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ABSTRACT: Accurate and reliable forecasting of emerging dominant
severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants
enables policymakers and vaccine makers to get prepared for future waves of
infections. The last three waves of SARS-CoV-2 infections caused by
dominant variants, Omicron (BA.1), BA.2, and BA.4/BA.5, were
accurately foretold by our artificial intelligence (AI) models built with
biophysics, genotyping of viral genomes, experimental data, algebraic
topology, and deep learning. On the basis of newly available experimental
data, we analyzed the impacts of all possible viral spike (S) protein
receptor-binding domain (RBD) mutations on the SARS-CoV-2
infectivity. Our analysis sheds light on viral evolutionary mechanisms,
i.e., natural selection through infectivity strengthening and antibody
resistance. We forecast that BP.1, BL*, BA.2.75*, BQ.1*, and particularly
BN.1* have a high potential to become the new dominant variants to drive the next surge. Our key projection about these variants
dominance made on Oct. 18, 2022 (see arXiv:2210.09485) became reality in late November 2022.

1. INTRODUCTION
In the past two years, the coronavirus disease-2019 (COVID-
19) pandemic was fueled by the spread of a few dominant
variants of severe acute respiratory syndrome-coronavirus-2
(SARS-CoV-2), as shown in Figure 1. Specifically, the Alpha
and Beta variants contributed to a peak of infections and
deaths from October 2020 to January 2021. The Gamma
variant caused another peak of infections and deaths in April
and May 2021. The Delta variant led to the third wave of
COVID-19 infections and deaths around August 2021. The
Omicron (B.1.1.529), which was extraordinary in its infectivity,
vaccine breakthrough, and antibody resistance, created a huge
spike in the world’s daily infection record in December 2021
and January 2022. Omicron BA.2 subvariant rapidly replaced
the original Omicron (i.e., BA.1) in March 2022. Around July
2022, Omicron subvariants BA.4 and BA.5 took over BA.2 and
became the new dominant SARS-CoV-2 variant. These variant-
driven waves of infections are also associated with spikes in
deaths and have given rise to tremendous economic loss. A life-
and-death question is what will be future dominant variants?

Forecasting and surveillance of emerging SARS-CoV-2
variants are some of the most challenging tasks of our time.
Among about half a million SARS-CoV-2/COVID-19-related
publications recorded in Google Scholar, few accurately
foretold the emerging SARS-CoV-2 variants. Accurate and
reliable forecasting of emerging SARS-CoV-2 variants enables
policymakers and vaccine makers to plan, leading to enormous
social, economic, and health benefits. To foretell future
variants, one must have a full understanding of the mechanisms

of viral evolution, the mechanisms of viral mutations, and the
relationship between viral evolution and viral mutation.

Future variants are created through SARS-CoV-2 evolution,
in which a SARS-CoV-2 evolves through changes in its RNA at
the molecular scale to gain fitness over its counterparts at the
host population scale. At the molecular scale, most mutations
occur randomly. Indeed, random genetic drift is a major
mechanism of mutations, resulting in errors in various
biological processes, such as replication, transcription, and
translation. Additionally, virus−virus intraorganismic recombi-
nation can alter SASR-CoV-2 genes, which has a stochastic
nature, too. However, SARS-CoV-2 has a genetic proofreading
mechanism facilitated by the synergistic interactions between
RNA-dependent RNA polymerase and nonstructure proteins
14 (NSP14).2,3     At the organismic scale, interorganismic
recombination happens but the resulting variants may not be
clinically significant. In contrast, host editing of virus genes is
known to be a significant mechanism for SARS-CoV-2
mutations.4 At the population scale, mutations occurring at
molecular and organismic scales are regulated, i.e., enhanced
and/or suppressed via natural selection, giving rise to SARS-
CoV-2 variants with increased fitness.5     Therefore, natural
selection is the fundamental driving force for viral evolution.
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Figure 1. Illustration of six waves of daily COVID-19 cases (light blue) and deaths (red) driven by dominant SARS-CoV-2 variants since 2020.1

The curves are smoothed by five-day averages.

