces an error

ϵ̄Sj = Exj

[
KLx̄j

(p̂θ̄j (x̄j |xj) ∥ pθ̄j (x̄j |xj))
]
, j ≤ J.

Let p̂ be the (joint) law of the computed samples x. The

following proposition relates the total variation distance

TV(p̂, p) with the learning and sampling errors for each j.

Proposition 2.1 (Error decomposition).

TV(p̂, p) ≤ 1√
2




√√√√ϵLJ +

J∑

j=1

ϵ̄Lj +

√√√√ϵSJ +

J∑

j=1

ϵ̄Sj


.

The overall error depends on the sum of learning and sam-

pling errors for each conditional probability distribution.

Therefore, to control the total error, we need sufficient con-

ditions ensuring that each of these sources of error is small.

We introduce CSLC models for this purpose.

p
(x

1
)

x1

x̄
1

p(x̄1|x1)

p
(x

1
)

x1

x̄
1

p(x̄1|x1)

x1

x̄
1

p(x̄1|x1) x1

x̄
1

p(x̄1|x1)

Figure 1. A globally log-concave distribution is conditionally log-

concave (top left), but the converse is not true (top right): a non-

convex support can have convex vertical slices (and horizontal

projection). Conditional log-concavity also depends on the choice

of orthogonal projectors: a distribution can fail to be conditionally

log-concave in the canonical basis (bottom left) but be conditionally

log-concave after a rotation of 45 degrees (bottom right).

Conditional strong log-concavity. We recall that a dis-

tribution p is strongly log-concave (SLC) if there exists

β[p] ≥ α[p] > 0 such that

α[p]Id ⪯ −∇2
x log p(x) ⪯ β[p]Id, ∀x. (5)

Definition 2.1. We say that p(x) = p(xJ)
∏J

j=1 p(x̄j |xj) is

conditionally strongly log-concave (CSLC) if each p(x̄j |xj)
is strongly log-concave in x̄j for all xj .

Conditional log-concavity is a weaker condition than (joint)

log-concavity. If p(x) is log-concave, then it has a convex

support. On the other hand, conditional log-concavity only

constraints slices (through conditioning) and projections

(through marginalization) of the support of p(x). Figure 1

illustrates that a jointly log-concave distribution is condition-

ally log-concave (and p(xJ) is furthermore log-concave),

but the converse is not true. Conditional log-concavity also

depends on the choice of the orthogonal projections Gj and

Ḡj which need to be adapted to the data. A major issue is

to identify projectors that define a CSLC decomposition, if

it exists. We show in Section 3 that this can be achieved for

a class of physical fields with wavelet packet projectors.

The following subsections provide bounds on the learning

and sampling errors ϵ̄Lj and ϵ̄Sj for CSLC models. To sim-

plify notations, in the following we drop the index j and

replace pθ̄j (x̄j |xj) with pθ̄(x̄|x). We shall suppose that

the dimension dJ = dim(xJ) is sufficiently small so that

3
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xJ can be modeled and generated with any standard algo-

rithm with small errors ϵLJ and ϵSJ (dJ = 1 in our numerical

experiments).

2.2. Learning Guarantees with Score Matching

Fitting probabilistic models pθ̄(x̄|x) by directly minimizing

the KL errors ϵ̄L is computationally challenging because of

intractable normalization constants. Strong log-concavity

enables efficient yet accurate learning via a tight relaxation

to score matching.

There exist several frameworks to fit a parametric probabilis-

tic model to the data, most notably the maximum-likelihood

estimator of a general energy-based model pθ̄(x̄|x) =

Z−1
θ̄ (x)e−Ēθ̄(x,x̄), where Ēθ̄ is an arbitrary parametric

class. This is computationally expensive due to the need

to estimate the gradients of the normalization constants

−∇θ̄ logZθ̄ = Epθ̄
[∇θ̄Ēθ̄] during training, which requires

the ability to sample from pθ̄(x̄|x). An appealing alterna-

tive which has enjoyed recent popularity is score matching

(HyvÈarinen & Dayan, 2005), which instead minimizes the

Fisher Divergence FI:

ℓ(θ̄) = Ex

[
1

2
FIx̄(p(x̄|x) ∥ pθ̄(x̄|x))

]

= Ex,x̄

[
1

2
∥−∇x̄ log p(x̄|x)−∇x̄Ēθ̄(x, x̄)∥2

]
.

With a change of variables we obtain

ℓ(θ̄) = Ex,x̄

[
1

2
∥∇x̄Ēθ̄∥2 −∆x̄Ēθ̄

]
+ cst, (6)

showing that ℓ(θ̄) can be minimized from available samples

without estimating normalizing constants or sampling from

pθ̄. Indeed, given i.i.d. samples {(x̄1, x1), . . . , (x̄n, xn)}
from p(x̄, x), the empirical risk ℓ̂(θ̄) associated with score

matching on p(x̄|x) is given by

ℓ̂(θ̄) =
1

n

n∑

i=1

(
1

2
∥∇x̄Ēθ̄(x

i, x̄i)∥2 −∆x̄Ēθ̄(x
i, x̄i)

)
. (7)

The score-matching objective avoids the computational bar-

riers associated with normalization and sampling in high-

dimensions, at the expense of defining a weaker metric than

the KL divergence. This weakening of the metric is quan-

tified by the log-Sobolev constant ρ[p] associated with p.

It is the largest ρ > 0 such that KL(q ∥ p) ≤ 1
2ρFI(q ∥ p)

for any q. Learning via score matching can therefore be

seen as a relaxation of maximum-likelihood training, whose

tightness is controlled by the log-Sobolev constant of the

hypothesis class (Koehler et al., 2022). This constant can

be exponentially small for general multimodal distributions,

making this relaxation too weak. A crucial exception, how-

ever, is given by SLC distributions (or small perturbations

of them), as shown by the Bakry-Emery criterion (Bakry

et al., 2014, Definition 1.16.1): if α[pθ̄(x̄|x)] ≥ ᾱ > 0
for all x, or equivalently if ∇2

x̄Ēθ̄ ⪰ ᾱId for all x, x̄, then

ρ[pθ̄(x̄|x)] ≥ ᾱ for all x, and therefore

ϵ̄L ≤ 1

ᾱ
ℓ(θ̄). (8)

We remark that while Equation (8) does not make explicit

CSLC assumptions on the reference distribution p, a consis-

tent learning model implies that the conditional distribution

p(x̄|x) is arbitrarily well approximated (in KL divergence)

with SLC distributionsÐthus justifying the structural CSLC

assumption on the target.

2.3. Score Matching with Exponential Families

In numerical applications, one cannot minimize the true

score-matching loss ℓ as only a finite amount of data is avail-

able. We now show that a similar control as Equation (8)

can be obtained for the empirical loss minimizer, whenever

prior information enables us to define low-dimensional ex-

ponential models for pθ̄(x̄|x) with good accuracy. It also

provides a control on the critical parameter ᾱ, addressing

the optimization and statistical errors.

We consider a linear model Ēθ̄(x, x̄) = θ̄TΦ̄(x, x̄) with a

fixed potential vector Φ̄(x, x̄) ∈ R
m

(m is thus the num-

ber of parameters), and the corresponding minimization of

the (conditional) score matching objective in Equation (7).

Thanks to this linear parameterization, it becomes a convex

quadratic form ℓ̂(θ̄) = 1
2 θ̄

TĤθ̄ − θ̄Tĝ, with

Ĥ =
1

n

n∑

i=1

∇x̄Φ̄(x
i, x̄i)∇x̄Φ̄(x

i, x̄i)T ∈ R
m×m,

ĝ =
1

n

n∑

i=1

∆x̄Φ̄(x
i, x̄i) ∈ R

m.

It can be minimized in closed-form by inverting the Hessian

matrix: ˆ̄θ = Ĥ−1ĝ. As discussed, the sampling and learning

guarantees of the model critically rely on the CSLC property,

which is ensured as long as ˆ̄θ ∈ Θᾱ := {θ̄ | ∇2
x̄Ēθ̄(x, x̄) ⪰

ᾱId, ∀ (x, x̄)} with ᾱ > 0.

The following theorem leverages the finite-dimensional lin-

ear structure of the score-matching problem to establish fast

non-asymptotic rates of convergence, controlling the excess

risk in KL divergence.

Theorem 2.1 (Excess risk for CSLC exponential models).

Let θ̄⋆ = argmin ℓ(θ̄) and ˆ̄θ = argmin ℓ̂(θ̄). Assume:

(i) θ̄⋆ ∈ Θᾱ for some ᾱ > 0,

(ii) H = E

[
∇x̄Φ̄∇x̄Φ̄

T
]
⪰ ηId with η > 0,

4
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(iii) the sufficient statistics Φ̄ satisfy moment conditions

E.2, regularity conditions E.3, and∇Φ̄k(x, x̄) is MΦ̄-

Lipschitz for any k ≤ m and all x (see Appendix E).

Then when n > m, the empirical risk minimizer ˆ̄θ satisfies

ˆ̄θ ∈ Θ ˆ̄α with E
(x̄

i
,x

i
)

[
ˆ̄α
]
≥ ᾱ−O

(
η−1

√
m

n

)
, (9)

and, for t≪ √mℓ(θ̄⋆),

ϵ̄L ≤ ℓ(θ̄⋆)

ᾱ
(1 + t) (10)

with probability greater than 1 −
exp{−O(n log(tn/

√
m))} over the draw of the training

data. The constants in O(·) only depend on moment and

regularity properties of Φ̄.

