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Abstract

Along with Markov chain Monte Carlo (MCMC) methods, variational inference (VI) has emerged
as a central computational approach to large-scale Bayesian inference. Rather than sampling from
the true posterior ⇡, VI aims at producing a simple but effective approximation ⇡̂ to ⇡ for which
summary statistics are easy to compute. However, unlike the well-studied MCMC methodology,
algorithmic guarantees for VI are still relatively less well-understood. In this work, we propose
principled methods for VI, in which ⇡̂ is taken to be a Gaussian or a mixture of Gaussians, which rest
upon the theory of gradient flows on the Bures–Wasserstein space of Gaussian measures. Akin to
MCMC, it comes with strong theoretical guarantees when ⇡ is log-concave.

1. INTRODUCTION

This work brings together three active research areas: variational inference, variational Kalman
filtering, and gradient flows on the Wasserstein space.

Variational inference. The development of large-scale Bayesian methods has fueled the need for
fast and scalable methods to approximate complex distributions. More specifically, Bayesian method-
ology typically generates a high-dimensional posterior distribution ⇡ / exp(�V ) that is known
only up to normalizing constants, making the computation even of simple summary statistics such as
the mean and covariance a major computational hurdle. To overcome this limitation, two distinct
computational approaches are largely favored. The first approach consists of Markov chain Monte
Carlo (MCMC) methods that rely on carefully constructed Markov chains which (approximately)
converge to ⇡. For example, the Langevin diffusion

dXt = �rV (Xt) dt+
p
2 dBt , (1)

where (Bt)t�0
denotes standard Brownian motion on Rd, admits ⇡ as a stationary distribution.

Crucially, the Langevin diffusion can be discretized and implemented without knowledge of the
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WASSERSTEIN VARIATIONAL INFERENCE

normalizing constant of ⇡, leading to practical algorithms for Bayesian inference. Recent theoretical
efforts have produced sharp non-asymptotic convergence guarantees for algorithms based on the
Langevin diffusion (or variants thereof), with many results known when ⇡ is strongly log-concave or
satisfies isoperimetric assumptions (see, e.g., Durmus et al., 2019; Shen and Lee, 2019; Vempala and
Wibisono, 2019; Chen et al., 2020; Dalalyan and Riou-Durand, 2020; Chewi et al., 2021; Lee et al.,
2021; Ma et al., 2021; Wu et al., 2022).

More recently, Variational Inference (VI) has emerged as a viable alternative to MCMC (Jordan
et al., 1999; Wainwright and Jordan, 2008; Blei et al., 2017). The goal of VI is to approximate the
posterior ⇡ by a more tractable distribution ⇡̂ 2 P such that

⇡̂ 2 argmin
p2P

KL(p k ⇡) . (2)

A common example arises when P is the class of product distributions, in which case ⇡̂ is called
the mean-field approximation of P . Unfortunately, by definition, mean-field approximations fail to
capture important correlations present in the posterior ⇡, and various remedies have been proposed,
with varied levels of success. In this paper, we largely focus on obtaining a Gaussian approximation
to ⇡, that is, we take P to be the class of non-degenerate Gaussian distributions on Rd (Barber and
Bishop, 1997; Seeger, 1999; Honkela and Valpola, 2004; Opper and Archambeau, 2009; Zhang et al.,
2018; Xu and Campbell, 2022). The expressive power of the variational model may then be further
increased by considering mixture distributions (Lin et al., 2019b; Daudel and Douc, 2021; Daudel
et al., 2021).

Although the solution ⇡̂ of (2) is no longer equal to the true posterior, variational inference
remains heavily used in practice because the problem (2) can be solved for simple models P via
scalable optimization algorithms. In particular, VI avoids many of the practical hurdles associated
with MCMC methods—such as the potentially long “burn-in” period of samplers and the lack of
effective stopping criteria for the algorithm—while still producing informative summary statistics. In
this regard, we highlight the fact that obtaining an approximation for the covariance matrix of ⇡ via
MCMC methods requires drawing potentially many samples, whereas for many choices of P (e.g., the
Gaussian approximation) the covariance matrix of ⇡̂ can be directly obtained from the solution to the
VI problem (2).

Figure 1: Left: randomly initialized mixture of 20
Gaussians (the initial covariances are depicted as
red circles) and contour plot of a logistic target ⇡.
Right: contour lines of a mixture of Gaussians
approximation ⇡̂ obtained from the gradient flow
in Section 5.

However, in contrast with MCMC methods,
to date there have not been many theoretical
guarantees for VI, even when ⇡ is strongly log-
concave and P is taken to be the class of Gaus-
sians N (m,⌃). The problem stems from the
fact that the objective in (2) is typically non-
convex in the pair (m,⌃). Obtaining such guar-
antees remains a pressing challenge for the field.

