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Abstract. Path homology proposed by S.-T.Yau and his co-workers provides

a new mathematical model for directed graphs and networks. Persistent path
homology (PPH) extends the path homology with filtration to deal with asym-

metry structures. However, PPH is constrained to purely topological persis-

tence and cannot track the homotopic shape evolution of data during filtration.
To overcome the limitation of PPH, persistent path Laplacian (PPL) is intro-

duced to capture the shape evolution of data. PPL’s harmonic spectra fully
recover PPH’s topological persistence and its non-harmonic spectra reveal the

homotopic shape evolution of data during filtration.

1. Introduction. Recent years witness the emergence of a variety of advanced
mathematical tools in topological data analysis (TDA) [13]. As the main workhorse
of TDA, persistent homology (PH) [2, 9, 43, 10] pioneered a new branch in alge-
braic topology, offering a powerful tool to decode the topological structures of data
during filtration in terms of persistent Betti numbers. Persistent homology has had
tremendous success in many areas of science and technology, such as biology [41],
chemistry [35], drug discovery [29], 3D shape analysis [33], etc.

Inspired by the success of PH, other mathematical tools have been given due at-
tention. One of them is de Rham-Hodge theory in differential geometry, which uses
the differential forms to represent the cohomology of an oriented closed Riemannian
manifold with boundary in terms of a topological Laplacian, namely Hodge Lapla-
cian [8]. The de Rham-Hodge theory has been applied to computational biology
[42], graphic [34], and robotics [28]. However, like homology, the de Rham-Hodge
theory does not offer an in-depth analysis of data, which is a famous problem in
spectral geometry [24]. To overcome this drawback, the evolutionary de Rham-
Hodge theory [5] was introduced in terms of persistent Hodge Laplacian to offer a
multiscale analysis of the de Rham-Hodge theory. Defined on a family of evolution-
ary manifolds, the evolutionary de Rham-Hodge theory gives a new answer to, or at
least reopens, the famous 55-years old question “can one hear the shape of a drum”.
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[24] The persistent Hodge Laplacian captures both the topological persistence and
the homotopic shape evolution of data during filtration.

Nevertheless, the evolutionary de Rham-Hodge theory is set up on Riemannian
manifolds, which may be computationally demanding for large datasets. Hence,
a similar multiscale-based topological Laplacian, called persistent spectral graph
(PSG) [37], was proposed by introducing a filtration to combinatorial graph Lapla-
cians. PSG, aka persistent Laplacian (PL) [26], extends persistent homology to
non-harmonic analysis of data, showing much advantage in sophisticated applica-
tions [27, 4, 39]. Dealing with point cloud data instead of manifolds, PL encodes
a point cloud to a family of simplicial complexes generated from filtration and an-
alyzes both harmonic and non-harmonic spectra. It is worthy to notice that the
harmonic spectra from the null spaces of PLs reveal the same topological persistence
as that of persistent homology, whereas, the non-harmonic spectra of PLs capture
the homotopic shape evolution of data during filtration. Meanwhile, open-source
software called HERMES [38] was developed for the simultaneous topological and
geometric analysis of data. However, like persistent homology, PSG treats all data
points equally. That is to say, each point does not carry any labeled information
such as the type, mass, color, etc. Therefore, an extension of PSG, called persistent
sheaf Laplacian (PSL), was proposed to generalize cellular sheaves [32, 22] for the
multiscale analysis of point cloud data with attached labeled information [40]. PSL
is also a topological Laplacian that carries topological information in its null space
but tracks homotopic shape evolution during filtration. It is worthy to mention
that eigenvectors computed from Hodge Laplacians defined on manifolds [42] are
sharply different from those computed from combinatorial Laplacians defined on
simplicial complexes [39]. The minor similarity and fundamental difference of these
Laplacians were discussed in the literature [31]. Another interesting development is
the persistent Dirac Laplacian (PDL) by Ameneyro, Maroulas, and Siopsis [1]. PDL
offers an efficient quantum computation of persistent Betti numbers across different
scales. The above-mentioned approaches have great potentials to deal with complex
data in science and engineering.

It is noticed that the aforementioned homologies and topological Laplacians are
insensitive to asymmetry or directed relations, which limits their representational
power in encoding structures that have directional information. For example, in
gene regulation data, the directions of gene regulations are indicated by arrowheads
or perpendicular edges in systems biology [25]. Therefore, a technique that can
deal with directed graphs (digraphs) is of vital importance to inferring gene regu-
lation relationships. Notably, the path homology [16] proposed by Grigor’yan, Lin,
Muranov, and Yau provides a powerful tool to analyze datasets with asymmetric
structures using the path complex. Particular cases of homologies of digraphs and
their path cohomology were also discussed [16, 18, 20]. The notion of path ho-
mology of digraphs has a richer mathematical structure than the earlier homology
and Laplacian, opening new directions for both pure and applied mathematics. For
example, path homology theory was extended to various objects such as quivers,
multigraphs, digraphs pairs, cylinder, cone, hypergraphs, etc. [21, 15, 14] Path
homology has drawn much attention from researchers in the TDA community. To
encode richer information, Chowdhury and Mémoli extended path homology to a
persistent framework on a directed network [6]. Wang, Ren, and Wu constructed
a weighted path homology for weight digraphs and proved a persistent version of
a Künneth-type formula for joins of weighted digraphs [36]. Recently, Dey, Li,
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and Wang have designed an efficient algorithm for 1-dimensional persistent path
homology [7], which is useful in real applications.

Similar to persistent homology, persistent path homology cannot track the ho-
motopic shape evolution of data during filtration. To overcome this limitation, we
introduce path Laplacian as a new topological Laplacian to analyze the spectral
geometry of data, in addition to its topology. Moreover, we introduce a filtration to
path Laplacian to obtain a persistent path Laplacian (PPL), a new framework that
captures both the topological persistence and shape evolution of directed graphs
and networks. By varying the filtration parameter, one can construct a series of
digraphs, which result in a family of persistent path Laplacian matrices. The har-
monic spectra of the persistent path Laplacian recover all the topological invariants
of the digraphs, while the non-harmonic spectra provide additional geometric infor-
mation, which can distinguish two systems when they are homotopy but geomet-
rically different. PPL has potential applications in science, engineering, industry,
and technology. This work is organized as follows: Section 2 reviews the necessary
background on path homology. Section 3 describes path Laplacian and persistent
path Laplacian. Detailed PPL matrix constructions are illustrated with various
examples for the interested readers in Section 3 and Section 4.

2. Background on path homology and directed graph. Graph structure of-
fers a powerful and versatile data representation that encodes inter-dependencies
among constituents, which has been driven by widely spread applications in various
fields such as graph theory, topological data analysis, science, and engineering. In
this section, we first recap basic concepts in path homology, including paths on a
finite set, boundary operator on the path complex, and homologies of path complex.
Then, we briefly review the concept of directed graphs (digraphs) and give a dis-
cussion of path homologies on the directed graph without self loops. Such concepts
and notations, due to Yau and coworkers, form a basis for us to introduce path
Laplacian and persistent path Laplacian in section 3.