The theorem provides learning guarantees for the empirical

risk minimizer ˆ̄θ (compare Equations (8) and (10)), and

hinges on three key properties: the ability of the exponential

family to approximate the true conditionals at each block

(i) with small Fisher approximation error ℓ(θ̄⋆), (ii) with a

sufficiently large strong log-concavity parameter ᾱ, and (iii)

with a well-conditioned kernel H . In numerical applications,

the number of parameters m should be small enough to

control the learning error for finite number of samples n,

and to be able to compute and invert the Hessian matrix Ĥ .

We will define in Section 3 low-dimensional models that

can approximate a wide range of multiscale physical fields.

The proof uses concentration of the empirical covariance Ĥ ,

and combines both upper and lower tail probability bounds

(Mourtada, 2022; Vershynin, 2012) to bound the expecta-

tion, similarly as known results for least-squares (Mour-

tada, 2022; Hsu et al., 2012). The statistical properties of

score matching under exponential families have been stud-

ied in the infinite-dimensional setting by Sriperumbudur

et al. (2013); Sutherland et al. (2018), where kernel ridge

estimators achieve non-parametric rates n−s
, s < 1. Com-

pared to these, as an intermediate result, we achieve the

optimal rate in FI divergence in n−1
directly with the ridge-

less estimator (Equation (36)). The key assumption is (i),

namely that the optimal model in the exponential family

is SLC. Since our structural assumption on the target p is

precisely that its conditionals are SLC, it is reasonable to

expect this to be generally true. For instance, this is the case

if the model is well specified (p = pθ̄⋆ ).

2.4. Sampling Guarantees with MALA

We illustrate the efficient sampling properties of CSLC dis-

tributions by focusing on a reference sampler given by the

Metropolis-Adjusted Langevin Algorithm (MALA) with

algorithmic warm-start, which enjoys well-understood con-

vergence properties in this case:

Proposition 2.2 (MALA Sampling, Altschuler & Chewi

(2023, Theorem 5.1)). Suppose that ᾱId ⪯ ∇2
x̄Ēθ̄(x̄|x) ⪯

β̄Id for all x̄, x, and let d̄ = dim(x̄). Then N steps of

MALA produce a sample x̄ with conditional law p̂θ̄(x̄|x)
satisfying

ϵ̄S ≤ exp

(
−O
(√

N√
d̄β̄/ᾱ

))
.

MALA can thus be used to sample from CSLC distribu-

tions with an exponential convergence, whose mixing time

Õ(
√
d̄β̄/ᾱ) is sublinear in the dimension d̄ and linear in the

condition number β̄/ᾱ of the Hessian∇2
x̄Ēθ̄. We also note

that similar guarantees will hold for other high-precision

Metropolis-Hastings samplers, such as Hamilton Monte-

Carlo. Together, Propositions 2.1 and 2.2 and Theorem 2.1

imply a control on the total accumulated error for CSLC

exponential models.

3. Wavelet Packet Conditional Log-Concavity

The CSLC property depends on the choice of the projec-

tors (Ḡj , Gj) which need to be adapted to the data. We

show that for a class of stationary multiscale physical pro-

cesses, CSLC models can be obtained with wavelet packet

projectors. These models exploit the dominating quadratic

interactions at high frequencies by splitting the frequency

domain in sufficiently narrow bands. It reveals a powerful

mathematical structure in this class of complex distributions.

3.1. Energies with Scalar Potentials

In the following, x ∈ R
d

is a
√
d ×
√
d image or two-

dimensional field. We denote x[i] the value of x at pixel

or location i. An important class of stationary probability

distributions p(x) = Z−1e−E(x)
are defined in physics

from an energy composed of a two-point interaction term

K plus a potential that is a sum of scalar potentials v:

E(x) =
1

2
xTKx+

∑

i

v(x[i]). (11)

The matrix K is a positive symmetric convolution opera-

tor. Equation (11) generalizes both zero-mean Gaussian

processes (if v = 0 then K is the inverse covariance) and

distributions with i.i.d. components (if K = 0 then v is

the negative log-density of the pixel values). The energy

Hessian is given by

∇2
xE(x) = K + diag

(
v′′(x[i])

)
i
. (12)

If v′′(t) < 0 for some t ∈ R then we may get negative

eigenvalues for some x, in which case the energy is not

convex.

5
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Equation (11) provides models of a wide class of physi-

cal phenomena (Marchand et al., 2022), including ferro-

magnetism. An important example is the φ4
energy in

physics, which is a non-convex energy allowing to study

phase transitions and explain the nature of numerical insta-

bilities (Zinn-Justin, 2021). It has a kinetic energy term

defined by K = −β∆ where ∆ is a discrete Laplacian

that enforces spatial regularity, and its scalar potential is

v(t) = t4 − (1 + 2β)t2. It has a double-well shape which

pushes the values of each x[i] towards +1 and −1, and is

thus non-convex. β is an inverse temperature parameter. In

the thermodynamic limit d → ∞ of infinite system size,

the φ4
energy has a phase transition at βc ≈ 0.68 (Kaupužs

et al., 2016). At small temperature (β ≥ βc), the local inter-

actions in the energy give rise to long-range dependencies.

Gibbs sampling then ªcritically slows downº (Podgornik,

1996; Sethna, 2021) due to these long-range dependencies.

Fast sampling can nevertheless be obtained by exploiting

conditional strong log-concavity. Assume that there exists

γ > 0 such that v′′(t) ≥ −γ for all t ∈ R. It then follows

that ∇2
xE ⪰ K − γId. We can thus obtain a convex en-

ergy by restricting K over a subspace where its eigenvalues

are larger than γ. The convolution K is diagonalized by

the Fourier transform, with positive eigenvalues that we

write K̂(ω) at all frequencies ω. The value K̂(ω) typi-

cally increases when the frequency modulus |ω| increases.

A convex energy is then obtained with a projector over a

space of high-frequency images, as shown in the following

proposition.

Proposition 3.1 (Conditional log-concavity of scalar poten-

tial energies). Consider the energy defined in Equation (11)

and assume that −γ ≤ v′′ ≤ δ for some γ, δ > 0 and

that K̂(ω) = λ|ω|η for some η > 0. Let Ḡ1 be an or-

thogonal projector over a space of signals whose Fourier

transform have a support included over frequencies ω such

that |ω| ≥ |ω0| with |ω0| > (γ/λ)1/η . Then the conditional

probability p(x̄1|x1) is strongly log-concave for all x1.

The proof is in Appendix F and relies on a direct calculation

of the Hessian of the conditional energy. This proposition

proves that we obtain a strongly log-concave conditional

distribution p(x̄1|x1) with a sufficiently high-frequency fil-

ter Ḡ1. It is illustrated in the bottom row of Figure 1 on a

simplified two-dimensional example inspired from the φ4

energy. The distribution has two modes x = (1, 1) and

x = (−1,−1), and the Fourier coefficients are computed

with a 45 degrees rotation: x1 = (x[1] + x[2])/
√
2 and

x̄1 = (x[2]− x[1])/
√
2, which leads to a log-concave con-

ditional distribution.

Multiscale physical fields with scalar potential energies (11)

are often self-similar over scales, in the sense that lower-

frequency fields xj can also be described with an energy

in the form of Equation (11), with different parameters

(Wilson, 1971). This explains why Proposition 3.1 can be

iterated to obtain a CSLC decomposition. For φ4
energies,

the range of Ḡ1 is non-empty as soon as β ≥ 1
2 , which

includes the critical temperature βc ≈ 0.68 (though δ =∞).

At the critical temperature, x1 is further described by the

same parameters K and v as x, so that a complete CSLC

decomposition is obtained by iteratively selecting projectors

Ḡj which isolate the highest frequencies of xj−1.

Proposition 3.1 can be extended to general energies

E(x) =
1

2
xTKx+ V (x),

by assuming that the Hessian ∇2V (x) is bounded above

and below. Conditional log-concavity may then be found by

exploiting dominating quadratic energy terms with a PCA of

K. We believe that this general principle may hold beyond

the case of scalar potential energies (11) considered here.

3.2. Wavelet Packets and Renormalization Group

We now define wavelet packet projectors Gj and Ḡj , which

are orthogonal projectors on localized zones of the Fourier

plane. They are computed by convolutions with conjugate

mirror filters and subsamplings (Coifman et al., 1992), de-

scribed in Appendix A. These filters perform a recursive

split of the frequency plane illustrated in Figure 2.

The wavelet packet Ḡj is a projector on a high-frequency

domain, whereas Gj is a projection on the remaining lower-

frequency domain. An orthogonal wavelet transform is a

particular example, which decomposes the Fourier plane

into annuli of about one octave bandwidth, as shown in the

top left and bottom panels of Figure 2. However, it may

not be sufficiently well localized in the Fourier domain to

obtain strictly convex energies. The frequency localization

is improved by refining this split, as illustrated on the top

right panel of Figure 2. Each Ḡj then performs a projec-

tion over a frequency annulus whose bandwidth is a half

octave. Wavelet packets can adjust the frequency bandwidth

to 2−M+1
octave for any integer M ≥ 1. It allows reducing

the support of Ḡj , which is necessary to obtain a CSLC

decomposition according to Proposition 3.1.

