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The main result of this paper is that any 3-dimensional manifold with a finite group 
action is equivariantly invertibly homology cobordant to a hyperbolic manifold; this 
result holds with suitable twisted coefficients as well. The following two consequences 
motivated this work. First, there are hyperbolic equivariant corks (as defined in 
previous work of the authors) for a wide class of finite groups. Second, any finite 
group that acts on a homology 3-sphere also acts on a hyperbolic homology 3-
sphere. The theorem has other corollaries, including the existence of infinitely many 
hyperbolic homology spheres that support free Zp-actions that do not extend over 
any contractible manifolds, and (from the non-equivariant version of the theorem) 
infinitely many that bound homology balls but do not bound contractible manifolds. 
In passing, it is shown that the invertible homology cobordism relation on 3-
manifolds is antisymmetric, and thus a partial order.

© 2023 Elsevier B.V. All rights reserved.

1. Introduction

The group of smooth homology cobordism classes of oriented 3-dimensional integral homology spheres 
has a complicated structure that is not fully understood, despite many advances coming from 4-dimensional 
gauge theory; see for example [22,25]. This group appears in the theory of higher-dimensional manifolds, and 
also features prominently in the study of smooth 4-manifolds. The Rohlin invariant gives an epimorphism to 
Z2, and for a while this was all that was known about this group. With the advent of gauge theory techniques 
[18], it was shown to be infinite [22] (e.g. it is an easy consequence of Donaldson’s diagonalization theorem 
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[19] that the Poincare homology sphere represents an element of infinite order), indeed infinitely generated 
[25,23]. There have been many results since on the structure of this group, and on its applications, including 
Manolescu’s spectacular resolution of the triangulation conjecture [43].

It is interesting to explore how homology cobordism interacts with geometric structures on 3-manifolds. 
For example, the homology cobordism group modulo the subgroup generated by Seifert fibered spaces is 
infinitely generated [33]. In contrast, Myers [52] proved that every 3-manifold is homology cobordant to 
a hyperbolic manifold, and this result was later refined by Ruberman [59] to show that such cobordisms 
can be taken to be invertible; the latter result has been applied to construct exotic smooth structures on 
contractible 4-manifolds [2].

In this paper we show that any 3-manifold M with a finite group action is equivariantly invertibly 
homology cobordant, with twisted coefficients, to a hyperbolic manifold. The statement about twisted 
coefficients refines the earlier work of Myers and Ruberman, even in the non-equivariant setting: it shows 
that all the covering spaces of the constructed cobordism corresponding to subgroups of π1(M) are also 
homology cobordisms. As will be seen, this result has applications to 4-dimensional smooth topology and 
to the 3-dimensional space form problem, and may also be of interest in spectral geometry (cf. [6]).

Throughout we work in the category of smooth, compact, oriented manifolds. All group actions are 
assumed to be effective and orientation preserving, and all homology groups are assumed to have integer 
coefficients unless indicated otherwise.

To state our main result, recall that a homology cobordism is a cobordism whose inclusions from the 
ends induce isomorphisms on homology. For non-simply connected manifolds there is a stronger notion of 
homology cobordism with twisted coefficients in any module over the group ring of the fundamental group 
of the cobordism. Also recall (see e.g. [61,62,59]) that a cobordism P from M to N is invertible if there is 
a cobordism Q from N to M with P ∪N Q ∼= M × I. In this setting, there is a surjection from π1(P ) to 
π1(M), and this surjection is implied when we talk about the homology of P with coefficients in Z[π1(M)]. 
See Section 2 for details, and the Appendix for a proof that invertible cobordism is a partial order on 
3-manifolds.

Theorem A. Any closed 3-manifold M equipped with an action of a finite group G is equivariantly invertibly 
Z[π1(M)]-homology cobordant to a hyperbolic 3-manifold N with a G-action by isometries. This cobordism 
may be chosen to be a product along a neighborhood of the singular set of the action.

We were led to this theorem by a question in 4-dimensional smooth topology. Consider a finite group G
that acts on the boundary of some compact contractible 4-dimensional submanifold of R4, for example any 
finite subgroup of SO(4). In a recent paper [5] we constructed a compact contractible 4-manifold C with 
a G-action on its boundary and an embedding of C in a closed 4-manifold X such that removing C from 
X and regluing by distinct elements of G yields distinct smooth 4-manifolds; related results were obtained 
by Tange [63] for G finite cyclic and Gompf [27] for G infinite cyclic. We call such a gadget a G-cork. In 
our construction ∂C is reducible, and it is natural to ask if there exist G-corks with irreducible or even 
hyperbolic boundaries; we call these hyperbolic G-corks. Tange [64] has recently shown that his cyclic corks 
have irreducible boundaries, and (by computer calculations with HIKMOT [34]) that some are hyperbolic. 
As a consequence of Theorem A, proved in Sections 3–5, we will deduce:

Corollary B. There exist hyperbolic G-corks for any finite group G that acts on the boundary of some compact 
contractible 4-dimensional submanifold of R4.

The proof of this corollary will be given in Section 6, along with the following applications to low 
dimensional topology. We start with a hyperbolic version of a non-extension result for group actions due to 
Anvari and Hambleton [3].
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Corollary C. For any Brieskorn homology sphere Σ(a, b, c) and prime p � abc, there is a hyperbolic homology 
sphere N(a, b, c) with a free Zp-action that is Zp-equivariantly homology cobordant to the standard action on 
Σ(a, b, c), and that does not extend smoothly over any contractible 4-manifold that N(a, b, c) might bound.

We then apply Theorem A in a non-equivariant setting to show that the difference between bounding an 
acyclic and contractible 4-manifold occurs for hyperbolic homology spheres.

Corollary D. There are infinitely many hyperbolic homology spheres that bound homology balls but do not 
bound contractible manifolds.

The class G of all finite groups that act on homology 3-spheres (hyperbolic or not) include the finite 
subgroups of SO(4) and some generalized quaternion groups of period 4 (as shown by Milgram [48] and 
Madsen [42]; see also [17, p.xi], [37]). It has been an open question since the early 1980s to determine exactly 
which groups lie in G, and to say something about the geometric nature of the homology spheres on which 
they act. Theorem A sheds light on this last question, especially for free actions.

Corollary E. Any finite group that acts on a homology 3-sphere also acts on a hyperbolic homology 3-sphere, 
with equivalent fixed-point behavior (i.e. the two actions are equivariantly diffeomorphic near their fixed 
point sets). In particular, there exist finite groups that are not subgroups of SO(4) (so by geometrization do 
not act freely on S3) that act freely on some hyperbolic homology 3-sphere.

Remark. Our results, in particular Theorem A and Corollary E, are related to a recent paper of Bartel 
and Page [6] that constructs an action of an arbitrary finite group G on a hyperbolic 3-manifold M whose 
induced action on H1(M ; Q) realizes any given finitely generated Q[G] module. Indeed both our paper and 
theirs construct actions of finite groups on 3-manifolds with prescribed homological action. However, neither 
paper implies the results of the other; for instance [6] deals only with the action on rational homology, and 
does not provide a homology cobordism. On the other hand, our hyperbolization requires the existence of an 
action on some 3-manifold as a starting point. It would be of interest to establish a sharper result realizing 
a given Z[G] module (even one with Z torsion) by an action on some 3-manifold; our hyperbolization 
procedure would then produce such an action on a hyperbolic manifold.

Corollary E is also related to work of Cooper and Long [16] that constructs a free action of any finite 
group G on a hyperbolic rational homology sphere. It seems to have been known previously – as pointed out 
to us by Jim Davis – that the surgery-theoretic methods of [10] give such an action on some (not necessarily 
hyperbolic) rational homology sphere; combining this observation with Theorem A thus gives an alternative 
proof of the Cooper-Long result.

In outline, the proof of Theorem A is similar to the proofs of the analogous theorems in [52] and [59]. Start 
with a Heegaard splitting of M of genus at least 2 with gluing map h. Then replace each handlebody, viewed 
as the exterior of a trivial tangle in the 3-ball, with the exterior of an invertibly null-concordant hyperbolic 
tangle. To build the cobordism, glue the two concordances together by the map h × id. The top of the 
cobordism will be shown to be hyperbolic via the gluing techniques underlying Thurston’s hyperbolization 
theorem [49,46].

To make this construction G-equivariant requires some modifications of this argument, even for free 
actions. One starts with a Heegaard splitting of the orbit space M/G, and then replaces the handlebodies 
with copies of the tangle exterior as in the outline above. This gives an invertible cobordism from M/G to 
a hyperbolic 3-orbifold. Now if the action is free, then the induced G cover is an invertible cobordism P
from M to a hyperbolic 3-manifold N that is equivariant with respect to the G-action. However, there is 
no reason that P should be a homology cobordism, or indeed that N should have the same homology as 
M . The issue is that while the tangle exteriors are Z-homology equivalent to handlebodies, they are not 
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Fig. 1. Atomic tangles in the 3-ball.

necessarily homology equivalent with arbitrary (in this case Z[G]) coefficients. This is of course familiar 
from knot theory; a covering space of a homology circle such as a knot complement need not be a homology 
circle. The resolution of this issue is to further decompose each handlebody into 0 and 1-handles. These 
handles will be replaced with fake 0 and 1-handles that will be hyperbolic tangle exteriors. These are no 
longer homology handles, but rather homology handlebodies, but now one has control over their lifts.