2.1. Paths on a finite set. Denote set V an arbitrary nonempty finite set, and
elements in V are called vertices. For p ∈ Z+

0 (i.e., a set with integers p ≥ 0),
an elementary p-path on V is any sequence i0 . . . ip of p + 1 vertices in V . An
elementary p-path is an empty set ∅ for p = −1. For a fixed field K, a vector
space that consists of all formal linear combinations of elementary p-paths with its
coefficients in K is called the space generated by the elementary paths, denoted as
Λp = Λp(V,K) = Λp(V ). One says the elements in Λp are p-paths on V , and an
elementary p-path i0 . . . ip ∈ Λp is denoted by ei0...ip . By definition, ∀v ∈ Λp, its
unique representation can be given by the basis in Λp:

v =
∑

i0,...,ip∈V
ci0...ipei0...ip , (1)

where ci0...ip is the coefficient in K. For instance, Λ0 contains all linear combination
of ei with i ∈ V , Λ1 has all linear combination of eij with (i, j) ∈ V × V , and so on
so forth. Since Λ−1 consists of all multiples of e, one has Λ−1

∼= K.
Additionally, ∀p ∈ Z+

0 , the linear boundary operator from Λp to Λp−1 that acts
on elementary paths can be defined as

∂ : Λp → Λp−1 (2)
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with

∂ei0...ip =

p∑
q=0

(−1)qei0...̂iq...ip , (3)

where îq denotes the omission of index iq from the elementary p-path ei0...ip . One
sets Λ−2 = {0}, and for p = −1, defines ∂ : Λ−1 → Λ−2 to be a zero map. Following
Lemma 2.1 in [19], one has ∂2 = 0, which indicates that the collection of boundary
operator ∂ and space Λp can form a chain complex of V denoted as Λ∗ = {Λp} as

· · ·Λp
∂−→ Λp−1

∂−→ · · · ∂−→ Λ0
∂−→ K ∂−→ 0. (4)

Next, the concepts of regular path and non-regular path are introduced according
to [19]. An elementary path ei0...ip on a set V is regular if ik−1 6= ik, and non-regular

if ik−1 = ik for k = 1, . . . , p. For any p ∈ Z+
0 ∪ {−1}, let Rp be the subspace of Λp

spanned by all regular elementary paths, and Np be the subspace of Λp spanned by
all non-regular elementary paths. Therefore, one has

Rp = span{ei0...ip : i0 . . . ip is regular}
Np = span{ei0...ip : i0 . . . ip is non-regular}.

Note that Rp = Λp for integers p = −1, 0.
Then ∀p ∈ Z+

0 ∪ {−1}, Λp = Rp ⊕Np. Therefore,

Rp ∼= Λp/Np.
According to Section 2.4 in [19], the boundary operator ∂ is well-defined on the
quotient space Λp/Np. Moreover, ∂2 = 0 and the product rules are satisfied in the
quotient space Λp/Np as well. One has an induced regular boundary operator:

∂̄ : Rp → Rp−1, (5)

where the regular boundary operator ∂̄ satisfies (3) except that all non-regular terms
on the right hand side should be treated as 0. Then a chain complex of V , denoted
as R∗(V ) = (Rp)p and equipped with ∂̄, can be expressed as:

· · ·Rp
∂̄−→ Rp−1

∂̄−→ · · · ∂̄−→ R0
∂̄−→ K ∂̄−→ 0. (6)

It can be verified that Rp ∼= Λp/Np is an isomorphism of chain complexes [18]. In
the following sections, for simplicity, we use ∂ to denote the boundary operator of
Eq. (6) unless specified differently.

2.2. Path complex. A path complex over set V is a nonempty collection P of
elementary paths on V for any n ∈ Z+

0 ,

if i0 . . . in ∈ P , then i0 . . . in−1 ∈ P, and i1 . . . in ∈ P. (7)

For a fixed path complex, all the paths from P are called allowed (i.e. ik−1 → ik
for any k = 1, . . . , n), while the elementary paths on V that are not in P are non-
allowed. We say a path complex P is perfect if any subsequence of any path from P
is also in P . We choose Pn to denote all n-paths from P . Then the set P−1 has a
single empty path e, the set P0 consists of all the vertices of P , and clearly, V = P0.
To be noted, a path complex P is a collection {Pn}∞n=−1 satisfying Eq. (7). Let K
be an abstract simplicial complex defined over a finite vertex set V , satisfying

if σ ∈ K, then any subset of σ is also in K.
The collection of elementary paths on V is denoted by P (K). Following Ref. [19]
(cf. Example 3.2), the family P (K) is a path complex.
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2.3. Path homology. For any n ∈ Z+
0 , the K-linear space An is spanned by all

the elementary n-paths from a given path complex P = {Pn}∞n=0 over a finite set
V , i.e.,

An = An(P ) = span{ei0...in : i0 . . . in ∈ Pn}.
We call the elements of An the allowed n-paths. By the definition of An, An ⊂ Λn,
and An = Λn for n ≤ 0. It is natural that the boundary operator ∂ defined on Rn
can be introduced to An under certain condition: ∂An ⊆ An−1. For example, for
perfect path complexes, we can obtain a chain complex:

· · · An
∂−→ An−1

∂−→ · · · ∂−→ A0
∂−→ K ∂−→ 0.

Next, we consider a general path complex P (i.e., ∂An does not have to be a
subspace of An−1). For any n ∈ Z+

0 ∪ {−1}, we define a subspace of An:

Ωn = Ωn(P ) = {v ∈ An : ∂v ∈ An−1}. (8)

The elements of Ωn are called ∂-invariant n-paths. To be noted, ∂Ωn ⊂ Ωn−1 always
satisfies. Moreover, ∂2 = 0 has been established in the previous section. Therefore,
the augmented chain complex of ∂-invariant paths can be denoted as

· · ·Ωn
∂−→ Ωn−1

∂−→ · · · ∂−→ Ω0
∂−→ K ∂−→ 0, (9)

whose homology group H̃n(P ) of the chain complex in Eq. (9) are called the reduced
path homology groups of the path complex P for n ∈ Z+

0 ∪ {−1}. The truncated
version of the chain complex in Eq. (9) for n ∈ Z+

0 is:

· · ·Ωn
∂−→ Ωn−1

∂−→ · · · ∂−→ Ω0
∂−→ 0, (10)

whose homology group Hn(P ) of the chain complex in Eq. (10) are called the path
homology groups of the path complex P .

2.4. Path homology of directed graphs. A directed graph is an ordered pair
G = (V,E), where V is a set of all vertices and E is a set of ordered pairs of vertices
(i.e. directed edges that satisfy E ⊆ V × V ). If G = (V,E) does not contain any
loop and multiple edge, then it is called simple directed graph. Moreover, for the
path homology of multigraph or quiver, one can refer to Ref. [3]. In the following
section of this work, we use G(V,E) to represent the simple directed graphs unless
specified differently.

The path complex P (G) is regular if G = (V,E) is a simple directed graph. In
this section, we mainly discuss the regular spaces Ωn(G) = Ωn(P (G)) and their
associated regular homology groups H(G) = Hn(P (G)). Similar to the discussion
in subsection 2.3, given a simple digraph G(V,E), for any n ∈ Z+

0 ∪{−1}, the space
of ∂-invariant n-paths on G is defined by the subspace of An(G) = An(V,E;K):

Ωn = Ωn(G) = {v ∈ An : ∂v ∈ An−1},

with Ω−1 = A−1
∼= K and Ω−2 = A−2 = {0}. Since ∂(Ωn) ⊆ Ωn−1 (as ∂2 = 0),

then we have the following chain complex of V denoted as Ω∗(V ) = {Ωn},

· · · ∂−→ Ω3
∂−→ Ω2

∂−→ Ω1
∂−→ Ω0

∂−→ K ∂−→ 0,

and the associated n-dimensional path homology groups of G = (V,E) are defined
as:

Hn(G) = Hn(V,E;K) := ker(∂|Ωn
)/ im(∂|Ωn+1

). (11)
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To be noted, the elements of ker(∂|Ωn) are called n-cycles, and the elements of
im(∂|Ωn+1) are referred to as n-boundaries. For simplicity, we define ∂n = ∂|Ωn , and
the chain complex of ∂-invariant paths is written as

· · ·Ωn+1
∂n+1−→ Ωn

∂n−→ Ωn−1
∂n−1−→ Ωn−2 · · · .