3.3. Multiscale Scalar Potentials

The probability distribution p(x) is approximated by

pθ(x) = pθJ (xJ)
∏J

j=1 pθ̄j (x̄j |xj), where each xj and x̄j

are computed with wavelet packet projectors Gj and Ḡj .

We introduce a parameterization of pθ̄j with scalar poten-

tial energies, following Marchand et al. (2022). We shall

suppose that the dimension dJ = dim(xJ) is sufficiently

small so that p(xJ) may be approximated with any standard

algorithm (dJ = 1 in our numerical experiments).

The self-similarity property of multiscale fields with scalar
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Figure 2. Top: frequency localization of the decomposition

(xJ , x̄J , . . . , x̄1) with wavelet packet projectors of 1 (left) and

1/2 (right) octave bandwidths. Bottom: iterative decomposition of

x = x0 with (Ḡj , Gj) implementing a wavelet packet transforma-

tion over J = 2 layers of 1 octave bandwidth.

energies motivates the definition of each pθ̄j (x̄j |xj) with an

interaction energy

Ēθ̄j
(xj , x̄j) =

1

2
x̄T
j K̄j x̄j + x̄T

j K̄
′
jxj +

∑

i

v̄j(xj−1[i])

= θ̄Tj Φ̄j(xj , x̄j), (13)

which derives from the fact that p(xj−1) defines an energy

of the form (11) (Marchand et al., 2022). Φ̄j captures the in-

teraction terms and performs a parametrized approximation

of v̄j , defined in Appendix B.1.

The parameters θ̄j are estimated from samples by invert-

ing the empirical score matching Hessian as in Section 2.3.

We generate samples from the resulting distribution pθ by

sampling from pθJ and then iteratively from each pθ̄j with

MALA. The learning and sampling algorithms are summa-

rized in Appendix B.2. Additionally, Appendix D explains

that a parameterized model of the global energy (11), which

is crucial for scientific applications, can be recovered with

free-energy score matching.

4. Numerical Results

This section demonstrates that a wavelet packet decomposi-

tion of φ4
scalar fields and weak-lensing cosmological fields

defines strongly log-concave conditional distributions. It

allows efficient learning and sampling algorithms, and leads

to higher-resolution generations than in previous works.

4.1. φ4
Scalar Potential Energy

We learn a wavelet packet model of φ4
scalar fields at dif-

ferent temperatures, using the decomposition and models

presented in Section 3. The wavelet packet exploits the con-

ditionally strongly log-concave property of φ4
scalar fields

(Proposition 3.1) to obtain a small error in the generated

samples, as shown in Section 2. We first verify qualitatively

and quantitatively that this error is small.

We evaluate the wavelet packet model at three different

temperatures, which have different statistical properties:

β = 0.50, the ªdisorganizedº state, β = 0.68 ≈ βc the

critical point, and β = 0.76 the ªorganizedº state. The com-

putational efficiency of our approach enables generating

high-resolution 128× 128 images, as opposed to 32× 32 in

Marchand et al. (2022). Indeed, learning the model parame-

ters for 64× 64 images with score matching takes seconds

on GPU, whereas doing the same with maximum likelihood

takes hours on CPU (as sequential MCMC steps are not

easily parallelized). The generated samples are shown in

Figure 3 and are qualitatively indistinguishable from the

training data. The experimental setting is detailed in Ap-

pendix C.

A distribution p(x) having a scalar potential energy (11)

is a maximum-entropy distribution constrained by second-

order moments and hence by the power spectrum, and by

the marginal distribution of all x[i]. These statistics specify

the matrix K and the scalar potential v(t). Our model pθ
also has a scalar potential energy in this case. To guarantee

that pθ = p, it is thus sufficient to show that they have the

same power spectrum and same marginal distributions. We

perform a quantitative validation of generated samples by

comparing their marginal densities and Fourier spectrum

with the training data. Figure 3 shows that these statistics

are well recovered by our model.

4.2. Conditional Log-Concavity

We numerically verify that φ4
at critical temperature is

CSLC (Definition 2.1), with appropriate wavelet packet

projectors. It amounts to verifying that the eigenvalues of

the conditional Hessian∇2
x̄j
Ēθ̄j

(xj , x̄j) are positive for all

xj and x̄j . We can restrict xj to typical samples from p(xj).
However, it is important that the Hessian be positive even

for x̄j outside of the support of p(x̄j |xj). Indeed, negative

eigenvalues occur at local directional maxima of the energy,

rather than minima which would correspond to most likely

samples. We thus evaluate the Hessian at x̄j = 0, which is

expected to be such an adversarial point.

Figure 4 shows distributions of eigenvalues of∇2
x̄j
Ēθ̄j

for

decompositions (Ḡj , Gj) of various frequency bandwidths.

It shows that the smallest eigenvalues become larger and

eventually cross zero as the frequency bandwidth of Ḡj

7
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Figure 3. Comparison between training and generated samples for

ϕ
4

energies. In columns: training samples, generated samples,

histograms of marginal distributions p(x[i]) and power spectrum.

In rows: disorganized state β = 0.50, critical point β = 0.68 ≈

βc, and organized state β = 0.76.

becomes narrower, as predicted by Proposition 3.1. Further-

more, the condition number of the Hessian becomes smaller

as eigenvalues concentrate towards their mean.

As shown in Equation (12), both the quadratic part K and

the scalar potential v contribute to the Hessian. As a way to

visualize both contributions, we define the equivalent scalar

potential v0 as v0(t) = v(t) + Tr(K)
2d t2. It corresponds to

extracting the mean quadratic value Tr(K)/2d ∥x∥2 from

the quadratic part and reinterpreting it as a scalar potential.

This allows visualizing the average energy on a pixel value

when neglecting spatial correlations. The right panel of

Figure 4 compares these equivalent scalar potentials for the

energy Ej of xj and the conditional energy Ēj . It shows that

the non-convex double-well potential in the global energy

becomes convex after the conditioning. It verifies Proposi-

tion 3.1, as the mean quadratic value becomes larger when

we restrict K to a subspace of high-frequency signals.

We also verify the sampling efficiency predicted by Proposi-

tion 2.2. As we cannot evaluate the KL divergences ϵ̄Sj , we

rather compute the decorrelation mixing time τ̄ , a measure

of the number of steps of conditional MALA to reach a

given fixed error threshold averaged over all scales j. The

precise definition is given in Appendix C.3. We compare

it with the decorrelation mixing time τ of MALA on the

non-convex global energy E.

Sampling maps of size
√
d×
√
d from the global φ4

energy

E at the critical temperature requires a number of steps

τ ∼ d1.0 (Zinn-Justin, 2021). This phenomena is known

as critical slowing down (Podgornik, 1996; Sethna, 2021),

Figure 4. Conditional strong log-concavity of ϕ
4

at critical tem-

perature. All scales j yield similar results. Left: distribution of

eigenvalues of ∇
2

x̄j
Ēθ̄j

for different frequency bandwidths (j = 1
is shown). Right: equivalent scalar potentials vj and v̄j (j = 3 is

shown).

Figure 5. Mixing times for direct (τ ) and conditional (τ̄ ) sampling

for ϕ
4

at critical temperature.

a consequence of long-range correlations. We numerically

show that our algorithm does not suffer from it. Figure 5 in-

deed demonstrates an empirical scaling τ̄ ∼ d0.35. Note that

this is not directly comparable with Proposition 2.2 as the

decorrelation mixing time defines a different convergence

rate than the KL mixing time.

4.3. Application to Cosmological Data

We now apply our algorithm to generate high-resolution

weak lensing convergence maps (Bartelmann & Schneider,

2001; Kilbinger, 2015) with an explicit probability model.

Weak lensing convergence maps measure the bending of

light near large gravitational masses on two-dimensional

slices of the universe. We used simulated convergence maps

computed by the Columbia lensing group (Zorrilla Matilla

et al., 2016; Gupta et al., 2018) as training data. They simu-

late the next generation outer-space telescope Euclid of the

European Space Agency (Laureijs et al., 2011), which will

be launched in 2023 to accurately determine the large scale

geometry of the universe governed by dark matter. Estimat-

ing the probability distribution of such maps is therefore an

outstanding problem (Marchand et al., 2022). We demon-

strate that the CSLC property is surprisingly verified in this

real-world example, and can be used to efficiently model

8
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Figure 6. Comparison between training and generated samples for

weak-lensing maps. Upper left: histograms of marginal distri-

butions p(x[i]). Lower left: power spectrum. Center: training

samples. Right: generated samples.

and generate these complex fields.

We use the same models and algorithms as for the φ4
energy.

The experimental setting is detailed in Appendix C. Figure 6

shows that our generated samples are visually highly similar

to the training data. Quantitatively, they have nearly the

same power spectrum. The marginal distribution of all x[i]
are also nearly the same, with a long tail corresponding to

high amplitude peaks, which are typically difficult to re-

produce. As opposed to microcanonical simulations with

moment-matching algorithms (Cheng & MÂenard, 2021), we

compute an explicit probability distribution model, which is

exponential. As a maximum-entropy model, it has a higher

entropy than the true distribution, and therefore does not suf-

fer from lack of diversity. By relying on the CSLC property,

we can use the fast score-matching algorithm and compute

128× 128 images, at four times the 32× 32 resolution than

with a maximum-likelihood algorithm used in Marchand

et al. (2022).