We will begin with some standard tangle exteriors, referred to as atoms, then glue these together by a 
bonding process to make the fake handles, and finally glue these fake handles together to make fake handle-
bodies and relative cobordisms. This localization will ensure that the replacement is homology cobordant to 
a handlebody H (with coefficients in Z[π1(H)]) and again Thurston’s gluing theorem will be used to create 
a closed hyperbolic manifold. With some additional work, this argument extends to the case when G has 
some fixed points. In this setting the quotient M/G will be an orbifold, and we will essentially be working 
with an orbifold Heegaard splitting.

In our proof we will need tangles that are simple (a.k.a. hyperbolic) and doubly-slice, and that retain these 
properties as they are suitably glued together. These notions will be made precise in §2. A basic example 
is the 4-component boundary tangle R4 in the 3-ball displayed in Fig. 1a, with Seifert surface F4 shown in 
Fig. 1b. Its n-component generalization Rn, with Seifert surface Fn, is the lift of the generating arc R ⊂ B3

shown in Fig. 1c to the n-fold branched cover along the axis A perpendicular to the page. Note that the 
endpoints of Rn all lie on the equator On of B3 lying in the page, linking A once. We will refer to the Rn

for n ≥ 2 as atomic tangles, and to the On as their atomic orbits. The atomic tangles were the key players 
in the last author’s construction of invertible homology cobordisms in [59].

Remark 1.1. Since R and A are disjoint, so is each Rn and (the lift of) A; this will ultimately be the reason 
why the cobordism in Theorem A is a product near the singular set.

The following technical proposition, extracted from the proof of Theorem 2.10 in [59], establishes the 
desired properties of the tangles Rn.

Proposition 1.2. The atomic tangles Rn ⊂ B3 are a) simple for all n ≥ 3.5 and b) doubly-slice for all n.

The proof is reviewed in the next section in the process of analyzing the more complicated tangles that 
arise in our constructions.

Acknowledgment. The authors thank Ian Hambleton for input regarding the 3-dimensional space form 
problem, and Jeff Meier for a helpful communication about the boundary of the Mazur manifold.

5 In fact R2 is simple as well; see Remark 2.14.
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Fig. 2. Two markings for the atomic tangle R4.

2. Technical background

2.1. Marked tangles

In this paper, a tangle T in a 3-manifold M will refer to a finite disjoint union of proper arcs in M , called 
the strands of T . Thus closed loops are not allowed. We also assume that the endpoints of any given strand 
lie in the same component of ∂M . A marking of T is a disjoint collection A of arcs in ∂M that join each 
strand’s endpoints. This gives a way to close T into a link T ∪A with the same number of components. The 
pair (T, A) is called a marked tangle, and T ∪ A its associated link. Two marked tangles (S, A) and (T, B)
in M are considered equivalent if (M, S ∪A) and (M, T ∪B) are pairwise diffeomorphic.

Tangle markings are not generally unique. For example, two distinct markings A0 and A1 for the atomic 
tangle R4 ⊂ B3 from Fig. 1 are shown in Fig. 2. In this picture, the part of the tangle inside the ball is 
drawn in muted tones. In subsequent pictures we will omit these interior strands, but will always either 
draw the markings on the surface, or indicate in some other way where they lie.

Remark 2.1. The canonical marking A0 is the unique marking of R4 that lies in its atomic orbit O4. Its 
position on the boundary of a 3-ball B in which R4 lies can be specified by drawing O4 ⊂ ∂B marked with 
one point from each component of A0. The analogous marking of any atomic tangle Rn, also denoted A0
and called its canonical marking, can likewise be specified by drawing On ⊂ ∂B3 marked with n points.

At the end of this section, we will build some more complicated marked tangles called K-molecules by 
assembling canonically marked atomic tangles Rn lying in copies of the 3-ball. Each 3-ball will be viewed 
as a product D2 ×D1 with axis A = {0} ×D1. We will assume that the orbit On is transverse to the circles 
C± = ∂D2 × {±1}, and is marked with the points in On ∩ (C+ ∪ C−). It follows that n = |O ∩ (C+ ∪ C−)|
will always be even.

Definition 2.2. The index of any canonically marked atomic tangle Rn ⊂ D2 × I as above is the pair of 
geometric intersection numbers (n+, n−) = (|On ∩ C+|, |On ∩ C−|). Thus n+ + n− = n, and each tangle 
strand runs from the cylinder ∂D2 ×D1 on the side to the top or bottom boundary disk, straddling C+ or 
C−.

Remark 2.3. The lift of an Rn ⊂ D2 ×D1 of index (n+, n−) to the k-fold cyclic cover of D2 ×D1 branched 
along A is an Rkn ⊂ D2 ×D1 of index (kn+, kn−).

For our purposes, only tangles of index (n, 0) or (n/2, n/2) will arise; their strands will either all straddle 
the top circle C+, or half straddle C+ and half straddle C−. See Fig. 3 for two representative examples.

Several classes of marked tangles are relevant to our discussion, including (in increasing generality) trivial, 
elementary, doubly-slice and boundary tangles. Here are the precise definitions of all but the doubly-slice 
class, postponed until later in this section:
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Fig. 3. Tangles in D2 × I.

Definition 2.4. A marked tangle (T, A) in a 3-manifold M is trivial if its associated link T ∪A is an unlink. 
More generally (T, A) is called a boundary tangle if T ∪A is a boundary link, meaning its components bound 
disjoint surfaces in M . The union of these surfaces, positioned to meet ∂M in A, is then called a Seifert 
surface for (T, A) with inner boundary T and outer boundary A. In particular, if (T, A) has a Seifert surface 
F with a good basis, meaning embedded curves α1, β1, . . . , αn, βn representing a basis for H1(F ), disjoint 
except for a single point in αi ∩ βi for each i, and satisfying the two properties

a) the αi bound disjoint disks in M whose interiors intersect F only in arcs transverse to the β curves
b) the βi bound disjoint disks in M whose interiors intersect F only in arcs transverse to the α curves

then (T, A) is called an elementary tangle.

The markings in this definition are essential.6 For example (R4, A1) is not a boundary link, as its linking 
matrix is nonzero, while (R4, A0) and more generally all the canonically marked atomic tangles (Rn, A0)
are; they have the obvious Seifert surfaces Fn of genus one components, illustrated for n = 4 in Fig. 1b. In 
fact letting αi (resp. βi) be the obvious closed curves traversing the bands on the left (resp. right) side of 
each component of these surfaces – when viewed with its outer boundary at the bottom – we see that:

Lemma 2.5. All canonically marked atomic tangles are elementary.

2.2. Tangle sums

Tangles can be added together in a variety of ways. For the present purposes, the following notions of 
tangle sums and marked tangle sums will suffice:

Definition 2.6. Given tangles Ti ⊂ Mi for i = 1, 2, choose gluing disks Di ⊂ ∂Mi containing an equal number 
of tangle endpoints in their interiors. Then glue M2 to M1 by a diffeomorphism h : D2 → D1 that identifies 
these endpoints without creating loops. The result is the tangle sum T1 +h T2 := T1 ∪h T2 in the boundary 
connected sum M = M1 ∪h M2. The common image D ⊂ M of the Di after gluing is called the splitting 
disk of the sum. More generally we allow the Di (so also D) to be unions of more than one disk.

To propagate hyperbolic structures on tangles to their tangle sums – see Proposition 2.15 below – we 
will use a restricted class of simple tangle sums:

Definition 2.7. A tangle sum T0 +h T1 as in Definition 2.6 is simple if each gluing disk in Di contains at 
least two tangle endpoints, and each component of ∂Mi−Di contains at least two tangle endpoints if it is a 

6 Classically, an unmarked tangle T is called a boundary tangle if (T, A) is a boundary tangle in the sense of Definition 2.4 for 
some marking A of T . Not all tangles are boundary tangles in this classical sense; for example the invariants In from [14] give 
obstructions, and these are all realized using [13].
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Fig. 4. A marked tangle sum T0 ∪h T1 ⊂ M = M0 ∪h M1.

disk and three if it is a sphere. In other words each component of Di−Ti and (∂Mi−Di) −Ti has negative 
euler characteristic, or equivalently, is not a sphere, torus, disk or annulus.

Definition 2.8. If the tangles Ti ⊂ Mi in Definition 2.6 have markings Ai ⊂ ∂Mi that straddle the boundaries 
of the gluing disks Di (meaning each arc component of Ai that intersects Di meets ∂Di transversely 
in a single point), and if h preserves the markings (meaning h(A2 ∩ D2) = A1 ∩ D1), then T1 +h T2
acquires a natural marking A1 +h A2 := (A1 ∪h A2) ∩ ∂M , and the result is the marked tangle sum
(T1, A1) +h (T2, A2) := (T1 +h T2, A1 +h A2).

