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Abstract

The human ether-a-go-go (hERG) potassium channel (Kv11.1) plays a critical role in mediating

cardiac action potential. The blockade of this ion channel can potentially lead fatal disorder
and/or long QT syndrome. Many drugs have been withdrawn because of their serious hERG-
cardiotoxicity. It is crucial to assess the hERG blockade activity in the early stage of drug
discovery. We are particularly interested in the hERG-cardiotoxicity of compounds collected

in the DrugBank database considering that many DrugBank compounds have been approved

for therapeutic treatments or have high potential to become drugs. Machine learning-based in

silico tools offer a rapid and economical platform to virtually screen DrugBank compounds.

We design accurate and robust classifiers for blockers/non-blockers and then build regressors

to quantitatively analyze the binding potency of the DrugBank compounds on the hERG

channel. Molecular sequences are embedded with two natural language processing (NLP)

methods, namely, autoencoder and transformer. Complementary three-dimensional (3D) molecular

structures are embedded with two advanced mathematical approaches, i.e., topological Laplacians

and algebraic graphs. With our state-of-the-art tools, we reveal that 227 out of the 8641 DrugBank

compounds are potential hERG blockers, suggesting serious drug safety problems. Our predictions

provide guidance for the further experimental interrogation of DrugBank compounds’ hERG-

cardiotoxicity.

Keywords

hERG blockers; DrugBank; Machine learning; Deep learning; Topological Laplacians; Algebraic
graphs; Transformer; Autoencoder

* Corresponding author at: Department of Mathematics, Michigan State University, MI 48824, USA. weig@msu.edu (G.-W. Wei).

Declaration of competing interest
The authors declare that they have no known competing financial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Appendix A. Supplementary data
Supplementary material related to this article can be found online at https://doi.org/10.1016/j.compbiomed.2022.106491.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Feng and Wei Page 2

1. Introduction

The human ether-a-go-go related gene (hERG) encodes the protein (Kv11.1), the alpha

subunit of a potassium ion channel, which is critical in the mediation of the cardiac action

potential and the coordination of heartbeat. The blockade of this potassium channel is

associated with prolongation of the QT interval (long QT syndrome, LQTS), eventually

leading to fatal arrhythmia, namely Torsade de Pointes (TdP) [1]. The hERG potassium

channel can be blocked by many structurally and therapeutically diverse small compounds.

As such, drug-induced cardiotoxicity was the main reason for drug withdrawals due to their

unexpected hERG blockade activity. For the concern of drug cardiac safety, it is desirable to

have an early assessment of hERG liability in the process of drug design and development.

In the early 2000s, the U.S. Food and Drug Administration (FDA) recommended the hERG

side effect evaluation of drug candidates in their revised regulatory guidelines [2].

A variety of in vitro tests are available on the markets, such as patch clamp techniques

[3], radioligand binding [4], cell-based fluorescence [5] and 86Rb flux assays [6]. Reliable
hERG-affinity results of compounds could be obtained from those experimental methods.
However, such assay tests tend to be expensive, time-consuming, and laborintensive,
rendering them unsuitable for screening a large collection of drug candidates in drug
discovery. The development of in silico hERG models provides accurate computational
predictions, offering fast and cheap approaches for virtual high-throughput screening. At
present, structure-based and ligand-based approaches are used for developing in silico
models for hERG blockade assessment. Structure-based models rely on the structure of
the potassium channel. To date, the X-ray crystal structure of hERG is not yet available,

but the structure from electron microscopy was solved recently [7]. Previous structure-based

studies performed their investigations utilizing homology modeling of hERG channel based

on the available (crystal) structure of other potassium channels [8–12] in conjunction with

docking simulations and free energy calculations. Recent microscopy structures prompted

more mechanism investigations of hERG-drug interaction [13,14] and arrhythmogenicity

predictions [15]. Molecular blocking activities on hERG positively were found to be

related to charged nitrogen atoms with aromatic or hydrophobic groups [16], hydrogen-bond

acceptor at the periphery [17] or high lipophilicity [18]. The development of structure-based

models faces challenges from protein flexibility and poor scoring functions [19,20]. Such

models mostly investigate the hERG-drug interactions around the hERG central cavity

involving several residues [21, 22] responsible for drug binding. Multiple other binding sites

also exist for hERG blockers with different structural features [21], leading to difficulty in

developing reliable prediction models [23].

Many ligand-based models have been proposed over the past few decades by utilizing

quantitative structure–activity relationship studies, pharmacophore modeling, and machine

learning algorithms. Machine learning models draw increased popularity for the hERG

blockade predictions with their predictive ability advancement supported by the significant

increases in bioactivity information about hERG inhibitors in public databases (e.g.,

ChEMBL, PubChem) and literature. Among recent machine-learning models of predicting

hERG blockade, in 2010, Doddareddy and co-workers applied linear discriminant analysis

and support vector machine (SVM) methods to build classification models on a dataset
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of 2,644 compounds [24]. Extended connectivity fingerprints (ECFPs) and functional class

fingerprints (FCFPs) were used to describe molecule compounds. In 2014, Liu [25] also

developed a Bayesian classification model based on the Doddareddy et al.’s dataset with

a series of molecular properties and extended-connectivity fingerprints (ECFP4). In 2016,

Didzidapetris et al. employed gradient boosting machine to build their classification model

on a large and chemically diverse hERG inhibition dataset of 6690 compounds. Simple

physicochemical and topological parameters of molecules were used as descriptors for the

machine learning models. In 2020, Wang et al. [26] used a deep learning network algorithm,

capsule network (CapsNets), for classification models. Their model further boosted the

prediction accuracy for the test set of Doddareddy et al. Many hERG inhibitor datasets were

collected and machine learning models of pronounced predictive powers were proposed.

Recently, some even larger hERG inhibitor datasets [27,28] with rich chemical or structure

diversity were compiled through the integration of multiple databases and literature. Zhang

et al. [28] collected a dataset of 12,850 compounds and built a consensus model using

random forest, extreme gradient boosting tree algorithm, and deep neural network with two-

dimensional (2D) fingerprints as molecular descriptors. Ogura et al. [27] and his coworkers

integrated a dataset of more than 291,000 structurally diverse compounds derived from

ChEMBL, GOSTAR, PubChem, and hERGCentral. Their classification model based on the

support vector machine (SVM) algorithm achieved an accuracy of 0.984 for their test set.

Such a large hERG inhibitor dataset with high molecular structure diversity broadens the

predictability and scope of machine learning models.

The development of machine learning models makes it possible to have a high-throughput

screening in the early stage of drug discovery or in reevaluating the hERG-related

cardiotoxicity of on-market drugs. DrugBank database (version 5.1.9) has a collection of

8641 compounds that are mostly either FDA-approved, experimental, or investigational

drugs. It gains wide applications in silico drug discovery, design, drug docking or screening

[29]. In particular, the repositioning potentials of DrugBank compounds were studied in

various aspects including those for COVID-19 [30,31]. Due to its important role in drug

discovery, studies on the hERG side effect receive particular attention. The development of

machine learning models with a wealth of available hERG inhibitor datasets facilitates the

screening DrugBank database for hERG blockers. This motivates us to develop more robust

and accurate models to analyze the blockade potential of DrugBank compounds.