Notably, the path cohomology, introduced in Refs. [18, 12], is isomorphic to the
dual space of path homology when the coefficient ring is a field. The associated
n-dimensional path homology groups of digraphs are defined as:

Hn(G) = Hn(V,E;K) := ker(dn+1)/ im(dn), (12)

where d is called coboundary operator.
Given two simple digraphs G = (V,E) and G′ = (V ′, E′). According to the

Definition 2.2 in [17], a morphism of digraphs/digraphs map from G to G′ is a map
f : V → V ′ such that for any directed edge i→ j in E, one has either f(i)→ f(j)
is a directed edge on E′ or f(i) = f(j).

Let f be a digraph map from G to G′. For n ∈ Z+
0 ∪ {−1}, one defines a map

(f∗∗)n : Λn(V )→ Λn(V ′) such that:

(f∗∗)n(ei0...in) = ef(i0)...f(in). (13)

Assume ∂ and ∂′ are the boundary operators of chain complexes Λ∗(V ) and Λ∗(V
′),

then for ei0...in ∈ Λn, one has

((f∗∗)n−1 ◦ ∂)(ei0...in) =

n∑
q=0

(−1)q(f∗∗)n−1(ei0...̂iq...in) (14)

=

n∑
q=0

(−1)q(ef(i0)...f̂(iq)...f(in)) (15)

= (∂′ ◦ (f∗)n)(ei0...in). (16)

Hence f∗∗ is a chain map. By the definition of digraph map, (f∗∗)n maps non-regular
elementary n-paths on V to non-regular elementary n-paths on V ′. Therefore, one
has (f∗∗)n(Nn(V )) ⊆ Nn(V ′), and then (f∗∗)n descends to a quotient homomor-
phism of chain complexes:

(f̃∗∗)n : Λn(V )/Nn(V )→ Λn(V ′)/Nn(V ′). (17)

It can be verified that Rp ∼= Λp/Np is an isomorphism of chain complexes [18], then
the map in (17) induces a morphism of chain complexes:

(f∗)n : Rn(V )→ Rn(V ′). (18)

Since (f∗∗)n maps non-regular paths to non-regular, then similarly to what Eq. (14)
shows, (f∗)n is also a chain map that follows:

(f∗)n(ei0...in) :=

{
ef(i0)...f(in) if ef(i0)...f(in) is regular,

0 otherwise.
(19)

Following Theorem 2.10 in [17], the induced map (f∗)n induces a morphism of chain
complexes:

(f∗)n : Ωn(G;K)→ Ωn(G′;K) (20)

and consequently induces a homomorphism between the path homology groups:

(f∗)n : Hn(G;K)→ Hn(G′;K), n ≥ 0. (21)
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2.5. Homologies of directed subgraphs. Some interesting propositions on the
homologies of subgraphs provide a way to simplify complicated digraphs to relatively
simple ones. Following Section 4.2 [19], three propositions are discussed.

Proposition 2.1. Given a simple digraph G that has a vertex v with n outcoming
arrows v → v′0, v → v′1, . . . , v → v′n−1. Note that v does not have any incoming
arrows. Assume that for all i ≥ 1, one has v′0 → v′i. Denote G′ be the subgraph
of G by removing the vertex v with all adjacent edges (i.e. V ′ = V \{v} and E′ =
E\{vv′i}

n−1
i=0 ). Then, one has H∗(G) ∼= H∗(G

′) (See Figure 1 a).

a b c

Figure 1. Homologies of directed subgraphs. a, b, and c illus-
trate three subgraphs whose homology groups or homology group
dimensions are related to the original digraphs.

Proposition 2.2. Given a simple digraph G = (V,E) that has a vertex v with
n incoming arrows v′0 → v, v′1 → v, . . . , v′n−1 → v. Note that v does not have
any outcoming arrows. Assume that for all i ≥ 1, one has v′i → v′0. Denote
G′ = (V ′, E′) be the subgraph of G by removing the vertex v with all adjacent edges
(i.e. V ′ = V \{v} and E′ = E\{v′iv}

n−1
i=0 ). Then, one has H∗(G) ∼= H∗(G

′) (See
Figure 1 b).

Proposition 2.3. Given a simple digraph G = (V,E) that has a vertex v with
only one outcoming arrow v → v′i and only one incoming arrow v′j → v, where
i 6= j. Denote G′ = (V ′, E′) be the subgraph of G (See Figure 1 c) by removing
the vertex v and the adjacent edges v → v′i and v′j → v (i.e. V ′ = V \{v} and
E′ = E\{vv′i, v′jv}). Then,

(i) dimHp(G) = dimHp(G
′) for p 6= 2 or for p = 0, 1 if v′jv

′
i is an edge/semi-edge

in G′.
(ii) If v′jv

′
i is neither an edge or a semi-edge in G′, but v′j and v′i are in the

same connected component of G′, then dimH1(G) = dimH1(G′ + 1), and
dimH0(G) = dimH0(G′).

(iii) If v′j and v′i are not in the same connected component of G′, then dimH1(G) =
dimH1(G′) and dimH0(G) = dimH0(G′)− 1.

3. Path Laplacian and persistent path Laplacian. One can extract topo-
logical invariants by introducing the persistent Betti numbers from the homology
groups along the filtration of simplicial complex [43]. However, persistent Betti
numbers do not capture homotopic geometric changes during filtration. Therefore,
persistent topological Laplacians, including persistent Laplacian [37, 38] (persistent
spectral graph) and persistent Hodge Laplacian [5], were introduced to reveal ad-
ditional geometric information. Similarly, the constructions of path Laplacian and
persistent path Laplacian are motivated by the earlier persistent spectral graphs
[37, 38]. In this section, we first discuss the construction of path Laplacian. Then,



PERSISTENT PATH LAPLACIAN 33

we introduce filtration to the path complex to generate a series of digraphs, which
gives rise to persistent path Laplacian.

3.1. Path Laplacian. Recall that a chain complex of ∂-invariant paths is given
by

· · ·Ωn+1
∂n+1−→ Ωn

∂n−→ Ωn−1
∂n−1−→ Ωn−2 · · · ,

where Ωn = Ωn(P ) = {v ∈ An : ∂v ∈ An−1} and ∂n := ∂|Ωn . Alternatively, assume
Sn := Sn(P ) to be the set of n-th elementary paths in P , then we define an inner
product

〈·, ·〉 : Sn × Sn → R
such that for any ei0...in , ej0...jn ∈ Sn, the following satisfies

〈ei0...in , ej0...jn〉 =

{
1 if ei0...in = ej0...jn ,

0 otherwise.
(22)

Let Mn be a matrix representation of ∂ : An → An−1 with respect to the
standard basis of An and An−1. Define an inclusion map ιn : Ωn ↪→ An, then the
matrix representation of ιn with respect to the basis of Ωn (i.e., the standard basis
of An with the removal of generators that are not in Ωn) and the standard basis
of An is denoted as On. Denote the boundary matrix representation of ∂n as Bn,
then we have

On−1Bn = M̃nOn. (23)

If On−1 is a square matrix, then On is actually an identity matrix, and we have

Bn = O−1
n−1M̃nOn = M̃nOn, (24)

where M̃n is Mn with the removal of rows that their basis are not elementary
(n− 1)-paths in P . Otherwise, Bn is the least-square solution to Eq. (23).