Figure 7 shows the equivalent scalar potentials of the condi-

tional energies at all scales, which are all convex and thus

verify the CSLC property of weak lensing model. It demon-

strates that this property can be used to efficiently model

and generate high-resolution complex data.

5. Discussion

We introduced conditionally strongly log-concave (CSLC)

models and proved that they lead to efficient learning with

score matching and sampling with MALA, while control-

ling errors. These models rely on iterated orthogonal pro-

jections of the data that are adapted to its distribution. We

showed mathematically and numerically that complex multi-

scale physical fields satisfy the CSLC property with wavelet

Figure 7. Equivalent scalar potentials v̄j at each scale j for weak-

lensing maps (normalized for viewing purposes).

packet projectors. The argument is general and relies on

the presence of a quadratic (kinetic) energy term which en-

sures strong log-concavity at high-frequencies. It provides

high-quality and efficient generation of high-resolution

fields even when the underlying distribution is unknown.

The CSLC property guarantees diverse generations without

memorization issues, which is critical in scientific applica-

tions.

CSLC models can be extended by introducing latent vari-

ables. The guarantees of Section 2 extend to the case where

the data is a marginal of a CSLC distribution. A notable

example is a score-based diffusion model, for which the data

x = x0 is a marginal of a higher-dimensional process (xt)t
whose conditionals p(xt−δ|xt) are approximately Gaussian

white when δ is small, thus introducing a tradeoff between

the number of terms in the CSLC decomposition and the

condition number of its factors. Score diffusion is a generic

transformation, but it assumes that the score∇xt
log p(xt)

can be estimated with deep networks at any t ≥ 0 (Song

et al., 2021; Ho et al., 2020). For high-resolution images,

the score estimation often uses conditional multiscale de-

compositions with or without wavelet transforms (Saharia

et al., 2021; Ho et al., 2022; Dhariwal & Nichol, 2021; Guth

et al., 2022). Understanding the log-concavity properties of

natural image distributions under such transformations is a

promising research avenue to understand the effectiveness

of score-based diffusion models.
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A. Definition of Wavelet Packet Projectors

The fast wavelet transform (Mallat, 1989) splits a signal in frequency into two orthogonal coarser signals, using two

orthogonal conjugate mirror filters g and ḡ.

We review the construction of such filters in Appendix A.1. A description of the fast wavelet transform is then given in

Appendix A.2. Finally, we define in Appendix A.3 the wavelet packet (Coifman et al., 1992) projectors (Gj , Ḡj) used in the

numerical section 3.

A.1. Conjugate Mirror Filters

Conjugate mirror filters g and ḡ satisfy the following orthogonal and reconstruction conditions:

gTḡ = ḡTg = 0,

gTg + ḡTḡ = Id.
(14)

In one dimension, the conditions (14) are satisfied (Mallat, 1989) by discrete filters (g(n))n∈Z, (ḡ(n))n∈Z whose Fourier

transforms ĝ(ω) =
∑

n g(n)e
−inω

and ˆ̄g(ω) =
∑

n g(n)e
−inω

satisfy

|ĝ(ω)|2 + |ĝ(ω + π)|2 = 2,

ĝ(0) =
√
2,

ˆ̄g(ω) = e−iω ĝ(ω + π).

(15)

We first design a low-frequency filter g such that ĝ(ω) satisfies (15), and then compute ḡ with

ḡ(n) = (−1)1−ng(1− n). (16)

The choice of a particular low pass filter g is a trade-off between a good localization in space and a good localization

in the Fourier frequency domain. Choosing a perfect low-pass filter g(ω) = 1ω∈[−π/2,π/2] leads to Shannon wavelets,

which are well localized in the frequency domain but have a slow decay in space. On the opposite, a Haar wavelet filter

g(n) =
√
21n∈{0,1} has a small support in space but is poorly localized in frequency. Daubechies filters (Daubechies, 1992)

provide a good joint localization both in the spatial and Fourier domains. The Daubechies-4 wavelet is shown in Figure 8.

In two dimensions (for images), wavelet filters which satisfy the orthogonality conditions in (14) can be defined as separable

products of the one-dimensional filters g and ḡ (Mallat, 2009), applied on each coordinate. It defines one low-pass filter g2
and 3 high-pass filters ḡ2 = (ḡk2 )1≤k≤3:

g2(n1, n2) = g(n1)g(n2),

ḡ12(n1, n2) = g(n1)ḡ(n2),

ḡ22(n1, n2) = ḡ(n1)g(n2),

ḡ32(n1, n2) = ḡ(n1)ḡ(n2).

(17)

12
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Figure 8. Fourier transform of Daubechies-4 orthogonal filters ĝ(ω) (in green) and ˆ̄g(ω) (in orange).

For simplicity we shall write g and ḡ the filters g2 and ḡ2. ḡ outputs the concatenation of the 3 filters ḡk2 .

A.2. Orthogonal Frequency Decomposition

We introduce the orthogonal decomposition of a signal xj−1 with the low pass filter g and the high pass filter ḡ, followed by

a sub-sampling. It outputs (xj , x̄j), which has the same dimension as xj−1, defined in one dimension by

xj [p] =
∑

n∈R
2

g[n− 2p]xj−1[n],

x̄j [p] =
∑

n∈R
2

ḡ[n− 2p]xj−1[n].
(18)

The inverse transformation is

xj [p] =
∑

n∈R
2

g[p− 2n]xj+1[n] +
∑

n∈R
2

ḡ[p− 2n]x̄j+1[n]. (19)

The orthogonal frequency decomposition in two dimensions is defined similarly. It decomposes a signal x of size
√
d×
√
d

into a low frequency signal and 3 high frequency signals, each of size
√
d
2 ×

√
d
2 .

A.3. Wavelet Packet Projectors

An orthogonal frequency decomposition projects a signal into high and low frequency domains. In order to refine the

decomposition (by separating different frequency bands), wavelet packets projectors are obtained by cascading this

orthogonal frequency decomposition.

The usual fast wavelet transform starts from a signal x̄0 of dimension d, decomposes it into a low-frequency x1 and a high

frequency x̄1, and then iterates this decomposition on the low-frequency x1 only. It iteratively decomposes xj−1 into the

lower frequencies xj and the high-frequencies x̄j . The resulting orthogonal wavelet coefficients are (x̄j , xJ)1≤j≤J . The

resulting decomposition remains of dimension d.

To obtain a finer frequency decomposition, we use the M -band wavelet transform (Mallat, 2009), a particular case of wavelet

packets (Coifman et al., 1992). It first applies the fast wavelet transform to the signal, and obtains (x̄j , xJ)1≤j≤J . Each

high-frequency output x̄j undergoes an orthogonal decomposition using g and ḡ. Then both outputs of the decomposition

are again decomposed, and so on, (M − 1)-times. The coefficients are then sorted according to their frequency support, and

also labeled as (x̄j , xJ)1≤j≤J
′ , with J ′ = J2M−1

, also referred to as J in the main text.

The wavelet packet decomposition corresponds to first decomposing the frequency domain dyadically into octaves, and then

each dyadic frequency band is further decomposed into 2M−1
frequency annuli. We say this decomposition corresponds to a

1/2M−1
octave bandwidth. Precisely, if j = j′2M−1 + r, then x̄j has a frequency support over an annulus in the frequency

13
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Figure 9. In one dimension, a wavelet packet transform is obtain by cascading filterings and subsamplings with the filters g and ḡ along a

binary splitting tree which outputs xJ and x̄j for j ≥ J .

Figure 10. Low-frequency maps xj for M = 2 for a ϕ
4

realization.

domain, with frequencies with modulus of order 2−j
′

π(1 − 2−M+1(r − 1/2)). A two-dimensional visualization of the

frequency domain can be found in Figure 2, for M = 1 and M = 2, corresponding to 1 and 1/2 octave bandwidths.

Figure 9 shows the iterative use of g and ḡ used to obtain the decomposition, in one dimension, for M = 2. Note that the

filters ḡ and g successively play the role of low- and high-pass filters because of the subsampling (Mallat, 2009).

We now introduce the corresponding orthogonal projectors Gj and Ḡj , defined such that

x̄j = Ḡjxj−1,
xj = Gjxj−1,

(20)

where the (x̄j)j , sorted in frequency, have been obtained trough the M -band wavelet transform, as described above, and xj

refers to the signal reconstructed using (xJ , x̄j
′)j′≥j+1. Let us emphasize that the image xj−1 is reconstructed from xj and

the higher frequencies x̄j , and defined on a spatial grid which is either the same as xj or twice larger. For M = 2, Figure 10

shows that x0 and x1 are defined on the same grid, although x1 has a lower-frequency support. Similarly x2 and x3 are both

represented on the same grid, which is twice smaller, and so on.

The orthogonal projectors satisfy GT
j Gj + ḠT

j Ḡj = Id. We then have the following inverse formula:

xj−1 = GT
j xj + ḠT

j x̄j . (21)

This decomposition using Gj and Ḡj recursively splits the signal in frequencies, from high to low frequencies.

14
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Figure 11. Sub-bands of x̄j for a wavelet packet decomposition with a half-octave bandwidth.

B. Score Matching and MALA Algorithms for CSLC Exponential Families

B.1. Multiscale Energies

This section introduces the explicit parametrization of the energies Ēθ̄j
and EθJ

.