The performance of machine learning models relies on molecular embeddings or

descriptors. Many of the aforementioned machine learning models [24,25,27,28,32] or

other hERG blockade prediction models in the literature employed 2D fingerprints

as molecular descriptors. Two-dimensional embeddings encode interpretable physical

properties in a bit string format while three-dimensional (3D) embeddings could preserve

3D molecular structural patterns and most importantly, stereochemical information. Deep

neural network (DNN)-based techniques have been utilized to exploit the molecular

descriptors in embedded vector forms. Recently, sequence-to-sequence autoencoders with

translation methodology were used to develop molecular embeddings [33]. The encoder

network compresses comprehensive information of the SMILES string in latent vectors,

which are then translated to another form of molecular representation by the decoder

network. Besides, we recently developed a self-supervised learning (SSL) Transformer

Comput Biol Med. Author manuscript; available in PMC 2023 April 21.
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platform to extract useful physicochemical information from the SMILES of millions

of compounds in various databases [34]. The bidirectional encoder Transformer (BET)

based on self-attention was used to achieve SSL. These natural language processing

(NLP) techniques extract physicochemical information by investigating molecular sequence

patterns. However, the intricate structural complexity of small molecules that encode

sufficient stereochemical information usually cannot be well embedded by sequence-based

methods. Three-dimensional (3D) embeddings were developed to preserve enough 3D

molecular structural patterns. Advanced 3D molecular embeddings were devised with

topological Laplacians [35]. The harmonic spectra and non-harmonic spectra of topological

Laplacians embed respectively topological persistence and geometric shape into graph

invariants along a series of filtration parameters. It showed the superior descriptive

and predictive ability of molecular complexes in the infectivity prediction of the SARS-

CoV-2 Omicron variants [36]. Algebraic graph learning also provides powerful molecular

descriptors by interpreting the molecular 3D structures in algebraic graphs [37].

In this work, we focused our attention on the hERG liability screening of DrugBank

compounds by advanced machine learning models. Two natural language processing (NLP)-

based latent-space embeddings and two advanced mathematics-based 3D embeddings were

integrated with gradient boosting decision tree and/or deep neural network algorithms. The

two sequence-based embeddings were constructed using Transformer [34] and autoencoder

[33] methods while the two 3D embeddings were generated with topological Laplacians

[35,36] and algebraic graphs [37]. Their combined efforts in extracting molecular physical

and stereochemical information facilitate enhanced descriptive and predictive power for

virtual screening of small molecules. The binary classification model was first used to

predict the potential hERG blockers from DrugBank compounds and then the regression

model was employed to quantitatively analyze the binding affinity of these blockers.

According to our classification model, 227 out of DrugBank compounds were predicted

to be blockers, among which 92 are FDA-approved drugs and 135 are investigational drugs.

A few of the 227 drugs have been withdrawn for various reasons including cardiotoxicity.

Except for these withdrawn drugs, further cardiotoxic risk assessment can be carried out

for these predicted blockers. Further experimental investigation can be carried out to test

the QT prolongation effect and scrutinize their cardiotoxicity in humans. Compared to the

literature methods, our models demonstrated state-of-the-art predictive power. Our work

unveils potentially serious drug safety problems (see Fig. 1).

2. Results

We are interested in accurate and reliable screening of the hERG blockade of the compounds

deposited in the DrugBank database (version 5.1.9). To this end, we investigated the

performance of our machine learning classification model on seven different datasets.

Among them, the training dataset from Ogura et al. [27] consists of more than 200,000

compounds, covering molecules of large structural and chemical diversities. This is a

classification dataset with only “yes” or “no” labels. Machine learning models based on such

a large training dataset can deliver highly valuable information in practical applications. Our

classification model achieves an accuracy of 0.981 for the test set from Ogura et al. [27],

indicating the high reliability of our models. The threshold of 10 μM was used to
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discriminate compounds into hERG blockers or non-blockers in Ref. [27]. This threshold

was adopted in our discussion to determine whether DrugBank compounds are hERG

blockers or not. In addition to the qualitative analysis using our classification model, we also

built a model to have quantitative assessment of the binding affinity (BA) of the DrugBank

compounds. We collected an hERG inhibitor dataset composed of 6298 compounds from the

ChEMBL database and the literature. The experimental binding affinities of those inhibitors

were quantified by either

K i

or

IC50

. As suggested in Ref. [38], the

IC50

values can be approximately converted to

K i

values by the formula

K i  =  IC50        2

. We determined the labels of our collected dataset of hERG inhibitors with binding affinity

calculated by using

1.3633 ×  log10Ki

. With the collected dataset, we used three types of molecular descriptors, namely those from

the transformer, autoencoder, and topological Laplacian, in conjunction with the gradient

boosting decision tree algorithm to build three regression models. The consensus results

given by these three models were used as the final results. Besides, each model was run

twenty times with different random seeds such that the average of twenty results was

regarded as the prediction of each model. The performance of our regression model was

validated by five-fold cross-validation, which showed a Pearson correlation coefficient of

0.77 and root-mean-square-error (RMSE) of 0.796 kcal/mol.

The DrugBank database curated a total of 8641 drugs, among which 1782 drugs were

approved by FDA and other 6859 are experimental or off-market drugs. To investigate

the hERG liability of the DrugBank compounds, we first used our classification model

to determine the potential hERG blockers and then employed our regression model to

measure their binding affinities. According to our classification model, a total of 227

drugs were classified as potential blockers, among them, 92 are FDA-approved drugs

and other 135 are experimental or off-market drugs. Based on our regression model,

we report the top 20 FDA-approved drugs with the ranked binding affinity values in

the Table 1. Since some of FDA-approved or experimental drugs were withdrawn from

the market, we are also interested the hERG liability of the withdrawn drugs. Table

1 also includes four additional drugs that were approved by FDA but withdrawn later.

The predicted binding affinities (kcal/mol) are listed in the table while the predicted
IC50

were derived from the predicted binding affinities with the formula

IC50 =  101.3633 ×  106(μM)

(μM) where

Comput Biol Med. Author manuscript; available in PMC 2023 April 21.
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X

is the binding free energy. A complete list of binding affinities for the 92 approved

drugs can be found in the Supporting information. The threshold of 10 μM was

used for classifying hERG blockers/non-blockers in our investigation. Our predicted

IC50

for 85 out of the 92 potential blockers are less than 10 μM, which shows the prediction

consistency between our classification and regression models. The corresponding binding

affinity threshold is equal to −7.23 kcal/mol based on the aforementioned conversion

formula.

2.1. Potential hERG blockers

We next present a brief discussion about the top 20 potential blockers and four FDA-

approved but withdrawn drugs. The top 20 blockers were predicted to have potent binding

affinity compared to the threshold BA of −7.23 kcal/mol. Ibutilide was predicted to be the

most potent blocker. Ibutilide is a class III antiarrhythmic medication used to correct atrial

fibrillation and atrial flutter to sinus rhythm. Studies have found that Ibutilide can lead to

abnormal heart rhythms because of its ability to prolong the QT interval, potentially leading

to Torsades de Pointes, a type of very fast heart rhythm (tachycardia), which is closely

related to its block on hERG channel [39]. Our prediction of Ibutilide is validated by the

experimental study and clinical findings. The second blocker is Dofetilide, which is also a

class III antiarrhythmic agent. Dofetilide is also used for cardioconversion from atrial

fibrillation and atrial flutter to sinus rhythm. It can also cause side effect of Torsades de

Pointes. The third drug is Lidoflazine, which is a vasodilator used to treat angina pectoris. It

can bind to the hERG channel with a high binding affinity [40]. The fourth drug is Pimozide,

which is an antipsychotic drug. Its side effects include prolongation of the QT interval and it

binds to hERG with

K i  =  18 nM

[41]. Ziprasidone is an atypical antipsychotic used for the treatment of schizophrenia and

bipolar disorder. It is thought to possess lower side effects than other antipsychotic

medications. It raised concerns about long QT syndrome considering its binding affinity of
K i

equal to 169 nm [42]. Our predicted

IC50

for Ziprasidone is 0.15 μM with the derived

K i

value of 75 nM, which is at the same magnitude as the experimental

K i

value. Domperidone is a dopamine antagonist drug that is used to treat nausea, vomiting,

and gastrointestinal problems. It can cause QT prolongation and is associated with an

increased risk of sudden cardiac death [43]. With our model, Domperidone was predicted to

block hERG potassium channels and possess a moderately high binding affinity of

IC50 =  0.17μM

. Ebastine is a H1 receptor antagonist used in the treatment of allergic rhinitis and chronic

idiopathic urticaria. It gives an overall favorable safety profile with no QT prolongation [44].