Variational Kalman filtering. There is also
considerable interest in extending ideas behind
variational inference to dynamical settings of
Bayesian inference. Consider a general frame-
work where (⇡t)t represents the marginal laws
of a stochastic process indexed by time t, which
can be discrete or continuous. The goal is to recursively build a Gaussian approximation to (⇡t)t.
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As a concrete example, suppose that (⇡t)t�0
denotes the marginal law of the solution to the

Langevin diffusion (1). In the context of Bayesian optimal filtering and smoothing, Särkkä (2007)
proposed the following heuristic. Let (mt,⌃t) denote the mean and covariance matrix of ⇡t. Then, it
can be checked (see Section B.4) that

ṁt = �ErV (Xt)

⌃̇t = 2I � E[rV (Xt)⌦ (Xt �mt) + (Xt �mt)⌦rV (Xt)]
(3)

where Xt ⇠ ⇡t. These ordinary differential equations (ODEs) are intractable because they involve
expectations under the law of Xt ⇠ ⇡t, which is not available to the practitioner. However, if we
replace Xt ⇠ ⇡t with a Gaussian Yt ⇠ pt = N (mt,⌃t) with the same mean and covariance as Xt,
then the system of ODEs

ṁt = �ErV (Yt)

⌃̇t = 2I � E[rV (Yt)⌦ (Yt �mt) + (Yt �mt)⌦rV (Yt)]
(4)

yields a well-defined evolution of Gaussian distributions (pt)t�0
, which we may optimistically believe

to be a good approximation of (⇡t)t�0
. Moreover, the system of ODEs can be numerically approxi-

mated efficiently in practice using Gaussian quadrature rules to compute the above expectations. This
is the principle behind the unscented Kalman filter (Julier et al., 2000).

In the context of the Langevin diffusion, Särkkä’s heuristic (4) provides a promising avenue
towards computational VI. Indeed, since ⇡ / exp(�V ) is the unique stationary distribution of the
Langevin diffusion (1), an algorithm to approximate (⇡t)t�0

is expected to furnish an algorithm to
solve the VI problem (2). However, at present there is little theoretical understanding of how the
system (4) approximates (3); moreover, Särkkä’s heuristic only provides Gaussian approximations,
and it is unclear how to extend the system (4) to more complex models (e.g., mixtures of Gaussians).

Our contributions: bridging the gap via Wasserstein gradient flows. We show that the approx-
imation (pt)t�0

in Särkkä’s heuristic (4) arises precisely as the gradient flow of the Kullback–Leibler
(KL) divergence KL(· k ⇡) on the Bures–Wasserstein space of Gaussian distributions on Rd endowed
with the 2-Wasserstein distance from optimal transport (Villani, 2003). This perspective allows us to
not only understand its convergence but also to extend it to the richer space of mixtures of Gaussian
distributions, and propose an implementation as a novel system of interacting “Gaussian particles”.
Below, we proceed to describe our contributions in greater detail.

Our framework builds upon the seminal work of Jordan et al. (1998), which introduced the
celebrated JKO scheme in order to give meaning to the idea that the evolving marginal law of the
Langevin diffusion (1) is a gradient flow of KL(· k ⇡) on the Wasserstein space P2(Rd) of probability
measures with finite second moments. Subsequently, in order to emphasize the Riemannian geometry
underlying this result, Otto (2001) developed his eponymous calculus on P2(Rd), a framework which
has had tremendous impact in analysis, geometry, PDE, probability, and statistics.

Inspired by this perspective, we show in Theorem 1 that Särkkä’s approximation (pt)t�0
is

also a gradient flow of KL(· k ⇡), with the main difference being that it is constrained to lie on
the submanifold BW(Rd) of P2(Rd) consisting of Gaussian distributions, known as the Bures–
Wasserstein manifold. In turn, our result paves the way for new theoretical understanding via the
powerful theory of gradient flows. As a first step, using well-known results about convex functionals
on the Wasserstein space, we show in Corollary 3 that (pt)t�0

converges rapidly to the solution of

3
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the VI problem (2) with P = BW(Rd) as soon as V is convex. Moreover, in Section 4.1, we apply
numerical integration based on cubature rules for Gaussian integrals to the system of ODEs (4), thus
arriving at a fast method with robust empirical performance (details in Sections I and J).

This combination of results brings VI closer to Langevin-based MCMC both on the practical
and theoretical fronts, but still falls short of achieving non-asymptotic discretization guarantees as
pioneered by Dalalyan (2017) for MCMC. To further close the theoretical gap between VI and the
state of the art for MCMC, we propose in Section 4.2 a stochastic gradient descent (SGD) algorithm as
a time discretization of the Bures–Wasserstein gradient flow. This algorithm comes with convergence
guarantees that establish VI as a solid competitor to MCMC not only from a practical standpoint but
also from a theoretical one. Both have their relative merits; whereas MCMC targets the true posterior,
VI leads to fast computation of summary statistics of the approximation ⇡̂ to ⇡.