The conditional energies Ēθ̄j
(xj , x̄j) are defined with a bilinear term which represents the interaction between xj and x̄j

and a scalar potential:

Ēθ̄j
(xj , x̄j) =

1

2
x̄T
j K̄j x̄j +

∑

l>j

x̄T
j K̄

′
l,j x̄j+l +

∑

i

v̄j(xj−1[i]), (22)

with xj−1 = ḠT
j x̄j +GT

j xj . Equation (22) is an equivalent reparametrization of Equation (13). Considering (x̄l)l>j instead

of xj allows fixing some coefficients of the K̄ ′
l,j to zero instead of learning them. First, we set K̄ ′

l,j = 0 if x̄j and x̄j+l

are not defined on the same spatial grid. In the sequel, sums over l only refer to theses terms, which differ depending on

the wavelet decomposition. We enforce spatial stationarity by averaging the bilinear interaction terms across space. We

further kept only the non-negligible terms which correspond to neighboring frequencies and neighboring spatial locations.

As displayed in Figure 11, x̄j is composed of sub-bands x̄k
j . We kept the interaction terms x̄k

j [i]x̄
k+δk
j+l [i+ δi] for l ∈ {0, 1},

δk ∈ {0, 1}, and δi ∈ {0, 1, 2, 3, 4}2, which correspond to local interactions in both space and frequency.

The scalar potential v̄j(t) is decomposed on a family of predefined functions ρk,j(t):

v̄j(t) =
∑

k

ᾱk,j ρk,j(t). (23)

ρj,k is defined in order to expand the scalar potential v̄j which captures the marginal distributions of the xj−1[i], which do

not depend on i due to stationarity. We divide this marginal into N quantiles. Each ρk,j is chosen to be a regular bump

function having a finite support on the k-th quantile. This parametrization performs a pre-conditioning of the score matching

Hessian.

Let ρ be a bump function with a support in [−1/2, 1/2]. For each j, let aj,k and lj,k be respectively the center and width of

the k-th quantile of the marginal distribution of x̄j , we define

ρk,j(t) = lk
√
N ρ

(
t− aj,k
lj,k

)
, (24)
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with the condition

∥∥ρ′
∥∥2
2
=

1
∥∥Ḡj

∥∥2
2

, (25)

in order to balance the magnitude of the scalar potentials with the quadratic potentials.

The potential vector is thus

Φ̄j(xj , x̄j) =

(
∑

i

x̄k
j [i]x̄

k+δk
j+l [i+ δi],

∑

i

ρk′

,j(xj−1[i])

)

0≤l≤1,0≤δk≤1,0≤δi≤4,1≤k
′≤N

. (26)

Similarly, we define EθJ
as the sum of a quadratic energy and a scalar potential:

EθJ
(xJ) =

1

2
xT
JKJxJ +

∑

i

vJ(xJ [i]). (27)

The bilinear interaction terms are averaged across space to enforce stationarity. The scalar potential vJ(t) is also decomposed

over a family of predefined functions ρk,J(t):

vJ(t) =
∑

k

αk,J ρk,J(t), (28)

defined similarly as above. This yields a potential vector

ΦJ(xJ) =

(
∑

i

xJ [i]xJ [i+ δi], ρk,J(xJ)

)

0≤δi≤4,1≤k≤N

, (29)

leading to

EθJ
(xJ) = θTJΦJ(xJ), (30)

with θJ = (KJ , αk,J)k.

B.2. Pseudocode

The procedure to learn the parameters (θ̄j)j of the conditional energies Ēθ̄j
(xj , x̄j) by score matching is detailed in

Algorithm 1. The procedure to generate samples from the distribution pθ(x) with MALA is detailed in Algorithm 2.

Algorithm 1 Score matching for exponential families with CSLC distributions

Require: Training samples (xi)1≤i≤n.

Initialize xi
0 = xi

for 1 ≤ i ≤ n.

for j = 1 to J do

Decompose xi
j ← Gjx

i
j−1 and x̄i

j ← Ḡjx
i
j−1 for 1 ≤ i ≤ n.

Compute the score matching quadratic term Hj ← 1
n

∑n
i=1∇x̄j

Φ̄j(x
i
j , x̄

i
j)∇x̄j

Φ̄j(x
i
j , x̄

i
j)

T ∈ R
m×m

.

Compute the score matching linear term gj ← 1
n

∑n
i=1 ∆x̄j

Φ̄j(x
i
j , x̄

i
j) ∈ R

m
.

Set θ̄j ← H−1
j gj .

end for

return Model parameters (θ̄j)j .
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Algorithm 2 MALA sampling from CSLC distributions

Require: Model parameters (θ̄j)j , an initial sample xJ from p(xJ), step sizes (δj)j , number of steps (Tj)j .

for j = J to 1 do

Initialize x̄j,0 = 0.

for t = 1 to Tj do

Sample ȳj,t ∼ N
(
x̄j,t−1 − δj∇x̄j

Ēθ̄j
(xj , x̄j,t−1), 2δjId

)
.

Set a =
∥∥∥∇x̄j

Ēθ̄j
(xj , ȳj,t))

∥∥∥
2

+
∥∥∥∇x̄j

Ēθ̄j
(xj , x̄j,t−1))

∥∥∥
2

.

Set b =
〈
ȳj,t − x̄j,t−1,∇x̄j

Ēθ̄j
(xj , ȳj,t)−∇x̄j

Ēθ̄j
(xj , x̄j,t−1)

〉
.

Set c = Ēθ̄j
(xj , ȳj,t)− Ēθ̄j

(xj , x̄j,t−1).

Compute acceptance probability p = exp
(
− δj

4 a+ 1
2b− c

)
.

Set x̄j,t = ȳj,t with probability p and x̄j,t = x̄j,t−1 with probability 1− p.

end for

Reconstruct xj−1 = GT
j xj + ḠT

j x̄j,Tj
.

end for

return a sample x0 from p̂θ(x).

C. Experimental Details

C.1. Datasets

Simulations of φ4
. We used samples from the φ4

model generated using a classical MCMC algorithm, for 3 different

temperatures, at the critical temperature βc ≈ 0.68, above the critical temperature at β = 0.50 < βc, and below the critical

temperature at β = 0.76 > βc. For β = 0.76, we break the symmetry and only generate samples with positive mean. For

each temperature, we generate 104 images of size 128× 128.

Weak lensing. We used down-sampled versions of the simulated convergence maps from the Columbia Lensing Group

(http://columbialensing.org/; Zorrilla Matilla et al., 2016; Gupta et al., 2018). Each map, originally of size

1024× 1024, is downsampled twice with local averaging. We then extract random patches of size 128× 128.

To pre-process the data, we subtract the minimum of the pixel values over the entire dataset, and then take the square root.

This process is reversed after generating samples. We also do not consider the outliers (less than 1% of the dataset) with

pixels above a certain cutoff, in order to reduce the extent of the tail and attenuate weak lensing peaks. Our dataset is made

of ≃ 4× 103 images.

C.2. Experimental Setup

Wavelet filter. We used the Daubechies-4 wavelet (Daubechies, 1992), see the filter in Figure 8.

Wavelet packets. We implemented wavelet packets in PyTorch, inspired from the PyWavelets software (Lee et al., 2019).

The source code is available at https://github.com/Elempereur/WCRG.

Score matching. We pre-condition the score matching Hessian Hj by normalizing its diagonal before computing H−1
j gj

in Algorithm 1. After this normalization, we obtain condition numbers κθ̄j
which satisfy κθ̄j

≤ 2× 103 at all j.

Sampling. The MALA step sizes δj are adjusted to obtain an optimal acceptance rate of ≈ 0.57. Depending on the scale

j, the stationary distribution is reached in Tj ≈ 20±400 iterations from a white noise initialization. We used a qualitative

stopping criterion according to the quality of the matching of the histograms and power spectrum.

C.3. Mixing Times in MALA

Sampling from pθ requires sampling from pθJ , and then conditionally sampling from pθ̄j (x̄j |xj). This last step is performed

with a Markov chain whose stationary distribution is pθ̄j (x̄j |xj) for a given xj . It generates successive samples x̄j(t) where
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t is the the step number in the Markov chain.

We introduce the conditional auto-correlation function:

Aj(t) =
E
[(
x̄j(t)− E[x̄j |xj ]

)(
x̄j(0)− E[x̄j |xj ]

)]

E[δx̄2
j ]

.

The expected value E is taken with respect to both xj and the sampled x̄j . Aj(t) has an exponential decay. Let τ̄j be the

mixing time defined as the time it takes for the Markov chain to generate two independent samples:

Aj(t) ≈ Aj(0) exp

(
− t

τ̄j

)
.

τ̄j is computed by regressing log(Aj(t)) over t.

Each iteration of MALA with pθ̄j (x̄j | xj) computes a gradient of size d̄j . In order to estimate the real computational cost

of the sampling of pθ, we average τ̄j proportionally to the dimension d̄j :

τ̄ =

J∑

j=1

d̄j
d
τ̄j + τJ

dJ
d
,

where d is the dimension of x.

D. Energy Estimation with Free-Energy Modeling

This section explains how to recover an explicit parametrization of the negative log-likelihood − log pθ from the param-

eterized energies Ēθ̄j
. We introduce a parameterization of the normalization constant of the Gibbs energies for each j

and describe an efficient score-matching algorithm to learn the parameters. This leads to a decomposition of the negative

log-likelihood − log pθ over scales.