Comput Biol Med. Author manuscript; available in PMC 2023 April 21.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Feng and Wei Page 7

Amsacrine is an antineoplastic agent and exerts its effects by binding to DNA. Our

prediction indicates its blockade to the hERG channel, agreeing with the report that it can

cause inhibition of hERG currents [45]. The next one is Benzethonium, often used as

disinfection and surface treatment in hospitals and industries. It was reported to induce the

long QT syndrome and exhibit hERG inhibition [46]. The number 10 drug is Dronedarone,

which is also a medication for cardiac arrhythmias. Torsade de Pointes tachycardia was

observed in dronedarone therapy [47].

The eleventh and twelfth drug are Atracurium and Mivacurium, which are all used in

anesthesia. The thirteenth drug is Ubiquinol, which can be used to protect cells from

oxidative damage and sustain the effects of vitamin E. Fluspirilene is an antipsychotic

drug used in the treatment of schizophrenia and were reported to induce arrhythmia in

drug treatment [48]. Bazedoxifene is used in the prevention of postmenopausal osteoporosis

and is investigated for the possible treatment of cancer. Sunitinib is a medication used to

treat cancer. No serious adverse effects in its application was reported. Umeclidinium was

approved for the maintenance treatment of chronic obstructive pulmonary disease. There

was controversy on its relation to fatal and nonfatal cardiovascular toxicity [49]. Oxatomide

is an antihistamine drug used to treat and prevent allergic symptoms. Trials studies were

also carried out for the treatment of Duchenne muscular dystrophy. Afamelanotide is

a subcutaneous implant used to protect people with erythropoietic protoporphyria from

phototoxicity. No report on its cardiotoxicity was found. As an atypical antipsychotic,

Iloperidone is also used for the treatment of schizophrenia. Like Ziprasidone, Iloperidone

was reported to be a potent hERG blocker and delays cardiac ventricular repolarization [50].

The six top-ranked drugs among these 20 FDA-approved drugs have reported high binding

affinities to the hERG channel or QT prolongation effect. These six drugs are dedicated

to either cardiac diseases or psychotic disorders. The top ten blockers have reported high

binding affinities or are related to long QT syndrome. Some of the eleventh to twentieth

blockers were reported to be associated with cardiotoxicity. Several of the aforementioned

20 drugs are antipsychotics. Clinical statistical analysis has revealed a close correlation

between the use of antipsychotics and the increased risk of cardiac issues or deaths.

This suggests the importance of cardiotoxicity prediction in drug design of antipsychotics.

Our prediction give a warning that other predicted blockers need to be tested on their

cardiotoxicity.

Some FDA-approved drugs were withdrawn for a variety of reasons. In our prediction,

four such drugs were predicted to be hERG blockers with moderate binding affinities.

The four drugs were all withdrawn due to their cardiotoxicity issues. Sertindole is an

antipsychotic medication and was used in the treatment of schizophrenia. It was withdrawn

owing to the increased risk of sudden death from QTc prolongation in the USA in 1998

and is a high affinity antagonist of hERG potassium channel. Terfenadine was used in the

treatment of allergic conditions. It was withdrawn because of cardiac arrhythmia. Indoramin

is an antiadrenergic drug with direct myocardial depression action, resulting in no reflex

tachycardia. Cisapride is used to treat gastroesophageal reflux disease and was withdrawn

due to serious cardiac side-effects.

Comput Biol Med. Author manuscript; available in PMC 2023 April 21.
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In addition to the aforementioned 92 FDA-approved drugs with predicted hERG-blocking

effects, our predictions also gave a total of 135 investigational or off-market drugs that can

potentially block the hERG channel. Twenty top-ranking investigational drugs and three

withdrawn drugs are shown in Table 2. Among the 135 investigational drugs, 133 drugs were

predicted to have binding affinity values less than −7.23 kcal/mol. The most potent drug is

DB12517. It has been investigated for the treatment of erectile dysfunction. Our prediction

suggested its high risk of causing heart problems. The withdrawn drugs include ifenprodil,

mibefradil, and eprazinone. Ifenprodil has been investigated for preventing tinnitus after

acoustic trauma. Especially, it is now in phase III clinical trials for the treatment of SARS-

CoV-2 infection. A complete list of the predicted binding affinity values for the 135 drugs

can be found in the Supporting information.

2.2. Prediction reliability

In the last subsection, forty FDA-approved or investigational drugs and some withdrawn

drugs were presented with their predicted binding affinity to the hERG channel. These

DrugBank compounds were classified into the category of hERG blockers according to our

classification models. The classification and regression predictions showed high consistency

with the threshold of

IC50

. To further analyze the reliability of our predictions, we study the reliability scores of each

prediction from our classification or regression models as shown in the last two columns of

Tables 1 and 2. The reliability scores were calculated based on compound similarities with

training datasets. The details of similarity calculation can be found in the Supporting

information.

The similarity scores can be equal to 1 in our calculations. This is because some of the

DrugBank compounds are in our classification or regression datasets. The classification

category or the binding affinity values can be well predicted in this scenario. For a given

molecule, the higher the reliability scores, the more reliable our predictions are. The top 10

drugs in Table 1 showed reliability scores equal to or close to 1 for the regression predictions

while the corresponding classification reliability scores are also high. As discussed before,

the top 10 drugs except ebastine were reported to be associated with QT prolongation effect.

This is can be well explained considering that they inhibit the hERG potassium channel.

Ebastine is an exception. No clinically relevant changes in QTc interval were observed when

ebastine was exercised at a higher dose than recommended therapeutic level [44]. It does

not conflict our prediction from our regression and classification models as ebastine was

reported to suppress the mammalian hERG potassium channel. The high-reliability scores

for both regression and classification predictions reflect the high likelihood that the ten

drugs are hERG potassium blockers. It is known that drugs that induce fatal arrhythmia or

TdP mostly inhibit the hERG potassium and prolong QT interval. But the converse is not

always true [51]. It deserves further scrutiny on potential QT interval prolongation even if a

compound was predicted as a potent hERG channel inhibitor. The number eleven to twenty

drugs were predicted to be potent hERG blockers with moderately high-reliability scores.

Among these ten drugs, fluspirilene, umeclidinium, and iloperidone have been reported to

Comput Biol Med. Author manuscript; available in PMC 2023 April 21.
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be associated with cardiac issues and were found to inhibit the human hERG potassium

channel.

No QT prolongation effect was reported for the seven other drugs. Sunitinib was found to be

a potent inhibitor in both experiments and our predictions. The regression or classification

reliability scores for atracurium, mivacurium, bazedoxifene, and oxatomide are close to or

greater than 0.8. These four drugs have high chance to be potent inhibitors of the hERG

potassium channel. In addition, the reliability scores for ubiquinol and afamelanotide are

relatively low but still have classification reliability close to 0.7. The predictions indicate

that these seven drugs deserve further experimental investigations on their binding affinity to

the hERG potassium channel or their QT interval prolongation effect. The reliability scores

for the four withdrawn drugs are high in both the regression and classification predictions.

They were withdrawn due to cardiotoxicity issues, which agrees with the predicted high

binding affinities. However, the similarity scores for Ubiquinol and Afamelanotide are

relatively low. Further investigations are needed to determine their hERG side effects.