In Section 5, we consider an extension of these ideas to the substantially more flexible class of
mixtures of Gaussians. Namely, the space of mixtures of Gaussians can be identified as a Wasserstein
space over BW(Rd) and hence inherits Otto’s differential calculus. Leveraging this viewpoint, in
Theorem 5 we derive the gradient flow of KL(· k ⇡) over the space of mixtures of Gaussians and
propose to implement it via a system of interacting particles. Unlike typical particle-based algorithms,
here our particles correspond to Gaussian distributions, and the collection thereof to a Gaussian
mixture which is better equipped to approximate a continuous measure. We validate the empirical
performance of our method with promising experimental results (see Section J). Although we focus
on the VI problem in this work, we anticipate that our notion of “Gaussian particles” may be a broadly
useful extension of classical particle methods for PDEs.

Related work. Classical VI methods define a parametric family P = {p✓ : ✓ 2 ⇥} and minimize
✓ 7! KL(p✓ k ⇡) over ✓ 2 ⇥ using off-the-shelf optimization algorithms (Paisley et al., 2012; Ran-
ganath et al., 2014). Since (2) is an optimization problem over the space of probability distributions,
we argue for methods that respect a natural geometric structure on this space. In this regard, previous
approaches to VI using natural gradients implicitly employ a different geometry (Lin et al., 2019a;
Huang et al., 2022; Khan and Håvard, 2022), namely the reparameterization-invariant Fisher–Rao
geometry (Amari and Nagaoka, 2000). The application of Wasserstein gradient flows to VI was
introduced earlier in work on normalizing flows and Stein Variational Gradient Descent (SVGD) (Liu
and Wang, 2016; Liu, 2017).

Our work falls in line with a number of recent papers aiming to place VI on a solid theoretical
footing (Alquier et al., 2016; Wang and Blei, 2019; Domke, 2020; Knoblauch et al., 2022; Xu and
Campbell, 2022). Some of these works in particular have obtained non-asymptotic algorithmic
guarantees for specific examples, see, e.g., Challis and Barber (2013). We also mention that the
approach we take in this paper is closely related to the algorithms and analysis arrived at in Alquier
and Ridgway (2020); Domke (2020); Galy-Fajou et al. (2021). In particular, Galy-Fajou et al.
(2021) derive an algorithm for low-rank Gaussian VI by seeking a descent condition for the KL
divergence, yielding a method resembling Algorithm 1 albeit without quantitative convergence
guarantees. Also, Alquier and Ridgway (2020); Domke (2020) show that parametrizing the Gaussian
by the square root of the covariance matrix yields convexity and smoothness properties for the
Gaussian VI objective, which in turn allows for applying Euclidean gradient methods. This choice
of parametrization is closely related to the Bures–Wasserstein geometry approach we take, see
Appendix B.3 for background. However, we note that these works do not analyze the effect of
stochastic gradients, which is crucial for implementation.

4



WASSERSTEIN VARIATIONAL INFERENCE

The connection between VI and Kalman filtering was studied in the static case by Lambert
et al. (2021, 2022a), and extended to the dynamical case by Lambert et al. (2022b), providing a
first justification of Särkkä’s heuristic in terms of local variational Gaussian approximation. In
particular, the closest linear process to the Langevin diffusion (1) is a Gaussian process governed
by a McKean–Vlasov equation whose Gaussian marginals have parameters evolving according to
Särkkä’s ODEs.

Constrained gradient flows on the Wasserstein space have also been extensively studied (Carlen
and Gangbo, 2003; Caglioti et al., 2009; Tudorascu and Wunsch, 2011; Eberle et al., 2017), although
our interpretation of Särkkä’s heuristic is, to the best of our knowledge, new.

2. BACKGROUND

In order to define gradient flows on the space of probability measures, we must first endow this space
with a geometry; see Appendix B for more details. Given probability measures µ and ⌫ on Rd, define
the 2-Wasserstein distance

W2(µ, ⌫) =
h

inf
�2C(µ,⌫)

Z
kx� yk2 d�(x, y)

i
1/2

,

where C(µ, ⌫) is the set of couplings of µ and ⌫, that is, joint distributions on Rd ⇥ Rd whose
marginals are µ and ⌫ respectively. This quantity is finite as long as µ and ⌫ belong to the space
P2(Rd) of probability measures over Rd with finite second moments. The 2-Wasserstein distance has
the interpretation of measuring the smallest possible mean squared displacement of mass required
to transport µ to ⌫; we refer to Villani (2003, 2009); Santambrogio (2015) for textbook treatments
on optimal transport. Unlike other notions of distance between probability measures, such as the
total variation distance, the 2-Wasserstein distance respects the geometry of the underlying space Rd,
leading to numerous applications in modern data science (see, e.g., Peyré and Cuturi, 2019).

The space (P2(Rd),W2) is a metric space (Villani, 2003, Theorem 7.3), and we refer to it as the
Wasserstein space. However, as shown by Otto (Otto, 2001), it has a far richer geometric structure:
formally, (P2(Rd),W2) can be viewed as a Riemannian manifold, a fact which allows for considering
gradient flows of functionals on P2(Rd). A fundamental example of such a functional is the KL
divergence KL(· k ⇡) to a target density ⇡ / exp(�V ) on Rd, for which Jordan et al. (1998) showed
that the Wasserstein gradient flow is the same as the evolution of the marginal law of the Langevin
diffusion (1). This optimization perspective has had tremendous impact on our understanding and
development of MCMC algorithms (Wibisono, 2018).