A marked tangle sum is shown in Fig. 4. It is immediate from the definition – by gluing the relevant 
Seifert surfaces together – that marked sums of boundary tangles are again boundary tangles. The same is 
true for elementary tangles and doubly-slice tangles (defined below; see Proposition 2.20a).

2.3. Thurston’s hyperbolization and simple tangles

The 3-manifolds that we construct in the course of proving Theorem A will be shown to be hyperbolic 
using Thurston’s hyperbolization theorem for Haken 3-manifolds [67,35,53,54] and standard techniques for 
checking that 3-manifolds obtained by gluing satisfy the hypotheses of his theorem.

To efficiently state Thurston’s theorem and the relevant gluing results, it is convenient to call a surface 
in a 3-manifold essential if it is compact, properly embedded, incompressible and nonboundary-parallel 
(see [70] for the definitions). We also assume implicitly unless indicated otherwise that all 3-manifolds are 
compact, oriented, irreducible (no essential spheres) and boundary irreducible (incompressible boundary). 
Such a 3-manifold is said to be Haken if it contains an essential surface, and simple if it contains no essential 
tori, annuli or disks. The analogous conditions for tangles will also be used:

Definition 2.9. A tangle in a 3-manifold is Haken if its exterior (the complement of an open tubular neigh-
borhood) is Haken, and simple if its exterior is simple.

Thurston’s theorem for closed 3-manifolds asserts that these conditions together – the presence of an 
essential surface of Euler characteristic < 0 but none of Euler characteristic ≥ 0 – imply that the manifold 
is either small (meaning Seifert fibered over the 2-sphere with three singular fibers) or hyperbolic.

Theorem 2.10. (Thurston) Any closed simple Haken 3-manifold that is not a small Seifert fibered manifold 
admits a complete hyperbolic metric.

The hyperbolization result of the last author [59] relied on proving that the atomic tangles Rn from §1 
are simple for n ≥ 3 (Proposition 1.2a). We also need this result here, but will not repeat the proof.7 In 

7 Here is a sketch from [59]: Recall that Rn is the lift of an arc R in the 3-ball under a branched cover along an axis A of 
the ball disjoint from R. Let X = B3 − int(R ∪ D), where R and D are closed tubular neighborhoods of R and A, and let P
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addition, we need a way to see that certain manifolds built from these atoms are simple. The necessary 
gluing results can be found in Myers’ work [51,52].

Definition 2.11. Let M be a compact irreducible 3-manifold and F a compact subsurface of ∂M . A properly 
embedded surface S ⊂ M is of type k (with respect to F ) if ∂S is transverse to ∂F in ∂M , and S ∩ F

consists of k arcs, all essential in F , and any number of circles. The pair (M, F ) is simple if it satisfies the 
properties

a) F contains no torus, annulus or disk components, and
b) M contains no essential tori, annuli of type 0, or disks of type ≤ 1,

and very simple if it also satisfies c) M contains no essential disks of type 2.

Remarks 2.12. a) Arcs in ∂S ∩ F that are inessential in F can always be removed by an isotopy of S. Thus 
every properly embedded surface in M is isotopic to one of type k for some k.
b) Having no essential disks of type 0 is equivalent to the incompressibility of F and ∂M − F in M .
c) When the pair (M, F ) is simple, M itself need not be simple. In particular, ∂M may be compressible in 
M and/or M may contain incompressible annuli or disks, but the annuli of type 0 and disks of type ≤ 1
(and also type 2 for very simple pairs) must all be boundary parallel. However, If M is simple, then the 
pair (M, F ) is very simple if and only F satisfies just property a) in Definition 2.11; properties b) and c)
are automatic since M contains no essential tori, annuli or disks whatsoever.
d) A compact irreducible 3-manifold M is simple if and only if the pair (M, ∅) is (very) simple.

These notions of simple and very simple pairs are exactly Myers’ Properties B′ and C ′ that feature in 
the following gluing result [52, Lemma 2.5], proved in Section 3 of [51]:

Lemma 2.13. (Myers) If (M0, F0) is very simple, (M1, F1) is simple, and h : F1 → F0 is a homeomorphism, 
then M = M0 ∪h M1 is simple and Haken.

Proof sketch. A standard innermost curve argument shows that the splitting surface F in M (the common 
image of F0 and F1 after the gluing) is incompressible, so M is Haken. If S is any proper disk, incompressible 
annulus or incompressible torus in M , then innermost curve and outermost arc arguments using conditions
b) and c) in Definition 2.11 show how to isotop S off of F , and thus into Mi for some i ∈ {0, 1}. It follows 
from the simplicity of (Mi, Fi) that S is parallel to a surface in ∂Mi, which by condition a) actually lies in 
∂Mi − Fi ⊂ ∂M . Thus S is inessential in M , proving that M is simple. �
Remark 2.14. The conclusion of the lemma still holds under the weaker assumption that h is an embedding 
of F1 onto a union of components of F0, essentially by the same argument. From this one can give a quick 
proof that the atomic tangle R2 ⊂ B3 is simple (a result of independent interest, not needed in this paper): 
First observe that R2 is isotopic to the pretzel tangle T3,−3,3 shown in Fig. 5a. Viewing any tangle T as 
lying in I ×D2, where both strands enter through the left disk T− = {0} ×D2 and exit through the right 
disk T+ = {1} ×D2, we see that T3,−3,3 = T3,−3 +h T3, where h : T−

3 → T+
3,−3, as indicated in Fig. 5b. Now 

appeal to the fact that (T3,3, T
−
3,3 ∪T+

3,−3) is very simple and (T3, T
−
3 ) is simple, the latter proved in [51, §4]

and the former by similar methods (exploiting the fact that there are only six proper arcs up to isotopy in 
a pair of pants).

be the annulus ∂X ∩ R. Gluing results from [49] can be used to show that X is hyperbolic in a certain sense, in particular the 
pair (X, P ) is a ‘pared manifold’. The result then follows by standard arguments about incompressible surfaces in branched covers, 
using equivariant versions of the loop, sphere, annulus and torus theorems (see Theorem 2.10 in [59]). A direct proof that Rn is 
simple for n ≥ 3 using Lemma 2.13 would also be desirable; see Remark 2.14 for such a proof when n = 2.
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Fig. 5. Decomposition of the atomic tangle R2.

We apply these gluing techniques in two situations, the first when the gluing surfaces have boundary, 
and the second when they are closed. For the bounded case, consider a simple tangle sum T0∪h T1 of simple
tangles Ti ⊂ Mi with gluing disks Di ⊂ ∂Mi. Write Xi for the exterior of Ti in Mi, and set Yi = Di∩Xi. By 
Definition 2.7, this means that no components of Yi or ∂Xi − Yi are tori, annuli or disks. Thus both pairs 
(Xi, Yi) are very simple by Remark 2.12c, so the exterior X0 ∪h X1 of T0 ∪h T1 in M0 ∪h M1 is simple (and 
Haken) by Lemma 2.13. This proves the first part of the following result; the second part is an immediate 
consequence of Remark 2.12c, Lemma 2.13 and Thurston’s theorem.

Proposition 2.15. a) Any simple sum of simple tangles is a simple tangle.
b) Any closed 3-manifold obtained by gluing together a pair of simple 3-manifolds is hyperbolic or a small 
Seifert fibered space. �

Our proof of Theorem A will rely on this proposition in the following way: Starting with a Heegaard 
splitting H0 ∪h H1 of a 3-manifold M , we will repeatedly apply Proposition 2.15a (and Proposition 2.20a 
below) to construct simple, doubly-slice (as defined in the next subsection) molecular tangles in H0 and H1, 
with an equal number of strands. Then gluing their exteriors H0 and H1 together by a natural map hhyp
induced by h will yield a simple manifold N , by Proposition 2.15b. A small modification will then show 
that the result is not a Seifert Fibered space. If the Heegaard splitting of M is equivariant with respect to 
the action of a finite group G on M (in a strong sense explained in the next section), and the simple tangles 
in the Hi are suitably chosen, then M will be invertibly homology cobordant to N (as defined below). The 
details of this construction will be explained in the next three sections.

To complete the proof of Theorem A we will need to show that the orbifold M/G is hyperbolic. There are 
two approaches: either expand the discussion above to include a definition of simple orbifold pairs, and argue 
that the gluing results hold in this more general setting, or make use of Thurston’s orbifold theorem [9,15]. 
We follow the latter approach, and in fact need only the following special case:

Theorem 2.16. Any action of a finite group G on a closed hyperbolic 3-manifold M is conjugate to an action 
by isometries, and so M/G is a hyperbolic orbifold.

This is due to Wang [71] if the action has fixed points (meaning points with nontrivial stabilizers), and 
follows by geometrization [55–57,50] or by [26] for free actions.