The prediction reliability scores were also provided for 20 investigational drugs in Table

2. For the investigational drugs with high-reliability scores, we may anticipate that they

are highly likely to be hERG blockers and potentially cause cardiac issues. More results

on all the 227 predicted hERG blockers were provided in the Supporting information. The

reliability scores give us a basic understanding of the blockade potentials. Experimental

studies are required to further measure the hERG blockade and QT prolongation effect.

Relatively low similarities with our training sets were found for Octylphenoxy

polyethoxyethanol, 23,27,31-Octamethyldotriaconta-2, 6,10, and Dopastatin. Their possible

hERG side effects need to be further studied with other means.

3. Discussion

3.1. Model performance comparison

In this study, we mainly used three types of molecular embeddings to build machine learning

models and the details about the three embeddings are presented in the materials and

methods section. The three embeddings were combined with gradient boosting decision tree

(GBDT) and deep neural network (DNN) algorithms to develop six classification models.

The consensus results were determined by the simple average of the six sets of blocker

probability scores from the six models. Given a training dataset, twenty different random

seeds were used to build each of the six individual models twenty times. In the comparisons

between our models with the state-of-art works in the literature, the highest evaluation

metrics values of the twenty consensus results were reported. Seven hERG blockade datasets

with binary classification labels from the literature were used to investigate the performance

of our models. The details of these datasets can be found in the material and method section.

Additionally, five evaluation metrics are also described in the Supporting information. Table

3 shows the comprehensive comparisons between our models and other methods in the

literature in terms of the five evaluation metrics.

Comput Biol Med. Author manuscript; available in PMC 2023 April 21.
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Braga et al. [52] collected a curated hERG dataset composed of 3388 blockers and

3436 non-blockers. Based on the dataset, they developed their Pred-hERG models, which

showed an accuracy of 0.78 in the 5-fold cross-validation task. In Zhang et al.’s [28]

recently proposed work, the accuracy was improved to 0.814 in the 5-fold cross-validation

task. Based on the same training set, our consensus model achieved the same accuracy

for 5-fold cross-validation predictions. In terms of other evaluation metrics as shown in

Table 3, our consensus model delivered comparable or superior results compared with

earlier models. The AUC, MCC, and accuracy results are close or identical, whereas

our specificity result was higher than that of [28]. Zhang et al. [53] investigated

their model performance with a small hERG dataset containing 1163 compounds. Five

models were developed and their prediction performances were compared on different

training and test sets partitioned from the 1163 compounds. Four thresholds defined by
IC50

values, namely 1 μM, 5 μM, 10 μM, and 30 μM were considered to discriminate hERG

blockers from non-blockers. Their SVM model had the best predictive ability for the test

set determined by the threshold of 30 μM with a reported accuracy of 0.848 on this

test set. With the same training and test set, Zhang et al.’s model [28] had prediction

improvement with accuracy boosted to 0.856. Our consensus model had much higher

improvement in terms of almost every metric on the same test set. Our model enhanced

the accuracy from 0.856 to 0.864 while our AUC and MCC results have large increases

from 0.803 to 0.836 and from 0.445 to 0.518, respectively. Li et al. [54] constructed two

consensus models based on their dataset composed of 3721 compounds with a threshold of
IC50

equals to 1 μM classifying blockers and non-blockers. Their best consensus results on

a test set of 1092 compounds achieved an accuracy of 0.842. Our consensus model

provided a significant improvement concerning most metrics compared to the results of

Li et al. [54] and Zhang et al. [28]. Our AUC, accuracy and, MCC results are 0.917,

0.885 and, 0.629, which are much higher than the best result of 0.881, 0.867, and 0.584

from Li et al. [54] or Zhang et al. [28]on the three same metrics. In the work of

Cai et al. [55], a multitask deep neural network-based (MT-DNN) model was proposed

and showed outstanding performance compared to a series of machine learning or deep

learning models. Their MT-DNN model demonstrated the best predictive power on the

test set with the threshold value of 80 μM. The reported AUC and accuracy results

achieved 0.967 and 0.925. With the same training and test sets, our consensus model

achieved nearly perfect evaluation metrics values equaling to or close to 1.0. In particular,

the MCC values were raised from 0.92 to 0.99. Doddaredy et al.’s [24] hERG dataset

is a popular benchmark dataset and was used to examine the performance of many

models in predicting hERG blockade classification. Wang et al.’s model [26] proposed

two deep neural network-based models, namely Conv-CapsNet and RBM-CapsNet, which

achieved the best performance on Doddaredy et al.’s test set compared to all other

literature models. The training and test set of Doddaredy et al.’s hERG dataset consists

of 2389 and 255 compounds, respectively. In the training and test sets, compounds with

IC50

less than 10 μM are classified as blockers while

IC50
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value greater than 30 μM defines compounds without activity. By comparison, our

consensus model had a boosted AUC value of 0.975, which is much higher than the

reported AUC value of 0.944 in [26]. Ogura et al. [27] built their support vector

machine (SVM) model with the largest hERG blockade dataset by integration of

compounds from ChEMBL, GOSTAR, PubChem, and the NIH Chemical Genomics Center

(NCGC). The training and test consist of 203,853 and 87,366 compounds, respectively.

IC50

of 10 μM was used as the blocker/non-blocker threshold. Ogura et al.’s model [27] gave

accuracy and AUC of 0.984 and 0.962. Our consensus model had comparable accuracy

or slightly better AUC results compared to Ogura et al.’s model. Another large hERG

blockade dataset was provided in Ref. [28] by integrating the literature dataset and the data

in the ChEMBL database. Zhang et al.’s [28] model had a reported accuracy of 0.839,

while our prediction had a higher accuracy of 0.842. Through comprehensive comparisons

with other models on several datasets, our consensus model consistently demonstrated

excellent predictions and is among the best machine learning models of the hERG blocker/

non-blocker classifier.

AUC is an important evaluation metric in classification studies. It has the advantage of

measuring the model’s prediction quality regardless of the discrimination threshold. The

ROC curves of our model’s prediction for the six datasets with separate test sets are shown

in Fig. 2.

3.2. Molecular embedding analysis

The residue index (RI), similarity index (SI) and R–S index (RSI) are three indexes derived

from residue–similarity scores [57]. We would like to compare the individual performance

of the three molecular embeddings in the binary classification tasks. Fig. 3a shows the plots

of residue–similarity scores for the three types of embeddings. The x- and y-coordinates

stands for the residue–similarity scores, respectively. We have six datasets with separate test

sets. The residue–similarity scores of molecules in one test set were calculated by comparing

to the molecules in corresponding training sets. Such comparisons involves distances or

similarity calculations in terms of embeddings within or across classes. The formulation

of aforementioned scores or indexes can be found in the method section. In our previous

investigation [57], the RSI was speculated to have high correlation with the prediction

accuracy in classification tasks. The classification study for hERG blocker/non-blocker is

a binary problem. The Fig. 3d records the accuracy comparisons of the three embeddings

for the six classification tasks. Transformer and topological Laplacian embeddings achieved

the best accuracy for three and four tasks, respectively. They had very close performance

in Ogura et al.’s [27] dataset with prediction accuracy difference of 0.001. It is shown in

Fig. 3b that the transformer embedding achieved the highest RSI values across all the six

datasets. On the other hand, TL embedding has the highest similarity index values for all the

six datasets. This suggests that both RSI and SI can be crucial indicators of high prediction

accuracy in such binary classification tasks. Fig. 3c shows the correlation between residue

and similarity scores (RSC) of the three embeddings. Their correlation coefficients are all

negative for the three embeddings in the prediction of all the blocker/non-blocker classes.

The magnitudes of RSC are all high enough. Especially, those by transformer embedding

Comput Biol Med. Author manuscript; available in PMC 2023 April 21.
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are close to 1 for all datasets. Besides, the RSC by autoencoder and topological Laplacian

embeddings are close to −1 for most datasets.