3. VARIATIONAL INFERENCE WITH GAUSSIANS

In this section we describe our problem using two equivalent approaches: a variational approach based
on a modified version of the JKO scheme of Jordan et al. (1998) (Section 3.1), and a Wasserstein
gradient flow approach based on Otto calculus (Section 3.2). Both lead to the same result (Section
3.3). While the former is more accessible to readers who are unfamiliar with gradient flows on the
Wasserstein space, the latter leads to strong convergence guarantees (Section 3.4).

5
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3.1. Variational approach: the Bures–JKO scheme

The space of non-degenerate Gaussian distributions on Rd equipped with the W2 distance forms the
Bures–Wasserstein space BW(Rd) ✓ P2(Rd). On BW(Rd), the Wasserstein distance W

2

2
(p0, p1)

between two Gaussians p0 = N (m0,⌃0) and p1 = N (m1,⌃1) admits the following closed form:

W
2

2 (p0, p1) = km0 �m1k2 + B2(⌃0,⌃1) , (5)

where B2(⌃0,⌃1) = tr(⌃0 + ⌃1 � 2 (⌃
1
2
0
⌃1⌃

1
2
0
)
1
2 ) is the squared Bures metric (Bures, 1969).

Given a target density ⇡ / exp(�V ) on Rd, and with a step size h > 0, we may define the
iterates of the proximal point algorithm

pk+1,h := argmin
p2BW(Rd)

n
KL(p k ⇡) + 1

2h
W

2

2 (p, pk,h)
o
. (6)

Using (5), this is an explicit optimization problem involving the mean and covariance matrix of p.
Although (6) is not solvable in closed form, by letting h & 0 we obtain a limiting curve (pt)t�0

via pt = limh&0 pbt/hc,h, which can be interpreted as the Bures–Wasserstein gradient flow of the
KL divergence KL(· k ⇡). This procedure mimics the JKO scheme (Jordan et al., 1998) with the
additional constraint that the iterates lie in BW(Rd), and we therefore call it the Bures–JKO scheme.

3.2. Geometric approach: the Bures–Wasserstein gradient flow of the KL
divergence

In the formal sense of Otto described above, BW(Rd) is a submanifold of P2(Rd). Moreover, since
Gaussians can be parameterized by their mean and covariance, BW(Rd) can be identified with the
manifold Rd ⇥ Sd

++, where Sd
++ is the cone of symmetric positive definite d⇥ d matrices. Hence,

BW(Rd) is a genuine Riemannian manifold in its own right (see Modin, 2017; Malagò et al., 2018;
Bhatia et al., 2019), and gradient flows can be defined using Riemannian geometry (do Carmo,
1992). See Section B.3 for more details. Since the functional µ 7! F(µ) = KL(µ k ⇡) defined over
P2(Rd) restricts to a functional over BW(Rd), we can also consider the gradient flow of F over the
Bures–Wasserstein space; note that this latter gradient flow is necessarily a curve (pt)t�0

such that
each pt is a Gaussian measure.

3.3. Variational inference via the Bures–Wasserstein gradient flow

Using either approach, we can prove the following theorem.

Theorem 1 Let ⇡ / exp(�V ) be the target density on Rd. Then, the limiting curve (pt)t�0
where

pt = N (mt,⌃t) is obtained via the Bures–JKO scheme (6), or equivalently, the Bures–Wasserstein
gradient flow (pt)t�0

of the KL divergence KL(· k ⇡), satisfies Särkkä’s system of ODEs (4).

Proof The proof using the Bures–JKO scheme is given in Section A.1 and the proof using Otto
calculus is presented in Section C.

This theorem shows that Särkkä’s heuristic (4) precisely yields the Wasserstein gradient flow of
the KL divergence over the submanifold BW(Rd). Equipped with this interpretation, we are now
able to obtain information about the asymptotic behavior of the approximation (pt)t�0

. Namely, we

6
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can hope that it converges to constrained minimizer ⇡̂ = argminp2BW(Rd) KL(p k ⇡), i.e., precisely
the solution to the VI problem (2). In the next section, we show that this convergence in fact holds as
soon as V is convex, and moreover with quantitative rates.

The solution ⇡̂ to (2), and consequently the limit point of Särkkä’s approximation, is well-studied
in the variational inference literature (see, e.g., Opper and Archambeau, 2009), and we recall standard
facts about ⇡̂ here for completeness. It is known that ⇡̂ satisfies the equations

E⇡̂rV = 0 and E⇡̂r2
V = ⌃̂�1

, (7)

where ⌃̂ is the covariance matrix of ⇡̂ (these equations can also be derived as first-order necessary
conditions by setting the Bures–Wasserstein gradient derived in Section C to zero). In particular, it
follows from (7) that if r2

V enjoys the bounds ↵I � r2
V � �I for some �1  ↵  �  1,

then any solution ⇡̂ to the constrained problem also satisfies ��1
I � ⌃̂ � (↵ _ 0)�1

I .