2.4. Invertible cobordisms and doubly-slice tangles

Invertible cobordisms of manifolds, knots and links have been studied since the 1960s; see e.g. [24,61,
62,29]. For manifolds M and N of the same dimension whose boundaries (if nonempty) are identified by a 
diffeomorphism h, a cobordism from M to N is a manifold P with ∂P = −M ∪h N (= −M 
N when the 
boundaries are empty). Thus in the bounded case P can be viewed as a relative cobordism from M to N
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with the vertical part of ∂P diffeomorphic to ∂M × I, extending h at the top. This cobordism P is said to 
be invertible if there is a cobordism Q from N to M such that P ∪N Q ∼= M × I. We then say that M × I

is split along N , and call Q an inverse of P . Familiar examples of 3-dimensional invertible cobordisms arise 
from any homology 3-sphere M that bounds a contractible 4-manifold whose double is the 4-sphere; the 
complement in the 4-manifold of an open 4-ball is then an invertible cobordism from the 3-sphere to M . An 
important example of this type is given by the Mazur manifold W [1,44].

Similar language applies to link concordances, from one link S to another T in a manifold M , meaning 
embeddings of disjoint annuli in M × I that stretch from S to T . Such a concordance is invertible if it can 
be followed by a concordance from T to S to produce the product concordance from S to itself. If S is an 
unlink, then T is said to be invertibly null-concordant or doubly-slice.

Remark 2.17. The relations of invertible cobordism and concordance are clearly reflexive and transitive, but 
generally not symmetric. For example, any sphere is invertibly cobordant to a disjoint union of two spheres, 
but not conversely, and analogously an unknot is invertibly concordant to a two component unlink, but not 
conversely. In fact, for closed manifolds of dimension 3 or less, invertible cobordism is an antisymmetric
relation, and thus a partial order. For hyperbolic 3-manifolds this follows from degree and volume consid-
erations (cf. [7, Theorem C.5.5]) and a general proof for 3-manifolds is given in the appendix, where it is 
also noted that antisymmetry fails in higher dimensions.

These notions have also been studied for tangle concordances in 3-manifolds, where there is the added 
requirement that the concordance must be a product along the boundary (see e.g. [59] [36]). It follows that 
the tangles at the ends will have the same endpoints, and perhaps more significantly, will have exteriors 
whose boundaries are naturally identified; this result will be used in the proof of Theorem A in Section 5:

Lemma 2.18. Let C ⊂ M × I be a concordance between tangles T0 and T1 in a 3-manifold M . Choose open 
tubular neighborhoods Ni of Ti ⊂ M that agree on ∂M , and set E = Ni ∩ ∂M . Then there is a canonical 
identification between ∂(M −N0) and ∂(M −N1) extending the identity on ∂M − E.

Proof. It suffices to show that a choice of longitudes for the strands of T0 canonically induces a choice of 
longitudes for the strands of T1. Since C is topologically a union of rectangles, it has a trivial normal bundle 
in M×I. The longitudes for T0 correspond to a trivialization of this bundle along one side of each rectangle. 
These extend trivially along the adjacent sides of the rectangles (lying in ∂M × I) and then uniquely across 
the rest of C, restricting to the desired trivializations along T1. �

When considering concordances between marked tangles, the product structure along the boundary allows 
us to compare the markings at the ends of the concordance, and we require these to be the same: marked 
tangles (T, A) and (T ′, A′) are concordant if and only if T and T ′ are concordant and A = A′. We then have 
the following notions for marked tangles, analogous to the corresponding notions for links:

Definition 2.19. A concordance from one marked tangle (S, A) to another (T, A) in a 3-manifold M is 
invertible if it can be followed by a concordance from (T, A) to (S, A) to produce the product concordance 
from (S, A) to itself. If (S, A) is trivial, then (T, A) is said to be a doubly-slice tangle.8

The following proposition gives tangle versions of standard properties of invertible concordances of knots 
and links. The first part generalizes the fact that connected sums of doubly-slice knots are doubly-slice, 

8 Note that all doubly-slice tangles (T, A) are boundary tangles; a Seifert surface is obtained by intersecting the union of 3-balls 
bounded by the union of an invertible concordance from a trivial tangle to (T, A) and its inverse with the middle level between 
the two. The converse is false, e.g. a knotted trefoil arc is a boundary tangle but not doubly-slice (nor even slice).
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while the second is a relative version of a well known double slicing technique introduced by Terasaka and 
Hosokawa [66] (cf. [59, Proof of 2.6]).

Proposition 2.20. a) Marked tangle sums of doubly-slice tangles are doubly-slice.
b) Elementary tangles are doubly-slice, and thus all canonically marked atomic tangles Rn are doubly-slice
(by Lemma 2.5, proving Proposition 1.2b).

Proof. For a) let (T1, A1) +h (T2, A2) ⊂ M1 ∪h M2 be a marked tangle sum, with gluing h : D2 → D1 as 
in Definition 2.8. We can define the sum of any pair of concordances between (Ti, Ai) and another marked 
tangle (Si, Ai) (for i = 1, 2) by gluing them together using h × id : D2 × I → D1 × I. Since the sum of 
product concordances is evidently a product, it follows that the sum of invertible concordances is invertible. 
Thus if the (Ti, Ai) are doubly-slice, then so is (T1, A1) +h (T2, A2).

To prove part b) let (T, A) be an n-stranded elementary tangle in M , and F be a corresponding Seifert 
surface with good basis {αi, βi} as in Definition 2.4. View F as n disjoint disks with bands attached along 
the basis curves. Removing the β bands from F yields a surface F0 ⊂ M that can be capped off with (parallel 
copies of) the disks bounded by the α curves to form a trivial Seifert surface E0 ⊂ M for a trivial tangle 
(U0, A). Similarly form F1 ⊂ M by removing the α bands from F , and then cap off with disks bounded by 
the β curves to produce another trivial Seifert surface E1 ⊂ M for a trivial tangle (U1, A). By construction, 
E0 and E1 have the same outer boundary A as F .

Now build a 3-dimensional cobordism P ⊂ M × [0, 1/2] from E0 ⊂ M × 0 to F ⊂ M × 1/2, with outer 
lateral boundary A × [0, 1/2] and inner lateral boundary a concordance P from (U0, A) to (T, A), as follows: 
Start with P as F × [0, 1/2] with 2-handles attached ambiently in M × [−1/2, 0] along the α curves in F ×0. 
Then push P up from its bottom level E0 so that it lies in M × [0, 1/2]. (A top down movie of the inner 
lateral boundary P of P is described as follows: Start with T . Then perform saddle moves along the cocores 
of the β bands, tracing out a genus zero cobordism from T to ∂F0. Finish by capping off the α curves with 
disjoint disks.). Similarly build a cobordism Q ⊂ M × [1/2, 1] from F ⊂ M × 1/2 to E1 ⊂ M × 1 with outer 
lateral boundary A × [1/2, 1] and inner lateral boundary a concordance Q in M × [1/2, 1] from (T, A) to 
(U1, A).

Then P ∪Q is a product cobordism. Indeed, since |αi ∩ βj | = δij , the 1-handles (upside down 2-handles) 
in P are canceled by the 2-handles in Q, so P ∪ Q is in fact a union of 3-balls. It follows that P is the 
desired null-concordance of (T, A), with inverse Q. �
2.5. Homology cobordisms

A homology cobordism is a cobordism for which the inclusions from the ends induce isomorphisms on 
homology with integer coefficients (understood throughout unless stated otherwise). It is a standard and very 
useful observation that a concordance between knots or links induces a homology cobordism between their 
complements; see for instance [28]. We note a somewhat stronger property for the concordances constructed 
in the previous subsection. Let X be the exterior of a tangle T in a 3-manifold M . The inclusion of X ↪→ M

induces a homomorphism π1(X) → π1(M). Thus any module V over Z[π1(M)] is also a module over 
Z[π1(X)], so we can consider the twisted homology H∗(X; V ).

Lemma 2.21. Let T0 and T1 be tangles in a compact 3-manifold M , with exteriors X0 and X1, and C be an 
invertible concordance in M×I from T0 to T1, with exterior X. Then X is an invertible homology cobordism 
from X0 to X1, with twisted coefficients in any Z[π1(M)]-module V .

Proof. Since C is invertible, so is X, with inverse the exterior of the inverse tangle concordance for C. That 
X is a homology cobordism with twisted coefficients (even when C is not invertible) is implicit in [11]; here 
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is a quick proof for the reader’s convenience: By hypothesis X = M × I − intN , where N is a tubular 
neighborhood of C, and Xi = X ∩ (M × i). It suffices to show H∗(X, Xi; V ) = 0. Set Ni = N ∩ (M × i), and 
note that the restriction of the coefficient system V to ∂N (and similarly for the ∂Ni) is trivial, because it 
extends over N . Then for i = 0 and 1, there are relative Mayer-Vietoris sequences

· · · → H∗(X ∩N,Xi ∩Ni;V ) → H∗(X,Xi;V ) ⊕H∗(N,Ni;V ) → H∗(M × I,Mi;V ) → · · ·

in which all the groups except H∗(X, Xi; V ) clearly vanish. Thus H∗(X, Xi; V ) = 0 as well. �
Our main theorem constructs, for any 3-manifold M , an invertible homology cobordism from M to a 

hyperbolic 3-manifold. When M has a G-action the cobordism will be equivariant in the sense that it has 
a G-action extending the one on M . We give a preliminary result in this direction that will be used in the 
proof of the main theorem, based on the invertible homology cobordism coming from the Mazur manifold W
referenced above. The boundary ∂W is +1 framed surgery on the (−3, 3, −3) pretzel knot. Wu showed that 
∂W is irreducible and atoroidal in [72,73] and Meier proved that it is not Seifert fibered in [47]. It follows 
from geometrization [55–57,50] that ∂W is hyperbolic, and so in particular has non-trivial Gromov norm [30]. 
This gives an example of a Z[π1]-invertible homology cobordism from S3 (π1 = 1) to a hyperbolic manifold. 
This in turn gives an easy way to construct an equivariant Z[π1(M)]-invertible homology cobordism from 
any 3-manifold M with a G action to one with non-trivial Gromov norm.