Figure 2. Illustration of unique mutations on SARS-CoV-2 genomes extracted from patients. Each dot represents a unique mutation. The x-axis is
the gene position of a mutation, and the y-axis represents its observed frequency in the natural logarithmic scale.

It remains to understand what controls the natural selection
of SARS-CoV-2. The mechanism of SARS-CoV-2 evolution
was elusive at the beginning of the COVID-19 pandemic.
Indeed, the life cycle of SARS-CoV-2 is extremely
sophisticated, involving the viral entry of host cells, the release
of the viral genome, the synthesis of viral NSPs, RNA
replication, the transcription, translation, and synthesis of viral
structural proteins, and the packing, assembly, and release of
new viruses.6     The SARS-CoV-2 mutations occur nearly
randomly on all of its 29 genes, as shown in Figure 2.
Nonetheless, in early 2020, we hypothesized that SARS-CoV-2
natural selection is controlled through infectivity-strengthening
mutations,5 which primarily occur at the viral spike (S) protein
receptor-binding domain (RBD) that binds with host
angiotensin-converting enzyme 2 (ACE2) to facilitate the
viral cell entry.7−11 Our hypothesis was initially supported by
our genotyping of 15 140 SARS-CoV-2 genomes extracted
from patients. We demonstrated that among 89 unique RBD
mutations, the observed frequencies of infectivity-strengthen-

ing mutations outpace those of infectivity-weakening ones in
their time evolution. Our infectivity-strengthening mechanism
of natural selection was proven beyond doubt in April 2021,
with 506 768 SARS-CoV-2 genomes isolated from patients.12

However, we found that not all of the most observable RBD
mutations strengthen viral infectivity.13 This exception took
place in the middle and late 2021 when a good portion of the
population in many developed countries was vaccinated. By
the genotyping of 2 298 349 complete SARS-CoV-2 genomes,
we discovered vaccination-induced antibody-resistant muta-
tions, which make the virus less infectious.13 This discovery
leads to a complementary mechanism of natural selection,
namely antibody-resistant mutations. In other words, viral
evolution also favors RBD mutations in a population that
enable the virus to escape antibody protection generated from
vaccination or infection.

The Omicron variant was the first example that was induced
by both infectivity strengthening and antibody resistance
mechanisms.13 It has 32 mutations on the S protein, the main
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Figure 3. Annotation tree plot of 106 newly occurred Omicron subvariants. BFE changes (kcal/mol) are marked from parent generations to
children as well as mutations.

antigenic target of antibodies.15 Among them, 15 are on the
Omicron RBD, leading to a dramatic increase in SARS-CoV-2
infectivity, vaccine breakthrough, and antibody resistance.16

The World Health Organization (WHO) declared Omicron as a
variant of concern (VOC) on November 26, 2021. On
December 1, 2021, when there were no experimental data
available, we announced our topological artificial intelligence
(AI) predictions based on the genotyping of viral genomes,
biophysics, experimental data of protein−protein interactions,
algebraic topology, and deep learning.17 We predicted that
Omicron is about 2.8 times as infectious as the Delta and has
nearly 90% likelihood to escape vaccines, which would
compromise essentially all of existing monoclonal antibody
(mAb) therapies from Eli Lilly, Regeneron, AstraZeneca, etc.
These predictions were subsequently confirmed by experi-
ments1415,18−21. On February 10, our topological AI model
foretold the taking over of Omicron BA.1 by Omicron
subvariant BA.2.22 The WHO declared BA.2’s dominance on
March 26, 2022. On May 1, 2022, our topological AI model
projected the incoming dominance of BA.4 and BA.5,23 which
became reality in late June 2022. Currently, BA.5 is still the
world’s dominant variant. Therefore, our topological AI model

has been offering unusually accurate two-month forecasts of
emerging dominant variants.