3.4. Continuous-time convergence

Besides providing an intuitive interpretation of Särkkä’s heuristic, Theorem 1 readily yields conver-
gence criteria for the system (4) which rest upon general principles for gradient flows. We begin with
a key observation. For a functional F : BW(Rd)! R [ {1} and ↵ 2 R, we say that F is ↵-convex
if for all constant-speed geodesics (pt)t2[0,1] in BW(Rd),

F(pt)  (1� t)F(p0) + tF(p1)�
↵ t (1� t)

2
W

2

2 (p0, p1) , t 2 [0, 1] .

Lemma 2 For any ↵ 2 R, if r2
V ⌫ ↵I , then KL(· k ⇡) is ↵-convex on BW(Rd).

Proof The assumption that r2
V ⌫ ↵I entails that the functional KL(· k ⇡) is ↵-convex on the

entire Wasserstein space (P2(Rd),W2) (see, e.g., Villani, 2009, Theorem 17.15). Since BW(Rd) is a
geodesically convex subset of P2(Rd) (see Section B.3), then the geodesics in BW(Rd) agree with
the geodesics in P2(Rd), from which it follows that KL(· k ⇡) is ↵-convex on BW(Rd).

Consequently, we obtain the following corollary. Its proof is postponed to Section D.

Corollary 3 Suppose that r2
V ⌫ ↵I for some ↵ 2 R. Then, for any p0 2 BW(Rd), there is a

unique solution to the BW(Rd) gradient flow of KL(· k ⇡) started at p0. Moreover:
1. If ↵ > 0, then for all t � 0, W 2

2
(pt, ⇡̂)  exp(�2↵t)W 2

2
(p0, ⇡̂).

2. If ↵ > 0, then for all t � 0, KL(pt k ⇡)� KL(⇡̂ k ⇡)  exp(�2↵t) {KL(p0 k ⇡)� KL(⇡̂ k ⇡)}.
3. If ↵ = 0, then for all t > 0, KL(pt k ⇡)� KL(⇡̂ k ⇡)  1

2t
W

2

2
(p0, ⇡̂).

The assumption thatr2
V ⌫ ↵I for some ↵ > 0, i.e., that ⇡ is strongly log-concave, is a standard

assumption in the MCMC literature. Under this same assumption, Corollary 3 yields convergence
for the Bures–Wasserstein gradient flow of KL(· k ⇡); however, the flow must first be discretized in
time for implementation. If we assume additionally that the smoothness condition r2

V � �I holds,
then a surge of recent research has succeeded in obtaining precise non-asymptotic guarantees for
discretized MCMC algorithms. In Section 4.2 below, we will show how to do the same for VI.

7
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Figure 2: Two left plots: approximation of a bimodal target and a logistic target. Two right plots:
convergence of the KL in dimension 2 and 100 for the logistic target. Our algorithm yields better
approximation in KL than the Laplace approximation (see Appendix I.4 for details).

4. TIME DISCRETIZATION OF THE BURES–WASSERSTEIN GRADIENT
FLOW

We are now equipped with dual perspectives on a dynamical solution to Gaussian VI: ODE and
gradient flow. Each perspective leads to a different implementation. On the one hand, we discretize
the system of ODEs defined in (4) using numerical integration. On the other, we discretize the
gradient flow using stochastic gradient descent in the Bures–Wasserstein space.

4.1. Numerical integration of the ODEs

The system of ODEs (4) can be integrated in time using a classical Runge–Kutta scheme. The
expectations under a Gaussian support are approximated by cubature rules used in Kalman filter-
ing (Arasaratnam and Haykin, 2009). Moreover, a square root version of the ODE is also considered
to ensure that covariance matrices remain symmetric and positive. See Appendix I.2 for more details.
We have tested our method on a bimodal distribution and on a posterior distribution arising from a
logistic regression problem. We observe fast convergence as shown in Figure 2.

4.2. Bures–Wasserstein SGD and theoretical guarantees for VI

Although the ODE discretization proposed in the preceding section enjoys strong empirical perfor-
mance, it is unclear how to quantify its impact on the convergence rates established in Corollary 3.
Therefore, we now propose a stochastic gradient descent algorithm over the Bures–Wasserstein space,
for which useful analysis tools have been developed (Chewi et al., 2020; Altschuler et al., 2023). This
approach bypasses the use of the system of ODEs (4), and instead discretizes the Bures–Wasserstein
gradient flow directly. Under the standard assumption of strong log-concavity and log-smoothness, it
leads to an algorithm (Algorithm 1) for approximating ⇡̂ with provable convergence guarantees.