D.1. Free-Energy Score Matching

From the decomposition

pθ(x) = pθJ (xJ)
J∏

j=1

pθ̄j (x̄j |xj),

we obtain

− log pθ(x) = EθJ
(xJ) +

J∑

j=1

(
Ēθ̄j

(xj , x̄j) + log Z̄θ̄j
(xj)

)
+ cst, (31)

where Z̄θ̄j
(xj) is the normalization constant for Ēθ̄j

(xj , x̄j). To retrieve the global negative log-likelihood − log pθ(x), we

thus compute an approximation of − log Z̄θ̄j
(xj) with a parametric family Fθ̃j

.

The parameters θ̃j of the approximation of the normalizing factors Z̄θ̃j
can be learned in a manner similar to denoising score

matching. Indeed, using the identity

−∇xj
log Z̄θ̄j

(xj) = E

[
∇xj

Ēθ̄j
(xj , x̄j) |xj

]
,

which can be proven by a direct computation of the gradient, the parameters θ̃j can be estimated by minimizing

ℓ̃j(θ̃j) = E

[∥∥∥∇xj
Fθ̃j
−∇xj

Ēθ̄j

∥∥∥
2
]
. (32)

For an exponential model Fθ̃j
= θ̃Tj Φ̃j with a fixed potential vector Φ̃j , Equation (32) is quadratic in θ̃ and admits a

closed-form solution:

θ̃j = E

[
∇xj

Φ̃j∇xj
Φ̃T

j

]−1

E

[
∇xj

Φ̃j∇xj
Ēθ̄j

]
.
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We finally obtain the energy decomposition

− log pθ(x) = EθJ
(xJ) +

J∑

j=1

(
Ēθ̄j

(xj , x̄j)− Fθ̃j
(xj)

)
+ cst. (33)

This score-based method is much faster and simpler to implement than likelihood-based methods such as the thermodynamic

integration of Marchand et al. (2022), which requires generation of many samples while varying the parameters θ̄j of the

conditional energy Ēθ̄j
.

D.2. Parameterized Free-Energy Models

The potential vector Φ̃j is modeled in the class of Equation (11), following Marchand et al. (2022) and similarly to

Appendix B.1:

Fθ̃j
(xj) =

1

2
xT
j K̃jxj + Ṽj(xj) +

∑

i

ṽj(xj [i])

ṽj(t) =
∑

k

α̃j,kρ̃j,k(t),

which gives θ̃j = (K̃j , α̃j,k)k and an associated potential vector

Φ̃j(xj) =

(
1

2
xjx

T
j , ρ̃j,k(xj)

)

k

.

D.3. Multiscale Energy Decomposition

We now expand the models for the conditional energies Ēθ̄j
and the so-called free energies Fθ̃j

in Equation (33). All the

quadratic terms (KJ , K̄j , K̃j)j can be regrouped in an equivalent quadratic term K. We then have

− log pθ(x) =
1

2
xTKx+

∑

i


vJ(xJ [i]) +

J∑

j=1

(
v̄j(xj−1[i])− ṽj(xj [i])

)



=
1

2
xTKx+

∑

i


v̄1(x0[i]) +

J∑

j=1

(
v̄j+1(xj [i])− ṽj(xj [i])

)

,

with v̄J+1 = vJ . This defines multiscale scalar potentials Vj :

Vj = v̄j+1 − ṽj ,
V0 = v̄1,

such that we have the global negative log-likelihood or energy function:

− log pθ(x) =
1

2
xTKx+

J∑

j=0

∑

i

Vj(xj [i]).

For φ4
at critical temperature, as derived in (Marchand et al., 2022), the only non-zero scalar potential will be V0. The other

Vj potentials are zero, up to a quadratic term.

As a numerical test, Figure 12 verifies that on φ4
at critical temperature, v̄j+1 and ṽj indeed cancel out so that Vj = 0

for j > 0. In order to ensure that the quadratic difference mentioned above vanishes, we subtract to ṽj the quadratic

interpolation of ṽj − v̄j+1.
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Figure 12. For ϕ
4

at βc, the conditional potentials v̄j+1 and free-energy potential ṽj cancel out. Only j = 1 is shown, other scales show

similar behavior.

E. Proofs of Section 2

E.1. Proof of Proposition 2.1

Proposition 2.1 (Error decomposition).

TV(p̂, p) ≤ 1√
2




√√√√ϵLJ +

J∑

j=1

ϵ̄Lj +

√√√√ϵSJ +

J∑

j=1

ϵ̄Sj


.

Proof. We use the following decomposition of KL divergence in terms of conditional distributions:

Lemma E.1. Let p(x) = p(xJ)
∏J

j=1 p(x̄j |xj) and q(x) = q(xJ)
∏

j q(x̄j |xj). We have KL(p ∥ q) =∑
j Exj∼pKL(p(·|xj) ∥ q(·|xj)) .

Using Lemma E.1 we obtain that KL(p ∥ pθ) = ϵLJ +
∑

j ϵ̄
L
j and KL(p̂ ∥ pθ) = ϵSJ +

∑
j ϵ̄

LSj. We conclude with the

Pinsker inequality

TV(p̂, p) ≤ TV(p̂, pθ) + TV(pθ, p) ≤
1√
2

(√
KL(p ∥ pθ) +

√
KL(p̂ ∥ pθ)

)
.

Proof of Lemma E.1. We proceed by induction over J . Observe that log p(x) = log p(x̄1|x1) + log p(x1), so

KL(p ∥ q) = Ep[log(p)− log(q)]

= Ep[log p(x1)− log q(x1)]+

Ex1∼p(x1)
Ex̄1∼p(x̄1|x1)

[log p(x̄1|x1)− log q(x̄1|x1)]

= KL(p(x1) ∥ q(x1))

+ Ex1∼p(x1)
KL(p(·|x1) ∥ q(·|x1)) .

The first term KL(p(x1) ∥ q(x1)) now involves J − 1 factors, and hence we can apply the induction step to conclude.
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E.2. Proof of Theorem 2.1

We will use a general concentration result of the empirical covariance for general distributions with mild moment assumptions

(Vershynin, 2018), as well as anticoncentration properties of the random design (Mourtada, 2022). Together, they provide

enough control on the probability tails so that the inverse covariance concentrates to the precision matrix in expectation.

Assumption E.1. Let X ∈ R
m×d

be a random matrix. Assume that there exists K ≥ 1 such that ∥X∥F ≤ KE[∥X∥2F ]1/2
almost surely.

Theorem E.1 (General Covariance Estimation with High Probability, (Vershynin, 2018, Theorem 5.6.1, Ex 5.6.4)). Let

X ∈ R
m×d

be a random matrix satisfying assumption E.1. Let Σ = E[XX⊤], and for any n let Σ̂n = 1
n

∑
i XiX

⊤
i be the

sample covariance matrix, where Xi are n iid copies of X . There exists an absolute constant C such that for any δ > 0, it

holds

∥Σ̂n − Σ∥ ≤ C




√
K2m(log(m) + log(2/δ))

n
+

K2m(log(m) + log(2/δ))

n


∥Σ∥ (34)

with probability at least 1− δ.

Assumption E.2 (Moment Condition). Assume that there exists KX and KY such that X := (∇x̄Φ̄k(x̄, x))k≤m ∈ R
m×d

,

and Y = (∆x̄Φ̄k(x̄, x))k≤m ∈ R
m

satisfy Assumption E.1 with constants KX and KY respectively, where (x̄, x) ∼ p(x̄, x).

Assumption E.3 (Anticoncentration Condition, (Mourtada, 2022, Assumption 1)). The random matrix X =
(∇x̄Φ̄k(x̄, x))k≤m ∈ R

m×d
satisfies the following: there exists constants C ≥ 1 and ν ∈ (0, 1] such that for every

θ ∈ R
m \ {0} and t > 0, P(θ⊤XX⊤θ ≤ t2θ⊤E[XX⊤]θ) ≤ (Ct)ν .

Theorem E.2 ((Mourtada, 2022, Corollary 3)). Let X ∈ R
m×d

be a random matrix satisfying Assumption E.3 and such

that E[∥X∥2F ] < ∞, with Σ = E[XX⊤]. Then, if m/n ≤ ν/6, for every t ∈ (0, 1), the empirical covariance matrix Σ̂n

obtained from an iid sample of size n satisfies

Σ̂n ⪰ tΣ

with probability with probability greater than 1− (C̃t)νn/6, where C̃ only depends on C and ν in Assumption E.3.

Theorem E.3 (Excess risk for CSLC exponential models, Theorem 2.1 restated). Let θ̄⋆ = argmin ℓ(θ̄) and ˆ̄θ =

argmin ℓ̂(θ̄). Assume:

(i) θ̄⋆ ∈ Θᾱ for some ᾱ > 0,

(ii) H = E

[
∇x̄Φ̄∇x̄Φ̄

T
]
⪰ ηId with η > 0,

(iii) the sufficient statistics Φ̄ satisfy moment conditions E.2, regularity conditions E.3, and ∇Φ̄k(x, x̄) is MΦ̄-Lipschitz for

any k ≤ m and all x.