4. Materials and methods

4.1. Datasets

In this study, seven hERG blockade datasets were used to evaluate the predictive

performance of our classification models. Based on the same datasets, we compared the

performance of our models with other published models. The seven datasets include

Braga et al.’s [52], Zhang et al.’s [53], Li et al.’s [54], Cai’s [55], Doddaredy [24],

Zhang et al.’s [28], and Ogura et al.’s [27]. The oldest one was collected by Doddaredy

et al.’s in 2010 while the most recently collected one was from Zhang [28] in 2022.

Five out of the seven datasets have less than 10,000 sample points in their training

set whereas the other two have training set of more than 10,000 compounds. It is

noted that the one by Ogura et al.’s [27] is the largest hERG blockade dataset to date.

Categories of hERG blockers and non-blockers are defined differently in terms of various

IC50

thresholds in the seven datasets. A frequently used threshold is to classify compounds with

IC50 ≤  10μM

as blockers and those with

IC50 >  10μM

as non-blockers or decoys. Different thresholds separate distinct pools of blockers and

decoys, which affect discrimination prediction by machine learning. The prediction

performance of our models was assessed with other published models based on the given

split training and test set. The statistics of the seven datasets are shown in Table 4. The

partitions for training and test sets with the corresponding number of blocker/non-blocker

compounds are specified.

We used the seven datasets to evaluate the performance of our machine learning models

in classifying hERG blockers/non-blockers. The three types of embeddings were used

to build machine learning models for the seven datasets except for Ogura et al.’s

dataset [27]. Additional molecular embedding from algebraic graph learning (AGL) [37]

was employed to build models for Ogura et al.’s dataset [27] and to further enhance

predictive performance. The consensus probability results from eight models determined

the classification predictions of hERG blockers/non-blockers. A brief description of AGL is

provided in the Supporting information. The purpose of this study is to screen DrugBank

compounds on their hERG-blocking potential. We need one hERG inhibitor dataset that

covers compounds of enough chemical and structural diversities. This consideration follows

the fact that the hERG channel can be blocked by drugs from diverse chemical and

therapeutic classes. The dataset by Ogura et al. [27] is our top choice. We utilized the

classification model based on this dataset to screen DrugBank database for potential hERG

blockers. In addition to the qualitative analysis with the classification model, we built

regression models to predict the binding affinity of these potential blockers. We collected an

hERG inhibitor dataset of 6298 compounds from the ChEMBL database. With this dataset,

our regression model was built.
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4.2. Molecular embeddings

In this study, three types of molecular embeddings, namely topological Laplacian,

autoencoder, and bidirectional transformer, were mainly deployed to build machine learning

models. Each embedding was generated based on different philosophy. Their collective

performance through consensus results demonstrated extraordinary predictive power in the

aforementioned classification tasks. Besides, their individual performances were compared

in the last section. Their exceptional collective performance arises from the complementary

descriptive capability of the 3D structural and 2D sequence embeddings for molecules.

The topological Laplacians extract the high-dimensional physical and biological information

from the 3D molecular structures, and the crucial information in the 3D structure is encoded

into intrinsically low-dimensional representations. The obstacles posed by complexity and

elemental diversity are overcome by mathematical abstraction. On the other hand, the

required inputs for our mathematical extraction are atomic names and coordinates, bypassing

complicated data processing and parametrization in many other 3D-based methods. No

molecular mechanical force field including charges, electronegativity, dielectric constants,

and others are needed, and errors associated with those parametrizations are avoided. The

topological Laplacian is capable to reveal the changes in topological invariants and extract

homotopic geometric shape evolution during filtration. Chemical and physical interactions

including hydrogen bonds, electrostatics, van der Waals interactions, etc., can be embedded

with element-specific topological Laplacians based on several commonly occurring element

types.

The 3D-based molecular embedding relies on high-quality 3D molecular structures while

the 2D embedding encodes the molecular information from the 2D sequences, i.e., SMILES

representations of molecules. The wealth of such low-level molecular data in ChEMBL,

PubChem, and ZINC databases allow for the development of data-driven supervised or

unsupervised learning-based models. Such models usually use the encoder module to

convert SMILES into latent vector representations of given size, which can be used as

molecular descriptors. The sequence-to-sequence auto-encoder model [33] consists of the

encoder and decoder modules, which uses translation method to compress the SMILES

into intermediate latent representation and then convert the embedding to another form

of molecular representation. High-level semantic information of molecular sequences can

be encoded rather than just learning from the syntactic features and repetitive patterns

of sequences. This way, a comprehensive description of the chemical structure can be

extracted. Transformer-based model encodes molecular embedding by referring symbols of

masked parts of SMILES. Self-supervised learning using the attention mechanism has the

advantage of high parallelism and training efficiency. The excessively large training data was

used to promote the extraction of comprehensive molecular chemical and physical features.

In the following, we give a detailed description of the three types of embeddings.

4.2.1. Topological Laplacians—Graph theory investigates the relationship between

objects including nodes, edges, faces, and high-dimensional generalizations. The

explorations are being made with a range of tools from geometric graph theory, algebraic

graph theory, combinatorial graph theory, and spectral graph theory. Among them,
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combinatorial graph theory unveils both topological invariants and homotopic shape

information through the harmonic and non-harmonic spectra of the Laplacian matrix,

respectively. Another aspect of spectral analysis is by the de Rham–Hodge theory that

is based on differential geometry. The Hodge Laplacians for Laplace–Beltrami operator

on a compact Riemannian manifold allows us to obtain topological and geometric insight

of the underlying manifold by harmonic and non-harmonic spectra. The evolutionary de

Rham–Hodge theory provides more detailed analysis of evolving manifolds defined through

filtration parameters [58]. Filtration parameter is a tool to generate a series of geometric

shapes for a given data, on which, for example, persistent homology extracts the topological

persistence as one popular topological data analysis (TDA) [59,60]. The evolutionary

de Rham–Hodge theory develops the analysis with differential geometry and algebraic

topology while persistent homology fulfills the analysis via multiscale analysis and algebraic

topology.

Similar to the evolutionary de Rham Hodge theory, topological Laplacians (TLs), including

persistent spectral graphs [35], persistent path Laplacians [61], and persistent sheaf

Laplacians [62], form families of persistent

q

-combinatorial Laplacian operators. The harmonic and non-harmonic spectra can be

obtained from these Laplacians to capture the topological invariants and homotopic shape

evolution of the data, respectively. Topological Laplacians are powerful tools for the

multiscale analysis of the topological invariants and homotopic shape evolution of data.

A filtration of an oriented simplicial complex

K

is a sequence of the sub-complexes

K t  t =  0

of

K

:

� =  K 0  � K 1  ≤  K 2  � �Km  =  K  .

On each simplicial complex

K t

, the chain complex is defined as

Cq : =  Cq  K t

and the

q

-boundary operator

∂q : Cq K t Cq  −  1 K t

exists. For the general case with

0 <  q ≤  dim K t

, the
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q

-boundary operator takes the form

q
∂q σq     =  ∑ (  −  1)iσq −  1, for σq � Kt ,

i

where

σq =  v0, v1, …, vq

is an oriented

q

-complex, and

σq −  1 =  v0, …, v i, …, vq

is an oriented

q −  1

-simplex with the vertex

i

removed. When

q <  0

, the
Cq  K t      =  �

and

∂q

is a zero map. Corresponding the

q

-boundary operator, an adjoint operator called

q

-adjoint boundary operator is defined as

∂q : Cq −  1 K t Cq  K t  .

Consider
�t +  p

, a subset of
C t  +  p

with its boundary in

Cq  −  1

:

�q
+ p: =  {σ  � Cq

+  p � ∂q
+ p(σ) � Cq  −  1} .