Algorithm 1 Bures–Wasserstein SGD
Data: strong convexity parameter ↵ > 0; step size

h > 0; mean m0 and covariance matrix ⌃0

for k = 1, . . . , N do

draw a sample X̂k ⇠ pk

set mk+1  mk � hrV (X̂k)
set Mk  I � h (r2

V (X̂k)� ⌃�1

k
)

set ⌃+

k
 Mk⌃kMk

set ⌃k+1  clip1/↵⌃+

k

Algorithm 1 maintains a sequence of Gaus-
sian distributions (pk)k2N; here (mk,⌃k) de-
note the mean vector and covariance matrix at
iteration k (see Section E for a derivation of the
algorithm as SGD in the Bures–Wasserstein
space). The clipping operator clip⌧ , which is
introduced purely for the purpose of theoreti-
cal analysis, simply truncates the eigenvalues

8
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from above; see Section E. Our theoretical re-
sult for VI is given as the following theorem,
whose proof is deferred to Section E.

Theorem 4 Assume that 0 � ↵I � r2
V � I . Also, assume that h  ↵

2

60
and that we initialize

Algorithm 1 at a matrix satisfying ↵

9
I � ⌃µ0 � 1

↵
I . Then, for all k 2 N,

EW
2

2 (pk, ⇡̂)  exp(�↵kh)W 2

2 (p0, ⇡̂) +
36dh

↵2
.

In particular, we obtain EW
2

2
(pk, ⇡̂)  "2 provided we set h ⇣ ↵

2
"
2

d
and the number of iterations to

be k & d

↵3"2
log(W2(p0, ⇡̂)/").

The upper boundr2
V � I is notationally convenient for our proof but not necessary; in any case,

any strongly log-concave and log-smooth density ⇡ can be rescaled so that the assumption holds.
Theorem 4 is similar in flavor to modern results for MCMC, both in terms of the assumptions

(Hessian bounds and query access to the derivatives1 of V ) and the conclusion (a non-asymptotic
polynomial-time algorithmic guarantee). We hope that such an encouraging result for VI will prompt
more theoretical studies aimed at closing the gap between the two approaches.

5. VARIATIONAL INFERENCE WITH MIXTURES OF GAUSSIANS

Thus far, we have shown that the tractability of Gaussians can be readily exploited in the context
of Bures–Wasserstein gradient flows and translated into useful results for variational inference.
Nevertheless, these results are limited by the lack of expressivity of Gaussians, namely their inability
to capture complex features such as multimodality and, more generally, heterogeneity. To overcome
this limitation, mixtures of Gaussians arise as a natural and powerful alternative; indeed, universal
approximation of arbitrary probability measures by mixtures of Gaussians is well-known (see, e.g.,
Delon and Desolneux, 2020). As we show next, the space of mixtures of Gaussians can also be
equipped with a Wasserstein structure which gives rise to implementable gradient flows.

5.1. Geometry of the space of mixtures of Gaussians

We begin with the key observation already made by Chen et al. (2019), that any mixture of Gaussians
can be canonically identified with a probability distribution (the mixing distribution) over the param-
eter space ⇥ = Rd ⇥ Sd

++ (the space of means and covariance matrices). Explicitly a probability
measure µ 2 P(⇥) corresponds to a Gaussian mixture as follows:

µ $ pµ :=

Z
p✓ dµ(✓) , (8)

where p✓ is the Gaussian distribution with parameters ✓ 2 ⇥. Equivalently, µ can be thought of as a
probability measure over BW(Rd), and hence the space of Gaussian mixtures on Rd can be identified
with the Wasserstein space P2(BW(Rd)) over the Bures–Wasserstein space which is endowed with
the distance (5) between Gaussian measures. Indeed, the theory of optimal transport can be developed

1. A notable downside of Algorithm 1 is the requirement of a Hessian oracle for V , which results in a higher per-iteration
cost than typical MCMC samplers.

9
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with any Riemannian manifold (rather than Rd) as the base space (Villani, 2009). As before, the
space P2(BW(Rd)) is endowed with a formal Riemannian structure, which respects the geometry of
the base space BW(Rd), and we can consider Wasserstein gradient flows over P2(BW(Rd)).

Note that this framework encompasses both discrete mixtures of Gaussians (when µ is a discrete
measure) and continuous mixtures of Gaussians. In the case when the mixing distribution µ is discrete,
the geometry of P2(BW(Rd)) was studied by Chen et al. (2019); Delon and Desolneux (2020). An
important insight of our work, however, is that it is fruitful to consider the full space P2(BW(Rd))
for deriving gradient flows, even if we eventually develop algorithms which propagate a finite number
of mixture components.

5.2. Gradient flow of the KL divergence and particle discretization

We consider the gradient flow of the KL divergence functional

µ 7! F(µ) := KL(pµ k ⇡) (9)

over the space P2(BW(Rd)). The proof of the following theorem is given in Section F.