Note that Bn is the matrix representation of ∂n with respect to the basis of Ωn
and Ωn−1. Dual space Ωn := Hom(Ωn,K) of Ωn is equipped with dual maps d to
form a cochain complex

· · ·Ωn+1 dn+1←− Ωn
dn←− Ωn−1 dn−1←− Ωn−2 · · · ,

where dn is called a coboundary operator. The inner product on Ωn induces an
inner product � ·, · � on Ωn such that

� f, g �=
∑
e∈Sn

f(e)g(e), ∀f, g ∈ Ωn.

We denote the adjoint operator of ∂n be ∂∗n : Ωn−1 → Ωn. Note that similar inner
product � ·, · � on Ωn was defined in the literature [23]. Hence, the coboundary
operator dn is consistent with the adjoint operator ∂∗n. Then, for integers p ≥ 0,
the n-th path Laplacian operator is a linear operator: ∆n : Ωn → Ωn given by

∆n = ∂n+1∂
∗
n+1 + ∂∗n∂n, (25)

and ∆0 = ∂1∂
∗
1 . The n-th path Laplacian matrix corresponding to ∆n is expressed

by
Ln = Bn+1B

T
n+1 +BTnBn. (26)

Since Ln is positive semi-definite and symmetric, its eigenvalues are all real and
non-negative. Additionally, recall that the Betti number βn of path complex P
satisfies

βn = dim ker ∂n − dim im ∂n+1 = dim ker ∆n. (27)
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It is easy to show that

βn = nullity(Ln) = the number of zero eigenvalues of Ln. (28)

Moreover, assume the dimension of Ln is N , then the set of spectra of Ln is denoted
as

Spectra(Ln) = {(λ1)n, (λ2)n, · · · , (λN )n}.
Figure 2 shows 5 digraphs with multiple vertices and directed edges. Here, we take
them as examples to give a detailed illustration of Ln matrix constructions.

a b

c d

e f

Figure 2. Five digraphs. a and b Digraphs with 3 vertices and
3 directed edges. c and d Digraphs with 4 vertices and 4 directed
edges. e A digraph with 6 vertices and 8 directed edges. f A
digraph with 6 vertices and 8 directed edges.

Construction of L0 – Figure 2a Since L0 = B1B
T
1 , then we first construct B1,

where B1 = O−1
0 M̃1O1 according to Eq. (24), we have O0 =


e1 e2 e3

e1 1 0 0
e2 0 1 0
e3 0 0 1

,

M1 =


e12 e23 e31

e1 −1 0 1
e2 1 −1 0
e3 0 1 −1

, and O1 =


e12 e23 e31

e12 1 0 0
e23 0 1 0
e31 0 0 1

. Since e1, e2, and

e3 are all elementary 0-paths (vertices), M1 = M̃1. We have B1 = O−1
0 M̃1O1 =

e12 e23 e31

e1 −1 0 1
e2 1 −1 0
e3 0 1 −1

. Then L0 = B1B
T
1 =

 2 −1 −1
−1 2 −1
−1 −1 2

, which gives Spectra

(L0) = {0, 3, 3} and thus, one finally has β0 = 1.



PERSISTENT PATH LAPLACIAN 35

Construction of L1 – Figure 2a We have L1 = B2B
T
2 + BT1 B1, where B1

has been formed, so we focus on the construction of B2 = O−1
1 M̃2O2 according

to Eq. (24). Since O1 =


e12 e23 e31

e12 1 0 0
e23 0 1 0
e31 0 0 1

, M2 =



e123 e231 e312

e11 0 0 0
e12 1 0 1
e13 −1 0 0
e21 0 −1 0
e22 0 0 0
e23 1 1 0
e31 0 1 1
e32 0 0 −1
e33 0 0 0


,

and O2 is a 3 × 0 empty matrix since Ω2 = {0}. Therefore, B2 = O−1
1 M̃2O2 is a

3× 0 empty matrix. Additionally, L1 = B2B
T
2 +BT1 B1 =

 2 −1 −1
−1 2 −1
−1 −1 2

, where

Spectra(L1) = {0, 3, 3} and thus, one finally has β1 = 1.

Construction of L2 – Figure 2a We have L2 = B3B
T
3 +BT2 B2, where B2 is an

empty matrix. Hence, we focus on the construction of B3 = O−1
2 M̃3O3 according to

Eq. (24). We have A2 = span{e123, e231, e312} and A1 = span{e12, e23, e31}. Note
that ∂2(e123) = e23−e13 +e12 where e13 is not in A1. Hence, e123 is not in Ω2. The
same conclusion can be deduced for e231 and e312. Therefore, we have Ω2 = {0},
and it is straightforward to get that L2 is an empty matrix.

Construction of L0 – Figure 2b Since L0 = B1B
T
1 , then we should first construct

B1, where B1 = O−1
0 M̃1O1 according to Eq. (24). Since O0 =


e1 e2 e3

e1 1 0 0

e2 0 1 0

e3 0 0 1

,

M1 =


e12 e13 e23

e1 −1 −1 0
e2 1 0 −1
e3 0 1 1

, and O1 =


e12 e13 e23

e12 1 0 0
e13 0 1 0
e23 0 0 1

. Since e1, e2,

and e3 are all elementary 0-paths (vertices). Therefore, M1 = M̃1, and we have

B1 = O−1
0 M̃1O1 =


e12 e13 e23

e1 −1 −1 0
e2 1 0 −1
e3 0 1 1

. Then L0 = B1B
T
1 =

 2 −1 −1
−1 2 −1
−1 −1 2

,

which gives the Spectra(L0) = {0, 3, 3} and thus, one finally has β0 = 1.

Construction of L1 – Figure 2b We have L1 = B2B
T
2 + BT1 B1, where B1

has been formed, so we focus on the construction of B2 = O−1
1 M̃2O2 according

to Eq. (24). First, A2 = span{e123} and A1 = span{e12, e13, e23}. Note that
∂2(e123) = e23 − e13 + e12 where e12, e23, and e13 are all in A1. Hence, Ω2 =
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A2 = span{e123}. Note that O1 =


e12 e13 e23

e12 1 0 0
e13 0 1 0
e23 0 0 1

, M2 =



e123

e11 0
e12 1
e13 −1
e21 0
e22 0
e23 1
e31 0
e32 0
e33 0


, and

O2 =
( e123

e123 1
)
. The e11, e21, e22, e31, e32, and e33 are not elementary 1-paths in

P . Hence, M̃2 =


e123

e12 1
e13 −1
e23 1

, and then B2 = O−1
1 M̃2O2 =


e123

e12 1
e13 −1
e23 1

. There-

fore, L1 = B2B
T
2 + BT1 B1 =

3 0 0
0 3 0
0 0 3

, where Spectra(L1) = {3, 3, 3} and thus,

we finally have β1 = 0.

Construction of L2 – Figure 2b According to Eq. (26), we have L2 =

B3B
T
3 + BT2 B2 and B3 = O−1

2 M̃3O3. Since there is no 3-path existing, so the M3

and O3 are both empty matrix. Hence L2 = (3), Spectra(L2) = {3}, and thus, one
has β2 = 0.

In the following section, we will omit the detailed construction steps of boundary
matrix Bn. Table 1, Table 2, Table 3, and Table 4 list the boundary matrix Bn
and the n-th path Laplacian matrix Ln for with its corresponding Betti numbers
βn and spectrum Spectra(Ln) for Figure 2 c, d, e, and f. It is worth to mention
that βn can distinguish the same graph with different paths assigned. For example,
Figure 2 c and d have the same undirected graph structure with different paths
assigned. We have β1 = 0 for Figure 2 c and β1 = 1 for Figure 2 d.