Then when n > m, the empirical risk minimizer ˆ̄θ satisfies:

ˆ̄θ ∈ Θ ˆ̄α with E
(x̄

i
,x

i
)

[
ˆ̄α
]
≥ ᾱ−O

(
η−1

√
m

n

)
, (35)

E
(x̄

i
,x

i
)

[
ℓ(ˆ̄θ)

]
≤
[
ℓ(θ̄⋆) +O

(
κ(H)η−1m

n

)]
, (36)

and, for t≪ √mℓ(θ̄⋆),

ϵ̄L ≤ ℓ(θ̄⋆)

ᾱ
(1 + t) (37)

with probability greater than 1− exp{−O(n log(tn/
√
m))} over the draw of the training data. The constants in O(·) only

depend on moment and regularity properties of Φ̄.

Proof. We can rewrite the score-matching population risk in terms of a joint distribution (X,Y ) ∈ R
m×d × R

m
:

min
θ

ℓ(θ) = E(X,Y )

[
1

2
θ⊤XX⊤θ − θ⊤Y

]
=

1

2
θ⊤Hθ − θ⊤g ,
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where H = E[XX⊤] and g = E[Y ]. The empirical objective is the quadratic form

min
θ

1

2
θ⊤Ĥθ − θ⊤ĝ , (38)

with Ĥ = 1
n

∑n
i=1 XiX

⊤
i and ĝ = 1

n

∑
i Yi.

We want to control the expected excess risk Eℓ(θ̂)− ℓ(θ∗) and the norm ∥θ̂ − θ∗∥ , where

θ̂ = Ĥ−1ĝ , θ∗ = H−1g .

Since ℓ(θ) is quadratic and θ∗ is its global minimum, observe that

ℓ(θ)− ℓ(θ∗) = ∇θℓ(θ
∗)⊤(θ − θ∗) +

1

2
(θ − θ∗)⊤∇2

θℓ(θ
∗)(θ − θ∗)

=
1

2
(θ − θ∗)⊤H(θ − θ∗) , (39)

which shows that the excess risk can be bounded from the mean-squared error E∥θ̂ − θ∗∥2 with

Eℓ(θ̂)− ℓ(θ∗) ≤ ∥H∥
2

E∥θ̂ − θ∗∥2 . (40)

Let υ := ĝ − g and Υ = Ĥ−1 −H−1
. By definition, we have

θ̂ − θ∗ = Ĥ−1(g + υ)−H−1g = Υg + Ĥ−1υ , (41)

so

E∥θ̂ − θ∗∥2 ≤ 2(E∥Υ∥2)∥g∥2 + 2E∥Ĥ−1υ∥2 . (42)

Let us begin with the first term in the RHS of (42), involving Υ. We claim that there exists C0, only depending on the

assumption parameters in E.2 and E.3, such that

E∥Υ∥2 ≤ C0

∥H−2∥
n

+O

(
m3

n2

)
. (43)

The main technical ingredient is to exploit upper and lower tail bounds of Ĥ = Ĥn to establish a control on expectation, via

the following Lemma.

Lemma E.2 (From tail bounds to Expectation). Suppose the empirical covariance Σ̂n satisfies the following lower and

upper tail bounds:

Σ̂n ⪯ (1 + s)Σ with probability greater than 1− ηn(s) , s ≥ 0,

Σ̂n ⪰ (1− t)Σ with probability greater than 1− δn(t) , t ∈ (0, 1) . (44)

Then

E∥Σ̂−1
n − Σ−1∥ ≤ ∥Σ−1∥

(∫ ∞

0

δn

(
β

1 + β

)
dβ +

∫ 1

0

ηn

(
β

1− β

)
dβ

)
, (45)

E∥Σ̂−1
n − Σ−1∥2 ≤ ∥Σ−1∥2

(∫ ∞

0

βδn

(
β

1 + β

)
dβ +

∫ 1

0

βηn

(
β

1− β

)
dβ

)
. (46)

Thanks to assumptions E.3 and E.1, the tail bounds of Theorems E.1 and E.2 apply, yielding

δn(t) = min((C̃(1− t))νn/6, 2m exp(−n2t2/Cm)) , ηn(s) = 2m exp(−n2s2/Cm) . (47)

We now apply Lemma E.2 with these values. Let us first address the term ηn. We have

ηn(β/(1− β)) = 2m exp(−n2β2(1− β)−2/(Cm)) ,
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and hence

∫ 1

0

βηn(β/(1− β))dβ = 2m

∫ 1

0

β exp(−n2β2(1− β)−2/(Cm))dβ

≤ 2m

∫ 1

0

β exp(−n2β2/(Cm))dβ

≤ 2m
√
π

√
Cm/2

n
E
Z∼N (0,Cm/(2n

2
))
[|Z|] (48)

≤ C̃
m3

n2 . (49)

Let us now study the term in δn. For any β∗
we have

∫ ∞

0

βδn(β(1 + β)−1)dβ ≤ 2m

∫ β
∗

0

β exp(−n2β2(1 + β)−2/(Cm))dβ +

∫ ∞

β
∗

β(C̃(1 + β)−1)νn/6dβ ,

≤ 2m

∫ β
∗

0

β exp(−n2β2(1 + β∗)−2/(Cm))dβ +
C̃νn/6

νn/6− 2
(1 + β∗)−νn/6+2

≤ 2
√
πC(1 + β∗)2

m3

n2 +
C̃νn/6

νn/6− 2
(1 + β∗)−νn/6+2 .

Picking β∗ = C̃ above gives
∫ ∞

0

βδn(β(1 + β)−1)dβ ≤ C̄

n
+O

(
m3

n2

)
, (50)

where C̄ only depends on ν, C, C̃. From (48) and (50) we conclude that

E∥Ĥ−1
n −H−1∥2 = O

(
∥H−2∥

n

)
, (51)

proving (43).

Let us now bound the second term in the RHS of (42). We have

∥Ĥ−1υ∥2 ≤ ∥Ĥ−2∥∥υ∥2 ,

so by Cauchy-Schwartz we obtain

E[∥Ĥ−1υ∥2] ≤
(
E[∥Ĥ−4∥]

)1/2(
E[∥υ∥4]

)1/2
. (52)

By assumption, we have (
E[∥υ∥4]

)1/2
≤ KY E[∥υ∥2] =

KY

n
E[∥Y ∥2] . (53)

Finally, we use the following lemma, showing that E[∥Ĥ−4∥] is bounded.

Lemma E.3 (Finite Second and Fourth Moments of Ĥ−1
). Assume n > 24/ν. Then

E[∥Ĥ−2∥] ≤ C̃2∥H−1∥2 and E[∥Ĥ−4∥] ≤ C̃4∥H−1∥4 . (54)

From (52), (53) and (54) we obtain

E[∥Ĥ−1υ∥2] ≤
ξ

√
C̃4∥H−1∥2E[∥Y ∥2]

n
, (55)
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which, together with (43) yields

E∥θ̂ − θ∗∥2 ≤ O

(
∥H−1∥2(∥E[Y ]∥2 +KY E[∥Y ∥2])

n

)
, (56)

and therefore

Eℓ(θ̂)− ℓ(θ∗) ≤ O

(
κ∥H−1∥(∥E[Y ]∥2 +KY E[∥Y ∥2])

n

)
, (57)

proving (36) as claimed.

Let us now control ˆ̄α such that θ̂ ∈ Θ ˆ̄α. From log pθ(x̄|x) = θ⊤Φ̄(x, x̄) we directly obtain

∇2 log pθ̂(x̄|x) = ∇
2 log pθ∗(x̄|x) +

m∑

k=1

(θ̂k − θ∗k)∇2Φ̄k(x̄|x) ,

and thus, for any (x̄, x),

∥∇2 log pθ̂(x̄|x)−∇
2 log pθ∗(x̄|x)∥ ≤

∑

k

|θ̂k − θ∗k|∥∇2Φ̄k(x̄|x)∥

≤ ∥θ̂ − θ∗∥∥∇2Φ̄(x̄|x)∥ ,
≤ ∥θ̂ − θ∗∥√mMΦ̄ , (58)

where ∥∇2Φ̄(x̄|x)∥2 :=
∑m

k=1 ∥∇
2Φ̄k(x̄|x)∥2, and MΦ̄ = maxk supx,x̄ ∥∇2Φ̄k(x̄|x)∥ <∞ by assumption (ii). It follows

from (58) that

inf
(x̄,x)

λmin(∇2 log pθ̂(x̄, x)) ≥ ᾱ− ∥θ̂ − θ∗∥√mMΦ̄ . (59)

We will now use tail probability bounds for the norm ∥θ̂ − θ∗∥, captured in the following lemma:

Lemma E.4 (Tail bounds for ∥θ̂ − θ∗∥). We have

P(∥θ̂ − θ∗∥ > t) ≤ fn(t/∥H−1∥), (60)

with

fn(s) ≤ min

[
2m exp

(
−n2 (s/(2∥g∥))2

(1 + (s/(2∥g∥)))2Cm

)
, (C̃(2CY )s

−1)νn/6
]
+ (61)

+ 2m exp(−n2(s/(2∥g∥))2/Cm) +

(
C0

s
√
n

)νn/6

, (62)

(63)

where C̃, C, CY , ∥g∥, ν are constants from Assumptions E.3, E.2. Moreover, for s≪ 1, we have

fn(s) = exp(−O(n(log n+ log s))) (64)

From (39) and (59) we obtain

ExKL(p ∥ pθ̂) ≤
1

2ˆ̄α

(
ℓ(θ∗) + ∥θ̂ − θ∗∥2∥H∥

)

≤ ℓ(θ∗) + ∥θ̂ − θ∗∥2∥H∥
ᾱ− ∥θ̂ − θ∗∥√mMΦ̄

,
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and therefore

P

[
ϵ̄L ≤ ℓ(θ∗)

ᾱ

(
1 +

bt+ ℓ(θ∗)−1∥H∥t2
ᾱ− bt

)]
≥ P[∥θ̂ − θ∗∥ ≤ t]

≥ 1− fn(t/∥H−1∥) ,

where b =
√
mMΦ̄. As a result, for t≪ √mMΦℓ

⋆∥H∥−1
we have

P

[
ϵ̄L ≤ ℓ(θ∗)

ᾱ

(
1 + t

b

ᾱ

)]
≥ 1− 4m exp

(
− Cn2t2

m∥H−1∥2

)
+

(
C0∥H−1∥

t
√
n

)νn/6

(65)

= 1− exp(−O(n(log t+ log n− log
√
m))) , (66)

proving (37).