Lemma 2.22. Any 3-manifold M with a G-action is equivariantly invertibly Z[π1(M)]-homology cobordant 
to a 3-manifold with non-zero Gromov-norm.

Proof. Extend the G-action to I×M as the action on the second factor, and define a G action on G ×(W \B4)
as the action on the first factor. In this case, one directly defines the invertible homology cobordism as the 
sum along submanifolds given by

P := (I ×M) ∪G(I×x) ⊥⊥G× (W \B4)

where x is any point with trivial stabilizer in M and W is the Mazur manifold. Here we pick any embedding 
I = [0, 1] → (W \ B4) taking 0 into S3 and 1 into ∂W . A sum along submanifolds requires that the 
submanifolds be framed. The framing here is not important as long as it is equivariant and that may be 
accomplished by picking a framing on one component and translating it by the group action. The inverse 
homology cobordism is obtained by reversing the orientation on P . �
2.6. K-molecules

It was seen above that all canonically marked atomic tangles Rn ⊂ B3 are simple and doubly-slice. 
In the proof of Theorem A, we will construct some more complicated molecular tangles in 3-dimensional 
handlebodies, each built as a simple marked sum of many atomic tangles. These molecular tangles will 
again be simple by Proposition 2.15a and doubly-slice by Proposition 2.20a (or alternatively, noting that a 
marked sum of elementary tangles is again elementary, by Proposition 2.20b).

The first step in this construction is to build what we will call K-molecules, a family of simple elementary 
tangles in the 3-ball, roughly parametrized by 1-complexes K lying on the ball’s boundary 2-sphere:

Definition 2.23. For any 1-complex K (with at least one edge) embedded in ∂B3, a K-molecule RK ⊂ B3 is 
a marked tangle obtained by assembling canonically marked atomic tangles along K in the following way: 
Expand K into a 2-dimensional handlebody H ⊂ ∂B3 with a 0-handle about each vertex and a 1-handle 
along each edge, and thicken this into a 3-dimensional handle structure for H ×D1 in a boundary collar C
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Fig. 6. K-molecule.

of B3, where H × {1} ⊂ ∂B3. Now (referring to Definition 2.2) insert a canonically marked atomic tangle 
R2k of index (2k, 0) in each thickened 0-handle D2 ×D1 for a vertex of degree k in K, and an R4 of index 
(4, 0) in each thickened 1-handle D1 ×D1 ×D1 ∼= D2 ×D1 (see Fig. 3a). In particular, insert these atomic 
tangles so that the markings on the thickened handles match up where they intersect, with exactly two 
marking arcs meeting each component disk in the attaching region ∂D1 × D1 × D1. This construction is 
illustrated in Fig. 6, with the markings shown in bright colors in c), and subterranean details in d).

Remarks 2.24. a) The insertions of atomic tangles in the handles of H×I are not unique. Thus the notation 
RK does not specify a particular K-molecule, but any one will do for our purposes.
b) All K-molecules are boundary tangles with genus two Seifert surface components, each arising as a 
boundary sum of genus one Seifert surface components from a pair of atomic tangles (see Fig. 6d).
c) If T ⊂ B3 is a K-molecule, and p : S2 → S2 is a cover branched along the vertices V of K with induced 
cover P : B3 → B3 branched along the cone on V , then P−1(T ) ⊂ B3 is a p−1(K)-molecule. This follows 
readily from Remark 2.3, and is a key ingredient in our proof of equivariance in Theorem A.

Lemma 2.25. Every K-molecule RK ⊂ B3 is a 4e-stranded simple, doubly-slice (indeed elementary) marked 
tangle, where e is the number of edges in K.

Proof. By construction, RK is a marked tangle sum of atomic tangles. We organize this sum as follows. 
Choose an ordering h1, . . . , hn of all the handles in H ×D1 (thus n = v + e if K has v vertices) so that the 
union h1 ∪ · · · ∪ hk is connected for each k ≤ n. For convenience we assume h1 is a 1-handle. Let Ri be the 
atomic tangle inserted in hi as in Definition 2.23, and B be the 3-ball (with corners) that is the closure of 
the complement of H ×D1 in B3. Then B3 is a nested union of 3-balls B1 ⊂ B2 ⊂ · · · ⊂ Bn = B3, where 
Bi = B ∪ h1 ∪ · · · ∪ hi contains the marked tangle Ti = R1 ∪ · · · ∪Ri. In particular Tn = RK ⊂ B3.

Now observe that T1 = R1 ⊂ B1 is a copy of R4 ⊂ B3. For each i > 1, the tangle Ti ⊂ Bi = Bi−1 ∪ hi is 
a marked tangle sum Ti−1 +Ri. This sum is simple since the condition that attaching disks of 1-handles in 
H× I meet two marking arcs shows that the gluing disk for the sum contains at least two tangle endpoints. 
Thus Ti ⊂ Bi is simple by Proposition 2.15a. Since both summands are elementary, so is Ti ⊂ Bi. It follows 
by induction that Tn ⊂ Bn, which is just RK ⊂ B3, is simple and elementary.

That RK has 4e strands follows from the observation that each 1-handle in H ×D1 intersects 4 strands, 
and every strand intersects exactly one such 1-handle. �
3. Equivariant Heegaard splittings

Given a closed 3-manifold M with an action of a finite group G, we seek to replace M with a hyperbolic 
manifold with a G-action. We may assume without loss of generality that M is connected. The strategy is 
to find a G-equivariant Heegaard splitting H0∪H1 of M (the goal of this section), and then to replace each 
handlebody Hi with a fake handlebody Hi with a G-action, chosen so that the glued up manifold H0 ∪H1
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Fig. 7. The picture of Δ → Δ near a point with tetrahedral stabilizer.

is hyperbolic (the goal of §4). This replacement process will require a further decomposition of the Hi into 
0 and 1-handles that will be regarded as part of the structure of the Heegaard splitting. Our exposition will 
be facilitated by passing back and forth between M and its quotient M/G, and so for clarity and notational 
economy we henceforth denote the image of any subset K of M under the quotient map M → M/G by K. 
In particular M = M/G.

If G acts freely, then we could simply lift a Heegaard splitting of the quotient manifold M with an 
arbitrary handle structure on the two sides. When G has fixed points, the quotient M is an orbifold, albeit 
a good one, and so its underlying space is still a 3-manifold. In this case we will need the Heegaard splitting 
of M and the associated handle structures of the sides to be adapted to the orbifold structure, cf. [45,75]
for a related discussion of orbifold handlebodies. This splitting is constructed as follows.

The G-action on M is locally linear since it is smooth, and orientation preserving by hypothesis. Thus 
the stabilizer Gx of any point x ∈ M is isomorphic to a finite subgroup of SO(3), so is either cyclic, dihedral, 
or one of the three symmetry groups of the Platonic solids, acting linearly on a 3-ball about x. It follows 
that the singular set Δ of all points in M with nontrivial stabilizers forms a graph in M , which may include 
edges with endpoints identified and circle components with no vertices. The vertices of Δ are the points with 
noncyclic stabilizers, and each (open) edge is made up of points with the same nontrivial cyclic stabilizer. 
To record this fact more precisely, we assign labels to these vertices and edges. Since the noncyclic finite 
subgroups of SO(3) are all triangle groups (the dihedral group D2n is Δ(2, 2, n), while the tetrahedral, 
octahedral and icosahedral groups are respectively Δ(2, 3, 3) ∼= A4, Δ(2, 3, 4) ∼= S4 and Δ(2, 3, 5) ∼= A5), 
assign the integer triple (p, q, r) to each vertex x of Δ with Gx

∼= Δ(p, q, r), and assign the integer n to any 
edge whose stabilizer is isomorphic to Cn.

Now consider the image Δ of Δ in the quotient orbifold M . This is also a graph, with labels inherited 
from Δ. Since it is locally the singular set of a finite linear quotient of the 3-ball, Δ is in fact a trivalent
graph, with each vertex labeled by the triple of labels on the edges incident to it. We call Δ the branch 
locus as M is the branched cover of M along Δ, with branching indices given by the labels. The quotient 
map Δ → Δ is illustrated in Fig. 7 near a tetrahedral vertex v in Δ, shown on the left side of the figure. 
The red, green and blue edges end at the vertices, edge midpoints, and face centers (shown as small circles, 
squares and triangles in the figure) of a spherically inscribed regular tetrahedron, whose first barycentric 
subdivision is shown. The 1-skeleton of this subdivision restricts to a 1-complex K on the boundary of the 
ball, shown in black, whose projection K is an equatorial triangle on the right side of the picture. The same 
phenomenon holds for vertices of any type (p, q, r).