Table 1. Illustration of digraph c in Figure 2

n n = 0 n = 1 n = 2
Ωn span{e1, e2, e3, e4} span{e12, e14, e23, e43} span{e143 − e123}

Bn+1

e12 e14 e23 e43

e1

e2

e3

e4


−1
1
0
0

−1
0
0
1

0
−1
1
0

0
0
1
−1


e143 − e123

e12

e14

e23

e43


−1
1
−1
1

 1× 0 empty matrix

Ln


2 −1 0 −1
−1 2 −1 0
0 −1 2 −1
−1 0 −1 2




3 0 0 −1
0 3 −1 0
0 −1 3 0
−1 0 0 3

 (
4
)

βn 1 0 0

Spectra(Ln) {0, 2, 2, 4} {2, 2, 4, 4} {4}
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Table 2. Illustration of digraph d in Figure 2

n n = 0 n = 1 n = 2
Ωn span{e1, e2, e3, e4} span{e12, e14, e32, e34} {0}

Bn+1

e12 e14 e32 e34

e1

e2

e3

e4


−1
1
0
0

−1
0
0
1

0
1
−1
0

0
0
−1
1

 4× 0 empty matrix
(
/
)

Ln


2 −1 0 −1
−1 2 −1 0
0 −1 2 −1
−1 0 −1 2




2 1 1 0
1 2 0 1
1 0 2 1
0 1 1 2

 (
/
)

βn 1 1 0

Spectra(Ln) {0, 2, 2, 4} {0, 2, 4, 4} /

Table 3. Illustration of digraph e in Figure 2.

n n = 0 n = 1 n = 2

Ωn span{e1, e2, e3, e4, e5, e6} span{e12, e13, e24, e25, e34, e35, e64, e65} span{e134 − e124, e135 − e125}

Bn+1

e12 e13 e24 e25 e34 e35 e64 e65
e1
e2
e3
e4
e5
e6



−1
1

0

0
0

0

−1
0

1

0
0

0

0
−1

0

1

0

0

0
−1

0

0
1

0

0
0

−1

1
0

0

0
0

−1

0

1

0

0
0

0

1
0

−1

0
0

0

0
1

−1



e134 − e124 e135 − e125
e12
e13
e24
e25
e34
e35
e64
e65



−1

1
−1

0

1
0

0

0

−1

1
0

−1

0
1

0

0


2× 0 empty matrix

Ln



2 −1 −1 0 0 0
−1 3 0 −1 −1 0

−1 0 3 −1 −1 0

0 −1 −1 3 0 −1
0 −1 −1 0 3 −1

0 0 0 −1 −1 2





4 −1 0 0 −1 −1 0 0

−1 4 −1 −1 0 0 0 0
0 −1 3 1 0 0 1 0

0 −1 1 3 0 0 0 1

−1 0 0 0 3 1 1 0
−1 0 0 0 1 3 0 1

0 0 1 0 1 0 2 1

0 0 0 1 0 1 1 2


(

4 2

2 4

)

βn 1 1 0

Spectra(Ln) {0, 1.4384, 3, 3, 3, 5} {0, 1.4384, 2, 3, 3, 3, 5.5616, 6} {2,6}

3.2. Persistent path Laplacian. From Section 3.1, the way to calculate both
harmonic spectra (topological invariants) and non-harmonic spectra of n-th path
Laplacian matrix is genuinely free of metrics or coordinates, which contains too
little information to fully describe the object. Therefore, inspired by the idea of the
persistent spectral graph (PSG), persistent path Laplacian (PPL) is proposed to
create a sequence of digraphs induced by varying a filtration parameter to encode
more geometric or structural information.

First, we consider a filtration of digraphs G : R → D, which is a morphism
fs,t : Hp(Gt;K)→ Hp(Gs;K) from the category of real number R to the category of
digraphs D that satisfies:

G(t) ⊆ G(s),∀t ≤ s,
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Table 4. Illustration of digraph f in Figure 2.

n n = 0 n = 1 n = 2
Ωn span{e1, e2, e3, e4, e5, e6} span{e12, e15, e23, e26, e42, e45, e53, e56} span{e153 − e123,

e156 − e126,
e453 − e423,
e456 − e426}

Bn+1

e12 e15 e23 e26 e42 e45 e53 e56
e1
e2
e3
e4
e5
e6


−1
1
0
0
0
0

−1
0
0
0
1
0

0
−1
1
0
0
0

0
−1
0
0
0
1

0
1
0
−1
0
0

0
0
0
−1
1
0

0
0
1
0
−1
0

0
0
0
0
−1
1



e153 − e123 e156 − e126 e453 − e423 e456 − e426
e12
e15
e23
e26
e42
e45
e53
e56



−1
1
−1
0
0
0
1
0

−1
1
0
−1
0
0
0
1

0
0
−1
0
−1
1
1
0

0
0
0
−1
−1
1
0
1


4× 0 empty matrix

Ln


2 −1 0 0 −1 0
−1 4 −1 −1 0 −1
0 −1 2 0 −1 0
0 −1 0 2 −1 0
−1 0 −1 −1 4 −1
0 −1 0 0 −1 2





4 −1 0 0 1 0 −1 −1
−1 4 −1 −1 0 1 0 0
0 −1 4 1 0 −1 −1 0
0 −1 1 4 0 −1 0 −1
1 0 0 0 4 −1 −1 −1
0 1 −1 −1 −1 4 0 0
−1 0 −1 0 −1 0 4 1
−1 0 0 −1 −1 0 1 4



 4 2 2 0
2 4 0 2
2 0 4 2
0 2 2 4



βn 1 0 1

Spectra(Ln) {0, 2, 2, 2, 4, 6} {2, 2, 2, 4, 4, 4, 6, 8} {0,4,4,8}

where Gt := G(t) ∈ D and Gs := G(s) ∈ D. Consider a sequence of finitely many
positive integers 1, 2, . . . ,m, we have a sequence of digraphs

G1 ⊆ G2 ⊆ · · · ⊆ Gm.

For each digraph Gt, we denote its corresponding chain group to be Ωn(Gt), and
the n-boundary operator of Gt is denoted by ∂tn : Ωn(Gt)→ Ωn−1(Gt),∀n ≥ 0 .

Similarly, as in persistent homology, a sequence of chain complexes can be de-
noted as

· · · Ω1
n+1

∂1
n+1−−−→ Ω1

n

∂1
n−−→ · · ·

∂1
3−→ Ω1

2

∂1
2−→ Ω1

1

∂1
1−→ Ω1

0

∂1
0−→ Ω1

−1
↪→ ↪→ ↪→ ↪→ ↪→

· · · Ω2
n+1

∂2
q+1−−−→ Ω2

n

∂2
n−−→ · · ·

∂2
3−→ Ω2

2

∂2
2−→ Ω2

1

∂2
1−→ Ω2

0

∂2
0−→ Ω2

−1

···

···

···

···

···

↪→ ↪→ ↪→ ↪→ ↪→

· · · Ωm
n+1

∂m
q+1−−−→ Ωm

n

∂m
n−−→ · · ·

∂m
3−−→ Ωm

2

∂m
2−−→ Ωm

1

∂m
1−−→ Ωm

0

∂m
0−−→ Ωm

−1

(29)

For the sake of simplicity, we use Ωtn to represent Ωn(Gt). Suppose a subset of Ωsn
whose boundary is in Ωtn−1 as:

Ωt,sn := {α ∈ Ωsn | ∂snα ∈ Ωtn−1}. (30)

The persistent n-boundary operator is denoted as ðt,sn : Ωt,sn → Ωtn−1, and its
corresponding adjoint operator is (ðt,sn )∗ : Ωtn−1 → Ωt,sn . Therefore, the persistent
n-th path Laplacian operator ∆t,s

n : Ωtn → Ωtn defined along the filtration is:

∆t,s
n = ðt,sn+1

(
ðt,sn+1

)∗
+ ∂t

∗

n ∂
t
n. (31)

Since ∆t,s
n inherits the inner product from ðt,sn+1, then the adjoint map

(
ðt,sn+1

)∗
is

well defined. Intuitively, the matrix representation of ∆t,s
n is

Lt,sn = Bt,sn+1P
−1(Bt,sn+1)T + (Btn)TBtn, (32)
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where P−1 is the associated inner product matrix of Ωt,sn+1 with arbitrary basis.
Moreover, assume the dimension of Lt,sn is N , then the spectra of Lt,sn that are
arranged in ascending order can be displayed as:

Spectra(Lt,sn ) = {(λ1)t,sn , (λ2)t,sn , · · · , (λN )t,sn }.