The COVID fatigue and the worldwide relaxation of
COVID-19 prevention measures have given the virus
enormous new opportunities to spread in world populations,
which enables the virus to further evolve. Additionally, the
newly generated Omicron subvariant RBD structures leave
abundant room for the virus to further optimize its binding
with the ACE2 and disrupt existing antibodies, resulting in a
large number of emerging subvariants. It is of paramount
importance to analyze their growth potential in the world’s
populations and alert future dominant variants.

This work analyzes SARS-CoV-2 evolutionary trends. We
predict the SARS-CoV-2 S protein RBD mutation-induced
binding free energy (BFE) changes of RBD-human ACE2
complexes at all RBD residues. Such changes are employed to
forecast Omicron subvariants’ growth potentials and chances
of becoming future dominant variants. Topological AI models
are built from newly available deep mutational screening data
and Omicron BA.1 and BA.2 three-dimensional (3D)
structures. Our studies are assisted by the genotyping of over
three million SARS-CoV-2 genomes extracted from patients
and the evolutionary pattern of viral lineages among infections
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Figure 4. (a, b) The 3D structure of BA.2 (PDB: 7XB025) with two sets of mutations (colors are consistent with those in c, and integrated colors
indicate that the mutation appears on multiple variants). (a) The mutations of precious VOCs (in cyan) and BA.1 (in blue), BA.2 (in pink), BA.3 (in
orange), BA.4, and BA.5 (in green). (b) The mutations of the Omicron subvariants with BA.2 sublineages (pink) and BA.5 sublineages (in green).
(c) A comparison of predicted mutation-induced BFE changes for previous VOCs and Omicron subvariants. Previous VOCs (in cyan): Alpha, Beta,
Gamma, Delta, Theta, Kappa, Lambda, and Mu; BA.1 and BA.1.1 (in blue); BA.2 (in pink); BA.3 (in light orange); BA.4 (in orange); BA.5 (in green).
(d) BA.2 sublineages (in pink). (e) BA.4 sublineages (in orange) and BA.5 sublineages (in green).

in the United States. Our key projection of emerging variants
incoming dominance made in Oct 18, 202224 had become
reality in late November 2022.

2. RESULTS
We carry out single nucleotide polymorphism (SNP) calling
for 3 607 461 million complete genomes extracted from
patients. All unique mutations and their observed frequencies
are illustrated in Figure 2. Our interactive Web site, Mutation
Tracker, also provides detailed records of mutations for
download. On average, each nucleic acid site has one mutation.
Overall, mutations occur essentially randomly at all 29 903
bases. Therefore, simple SNP calling and genotyping do not
offer any direct evidence for SARS-CoV-2 variants as discussed

earlier. More specific analysis of the RBD mutations is used for
the forecasting of future dominant variants.

We collect emerging Omicron sublineages and compare
them with previous VOCs. In Figure 3, we preset the
annotation tree plot of recently occurred Omicron subvariants.
Mutations from parent generations to children are marked on
edges as well as binding free energy (BFE) changes (kcal/mol)
induced by the corresponding mutations. As many as 106
Omicron subvariants and their relationships are delineated in
the plot.

We use the notation “*” to represent the lineage and its
sublineage. For instance, BA.2* represents BA.2 and all its
sublineages in Figure 4. Figure 4a,b shows the 3D structures of
RBD binding to human ACE2. Figure 4a includes the RBD

338                                                                                     https://doi.org/10.1021/acs.jcim.2c01352
J. Chem. Inf. Model. 2023, 63, 335−342

pubs.acs.org/jcim?ref=pdf
https://doi.org/10.1021/acs.jcim.2c01352?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


Journal of Chemical Information and Modeling pubs.acs.org/jcim                                                            Article

Figure 5. Heatmap of mutation-induced BFE change predictions of BA.1 (top panel) and BA.2 (bottom panel). Residues that have at least one
mutation-induced BFE change greater than 0.1 kcal/mol are selected. The sites of BA.2’s six distinct mutations are marked red and framed in the
heatmap.