To build a Heegaard splitting of M adapted to its orbifold structure, first extend Δ to a larger trivalent 
graph Δ0 ⊂ M whose complement is an open handlebody. This is accomplished by adding new 1-labeled 
edges to Δ corresponding to the 1-handles of a relative handlebody structure of the complement of a regular 
neighborhood of Δ, with endpoints chosen to lie at interior points of the edges in Δ. Of course some edges 
of Δ may be subdivided in this process. If e is such an edge with label n, then label each new edge of Δ0
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lying in e with n, and each new vertex lying on e with (1, n, n) (specifying a cyclic stabilizer Cn). Note that 
M is still a branched cover of M along Δ0, so we call Δ0 the extended branch locus.

Now let H0 be a regular neighborhood of the extended branch locus Δ0, built as a handlebody with 0 and 
1-handles corresponding in the usual way to the vertices and edges of Δ0. The closure H1 of the complement 
of H0 in M is another handlebody of the same genus, which we can decompose into 0 and 1-handles using 
an arbitrarily chosen trivalent trivially-labeled spine (i.e. label all the edges with 1 and all the vertices 
with (1, 1, 1)). This gives an orbifold Heegaard splitting M = H0 ∪H1 with Δ0 ⊂H0, in which each of the 
handlebodies is equipped with a specific handle structure reflecting the orbifold structure on M ; we will 
refer to these as orbifold handles. The lifts of the Hi will then be equivariant handlebodies Hi, equipped 
with their lifted handle structures, giving the desired equivariant Heegaard splitting M = H0 ∪H1. In the 
next section, the orbifold Heegaard splitting will be used as a template to build a stabilized, equivariant 
fake Heegaard splitting H0 ∪H1 of the desired hyperbolic 3-manifold.

4. Replacement handlebodies

In this section, we describe how to insert equivariant simple doubly-slice tangles Ti into the handlebodies 
Hi in the equivariant Heegaard splitting M = H0∪H1 constructed in §3; these will be called the handlebody 
tangles or molecules. With the groundwork laid in §2, the overall strategy is straightforward: Place suitable 
equivariant K-molecules (as defined in §2) in the 0-handles of the decompositions of the Hi described 
above, and atomic tangles in the 1-handles, in such a way that the markings match up to produce a simple 
marked tangle sum; the details are explained below. The exteriors Hi of the handlebody tangles Ti in Hi are 
viewed as a replacements for the handlebodies Hi, as in [59]. Each Hi is a simple and therefore (assuming 
positive Gromov norm) hyperbolic homology handlebody that comes equipped with an equivariant invertible 
cobordism from a genuine handlebody. In §5 we will show how to glue the Hi together, and complete the 
proof of Theorem A.

To achieve equivariance, it is convenient to work downstairs in the orbifold M and then lift all of the 
constructions back up to M . During this process, it should be noted that the tangles placed in the handles 
in M are disjoint from the branch locus, so the lifted tangles in M will be disjoint from the singular set.

4.1. Tangles in the orbifold handles

Recall from §3 that the handlebodies Hi in the orbifold Heegaard splitting M = H0 ∪H1 are further 
decomposed into orbifold handles. We give a procedure for inserting tangles into each of these handles.

The procedure is the same for each orbifold 1-handle h1, independent of its label n which specifies the 
branching index: Viewing h1 as D2 × D1 with orbifold singular set the n-labeled arc {0} × D1, insert a 
canonically marked R8 of index (4, 4), as explained in Definition 2.2 and shown in Fig. 3b. This tangle is 
simple and doubly slice by Proposition 1.2, and by construction, disjoint from the branch locus. Its preimage 
in M is an R8n of index (4n, 4n) in the 1-handle lying above h1, by Remark 2.3.

The procedure is also the same for each orbifold 0-handle h0, independent of the label (p, q, r) which 
specifies the stabilizer of the associated vertex v of the extended branch locus Δ0 (a triangle or cyclic 
group): The handle h0 is a 3-ball centered at v whose boundary 2-sphere intersects Δ0 in three points. 
These points can be taken to lie on an equator, which is thereby subdivided into a spherical triangle K
as shown on the right side of Fig. 7. Now insert a K-molecule RK in h0, as explained in Definition 2.23. 
Recall that the construction of RK is guided by a 2-dimensional handlebody H in ∂h0, whose 0-handles (one 
about each vertex in K) are exactly the disks where the orbifold 1-handles are attached. By Lemma 2.25, 
the tangle RK is simple and doubly-slice with twelve strands, four straddling the boundary of each of these 
attaching disks. We can therefore arrange for the markings on the orbifold 0 and 1-handles to match up 
where they intersect. Once again, the tangles are disjoint from the branch locus.
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4.2. Assembling the orbifold tangles T i ⊂Hi

The tangles T i ⊂ Hi are formed by gluing together the tangles in the orbifold 0 and 1-handles in Hi. 
Thus when we attach the orbifold 1-handles to the orbifold 0-handles, we are performing simple tangle sums. 
The final result is thus a pair of doubly-slice simple tangles T i ⊂Hi for i = 0, 1, by Propositions 2.20a and 
2.15a. The exterior of T i in Hi, denoted Hi, is the homology handlebody that replaces Hi.

Remark 4.1. Each 0-handle in Hi contributes 12 components to T i. If the Hi have genus g, then there are 
2(g − 1) such 0-handles, corresponding to the vertices of the trivalent graph whose thickening is Hi. Thus 
T i has 24(g − 1) components.

4.3. Lifting the orbifold tangles to Ti ⊂ Hi

When the orbifold tangles T i ⊂ Hi are lifted to equivariant tangles Ti ⊂ Hi, the picture is exquisitely 
embellished, as in the creation of folded paper sculptures. Fortunately, the proof that these lifted tangles 
are simple and doubly-slice is essentially the same as in the orbifold case. As noted above, the model for 
the 1-handles above a degree n orbifold 1-handle is an R8n ⊂ D2 ×D1 of index (4n, 4n). For the 0-handles, 
the triangle K lifts to a 1-complex K (namely the 1-skeleton of the first barycentric subdivision of the 
corresponding dihedron, tetrahedron, octahedron or icosahedron) and the tangle in the ball upstairs is a 
K-molecule by Remark 2.24c. The tangles now assemble into a pair of simple doubly-slice tangles Ti ⊂ Hi

for i = 0, 1, whose exteriors Hi are the homology handlebodies that replace Hi.

Remark 4.2. Many other tangles in the 3-ball could be used in place of the atomic tangle R4 (and its 
branched covers R4n) to construct equivariant simple doubly-slice tangles in the handlebodies of M . All 
that is required is that this tangle should be simple and doubly-slice, and that all its cyclic branched covers 
(along a suitable diameter of the 3-ball) should also be simple and doubly-slice.

5. Gluing replacement handlebodies and the proof of Theorem A

Recall the statement of the main theorem:

Theorem A. Any closed 3-manifold M equipped with an action of a finite group G is equivariantly invertibly 
Z[π1(M)]-homology cobordant to a hyperbolic 3-manifold N with a G-action by isometries. This cobordism 
may be chosen to be a product along a neighborhood of the singular set of the action.

Proof. Since there is an equivariant invertible Z[π]-homology cobordism to a 3-manifold with non-zero 
Gromov-norm by Lemma 2.22, we may assume that the manifold M has positive Gromov norm.

In the last section, we constructed an equivariant handlebody decomposition H0 ∪H1 of M by lifting an 
orbifold handle decomposition H0 ∪H1 of the quotient M . Then we removed neighborhoods of doubly-slice 
simple tangles T i ⊂Hi and their lifts Ti ⊂ Hi to obtain the replacement homology handlebodies Hi ⊂Hi

covered by Hi ⊂ Hi. The remaining step is to describe how to glue these replacement handlebodies together 
to build N , and how to create the equivariant homology cobordism that proves the theorem.

We begin by working in the quotient orbifold. Recalling that T i is doubly-slice, choose a trivial tangle 
U i in Hi that is invertibly concordant to T i. Removing a neighborhood of U i from Hi has the effect of 
stabilizing Hi, i.e. adding 1-handles to Hi. For our purposes, and in particular to properly specify how to 
glue H0 and H1 together to form N , we need to make this more precise.

From this data and an ordering of the n = 24(g−1) (by Remark 4.1) components of U i and T i consistent 
with their identification by the concordance, Lemma 2.18 gives rise to preferred decompositions ∂Hi =
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∂Hi # n(S1 × S1) where the kth torus summand is chosen so that the first S1 factor is identified with 
the preferred longitude of the kth component of T i, while the second S1 factor is the meridian of that 
component. From this, the boundary of the vertical part of the exterior of the tangle concordance in Hi × I

acquires a preferred diffeomorphism with (∂Hi × I) #I (S1 × S1 × I) where #I denotes the connected sum 
along a vertical arc.