Finally, let us prove (35). From (41) we have

∥θ̂ − θ∗∥ ≤ ∥Υ∥∥g∥+ ∥Ĥ−1∥∥υ∥ . (67)

The same argument leading to (51) can be now applied to the first moment E∥Υ∥, yielding

∫ 1

0

ηn(β/(1− β))dβ = 2m

∫ 1

0

exp(−n2β2(1− β)−2/(Cm))dβ

≤ 2m

∫ 1

0

exp(−n2β2/(Cm))dβ

≤
√
2πC

m3/2

n
, and (68)

∫ ∞

0

δn(β(1 + β)−1)dβ ≤ 2m

∫ β
∗

0

exp(−n2β2(1 + β)−2/(Cm))dβ +

∫ ∞

β
∗

(C̃(1 + β)−1)νn/6dβ ,

≤ 2m

∫ β
∗

0

exp(−n2β2(1 + β∗)−2/(Cm))dβ +
C̃νn/6

νn/6− 1
(1 + β∗)−νn/6+1

≤ 2
√
π
√
C(1 + β∗)

m3/2

n
+

C̃νn/6

νn/6− 1
(1 + β∗)−νn/6+1 .

Picking again β∗ = C̃ above gives ∫ ∞

0

δn(β(1 + β)−1)dβ ≤ C̄m3/2

n
, (69)

and therefore

E∥Υ∥ = O

(
∥H−1m3/2∥

n

)
. (70)

From (67), using (70) and again Cauchy-Schwartz, we obtain

E∥θ̂ − θ∗∥ ≤ E[∥Υ∥]∥g∥+

√
E[∥Ĥ−2∥]E[∥Y ∥2]

√
n

= O


∥H−1∥

√
E[∥Y ∥2]

n


 , (71)

proving (35).

25



Conditionally Strongly Log-Concave Generative Models

Proof of Lemma E.2. Using a crude union bound, we have

(1− t)Σ ⪯ Σ̂n ⪯ (1 + s)Σ (72)

with probability greater than 1− δn(t)− ηn(s). Under the event (72), we equivalently have

(1 + s)−1Σ−1 ⪯ Σ̂−1
n ⪯ (1− t)−1Σ−1 ,

and hence

∥Σ̂−1
n − Σ−1∥ ≤ ∥Σ−1∥max(|1− (1 + s)−1|, |1− (1− t)−1|) .

Denoting Z = ∥Σ̂−1
n − Σ−1∥, we thus have

P(Z ≤ ∥Σ−1∥β) ≥ P

(
(1− tβ)Σ ⪯ Σ̂n ⪯ (1 + sβ)Σ

)
(73)

≥ 1− δn(tβ)− ηn(sβ) , (74)

where sβ , tβ are defined such that

|1− (1 + sβ)
−1| = β , |1− (1− tβ)

−1| = β .

We thus obtain sβ = β
1−β for β ∈ (0, 1), and tβ = β

1+β for β ∈ (0,∞). For a non-negative random variable Z with c.d.f.

F (β) = P(Z ≤ β) we have

EZ2 =

∫ ∞

0

β2F ′(β)dβ =

∫ ∞

0

β(1− F (β))dβ ,

and therefore

EZ2 =

∫ ∞

0

β(1− F (β))dβ

= ∥Σ−2∥
∫ ∞

0

β(1− F (∥Σ∥−1β))dβ

≤ ∥Σ−2∥
(∫ ∞

0

βδn(β/(1 + β))dβ +

∫ 1

0

βηn(β/(1− β))dβ

)
.

Proof of Lemma E.3. By directly applying Theorem E.2, we have

P(∥Ĥ−1
n ∥ ≤ t−1∥H−1∥) ≥ 1− (C̃t)νn/6 . (75)

If F (β) = P(∥Ĥ−1
n ∥ ≤ β), it follows that

E[∥Ĥ−4∥] =
∫ ∞

0

β4F ′(β)dβ = 4

∫ ∞

0

β3(1− F (β))dβ

≤ 4

∫ ∞

0

β3 min(1, (C̃∥H−1∥β−1)νn/6)dβ

= 4∥H−1∥4C̃4

∫ ∞

0

min(1, β3−νn/6)dβ

= C̃4∥H−1∥4 ,

where we used νn/6 > 4 in the last step. The second moment is treated analogously.

Proof of Lemma E.4. As we argued previously, from (41) we have that

∥θ̂ − θ∗∥ ≤ ∥Υ∥∥g∥+ ∥Ĥ−1∥∥υ∥ .
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We will use tail bounds for ∥Υ∥, ∥Ĥ−1∥ and ∥υ∥ and combine them with a crude union bound to yield the desired tail

control. Recall from eq (73) that

P(∥Υ∥ ≤ ∥H−1∥t) ≥ 1− γn(t) , (76)

where

γn(t) =




δn

(
t

1+t

)
+ ηn

(
t

1−t

)
, if t ≤ 1 ,

δn

(
t

1+t

)
otherwise,

(77)

with

δn(s) = min((C̃(1− s))νn/6, 2m exp(−n2s2/Cm)) , ηn(s) = 2m exp(−n2s2/Cm) . (78)

We also obtained in (75)

P(∥Ĥ−1
n ∥ ≤ t∥H−1∥) ≥ 1− γ̃n(t) , (79)

with

γ̃n(t) = min(1, (C̃t−1)νn/6) , (80)

and by Assumption E.2 we know that ∥υ∥ ≤ KY

√
E[∥Y ∥2

]√
n

almost surely. Therefore, via a union bound we obtain

P(∥θ̂ − θ∗∥ ≤ ∥H−1∥t) ≥ P

[
max

(
∥Υ∥∥g∥, ∥Ĥ−1∥KY

√
E[∥Y ∥2]/n

)
≤ ∥H−1∥t/2

]
(81)

≥ 1− γn(t/(2∥g∥))− γ̃n(
√
nt/(2CY )) , (82)

and hence P(∥θ̂ − θ∗∥ > s) ≤ fn

(
s

∥H−1∥

)
with

fn(s) = γn(s/(2∥∥g∥)) + γ̃n
(√

ns/(2CY )
)
.

Finally, we verify that

fn(s) = γn(s/(2∥g∥)) + min(1, (C̃(2CY )s
−1n−1/2)νn/6)

= γn(s/(2∥g∥)) +
(

C0

s
√
n

)νn/6

≤ min

[
2m exp

(
−n2 (s/(2∥g∥))2

(1 + (s/(2∥g∥)))2Cm

)
, (C̃(2CY )s

−1)νn/6
]
+

+ 2m exp(−n2(s/(2∥g∥))2/Cm) +

(
C0

s
√
n

)νn/6

= min

[
exp

(
− n2C2

1s
2

(1 + C1s)
2Cm

+ log(2m)

)
, (C0s

−1)νn/6
]
+ exp

(
−n2C2

1s
2

Cm
+ log(2m)

)
+

(
C0

s
√
n

)νn/6

.

Finally, we verify that if log s≪ 1, the last term dominates as n increases, showing (64).

F. Proof of Proposition 3.1

We directly compute the Hessian

−∇2
x̄1

log p(x̄1|x1) = −Ḡ1∇2
x log p(x)Ḡ

T
1

= Ḡ1

(
K − diag

(
(v′′(x[i]))

)
i

)
ḠT

1 ,

where we have used

p(x̄1|x1) =
p(x)

p(x1)
.
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Both terms in the Hessian can now be bounded from below. The assumption on the range of Ḡ1 implies that

Ḡ1KḠT
1 ⪰ λ|ω0|ηId,

and the assumption on v′′ implies that

Ḡ1diag
(
(v′′(x[i]))

)
i
ḠT

1 ⪰ −γḠ1Ḡ
T
1 = −γId,

where we have used the fact that Ḡ1 is an orthogonal projector.

Combining the two then gives

−∇2
x̄1

log p(x̄1|x1) ⪰ (λ|ω0|η − γ)Id,

and the assumption on |ω0| guarantees that λ|ω0|η − γ > 0. Similarly, the assumption v′′ ≤ δ implies that

−∇2
x̄1

log p(x̄1|x1) ⪯ (λΩη + δ)Id,

where Ω = sup |ω| is the maximum frequency, which concludes the proof.
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