mutations of previous VOCs and Omicron subvariants BA.1,
BA.2, BA.3, BA.4, and BA.5, while Figure 4b shows mutations
of the subvariants of Omicron BA.2 and BA.5. Lineages
originated from BA.2 are marked in a red type of colors.
Subvariants originated from BA.5 are labeled in a green type of
colors. In Figure 4c, the BFE changes of previous VOCs, BA.1
and BA.2 are calculated as the accumulation of single
mutations according to the original structure (PDB:
6M0J26). The BFE changes of BA.1.1 are calculated based
on the BA.1 RBD-ACE2 structure (PDB: 7T9L27). For the
sublineages of BA.2, as well as BA.3, BA.4, and BA.5, their BFE
changes are calculated based on the BA.2 structure (PDB:
7XB025). In Figure 4d,e, the BFE changes of the BA.2, BA.4,
and BA.5 sublineages are presented.

In Figure 4c, the variants prior to the Omicron are presented
in light blue including previous VOCs, BA.1, BA.1.1, BA.2,
BA.3, and BA.4. In Figure 4d, there are three main clades, one
from BA.2, one from BA.4, and the other from BA.5. First,
three mutations from BA.2 to BA.5 are L452R, F486 V, and
R493Q, which make BA.5 2-fold as infectious as BA.2. This
explains why BA.5 replaced BA.2 as a new dominant variant in
late June 2022. Among the BA.2 sublineages, BP.1, BA.2.10.4,
BA.2.3.*, BA.2.75.*, BL.1.*, BR.*, BN.1.*, and CB.1 were
predicted to have BFE changes greater than 4.0 kcal/mol.
These three sublineages together with BA.2.10.4 and BA.2.75.2
have higher BFE changes and are more infectious than BA.4
and BA.5. As for BA.4 and BA.5 sublineages, BA.4.6 is more
infectious than BA.4 and BA.5 and has potential to become a
dominant variant and its sublineage BA.4.6.3 has a BFE change
greater than 4.0 kcal/mol. Among the sublineages of BA.5,
BQ.1.1 has the highest potential to replace the spreading of
BA.5, as its BFE change is greater than 4.0 kcal/mol, while
some of BA.5′s sublineages, BF.7, BQ.1, and BE.1.2, have
larger BFE changes than that of BA.5. On the basis of this
analysis shown in Figure 4d,e, we forecast that BP.1, BL*,
BA.2.75*, BQ.1*, and particularly BN.1* have high potentials
to become new dominant variants.

Figure 5 shows the heatmaps of predicted mutation-induced
BFE change predictions of BA.1 (top panel) and BA.2 (bottom
panel) variants. We plot those RBD residues that have at least
one mutation-induced BFE change greater than 0.1 kcal/mol,
which gives rise to 89 residues in the plots. In other words, we
keep mutations that will lead to more infectious variants. The
deep blue color indicates infectivity-strengthening mutations.
The deep red color shows infectivity-weakening mutations. It is
seen from Figure 5 that most mutations will weaken the
binding between RBD and ACE2 for BA.1 and BA.2. However,
such mutations, once occurred, will have little chance of
becoming clinically significant due to natural selection. Figure 5
indicates that both BA.1 and BA.2 are highly infectivity-
optimized variants. They just leave a few residues to be further
optimized. Obviously, for both B.1 and BA.2, many mutations
on residue sites R439, Y453, and N417 will most likely lead to
more infectious new variants. For BA.2, surveillance is also
required for residue sites N504 and R403.

Compared with BA.2, BA.5 has three additional mutations,
i.e., L452R, F486 V, and R493Q. Among them, R493Q makes
BA.5 significantly more infectious as shown in Figure 5. This
reverse mutation (original residue is glutamine) occurs in
many other lineages shown in Figure 4c, namely, BA.2.10.4,
BA.2.75*, BA.4*, BA.5, BF.7, BQ.1*, and BE.1.2. In addition
to R493Q, BA.2.75* and BQ.1.1 in Figure 4 share the
mutation N460K with the BFE change 0.267 kcal/mol. This
indicates that more infectious variants will emerge with
multiple infectivity-strengthening mutations. Overall, compar-
ing the two heatmaps in Figure 5, it is easy to note that BA.2
has more positive BFE changes, which makes future BA.2
sublineages more competitive than future BA.1 sublineages in
terms of infectivity.