Note that the smallest non-harmonic spectra of Lt,sn is denoted as (λ̃2)t,sn . We call
the multiplicity of zero spectra of Lt,sq to be persistent n-th Betti number βt,sn from
Gt to Gs.

βt,sn = nullity(Lt,sn )

= the number of zero eigenvalues (i.e., harmonic eigenvalues) of Lt,sn .
(33)

Distanced-based filtration Specifically, supposeG(w) = (V,E,w) is a weighted
digraph, where V is the set of the vertices and E is the set of the directed edges.
Assume w is a weight function w : E → R. For example, if V is in the Euclidean
space, then a digraph G(w) is a geometric digraph (a geometric digraph is a digraph
in which the vertices are embedded as points in the Euclidean space, and the edges
are embedded as non-crossing directed line segments). For any (i, j) ∈ E where
i, j ∈ V , we define w(i, j) = ‖i − j‖, where ‖ · ‖ is a Euclidean metric. Hence, for
every δ ∈ R, a digraph can be described as Gδ = (V,Eδ) = (V, {e ∈ E : w(e) ≤ δ}),
and a filtration of digraphs can be described as {Gδ ↪→ Gδ

′}δ≤δ′ .
Therefore, the persistent n-th path Laplacian matrix defined on the filtration is

Lδ,δ
′

n = Bδ,δ
′

n+1P
−1(Bδ,δ

′

n+1)T + (Bδn)TBδn, (34)

where its corresponding Betti numbers and spectra can be expressed as:

βδ,δ
′

n = nullity(Lδ,δ
′

n )

= the number of zero eigenvalues (i.e., harmonic eigenvalues) of Lδ,δ
′

n . (35)

Spectra(Lδ,δ
′

n ) = {(λ1)δ,δ
′

n , (λ2)δ,δ
′

n , · · · , (λN )δ,δ
′

n }. (36)

Notably, the Fiedler value (i.e., spectral gap) of Lδ,δ
′

n is widely used in many other

areas such as physics and geography, which is denoted as λ̃δ,δ
′

n . As shown below, it
is sensitive to both topological and geometric changes.

Moreover, it is worth to mention that isolated points (vertices) can be either
included in the digraphs (under the distance-based filtration) or removed from the
digraphs (under the distanced-based filtration with removal of isolated points).

One can get both abstract information (revealed by Betti numbers) and geometric
information (revealed by non-harmonic spectra) from digraphs along filtration. For
instance, Figure 3 illustrates the filtration on two tetrahedrons. The top panel is
a tetrahedron (Tetra 1) with edge lengths |e12| = |e32| = |e24| = 1, and |e13| =

|e14| = |e34| =
√

2. The bottom panel is another tetrahedron (Tetra 2) with edge

lengths |e12| =
√

3, |e32| = |e24| = 1, and |e13| = |e14| = 2, and |e34| =
√

2. We

say G1 = G0, G2 = G1, G3 = G
√

2, G4 = G
√

3, and G5 = G
√

5. Figure 4 shows
the changes of βδ,δn and λδ,δn of persistent n-th path Laplacian Lδ,δn along filtration.
It can be seen that by varying the filtration parameter δ from 0 to 1, the Betti 1
and Betti 2 are always 0. However, the smallest nonzero eigenvalue λ̃δ,δn of Tetra 1
and Tetra 2 have changes along filtration parameter δ. Additionally, when n = 1, 2,
the λ̃δ,δn can distinguish Tetra 1 and Tetra 2, while βδ,δn cannot. This indicates
that non-harmonic spectra of persistent path Laplacian can reveal more geometric
information than the persistent Betti numbers in distinguishing similar topological
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Figure 3. Illustration of filtration on a tetrahedron. Here, 1, 2, 3,
and 4 represent four elementary 0-paths e1, e2, e3, and e4. The top
panel is a tetrahedron that has edge lengths |e12| = |e32| = |e24| = 1

and |e13| = |e14| = |e34| =
√

2. The bottom panel is a tetrahedron

that has edge lengths |e32| = |e24| = 1, |e34| =
√

2, |e12| =
√

3, and
|e13| = |e14| = 2.

Figure 4. Comparison of Betti numbers and non-harmonic spec-
tra of Lδ,δn when n = 0, 1, and 2 on tetrahedrons Tetra 1 and Tetra

2. Note that since βδ,δ1 = 0 and βδ,δ2 = 0 for Tetra 1 and Tetra
2, topological variants from persistent path homology cannot dis-

criminate Tetra 1 and Tetra 2. However λδ,δ1 and λδ,δ2 show the
differences between Tetra 1 and Tetra 2.
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structures. Notably, we remove all the isolated points from each digraph for the
simplicity of calculation.

Figure 5. Illustration of filtration on a pyramid. Here, 1, 2, 3, 4,
and 5 represent five elementary 0-paths e1, e2, e3, e4, and e5. The
top panel is a pyramid that has edge lengths |e13| = |e25| = |e32| =
|e34| = |e54| = 1, |e12| = |e14| =

√
2, and |e15| =

√
3. The bottom

panel is a pyramid that has edge lengths |e25| = |e32| = |e34| =

|e54| = 1, |e12| = |e14| = 2, and |e15| =
√

5.

Figure 6. Comparison of Betti number and non-harmonic spectra
of Lδ,δn when n = 0, 1,c and 2 on pyramids Pyra 1 and Pyra 2. Note

that since βδ,δ2 = 0, it cannot distinguish Pyra 1 and Pyra 2. But

λδ,δ2 can tell the difference.
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Moreover, a more complicated example is also illustrated in Figure 5 to describe
the filtration on two pyramids. The top panel is a pyramid (Pyra 1) with edge

lengths |e12| = |e32| = |e24| = 1, and |e13| = |e14| = |e34| =
√

2. The bottom

panel is a pyramid (Pyra 2) with edge lengths |e12| =
√

3, |e32, | = |e24| = 1, and

|e13| = |e14| = 2, and |e34| =
√

2. We say G1 = G0, G2 = G1, G3 = G
√

2, G4 = G
√

3,

and G5 = G
√

5. Figure 6 depicts the changes of βδ,δn and λδ,δn of persistent n-th
path Laplacian Lδ,δn for objects Pyra 1 and Pyra 2 along filtration. For Pyra 1 and
Pyra 2, when n = 0 and δ = 1, their corresponding digraphs form, which result
in β1,1

0 = 1 and β1,1
1 = 1 for both Pyra 1 and Pyra 2. When δ =

√
3, we have

β
√

3,
√

3
1 = 0 for Pyra 1 since the introducing of a new directed edges e15. When

δ =
√

5, we have β
√

5,
√

5
1 = 0 for Pyra 2 since the introducing of a new directed

edges e15 kills the 1-cycle formed by e25, e32, e34, and e54. Furthermore, although
Pyra 1 and Pyra 2 do not have exactly the same geometric structure, their share

the same βδ,δ2 value from δ = 0 to δ =
√

5. However, Pyra 1 and Pyra 2 can be

distinguished by the λ̃δ,δ2 along filtration. Therefore, we can see that similar to the
PSG, one can use the non-harmonic spectra from the persistent path laplacian to
reveal the intrinsic geometric information of a givens point-cloud dataset by varying
the filtration parameters. In addition, the detailed calculations of Lδ,δn can be found
in the Appendix.