On this subset, the

p

-persistent
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q

-boundary operator
ðt +  p:�t +  p Cq  −  1

and the adjoint boundary operator

(ðq
+ p)

*
: Cq −  1 �t +  p

are well defined. The

p

-persistent

q

-combinatorial Laplacian operator

Δq
+ p =  ∂q +  1 ∂q +  1 

* +  ∂q 
* ∂q,

which has following matrix representations:

t +  p t +  p t +  p T t T        t
q q +  1 q +  1 q q

It is noted that matrices
t +  p
q +  1

and

�q

are the matrix representations for boundary operators
t +  p
q +  1

and

ðq

, respectively. The number of rows in
t +  p
q +  1

equals that of oriented

q

-simplices in

K t

, and the column number corresponds to the number of oriented

q +  1

-simplices in

K t  +  q ∩ �q +  1

. Besides, the transposes of
t +  p
q +  1

and

�q

are the matrix representation for
t +  p *
q +  1

and

∂q 
*
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It is known that the topological and spectral information of

K t

can be revealed from the Laplacian operator. We obtain the spectra of
�t, p

and denote the set of spectra as

Spectra �t +  p     =      λ1 
t +  p, λ2 

t +  p , … ,  λN 
t +  p ,

where

N

indicates the dimension of
�t +  p

. The Betti numbers, the number of zero eigenvalues, of Laplacian matrix can reveal

q

-cycle information. For the

p

-persistent

q

-combinatorial Laplacian matrix
�t +  p

, number of zero eigenvalues, of Laplacian matrix can reveal

q

-cycle the Betti number is defined as below:

βq
+ p =  dim �t +  p −  rank �t +  p     =  nullity �t +  p =

number of zero eigenvalues of �t +  p .

The
βt +  p

value record the number of

q

-cycles in

K t

that are still alive in

K t  +  p

. For the 3D structure problem, the order of

q

ranges from 0 up to 2 as 0, 1, and 2 indicate vertex, edges, and faces, respectively.

Correspondingly,
βt +  p

value measures the persistence of connected components, tunnels or circles, and cavities or

voids. The harmonic persistent spectra can be used to track the topological changes while

non-harmonic persistent spectra enable us to derive geometric changes. This made TL even

more powerful than persistent homology that solely deals with the topological invariants.
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In the framework of TL, statistics on eigenvalue from Laplacian matrix
�t +  p

is used to generate molecular features. The statistics include
βt +  p

, and the sum, mean, median, maximum, minimum, standard deviation, variance, sum of the

square of the non-harmonic spectra. The performance with TL feature relies on the selection

of atoms from element combinations, which constitutes different oriented

q

-simplices in

K t

. Element-specific Laplacian matrices were constructed with different combinations of atoms

along the filtration radius. It requires us to analyze the element types and their atomic

proportion in molecular dataset. Besides, in this study, the filtration radius takes lower and

upper bound of 1 and 10 angstrom, respectively. This is elucidated by the molecular size

distribution as shown in Fig. 4a. Most compounds in each dataset have 3D size of less than

20 angstroms in the Cartesian directions. More details of element-specific Laplacian

matrices based on distribution analysis can be found in the Supporting information.

4.2.2. Sequence-to-sequence auto-encoder—Recently, Winter et al. [33] proposed

a data-driven unsupervised learning model to extract molecular information embedded in

the SMILES representation. Sequence-to-sequence autoencoders was utilized to translate

one form of molecular representation to another form, with comprehensive description of

chemical structure compressed in latent representation between encoder and decoder. The

resulting model allows for the molecular descriptors extraction for query compound without

retraining or using labels.

The translation model consists of the encoder and decoder networks. Both convolutional

neural network (CNN) and recurrent neural network (RNN) architectures were tried and

then fully connected layers map the output of CNN or the concatenated cell states of the

RNN networks to intermediate vector representations between encoders and decoders. The

decoder contains RNN networks with latent representations as input. In order to compress

more molecular chemical properties in the latent vectors, an additional classification model

was built by mapping the latent vectors to molecular property vectors. The mean squared

errors were defined to measure the molecular property predictions. The decoder’s RNN

network gave the probability distributions over different characters for the translated

molecular sequences. The loss function for training the autoencoder model is defined to

be the sum of cross-entropy between probability distributions and one-hot encoded correct

characters and the mean squared errors for molecular property predictions. The translation

model was trained with approximately 72 million molecular compounds from ZINC and

PubChem databases. Meaning molecular descriptors were formed in the latent vectors when

the translation model achieved high accuracy. We call such molecular descriptors in latent

vectors as auto-encoder (AE) embedding in our study.

4.2.3. Bidirectional transformer—Our previous work [34] developed a self-supervised

learning (SSL)-based platform that extracts molecular descriptors by bidirectional encoder
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transformer (BET). Massive molecular SMILES from three databases including ChEMBL,

PubChem, and Zinc were used as input in the transformer-based SSL pretraining, leading to

learned representations of molecules. Following the idea of the BERT model [63] for natural

language processing, our BET model only used the encoder architecture. But the input to the

encoder was molecular SMILES string and only the masked learning task was kept in the

pretraining process. The transformer encoder has the advantage of high parallelism and is

particularly beneficial for training massive data.

To fulfill the SSL, preprocessing of SMILES was needed. A total of 51 symbols

were considered as components of the SMILES string. In particular, symbols

′ s ′

and ′
\s ′

were added to the beginning and end of the SMILES as input to

the encoder. The maximum length of SMILES is 256. The symbol

′ pad ′

is used to supplement a SMILES string if its length is less than 256. A total of 15% of

the symbols were operated, among which 80% were masked, 10% were unchanged and the

remaining 10% were randomly changed. The BET framework recovered the symbols of the

masked parts by learning the unprocessed parts of SMILES in the training process. The

learned representation for molecular SMILES strings can be achieved.

The BET consists of eight bidirectional encoder layers, with each encoder containing a

multi-head self-attention layer and a fully connected feed-forward neural network. The

self-attention layers play a key role in the transformer models and capture the importance of

symbols. The attention mechanism used in each encoder layer is scaled dot-product attention

as described below

Attention(Q, K, V ) =  Softmax QK T      

V , (1)
k

where

Q

,

K

, and

V

are the query matrix, key matrix, and values matrix. The

dk

stands for the embedding dimension of each token for the symbols The scaling factor

dk

applied on the dot product of query and key matrix counteracts the divergence of dot-

product. The softmax function In our study, the multi-head self-attention is composed of 8

self-attention headers and each header draws attention to different aspects of the symbol

embedding and is beneficial to the prediction performance. The residual connection and

layer normalization techniques were applied to each of the two sub-layers. The cross-
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entropy function defined the loss function that measured the difference between the

predicted and real symbols at masked positions. The Adam optimizer was used in the

training process with the weight decay set to 0.1. The embedding dimension of each symbol

was 512 and the embedding size of fully connected feed-forward layers was 1024. The

molecular embedding matrix is composed of 256 embedding vectors with dimension 512.

The mean of embedding vectors for the valid symbols in one SMILES string is formed as

our molecular descriptors, which can be used in downstream machine learning tasks. It is

hence taken as our bidirectional transformer embedding. Three pretrained models were

generated with molecular SMILES from one or the union of the ChEMBL, PubChem, and

ZINC databases. In this study, the pretrained model solely using the ChEMBL database was

employed to generate transformer-based embeddings.

4.3. Residue–similarity (R–S) scores and indexes

Residue–Similarity (R–S) scores and indexes were proposed in our previous work [57]

and are potentially powerful visualization tools in data science. It can serve as an

alternative visualization approach in addition to traditional dimensionality reductions

including principal component analysis (PCA) and uniform manifold approximation and

projection (UMAP), but it has the advantage of avoiding aggressive dimension reduction

that induces poor representations for high-dimension data. Its visualization applications for

classification problems is not limited to binary study.