The top panel of Figure 5 explains why BA.2 is more
infectious than BA.1. BA.2 shares 12 of its RBD mutations with
BA.1, except for six mutations, i.e., L371F, T376A, D405N,
R408S, S446G, and S496G. These residue sites are marked
with red in both panels of Figure 5. Among these mutations,
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Figure 6. Weekly viral lineages among infections in the United States from 06/26/2022 to 10/08/2022. AY.1-AY.133, Delta (B.1.617.2), BA.1, and
sublineages of BA.1 variant are aggregated to category “Others”. BA.2 sublineages, except BA.2.12.1, BA.2.75, BA.2.75.2, BN.1, XBB, and their
sublineages, are aggregated with BA.2. BA.4 sublineages are aggregated to BA.4 except BA.4.6. Sublineages of BA.5 are aggregated to BA.5 except
BF.7, BF.11, BA.5.2.6, BQ.1, and BQ.1.1. The spike substitution R346T is included in lineages BA.2.75.2, XBB, BN.1, BA.4.6, BF.7, BF.11,
BA.5.2.6, and BQ.1.1 Data from the CDC Web site.28

L371F, T376A, D405N, and R408S induce minor BFE changes
as shown in the top panel of Figure 5. However, S446G and
S496G render BA.2 significantly more infectious than BA.1.

3. DISCUSSION
Figure 6 presents the evolution pattern of weekly viral lineage
distribution among infections in the United States from 06/
26/2022 to 11/26/2022 from the CDC Web site.28 Each
lineage is illustrated by aggregating its sublineages to except for
its sublineages are also listed in Figure 6. Note that BA.2.75
sublineages except BA.2.12.1, BA.2.75, BA.2.75.2, BN.1, XBB,
and their sublineages are aggregated to BA.2.75, which means
lineages BA.2.10.4 in Figure 4 belong to this category. It is
interesting to note that there is high consistency between
Figures 4 and 6. Specifically, all the emerging variants listed in
Figure 6 have relatively high BFE changes as depicted in Figure
4.

It is also interesting to note from Figure 6 that the relative
populations of BA.2.12.1, BA.4, and BA.5 are shrinking during
this period. BA.5 slightly expanded at the beginning and took a
portion of BA.2.12.1’s population. BA.4.6 is a sublineage of
BA.4, while BF.7, BQ.1, and BQ.1.1 are the sublineages of
BA.5. Their relative populations are increasing. BQ.1.1 has a
growth rate faster than that of BQ.1 and BF.7, which indicates
that the predicted BFE change of BQ.1.1 is the highest among
the sublineages of BA.5. As shown in Figure 4, BA.2.75 and
BQ.1.1 have higher potentials to become future dominant
variants.

In our earlier predictions of Omicron16 and BA.2,22 we
utilized nearly 200 antibody−RBD complexes to analyze the
impact of antibody resistance. Such analysis is necessary
because the Omicron variant involves a dramatic increase in
the number of RBD mutations. For most variants studied in
the present work, there are only gradual changes in the number
of new RBD mutations and thus the impact of antibody
resistance to natural selection may be relatively small,
particularly for the population that has not been exposed to
Omicron and its subvariants.

While the BFE change-based prediction favors the variant
with the highest BFE change, its dominance in the population
is also determined by the viral transmission environment (i.e.,
vaccination, prevention measures, human interaction intensity,
etc.) and temporal dynamics. Therefore, a variant with a
slightly lower BFE change might become a dominant variant
over a short period, which is called kinetic reaction control in
thermodynamics. In an idealized viral transmission environ-
ment, the variant with the highest BFE change would have an
exponential advantage over other variants, according to the
Boltzmann distribution, which is called thermodynamic
reaction control.