4. Application. In this section, we apply the persistent path Laplacian to the
analysis of the curcurbit[n]urils system. Cucurbiturils are macrocyclic molecules,
which are made of glycoluril(=C6H2N4O2=) monomers linked by methylene bridges
(-CH2-). CBn is commonly used as an abbreviation of Cucurbiturils. Here, n is
the number of glycoluril units. In this work, we consider CB7 as an example. The
molecular formulas of CB7 is C42H14N28O14. The molecular structure of CB7 is
obtained from the Supporting Information of Ref. [11].

Figure 7 illustrates how PPL is employed for a molecular system to extract its rich
topological and geometric information. The first two charts of Figure 7a describe
the three-dimensional (3D) top view and side view of CB7. The green, blue, red,
and gray colors represent C, N, O, and H atoms, respectively. The third chart of
Figure 7a is a basic “Octagon-pentagon” unit that consists of two glycolurils. It can
be seen that 7 glycolurils exist in CB7. The last chart of Figure 7a demonstrates
the path direction assignment to pairs of atoms based on atomic electronegativity.
The periodic table of electronegativity is given by the Pauling scale [30], in which
the electronegativities of C, N, O, and H are 2.55, 3.04, 3.44, and 2.20, respectively.
Then, we set the directions of edges following the order “H→ C→ N→ O”.

Figure 7b depicts the distance-based filtration of CB7. Here, structures Gi(i =
1, 2, ..., 8) were obtained at the filtration radii of 0.200, 0.565, 0.710, 0.745, 0.800,
1.210, 1.315, and 1.800 Å, respectively. In our digraph notation, we denote these
structures as G1 = G0.200∗2

0 , G2 = G0.565∗2
0 , G3 = G0.710∗2

0 , G4 = G0.745∗2
0 , G5 =

G0.800∗2
0 , G6 = G1.210∗2

0 , G7 = G1.315∗2
0 , and G8 = G1.800∗2

0 . Note that, in the
present formulation, all of the isolated points were removed from these digraphs.

Figure 7c illustrates the filtration-induced path complexes in the aforementioned
Gi(i = 1, 2, ..., 8). To clearly show the topological and geometric changes, only the
path complexes in one “Octagon-pentagon” unit (or two glycolurils) are considered
and depicted for each structure. For simplicity, only edges are presented. However,
their path directions can be easily assigned based on their color map as shown in
the last chart of Figure 7a.
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Side View Top View 2 glycolurils in Stick 2 glycolurils in StickBalla

b

c

d

/ /

Figure 7. a The 3D structures of CB7, 2 glycolurils, and path
direction assignment. Here, from left to right, the side view
of CB7, top view of CB7, the structure of two glycoluril units
(=C10H4N8O4=), and electronegativity-based path direction as-
signment are depicted as well. b Illustration of filtration-induced
geometries Gi(i = 1, 2, ..., 8) of CB7. Eight digraphs G1 =
G0.200∗2

0 , G2 = G0.565∗2
0 , G3 = G0.710∗2

0 , G4 = G0.745∗2
0 , G5 =

G0.800∗2
0 , G6 = G1.210∗2

0 , G7 = G1.315∗2
0 , G8 = G1.800∗2

0 are con-
structed under filtration parameter δ. c Illustration of filtration-
induced path complexes within two glycoluril units. Path directions
can be inferred from their colors as shown in the last chart of a.
d Betti numbers βδ,δn and non-harmonic spectra λ̃δ,δn of persistent
path Laplacians (Lδ,δn when n = 0, 1, and 2) for CB7.
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Figure 7d depicts the PPL spectra of CB7. We can see that at the initial state
(G1) when r = δ/2 = 0.200 �A ), total 98 atoms are isolated from one another.
When radius δ = 0.565 �A (G2), C atoms on each pentagon are connected with their
H atom neighborhoods. Therefore, four isolated components are formed in each

glycoluril, which makes βδ,δ0 = 4 × 7 = 28. At G3 (r = 0.710 �A), C atoms on each
pentagon are connected with their N and O neighborhoods. At this stage, two
more connected components are involved in one glycoluri structure, which makes

βδ,δ0 = 6× 7 = 42. Only one connected structure can be formed if all of the atoms

get connected with their neighborhood atoms. Therefore, βδ,δ0 = 1 (see G5 - G8).

Notably, the βδ,δ2 and λ̃δ,δ2 provide rich topological and geometric information when
the filtration parameter δ increases.

This example shows that PPL can decode topological persistence and the shape
evolution of a given molecular system with chemical- or biological-based directional

assignment. Specifically, λ̃δ,δ0 can still offer geometric information when βδ,δ0 does not
changes for large radii. Therefore, PPL keeps revealing homotopic shape evolution
when the topological invariant from persistent path homology does not change.

Additionally, unlike persistent Laplacian, high-order PPL operators provide rich
topological information. For instance, when the filtration parameter r = δ/2 in-

creases to 1.68, βδ,δ2 from PPL dramatically goes up. Whereas, in persistent Lapla-
cian, the value of Betti 2 is quite limited since the CB7 system can barely form
2-cycles at a similar filtration parameter using either Rips complex or alpha com-
plex. This trait endows PPL with a better ability to characterize the geometry and
topology of an object at large scales.

5. Conclusion. Path homology, a rich mathematical concept introduced by
Grigor’yan, Lin, Muranov, and Yau, has stimulated a variety of new developments
in pure and applied mathematics, including much attention from the topological
data analysis (TDA) community. Unlike original homology or persistent homology,
path homology enables the treatment of directed graphs and networks. Persistent
path homology bridges path homology with multiscale analysis, making it a pow-
erful tool for practical applications. Nonetheless, these formulations are insensitive
to homotopic shape evolution during filtration.

Topological Laplacians, including Hodge Laplacian, graph Laplacian, sheaf Lapla-
cian, and Dirac Laplacian, are versatile mathematical tools that not only preserve
all topological invariants but also describe geometric shapes. This work introduces
a new topological Laplacian, namely persistent path Laplacian, as a new mathe-
matical tool for the multi-scale analysis of directed graphs and networks. For a
given data, the proposed persistent path Laplacian fully recovers the topological
persistence of persistent homology in its harmonic spectra and meanwhile, captures
homotopic shape evolution of the data during filtration in its non-harmonic spectra.

Appendix. In Tables 5-19, we present the detailed matrix constructions, Betti
numbers, and spectra for various digraphs shown in Figure 5 top and bottom panels.
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Table 5. Matrix construction of graph G1 (with isolated points in-
cluded) in the top panel of Figure 5.

n n = 0 n = 1 n = 2
Ωn span{e1, e2, e3, e4, e5} {0} {0}

Bn+1 5× 0 empty matrix / /

Ln 5× 5 zero matrix / /

βn 5 / /

Spectra(Ln) {0, 0, 0, 0, 0} / /

Table 6. Matrix construction of graph G1 (without isolated points) in
the top panel of Figure 5.

n n = 0 n = 1 n = 2
Ωn {0} {0} {0}

Bn+1 / / /

Ln / / /

βn / / /

Spectra(Ln) / / /
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Table 7. Matrix construction of graph G2 in the top panel of Figure 5.

n n = 0 n = 1 n = 2
Ωn span{e1, e2, e3, e4, e5} span{e13, e25, e32, e34, e45} {0}

Bn+1

e13 e25 e32 e34 e45

e1

e2

e3

e4

e5


−1
0
1
0
0

0
−1
0
0
1

0
1
−1
0
0

0
0
−1
1
0

0
0
0
1
−1

 5× 0 empty matrix
(
/
)