Theorem 5 The gradient flow (µt)t�0
of the functional F defined in (9) over P2(BW(Rd)) can be

described as follows. Let ✓0 = (m0,⌃0) ⇠ µ0, and let ✓t = (mt,⌃t) evolve according to the ODE

ṁt = �Er ln
pµt

⇡
(Yt)

⌃̇t = �Er2 ln
pµt

⇡
(Yt)⌃t � ⌃t Er2 ln

pµt

⇡
(Yt)

(10)

where Yt ⇠ N (mt,⌃t). Then ✓t ⇠ µt.

The gradient flow in Theorem 5 describes the evolution of a particle ✓t which describes the
parameters of a Gaussian measure, hence the name Gaussian particle. The intuition behind this
evolution is as follows. Suppose we draw infinitely many initial particles (each being a Gaussian)
from µ0. By evolving all those particles through (10), which interact with each other via the term
pµt , they tend to aggregate in some parts of the space of Gaussian parameters and spread out in
others. This distribution of Gaussian particles is precisely the mixing measure µt, which, in turn,
corresponds to a Gaussian mixture. Since an infinite number of Gaussian particles is impractical,
consider initializing this evolution at a finitely supported distribution µ0, thus corresponding to a
more familiar Gaussian mixture model with a finite number of components:

µ0 =
1

N

NX

i=1

�
✓
(i)
0

=
1

N

NX

i=1

�
(m

(i)
0 ,⌃

(i)
0 )

$ pµ0 :=
1

N

NX

i=1

p
(m

(i)
0 ,⌃

(i)
0 )

.

Interestingly, it can be readily checked that the system of ODEs (10) thus initialized maintains a finite
mixture distribution:

µt =
1

N

NX

i=1

�
✓
(i)
t

=
1

N

NX

i=1

�
(m

(i)
t ,⌃

(i)
t )

,

10
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where the parameters ✓(i)
t

= (m(i)

t
,⌃(i)

t
) evolve according to the following interacting particle system,

for i 2 [N ]

ṁ
(i)

t
= �Er ln

pµt

⇡
(Y (i)

t
) , (11)

⌃̇(i)

t
= �Er2 ln

pµt

⇡
(Y (i)

t
)⌃(i)

t
� ⌃(i)

t
Er2 ln

pµt

⇡
(Y (i)

t
) , (12)

where Y (i)

t
⇠ p

✓
(i)
t

. This finite system of particles can now be implemented using the same numerical
tools as for Gaussian VI, see Section J. Note that due to this property of the dynamics, we can hope at
best to converge to the best mixture of N Gaussians approximating ⇡, but this approximation error
is expected to vanish as N ! 1. Also, similarly to (4), it is possible to write down Hessian-free
updates using integration by parts, see Appendix A.2.

The above system of particles may also be derived using a proximal point method similar to the
Bures–JKO scheme, see Section A.2. Indeed, infinitesimally, it has the variational interpretation

(✓(1)
t+h

, . . . , ✓
(N)

t+h
) ⇡ argmin

✓(1),...,✓(N)2⇥

⇢
KL

⇣ 1

N

NX

i=1

p
✓(i)

��� ⇡
⌘
+

1

2Nh

NX

i=1

W
2

2 (p✓(i) , p✓(i)t
)

�
.

Reassuringly, Equations (11)-(12) reduce to (4) when µ0 = �(m0,⌃0)
is a point mass, indicating

that the theorem provides a natural extension of our previous results. However, although the model (8)
is substantially more expressive than the Gaussian VI considered in Section 3, it has the downside
that we lose many of the theoretical guarantees. For example, even when V is convex, the objective
functional F considered here need not be convex; see Section G. We nevertheless validate the practical
utility of our approach in experiments (see Figure 3 and Section J).

Unlike typical interacting particle systems which arise from discretizations of Wasserstein gradient
flows, at each time t, the distribution pµt is continuous. This extension provides considerably more
flexibility—from a mixture of point masses to a mixture of Gaussians—compared to interacting
particle-based algorithms hitherto considered for either sampling (Liu and Wang, 2016; Liu, 2017;
Duncan et al., 2019; Chewi et al., 2020), or solving partial differential equations (Carrillo et al., 2011,
2012; Bonaschi et al., 2015; Craig and Bertozzi, 2016; Carrillo et al., 2019; Craig et al., 2022).

Figure 3: Approximation of a Gaussian mixture target ⇡ with 40 Gaussian particles. The particles are
represented by their covariance ellipsoids shown at Steps 0, 1, and 2. The right figure shows the final
step with the approximated density in contour-lines. More figures are available in Appendix J.
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6. CONCLUSION

Using the powerful theory of Wasserstein gradient flows, we derived new algorithms for VI using either
Gaussians or mixtures of Gaussians as approximating distributions. The consequences are twofold.
On the one hand, strong convergence guarantees under classical conditions contribute markedly to
closing the theoretical gap between MCMC and Gaussian VI. On the other hand, discretization of the
Wasserstein gradient flow for mixtures of Gaussians yields a new Gaussian particle method for time
discretization which, unlike classical particle methods, maintains a continuous probability distribution
at each time.