4. METHODS
4.1. Deep Learning Model. The model applied in this

work is an updated version of the recently proposed machine
learning model, TopLapNet, by integrating the SKEMPI 2.0
data set29 and deep mutational scanning data sets.30−33 Briefly
speaking, the TopLapNet model is a deep neural network
model and implements biophysics and biochemistry descrip-
tors, as well as mathematical descriptors based on algebraic
topology,34−36     to predict the binding free energy (BFE)
changes of protein−protein interactions (PPIs) induced by
single mutations. A deep neural network maps sample features
to an output layer where hidden layers in the network contain
numerous neuron units and weights updated by back-
propagation methods. The single neuron gets fully connected
with the neurons in the following layers. For the model cross-
validations, the Pearson correlation of 10-fold cross-validation
is 0.864, and the root-mean-square error is 1.019 kcal/mol. As
for predictions, the TopLapNet model is used to calculate all
possible mutation impacts on RBD binding to ACE2 for the
original virus (PDB: 6M0J26), BA.1 (PDB: 7T9L27), and BA.2
structures (PDB: 7XB025). Thus, previous VOCs’ infectivities
as well as that of BA.1 and BA.2 are calculated based on the
original structure. The infectivity of BA.1.1 is calculated by
accumulating BFE changes based on the BA.1 structure. The
infectivities of all other sublineages presented in Figure 4 are
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calculated by the accumulations of BFE changes based on the
BA.2 structure.

4.2. Feature Generation. Feature generation methods
decipher protein structures to extract their biophysical,
biochemical, and mathematical information. These methods
use physical, chemical, and mathematical modeling of protein
structures to provide suitable features for machine-learning
algorithms. There are two types of features, i.e., residue-level
ones and atom-level ones. Residue-level features are generated
from secondary structures, which are provided by a position-
specific scoring matrix (PSSM) in the form of conservation
scores of each amino acid.37 Atom-level features consider seven
groups of atom types, including C, N, O, S, H, all heavy atoms,
and all atoms. Surface areas, partial changes, atomic pairwise
interactions, and electrostatics are assembled in an element-
specific manner in terms of these seven groups. Moreover, the
most important features from modelings are topological
features and graph features generated by using, persistent
homology35 and persistent Laplacian.36

Persistent homology describes proteins by analogy to point
cloud data. Atoms are regarded as vertices to build a simplicial
complex, which is a collection of infinitely many simplicies
such as nodes, edges, triangles, and tetrahedrons. The
simplicies among atoms are defined by whether there is an
overlap under a given influence domain or radius r. Filtration of
this topological space is defined by varying the radius as a
sequence of snapshots of each simplicial complex to extract
more geometric and topological properties. Then the Betti
numbers on each snapshot are computed as descriptors of the
number of connected components, cycles, and cavities in a
protein structure. Persistent Laplacian (also known as
persistent spectral graph36,38) on the other hand unveils the
homotopic shape evolution of a protein structure in filtration
that the persistent homology cannot provide. It has been tested
for its performance in mutation-induced PPI binding afinity
change prediction.23,38 Persistent Laplacian applies the same
scheme as persistent homology to construct simplicial
complexes during filtration. However, persistent Laplacian
calculates all eigenvalues of the combinatorial Laplacian with
boundary operators on simplicial complexes. Our mathematical
features consist of both topological invariants from persistent
homology and spectral invariants from persistent Laplacian.

4.3. SNP Calling and Mutation Tracker. For genotyping,
SARS-CoV-2 complete genome sequences with high coverage
and exact collection date were downloaded from the GISAID
database39     (https://www.gisaid.org/) as of September 30,
2022. Such sequences were aligned to the reference genome
downloaded from GenBank (NC_045512.2).40     Next, we
applied single nucleotide polymorphism (SNP) calling41,42 to
measure the genetic variations between SARS-CoV-2 sequen-
ces through Cluster Omega with default parameters. The SNP
calling can track differences between various SARS-CoV-2
sequences and the reference genome. By applying it, we
decoded 29 290 unique single mutations from more than 3.6
million complete SARS-CoV-2 genomes. The detailed
mutation information can be viewed at Mutation Tracker.
Lastly, the Omicron sublineages analyzed in Figure 4 are
selected from the SNP analysis and other Web servers.28,43,44
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