Now we glue H0 to H1 via a diffeomorphism of their boundaries that identifies corresponding tori in such 
a way that their meridians and longitudes are interchanged, but that is otherwise the identity. This yields 
an orbifold N . Because of our choice of the meridian/longitude pair, a similar construction with T i replaced 
by U i simply stabilizes the orbifold Heegaard splitting of M , and does not change the resulting orbifold. 
Gluing the exterior of the concordance C0 in H0 × I to the exterior of C1 in H1 × I then gives an orbifold 
homology cobordism P from M to N . By repeating the construction with the inverses of the concordances 
Ci to obtain the inverse orbifold homology cobordism Q and applying Lemma 2.21 we see that P is in fact 
an invertible cobordism.

Finally we pass to the orbifold covers. The cobordism that has been constructed is automatically invertible 
and equivariant, and so it remains to show that the orbifold cover N is hyperbolic, with G acting by 
isometries, and to check the homological properties of the invertible cobordisms P and Q. That N is 
hyperbolic follows from the fact that the tangles Ti ⊂ Hi are simple, as noted at the end of §4, together 
with Proposition 2.15b. We know N is either Seifert fibered or hyperbolic. However collapsing the fibers 
shows that a Seifert fiber space has zero Gromov norm [30,74]. The map N → P ∪N Q → I×M → M would 
then be a degree one map contrary to the fact that M has positive Gromov norm. By Theorem 2.16, we may 
assume that G acts by isometries so N is a hyperbolic orbifold and the entire construction is equivariant.

The cobordism P is obtained by gluing relative Z[π1(M)] homology cobordisms between the replacement 
handlebodies Hi and Hi − Ui. Because of the interchange of meridian and longitude, the gluing maps are 
compatible and so there is a map between the Mayer-Vietoris sequence (with coefficients in Z[π1(M)]) for 
this decomposition of M with the Mayer-Vietoris sequence for P . By the 5-lemma, we see that the inclusion 
of M into P is a homology equivalence, so that P is a Z[π1(M)]-homology cobordism. The same argument 
applies to the inverse cobordism Q. Since the cobordisms P and Q were computed by modifications to I×M

away from the singular set we see that the cobordism is a product in this neighborhood. �
6. Applications of hyperbolization

This section supplies proofs for the corollaries of Theorem A listed in the Introduction.

6.1. Hyperbolic G-corks

As mentioned in the Introduction, our original motivation was to show the existence of (effective) hyper-
bolic G-corks, and we start there.

Corollary B. There exist hyperbolic G-corks for any finite group G that acts on the boundary of some compact 
contractible 4-dimensional submanifold of R4.

Proof. The main result of our earlier paper [5] asserts that if G is a finite group that acts smoothly on the 
boundary of some compact contractible 4-dimensional submanifold of R4, then there exists a 4-manifold X
and a compact contractible submanifold C ⊂ X, with a G-action on its boundary, such that the 4-manifolds 
XC,g = (X − intC) ∪g C for g ∈ G are all smoothly distinct. We say that C (with its boundary G-action) 
is an effective G-cork in X. Now by Theorem A, there is a G-equivariant invertible homology cobordism P
from ∂C to a hyperbolic homology sphere N , with inverse the equivariant homology cobordism Q.
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Claim. C ′ = C ∪∂C P is an effective G-cork in X, with boundary ∂C ′ = N .
To see this, note first that

C ′ = (C ∪∂C P ) ⊂ (C ∪∂C P ∪N Q) ∼= C,

and this induces an embedding of C ′ in X. Now the G-equivariance of P and Q implies XC′,g
∼= XC,g for 

every g ∈ G. Since the manifolds XC,g are smoothly distinct as g runs over G, the same is true for XC′, g. �
6.2. Non-extendible group actions

The hyperbolization results in [52,59] have been used to show that results proved about homology 
cobordism and knot concordance can apply to hyperbolic examples; the next application is an equivariant 
version of this principle. Recall that for pairwise relatively prime (a, b, c), the Brieskorn homology sphere 
Σ(a, b, c) is the link of the complex singularity xa + yb + zc = 0. It admits a fixed point free circle action 
t(x, y, z) = (tbcx, tacy, tabz), so is Seifert fibered. If p is a prime that does not divide a, b or c, then the Zp

contained in S1 acts freely on Σ(a, b, c). Work of Kwasik-Lawson [38] and Anvari-Hambleton [3] shows that 
this Zp action does not extend over any contractible manifold with boundary Σ(a, b, c). (Note that while 
not all Brieskorn spheres bound contractible manifolds–see for instance [22,25], there are infinite families 
[12,60,21] that do.) We now show that Theorem A gives many hyperbolic homology spheres with free Zp

actions satisfying this property.

Corollary C. For any Brieskorn homology sphere Σ(a, b, c) and prime p � abc, there is a hyperbolic homology 
sphere N(a, b, c) with a free Zp-action that is Zp-equivariantly homology cobordant to the standard action on 
Σ(a, b, c), and that does not extend smoothly over any contractible 4-manifold that N(a, b, c) might bound.

We remark that for many choices of (a, b, c), the conclusion can be strengthened to say that the action 
of Zp does not extend smoothly over any acyclic 4-manifold that N(a, b, c) might bound. This is shown via 
the method of Kwasik and Lawson taking into account that Donaldson’s definite manifolds theorem applies 
to non-simply connected manifolds; see [19]. Kwasik and Lawson [38, Proposition 12] give a list of examples 
to which this method applies. Anvari and Hambleton [3, Theorem 4.4] also give a non-extension result over 
acyclic manifolds under the additional assumption that the fundamental group of the boundary normally 
generates that of the acyclic manifold.

Proof of Corollary C. The condition that p does not divide abc implies that the action of Zp on Σ(a, b, c)
is free. By Theorem A there is a Zp-equivariant invertible homology cobordism P from Σ(a, b, c) with its 
standard Zp-action to a hyperbolic manifold N = N(a, b, c). By construction, the action of Zp on P is free. 
If the action on N extends over a contractible manifold W , then the manifold W ∪N P is a homology ball 
over which the Zp-action on Σ(a, b, c) extends. By Proposition A.3, this homology ball is simply connected, 
and hence contractible, contradicting [3]. �
6.3. Acyclic versus contractible

An important consequence of Taubes’ periodic ends theorem [65], observed by Akbulut, is that there 
are reducible homology spheres that bound homology balls, but do not bound contractible manifolds; the 
original example was Σ(2, 3, 5) # −Σ(2, 3, 5). We show that one can in fact choose the homology sphere to 
be hyperbolic.

Corollary D. There are infinitely many hyperbolic homology spheres that bound homology balls but do not 
bound contractible manifolds.
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Proof. We first describe how to generate one example, and then describe the modifications required to 
construct infinitely many. Let Σ be any homology sphere that bounds a simply connected smooth 4-manifold 
X with non-standard definite intersection form, for example the Poincaré homology sphere. Note that Σ # −
Σ is the boundary of a homology ball, namely I × (Σ − intB3). By our main theorem, there is an invertible 
homology cobordism P from Σ # − Σ to a hyperbolic 3-manifold N . Furthermore, by Proposition A.3
the fundamental group of P is normally generated by the fundamental group of N . One sees that W =
I × (Σ − intB3) ∪Σ #−Σ P is a homology ball with boundary N .

Now assume that N bounds a contractible manifold Z. Adding a 3-handle to Z ∪N P along the sphere 
separating Σ and −Σ results in a simply connected (since π1(P ) is normally generated by π1(N)) homology 
cobordism V with boundary Σ ∪ −Σ. This contradicts [65, Proposition 1.7], a consequence of Taubes’ 
periodic ends theorem.

To show that there are infinitely many distinct examples, we iterate this process. Let Xk denote the 
boundary connected sum of k copies of X; its intersection form is also non-standard, as is readily verified 
using Elkies’ criterion for diagonalizablity of a unimodular form [20]. Now construct an invertible homology 
cobordism Pk between #k (Σ # − Σ) and #k N by taking the connected sum of k copies of P along arcs 
running from Σ # − Σ to N .

Again applying our main theorem, there is an invertible homology cobordism P ′
k from #k N to a hyper-

bolic manifold Nk. Note that there is a degree one map from Nk to #k N , so that

vol(Nk) ≥ k · vol(N).

It follows that the Gromov norms of the Nk are unbounded, so an infinite sequence of them are distinct. 
Glue Pk to P ′

k along #k N to obtain an invertible homology cobordism from #k (Σ # −Σ) to Nk. As above, 
Proposition A.3 says that the fundamental group of this cobordism is normally generated by π1(Nk).

By construction, Nk is the boundary of a homology ball. If it bounds a contractible manifold Z, we 
proceed as before. Add a single 3-handle along a 2-sphere in #k (Σ # −Σ) that separates the k copies of Σ
from the copies of −Σ to obtain a cobordism from #k Σ to #k Σ 

∐
Nk. Gluing Z to Nk results in a simply 

connected homology cobordism from #k Σ to #k Σ, which again contradicts Taubes’ theorem. �
6.4. Finite groups acting on homology spheres

Finally, we apply Theorem A to questions related to the classical spherical space form problem; see the 
Davis-Milgram survey [17] and the discussion of problem 3.37 in Kirby’s problem list [37].