Residue–Similarity (R–S) scores or R–S plots are composed of two components, residue and

similarity scores. Assume the interested data samples forms a set

Ω  =      xm, ym     � xm � �N, ym � �L  m =  1 ,

where

xm

is the mth data point. The label

ym

indicates the ground truth in the classification problems while it represents the cluster label

in clustering problems. The feature representation
xm � �N

has

N

features and the dataset has

M

data samples. Besides,

L

means that the data have

L

types of labels, namely,

ym � [0, 1, 2, …, L]

. The whole set

Ω

can be partitioned into
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L

classes

ω =  xm � Ω  � ym =  l

according to the labels

ym =  1

and hence

Ω  =  �i =  0 l

.

The residue score is defined to be the normalized inter-class sum of the distances. Suppose

xm � ω

, then the inter-class sum of the distances is given as

R  xm     =      ∑ xm −  xj  ,
x j � ω

where

�

defines the distance metric for a pair of vectors. Then the residue score for

xm

is equal to

Rm : =      1 R  xm  , (2)
max

where

Rmax =  maxxm � Ω R  xm

. The similarity score

Sm

is the average of the intra-class scores. Specifically, for any

xm � ω

,

Sm : =  1∑  1 −  l

x j � ω

xm  −  xj

dmax
, (3)

where

dmax =  maxxi, xj � Ω          i  −  xj

. It is noted that both the residue score and similarity score range between 0 and 1. In our

study, the Euclidean distance is mainly used for the R–S scores, while others can be

employed as well. Generally, a large residue score

Rm

indicates the data has large dissimilarity from data in other classes, while a large similarity

score
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Sm

indicates that the data is well-clustered in the same class.

The residue score and similarity score can be employed in the visualization of each class,

where

Rm  m =  1

and

Sm  m =  1

are the x- and y-coordinates respectively. To compare the overall performance in the

clustering or classification prediction using different feature representations

xm m =  1

, we define the class residue index (CRI) and class similarity index for each class. For a class

l

, the two indexes are defined as

CRI l  =  1
l 
∑ m  Rm

and

CSI l =  C l  
∑ m  Sm

. with their range of [0, 1]. Considering the

L

classes for the data, it is more useful to define residue index (RI) and similarity index (SI)

for the whole set as

RI  =  L  ∑ l  CRI l

and

SI  =  L  ∑ l  CSI l

. It is intuitively true that it is better if these indexes are large no matter for the class-

independent ones or the overall indexes. We can also define the

R  −  S

disparity (RSD) with

RSD =  RS  −  SI

and we define

R  −  S

index (RSI) with

RSDI =  1 −  R I  −  SI

. All these indexes have a range of [0, 1] except that RSD ∈ [−1, 1]. We also define the R–S

correlation (RSC) between residual
Rm  m =  1

and similarity

Sm  m =  1

scores with the formula
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R S C  =
∑ m  =  1 Rm  −  R  S m  −  S

∑ m  =  1 Rm  −  R  2      ∑ m  =  1 S m  −  S  2 (4)

where

R

and

S

are the mean of

Rm  m =  1

and

Sm  m =  1

, respectively. As residue and similarity are two opposite measures of data analysis, the RSC

has a range of ∈ [−1, 0].

4.4. Model construction

In the last subsection, advanced mathematics-based, self-supervised, and unsupervised

learning-based molecular embeddings have been presented. Those embeddings were

combined with machine learning algorithms to develop our models. Gradient boosting

decision tree and deep neural network (DNN) algorithms were adopted in our study. The

generated three types of embeddings combined with two machine learning algorithms

give rise to totally six individual models, from which we obtain consensus models for

hERG blockade predictions. The consensus results are formed by the simple average

of the probability score. It has been found that the consensus approach can boost the

machine learning prediction in a variety of molecular property studies [54,64], and typically

outperforms individual models.

4.4.1. Gradient boosting decision tree—Gradient boosting decision tree (GBDT) is

an ensemble algorithm widely used for regression and classification tasks. Its philosophy

lies in creating a large number of weak learners (individual trees) by bootstrapping training

samples and making predictions by integrating the outputs of weak learners. Weak learners

are likely to make mistakes in predictions. The ensemble approach allows for reducing the

overall error by combining all the weaker learners. The GBDT algorithm is less sensitive

to hyperparameters, less prone to overfitting, and easy to implement. When trained on

small datasets, it can deliver better performance than DNN and a variety of other machine-

learning algorithms. It gained popularity in a wide range of quantitative structure–activity

relationship prediction problems [65,66]. The GBDT packages provided in the scikit-learn

(version 0.24.1) library were used in this work. Two sets of GBDT hyperparameters were

employed with the details summarized in Table 5.

4.4.2. Deep neural network—The neural network typically consists of multiple

interconnected layers of neutrons and mimics the human brain to solve problems with

numerous neuron units with backpropagation to update weights on each layer. The input

layer has a neuron number equal to the length of the input vector encoded by the molecular

feature representations. The hidden neuron layers record weighted sum of the output from its
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previous layer. Deep learning abstracts more properties of the molecular features through

network layers and the neuron in each layer. The last neuron layer yields the prediction of

the models. Our binary classification only contains one neuron for the prediction output. In

this study, all DNN models are composed of three hidden layers with varying input layer

sizes determined by the number of input features. The first and second hidden layers had

double size of the input layer size. The third layer had the same size as the input layer. The

stochastic gradient descent (SGD) algorithm is used for optimization with the momentum

parameter set as 0.9. The

L 2

normalization was used for regularization to avoid overfitting. The penalty weight was set to

be 0.0005. The network is fully connected with no dropout used. Due to the different sizes

of datasets, no uniform batch size was used. The rectified linear unit (ReLU) was used as the

activation function between the neuron layers except for the last layer. The softmax

activation was used for the last layer.

L 2

-penalized binary cross entropy as described in Eq. (5) was used as the loss function

B C E  =  −  1 ∑  y � log p y +  1 −  y � log 1 −  p y
i =  1

2

+  λ W (5)
2

where

p y

is the probability of class blocker,

1 −  p y

is the probability of class non-blocker,

N

indicates the number of compounds in the training set,

� � �2

represents the

L 2

norm, and

λ

denotes the penalty weight. The epoch numbers for all datasets are set to 200. The DNN

hyperparameters for all datasets are also listed in Table 5. All the DNN models were

implemented with PyTorch (version 1.10.0).

5. Conclusion

In this work, we construct new machine learning models to screen the DrugBank database

for potential hERG blockers. A few sets of advanced molecular embeddings were integrated

with gradient boosting tree and deep neural network algorithms to build state-of-the-art

machine learning models. Two sequence-based molecular embeddings were generated by

two natural language processing (NLP) methods while two 3D structure-based molecular

embeddings were devised by advanced mathematics including topological Laplacians and

algebraic graphs. The sequence-based embeddings are complementary to the 3D structure-
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based ones in representing molecules. Their collective efforts of describing molecules give

rise to the exceptional predictive ability of machine learning models. Our models shed

light on the side effect of DrugBank compounds on the hERG channel. According to

our classification models, 227 DrugBank compounds were predicted to be potential hERG

blockers. Our regression models give the binding affinity predictions for these blockers.