Ln


1 0 −1 0 0
0 2 −1 0 −1
−1 −1 3 −1 0
0 0 −1 2 −1
0 −1 0 −1 2




2 0 −1 −1 0
0 2 −1 0 −1
−1 −1 2 1 0
−1 0 1 2 1
0 −1 0 1 2

 (
/
)

βn 1 1 0

Spectra(Ln) {0, 0.8299, 2, 2.6889, 4.4812} {0, 0.8299, 2, 2.6889, 4.4812} /

Table 8. Matrix construction of graph G3 in the top panel of Figure 5.

n n = 0 n = 1 n = 2

Ωn span{e1, e2, e3, e4, e5} span{e12, e13, e14, e25, e32, e34, e54} span{e132, e134}

Bn+1

e12 e13 e14 e25 e32 e34 e54
e1
e2
e3
e4
e5


−1
1

0

0
0

−1
0

1

0
0

−1
0

0

1
0

0
−1

0

0
1

0
1

−1

0
0

0
0

−1

1
0

0
0

0

1
−1



e132 e134
e12
e13
e14
e25
e32
e34
e54



−1

1
0

0

1
0

0

0

1
−1

0

0
1

0


2× 0 empty matrix

Ln


3 −1 −1 −1 0

−1 3 −1 0 −1
−1 −1 3 −1 0

−1 0 −1 3 −1

0 −1 0 −1 2





3 0 1 −1 0 0 0

0 4 0 0 0 0 0

1 0 3 0 0 0 0
−1 0 0 2 −1 0 −1

0 0 0 −1 3 1 0

0 0 0 0 1 3 1
0 0 1 −1 0 1 2


(

3 1

1 3

)

βn 1 1 0

Spectra(Ln) {0, 2, 3, 4, 5} {0, 2, 2, 3, 4, 4, 5} {2, 4}
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Table 11. Matrix construction of graph G1 (with isolated points in-
cluded) in the bottom panel of Figure 5.

n n = 0 n = 1 n = 2
Ωn span{e1, e2, e3, e4, e5} / /

Bn+1 5× 0 empty matrix / /

Ln 5× 5 zero matrix / /

βn 5 / /

Spectra(Ln) {0, 0, 0, 0, 0} / /

Table 12. Matrix construction of graph G1 (without isolated points)
in the bottom panel of Figure 5.

n n = 0 n = 1 n = 2
Ωn {0} {0} {0}

Bn+1 / / /

Ln / / /

βn / / /

Spectra(Ln) / / /
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Table 13. Matrix construction of graph G2 (with isolated points in-
cluded) in the bottom panel of Figure 5.

n n = 0 n = 1 n = 2
Ωn span{e1, e2, e3, e4, e5} span{e25, e32, e34, e54} {0}

Bn+1

e25 e32 e34 e54

e1

e2

e3

e4

e5


0
−1
0
0
1

0
1
−1
0
0

0
0
−1
1
0

0
0
0
1
−1

 4× 0 empty matrix
(
/
)

Ln


0 0 0 0 0
0 2 0 0 −2
0 0 1 1 0
0 0 1 2 1
0 −2 0 1 3




2 0 1 −2
0 2 −1 0
1 −1 2 −1
−2 0 −1 2

 (
/
)

βn 2 1 0

Spectra(Ln) {0, 0, 0.6571, 2.5293, 4.8136} {0, 0.6571, 2.5293, 4.8136} /

Table 14. Matrix construction of graph G2 (without isolated points)
in the bottom panel of Figure 5.

n n = 0 n = 1 n = 2
Ωn span{e2, e3, e4, e5} span{e25, e32, e34, e54} {0}

Bn+1

e25 e32 e34 e54

e2

e3

e4

e5


−1
0
0
1

1
−1
0
0

0
−1
1
0

0
0
1
−1

 4× 0 empty matrix
(
/
)

Ln


2 −1 0 −1
−1 2 −1 0
0 −1 2 −1
−1 0 −1 2




2 −1 0 −1
−1 2 −1 0
0 1 2 1
−1 0 1 2

 (
/
)

βn 1 1 0

Spectra(Ln) {0, 2, 2, 4} {0, 2, 2, 4} /
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Table 15. Matrix construction of graph G3 (with isolated points in-
cluded) in the bottom panel of Figure 5.

n n = 0 n = 1 n = 2
Ωn span{e1, e2, e3, e4, e5} span{e25, e32, e34, e54} {0}

Bn+1

e25 e32 e34 e54

e1

e2

e3

e4

e5


0
−1
0
0
1

0
1
−1
0
0

0
0
−1
1
0

0
0
0
1
−1

 4× 0 empty matrix
(
/
)

Ln


0 0 0 0 0
0 2 0 0 −2
0 0 1 1 0
0 0 1 2 1
0 −2 0 1 3




2 0 1 −2
0 2 −1 0
1 −1 2 −1
−2 0 −1 2

 (
/
)

βn 2 1 0

Spectra(Ln) {0, 0, 0.6571, 2.5293, 4.8136} {0, 0.6571, 2.5293, 4.8136} /

Table 16. Matrix construction of graph G3 (without isolated points)
in the bottom panel of Figure 5.

n n = 0 n = 1 n = 2
Ωn span{e2, e3, e4, e5} span{e25, e32, e34, e54} {0}

Bn+1

e25 e32 e34 e54

e2

e3

e4

e5


−1
0
0
1

1
−1
0
0

0
−1
1
0

0
0
1
−1

 4× 0 empty matrix
(
/
)

Ln


2 −1 0 −1
−1 2 −1 0
0 −1 2 −1
−1 0 −1 2




2 −1 0 −1
−1 2 −1 0
0 1 2 1
−1 0 1 2

 (
/
)

βn 1 1 0

Spectra(Ln) {0, 2, 2, 4} {0, 2, 2, 4} /
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Table 17. Matrix construction of graph G2 in the bottom panel of
Figure 5.

n n = 0 n = 1 n = 2
Ωn span{e1, e2, e3, e4} span{e12, e14, e32, e34} {0}

Bn+1

e12 e14 e32 e34 e54

e1

e2

e3

e4

e5


0
0
0
0
0

0
−1
0
0
1

0
0
−1
−1
0

0
0
0
1
1

0
1
0
0
−1

 4× 0 empty matrix
(
/
)

Ln


2 −1 0 −1
−1 2 −1 0
0 −1 2 −1
−1 0 −1 2




2 1 1 0
1 2 0 1
1 0 2 1
0 1 1 2

 (
/
)

βn 1 1 0

Spectra(Ln) {0, 2, 2, 4} {0, 2, 4, 4} /

Table 18. Matrix construction of graph G4 in the bottom panel of
Figure 5.

n n = 0 n = 1 n = 2
Ωn span{e1, e2, e3, e4, e5} span{e13, e25, e32, e34, e45} {0}

Bn+1

e13 e25 e32 e34 e45

e1

e2

e3

e4

e5


−1
0
1
0
0

0
−1
0
0
1

0
1
−1
0
0

0
0
−1
1
0

0
0
0
1
−1

 5× 0 empty matrix
(
/
)

Ln


1 0 −1 0 0
0 2 −1 0 −1
−1 −1 3 −1 0
0 0 −1 2 −1
0 −1 0 −1 2




2 0 −1 −1 0
0 2 −1 0 −1
−1 −1 2 1 0
−1 0 1 2 1
0 −1 0 1 2

 (
/
)

βn 1 1 0

Spectra(Ln) {0, 0.8299, 2, 2.6889, 4.4812} {0, 0.8299, 2, 2.6889, 4.4812} /
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