Corollary E. Any finite group that acts on a homology 3-sphere also acts on a hyperbolic homology 3-sphere, 
with equivalent fixed-point behavior (i.e. the two actions are equivariantly diffeomorphic near their fixed 
point sets). In particular, there exist finite groups that are not subgroups of SO(4) (so by geometrization do 
not act freely on S3) that act freely on some hyperbolic homology 3-sphere.

Remark. Presumably there are infinitely many finite groups that satisfy the final conclusion of the corollary. 
This would follow either from Theorem 6.10 in [17] (stated there without proof) or the Generalized Riemann 
Hypothesis (as noted in the proof below).

Proof of Corollary E. The first part is a direct corollary of Theorem A, replacing an action of a group 
G on a homology sphere by an action on a hyperbolic homology sphere. The second part, constructing 
free actions on homology spheres by groups that cannot act freely on the 3-sphere, requires results on the 
topological spherical space form problem dating to the 1970s and 1980s. The underlying principle is that 
there are homotopy-theoretic (finiteness) and surgery-theoretic obstructions, depending only on n modulo 
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8, for a finite group G to act freely on a sphere of dimension n. If n is greater than 4, the vanishing of 
these obstructions is sufficient for the existence of such an actions. In dimension 3, the vanishing of the 
obstructions implies only that G acts freely on a homology 3 sphere; see for example [32, Remark 8.2].

Madsen [42], Milgram [48], and Bentzen [8] evaluated the finiteness and surgery obstructions in number 
theoretic terms. Their results show that many generalized quaternionic groups Q(8p, q) (in fact infinitely
many if one assumes the Generalized Riemann Hypothesis, the smallest being Q(24, 313) [8]) act freely on 
spheres in dimensions 8k+3 (k > 0) and hence on homology 3-spheres. We deduce directly from Theorem A
that such homology spheres can be taken to be hyperbolic. �
Remark. The constructions that produced nonlinear finite group actions on homology 3-spheres gave in 
principle a description of these homology spheres as surgeries on links. The complexity of the necessary 
calculations in surgery theory, however, did not yield any insight as to the geometric nature of these homology 
spheres. The geometrization theorem [55–57,50] shows that they cannot be the 3-sphere. It would be of 
interest to know if these groups can act freely on a Seifert fibered homology sphere.

Appendix A. Antisymmetry of invertible cobordism of 3-manifolds

We show that for closed oriented 3-manifolds, invertible cobordism is an antisymmetric relation, and thus 
a partial order.9 This is false in higher odd dimensions, as seen from the existence of h-cobordisms X with 
non-trivial Whitehead torsion, for which −X is the inverse cobordism; compare [58, Lemma 7.8].

First a trivial observation: Any invertible cobordism between manifolds decomposes as a disjoint union of 
invertible cobordisms between their connected components. Thus for our present purposes, we may implicitly 
assume that all manifolds are connected. We will also make use of the following presumably well known fact 
about 3-manifolds, which we could not find explicitly in the literature.

Lemma A.1. Let f : M → N be a degree-one map of oriented 3-manifolds that induces an isomorphism on 
fundamental groups. Then f is a homotopy equivalence.

Proof. Let π denote the fundamental group of the two manifolds. By Whitehead’s theorem, it suffices to 
show that the induced map on homology with coefficients in Z[π] is an isomorphism. This is clear for H0 and 
H1. If π is infinite, then H3 = 0 and there is nothing to prove, and if π is finite then this follows since f has 
degree 1. This leaves dimension 2. Poincaré duality with Z[π] coefficients says that there is a commutative 
diagram with both horizontal arrows isomorphisms. The diagram commutes because the degree of f is 1.

H1(M ;Z[π])
∩[M ]

H2(M ;Z[π])

f∗

H1(N ;Z[π])
∩[N ]

f∗

H2(N ;Z[π])

For any CW complex X with fundamental group π, we have

H1(X;Z[π)]) ∼= H1(π;Z[π]) = H1(K(π, 1);Z[π]).

The standard argument for this is to create a K(π, 1) by adding cells of dimension 3 or greater to X; the 
resulting inclusion map X ↪→ K(π, 1) induces an isomorphism on H1. If f : X → Y is a map inducing an 
isomorphism on π1 then there is an automorphism g of π making the following diagram commute.

9 The first version of this article established antisymmetry of invertible homology cobordism but the additional hypothesis is not 
necessary.



D. Auckly et al. / Topology and its Applications 333 (2023) 108485 21
H1(π;Z[π]) H1(Y ;Z[π)])

H1(π;Z[π])

g∗

H1(X;Z[π)])

f∗

It follows that f∗ is an isomorphism. �
Theorem A.2. Let M and N be closed 3-manifolds. If there is an invertible cobordism from M to N , and 
one from N to M , then M and N are homeomorphic.

Proof. Let P be the cobordism from M to N , and Q be the inverse cobordism from N to M , so that 
P ∪N Q = M × I. This gives a map f : N → M , the composition of the inclusion N ↪→ M × I followed by 
the projection M × I → M . There is also another pair of cobordisms Q′ from N to M and P ′ from M to 
N , so that Q′ ∪M P ′ = N × I, and this gives a map g : M → N . Both of these maps have degree one, so 
their induced maps on π1 are surjective. Thus the composition g∗ ◦ f∗ : π1(N) → π1(N) is surjective. But 
3-manifold groups are Hopfian [4], which means that in fact this composition is an isomorphism. It follows 
that f∗ is injective, so it is an isomorphism. We write π for π1(M) ∼= π1(N).

Computing the fundamental group of M × I = P ∪N Q by van Kampen’s theorem yields a pushout 
diagram:

π1(Q)
jQ

π1(N)
f∗

iQ

iP

π1(M) ∼= π1(M × I)

π1(P )
jP

(∗)

Since f∗ is an isomorphism, iP and iQ are injective, and jP and jQ are surjective. A standard result about 
pushouts [41, Theorem IV.2.6] says that in fact jP and jQ are injective, so all of these maps are isomorphisms. 
In particular, Lemma A.1 implies that f is a homotopy equivalence. Denote the fundamental group of all 
of these manifolds by π.

Now we claim that iP and iQ are homotopy equivalences, or equivalently, induce isomorphisms on ho-
mology with coefficients in Z[π]. Poincaré duality, as in Lemma A.1, implies that the inclusions of M into P
and Q are homotopy equivalences, and so both manifolds are h-cobordisms. To see this, we use the Mayer-
Vietoris sequence, a portion of which is drawn in the following diagram; the twisted coefficients in Z[π] are 
understood.

Hk(Q)
jQ

· · · Hk(N)

iQ

iP

⊕
Hk(M) ∼= Hk(M × I) · · ·

Hk(P ) jP

Since jQ ◦ iQ � f , we see that iQ is injective, and jQ is surjective, so the Mayer-Vietoris sequence splits into 
a sum of short exact sequences. An easy diagram chase shows that iQ, iP , jQ, and jP are all isomorphisms. 
In particular, P (and all the other cobordisms) is an h-cobordism. A theorem of Kwasik-Schultz [39] says 
that the Whitehead torsion of P must vanish. In particular, all of the inclusion maps are simple homotopy 
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equivalences, and so f is a simple homotopy equivalence. Finally, Turaev proved [69] that this implies that 
f is homotopic to a homeomorphism. �

We remark that if M and N are hyperbolic manifolds, then there is an alternate (and perhaps simpler) 
route to this conclusion, based on the Gromov-Thurston proof of Mostow’s rigidity theorem [68, Theorem 
6.4] as well as [30,31]. This proof implies directly that if there are degree one maps from M to N and from 
N to M , then M and N are homeomorphic. Such maps are constructed in the first paragraph of the proof 
above; in this setting one doesn’t have to establish that the maps are homotopy equivalences.

Remark. As the proof of Theorem A.2 indicates, the study of invertible cobordisms has a large overlap with 
the study of degree one maps. For instance, one says that M dominates N if there is a map of non-zero degree 
from M to N . A recent result of Liu [40] says that a given closed 3-manifold dominates only finitely many 
other 3-manifolds. It follows a fortiori that the same result holds for the ordering coming from invertible 
cobordism.

Finally, we establish the following general property of maps induced on the fundamental group of invert-
ible cobordisms that was used in Corollaries C and D.

Proposition A.3. Let P be an invertible cobordism from M to N , with inverse cobordism Q. Then the image 
of the map iP induced by the inclusion of N into P normally generates π1(P ), and likewise the image of iQ
normally generates π1(Q).

Proof. We adopt the notation of the previous proof. It suffices to show that the quotient groups

GP = π1(P )/〈im(iP )〉 and GQ = π1(Q)/〈im(iQ)〉

are trivial, where 〈 〉 denotes normal closure. The natural maps π1(P ) kP→ GP ∗GQ
kQ← π1(Q) induce a unique 

map h : π1(M) → GP ∗ GQ with h ◦ jP = kP and h ◦ jQ = kQ, extending the diagram (∗) above, which 
must be trivial since f∗ is onto. This forces kP and kQ to be trivial, which implies that GP and GQ are 
trivial. �
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