Some of the 227 predicted blockers have reported cardiotoxicity or hERG-blocking-induced

side effects, confirming our predictions. Our predictions offer a timely warning of the

potential side effects of these blockers. Further experimental tests or clinical trials are

urgently needed to scrutinize the alerted hERG-liability and cardiotoxicity.
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Refer to Web version on PubMed Central for supplementary material.
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Fig. 1.
Schematic illustration of our machine learning platform for screening the DrugBank

database for hERG blockers. a. Datasets from GOSTAR, hERGcentral, PubChem, and

ChEMBL databases are used to build classification and regression models. Compounds

in the DrugBank database are screened for hERG blockade. b. Molecular embeddings

for compounds from above databases are generated by transformer, autoencoder,

topological Laplacian, and algebraic graph algorithms. Natural language processing (NLP)-

based Transformer and autoencoder offer sequence information. Advanced mathematics-

based topological Laplacian and algebraic graph provide complementary 3D structural

information. c. Gradient boosting decision tree (GBDT) and deep neural network (DNN)

algorithms are integrated with the aforementioned molecular embeddings to build machine

learning models. d. Classification and regression models are trained by using the

aforementioned molecular embeddings and machine learning models. e. Virtual screening

of the DrugBank database is carried out for hERG blockers using the trained classification

and regression models.
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Fig. 2.
a. The Cryo-EM structure of hERG protein with PDB code 7CN1. It has four identical

α-subunits with each containing six α-helical transmembrane domains. b. The ROC-AUC

curve of our classification models for six datasets with separate test sets.
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Fig. 3.
Illustration of the R–S score, SI, RSI, RSC, and accuracy of transformer (TF), autoencoder

(AE), and topological Laplacian (TL) embeddings for six data sets. a. R–S score analysis of

TF, AE, and TL. b. SI and RSI analysis of TF, AE, and TL. c. RSC analysis of TF, AE, and

TL. d. Accuracy of TF, AE, and TL.
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Fig. 4.
The distributions analysis of the seven classification datasets. The blue color indicates the

training sets of each dataset while other colors denote the distributions for corresponding

test sets. a. shows the molecular size distribution, where size is measured by the maximum

molecular length in the three Cartesian directions. b. represents atom number distributions

of molecules for the seven datasets. c. represents the distributions of element portion in

single molecule for the seven datasets. The most occurring atoms in molecules come from

the listed seven types of elements. Atoms of element H and C are the two dominating

constituents in molecules while the portion of other kinds of atoms are low.
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Table 1

Summary of the predicted top 20 potential hERG blockers from FDA-approved drugs and four additional

approved drugs that have been withdrawn from the market. The predicted binding affinities (unit: kcal/mol)

and

IC50

(μM) values by our regression model are given. Additionally, the reliability scores of the regression and

classification prediction are provided.

Drugbank

ID

Generic

name

Predicted

BA

Predicted

IC5 0

Regression

reliability

Classif.

reliability

1 DB00308

2 DB00204

3 DB13766

4 DB01100

5 DB00246

6 DB01184

7 DB11742

8 DB00276

9 DB11125

10      DB04855

11      DB00732

12      DB01226

13      DB11340

14      DB04842

15      DB06401

16      DB01268

17      DB09076

18      DB12877

19      DB04931

20      DB04946

1 DB06144

2 DB00342

3 DB08950

4 DB00604

Ibutilide −11.06 0.02

Dofetilide −11.04 0.02

Lidoflazine −11.01 0.02

Pimozide −11.06 0.08

Ziprasidone −9.72 0.15

Domperidone −9.64 0.17

Ebastine −9.62 0.18

Amsacrine −9.5 0.22

Benzethonium −9.35 0.28

Dronedarone −9.27 0.32

Atracurium −9.21 0.35

Mivacurium −9.14 0.39

Ubiquinol −9.12 0.39

Fluspirilene −9.09 0.43

Bazedoxifene −8.98 0.52

Sunitinib −8.96 0.53

Umeclidinium −8.95 0.54

Oxatomide −8.85 0.65

Afamelanotide      −8.82 0.68

Iloperidone −8.77 0.74

Sertindole −11.1 0.01

Terfenadine −8.87 0.62

Indoramin −8.55 1.07

Cisapride −8.26 1.75

1.0 0.81

1.0 1.0

1.0 0.84

1.0 0.87

1.0 1.0

1.0 0.87

1.0 0.92

1.0 1.0

0.94 1.0

1.0 1.0

0.79 0.74

0.78 0.78

0.61 0.7

0.87 1.0

0.77 0.77

1.0 1.0

0.85 0.85

0.88 0.83

0.65 0.68

0.86 0.87

1.0 1.0

1.0 0.93

0.8 1.0

0.94 0.99
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Table 2

Summary of the predicted top 20 hERG blockers from investigational or experimental drugs and three

investigational or experimental drugs that have been withdrawn from the market. The predicted binding

affinities (unit: kcal/mol) and

IC50

(μM) values by our regression model are given. Besides, the reliability scores of the regression and

classification prediction are provided.

Drugbank ID Generic
name

Predicted
BA

Predicted
50

Regression
reliability

Classif.
reliability

1 DB12517

2 DB07405

3 DB04682

4 DB03232

5 DB05695

6 DB13791

7 DB05414

8 DB16144

9 DB13511

10      DB12869

11      DB04615

12      DB02615

13      DB08622

14      DB04614

15      DB06311

16      DB04471

17      DB02715

18      DB13554

19      DB05137

20      DB08009

1 DB08954

2 DB01388

3 DB08990

PF-00446687 −10.97 0.02

1-(6-CYANO-3-PYRIDYLCARBONYL)-5’,8’- −9.92 0.11
DIFLUOROSPIRO[PIPERIDINE-4,2’(1’H)
-QUINAZOLINE]-4’-AMINE

Octylphenoxy polyethoxyethanol −9.51 0.21

2-[(2e,6e,10e,14e,18e,22e,26e)-3,7,11,15,19, −9.51 0.21
23,27,31-Octamethyldotriaconta-2,6,10,
14,18,22,26,30-Octaenyl]Phenol

NPS-2143 −9.29 0.31

Penfluridol −9.12 0.41

Pipendoxifene −8.94 0.56

Dopastatin −8.88 0.61

Clebopride −8.85 0.65

Eliprodil −8.84 0.66

(S)-tacrine(10)-hupyridone −8.8 0.7

Compound 19 −8.77 0.74

4-(4-CHLORO-PHENYL)-1-{3-[2-(4-FLUORO −8.76 0.75
-PHENYL)-[1,3]DITHIOLAN-2-YL]-
PROPYL}-PIPERIDIN-4-OL

(R)-tacrine(10)-hupyridone −8.75 0.76

Darapladib −8.74 0.77

2-Phenyl-1-[4-(2-Piperidin-1-Yl-Ethoxy)-Phenyl]      −8.73 0.79
-1,2,3,4-Tetrahydro-Isoquinolin-6-Ol

Compound 18 −8.7 0.83

Moperone −8.65 0.9

Lobeline −8.65 0.9

SU-11652 −8.63 0.94

Ifenprodil −9.91 0.11

Mibefradil −8.77 0.74

Eprazinone −8.43 1.32

0.99 0.97

1.0 1.0

0.63 0.71

0.66 0.86

1.0 0.99

0.84 0.84

0.76 0.79

0.63 0.64

1.0 1.0

0.83 0.84

0.76 0.78

0.81 0.83

0.81 0.81

0.76 0.78

0.77 0.77

0.8 0.8

0.81 0.83

0.84 0.88

0.81 0.94

0.99 0.99

1.0 0.81

1.0 0.97

0.78 0.82
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Table 4

Details of seven hERG datasets used for benchmarking our classification models. The Braga et al.’s dataset

[52] is used for five-fold cross-validation, while all others have separate test sets.

Dataset

Braga [52]

Zhang [53]

Li [54]

Cai [55]

Doddaredy [24]

Ogura [27]

Zhang [28]

Splitting

5-fold
cross-validation

Training
Test

Training
Test

Training
Test

Training
Test

Training
Test

Training
Test

Blockers

3388

562
244

973
234

3485
435

1004
108

6923
2967

5530
1377

Non-blockers      Total

3436 6824

365                       927
163                       407

2748                     3721
858                       1092

469 3954
58 493

1385 2389
147 255

196930 203853
84399 87366

4750 10859
1193 2570
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