We conclude by briefly listing some possible directions for future study. For Gaussian variational
inference, our theoretical result (Theorem 4) can be strengthened by weakening the assumption that ⇡
is strongly log-concave, or by developing algorithms which do not require Hessian information for V .
For mixtures of Gaussians, it is desirable to design a principled algorithm which also allows for the
mixture weights to be updated.

Towards the latter question, in Section H we derive the gradient flow of the KL divergence with
respect to the Wasserstein–Fisher–Rao geometry (Liero et al., 2016; Chizat et al., 2018; Liero et al.,
2018), which yields an interacting system of Gaussian particles with changing weights. The equations
are given as follows: at each time t, the mixing measure is the discrete measure

µt =
NX

i=1

w
(i)

t
�
(m

(i)
t ,⌃

(i)
t )

.

Let Y (i)

t
⇠ N (m(i)

t
,⌃(i)

t
), and let r(i)

t
=

q
w

(i)

t
. Then, the system of ODEs is given by

ṁ
(i)

t
= �Er ln

pµt

⇡
(Y (i)

t
) ,

⌃̇(i)

t
= �Er2 ln

pµt

⇡
(Y (i)

t
)⌃(i)

t
� ⌃(i)

t
Er2 ln

pµt

⇡
(Y (i)

t
) ,

ṙ
(i)

t
= �

⇣
E ln

pµt

⇡
(Y (i)

t
)� 1

N

NX

j=1

E ln
pµt

⇡
(Y (j)

t
)
⌘
r
(i)

t
.

We have implemented these equations and their empirical performance is encouraging. However, a
fuller investigation of algorithms for VI with changing weights is beyond the scope of this work and
we leave it for future research.

Code for the experiments is available at https://github.com/marc-h-lambert/W-VI.
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Appendix A. PROOFS VIA THE BURES–JKO SCHEME

A.1. Proof of Theorem 1

Given a Gaussian distribution at time t written pt = N (mt,⌃t) and a target distribution ⇡, we seek
the solution p at time t+ h of the following JKO scheme, where p = N (m,⌃) is constrained to lie
on the space BW(Rd) of Gaussians equipped with the Wasserstein distance:

min
p2BW(Rd)

L(p) = KL(p k ⇡) + 1

2h
W

2

2 (p, pt) . (13)

Using the expression for the Wasserstein distance W
2

2
(pt, p) given in (5) it is equivalent to finding

the Gaussian parameters which solve:

min
m,⌃

L(m,⌃) = KL(N (m,⌃) k ⇡) + 1

2h
kmt �mk2 + 1

2h
B2(⌃t,⌃) . (14)

We first compute the critical points of L and then take the limit as h& 0 to get the desired differential
equations (ODEs) for the parameters. This boils down to computing the Wasserstein gradient flow of
KL(· k ⇡) over the Bures–Wasserstein manifold BW(Rd).

The left KL divergence is a sum of two terms KL(p k ⇡) = H(p)� Ep[ln⇡], where H(p) is the
negative entropy of a Gaussian. It satisfies

rmH(p) = 0 and r⌃H(p) = r⌃

�
�1

2
ln det⌃

�
= �1

2
⌃�1

.

To alleviate notation, for any function f we both let x denote its argument and Ep[f(x)] denote
expectation over x ⇠ p = N (m,⌃) throughout the present proof, depending on the context.

The gradient of the left KL divergence with respect to m is given by:

rm KL(p k ⇡) = �rmEp[ln⇡(x)] = �Ep[rx ln⇡(x)],

where we have used integration by parts (assuming ⇡ is continuously differentiable) and the property
of Gaussian densities rmN (x | m,⌃) = �rxN (x | m,⌃) to get a derivative with respect to x.
The critical point of L given by (14) w.r.t. the mean parameter m thus writes:

rmL(m,⌃) =
1

h
(m�mt)� Ep[rx ln⇡(x)] = 0 . (15)

Taking the limit as h& 0, we find that mt must satisfy the following ODE:

ṁt = Ept [rx ln⇡(x)] = �Ept [rxV (x)] ,

where we recall that ⇡ / exp(�V ). This recovers the first line of (4).
The gradient of the left KL divergence with respect to ⌃ is given by:

r⌃ KL(p k ⇡) = �1

2
⌃�1 �r⌃Ep[ln⇡(x)] = �

1

2
⌃�1 � 1

2
Ep[r2

x ln⇡(x)] ,

where we have used two integrations by parts (supposing ⇡ is twice continuously differentiable) and
the property of Gaussian densities r⌃N (x | m,⌃) = 1

2
r2

xN (x | m,⌃) to let a Hessian w.r.t. x
appear. The Bures derivative is given by (see Bhatia et al., 2019):

r⌃B2(⌃t,⌃) = I � T
⌃,⌃t ,

13
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where T
A,B is the optimal transport map from N (0, A) to N (0, B), with the explicit expression

T
A,B = A

� 1
2 (A

1
2BA

1
2 )

1
2A

� 1
2 = (TB,A)�1. The gradient of the variational loss L in (14) is thus:

r⌃L(m,⌃) =
1

2h
I � 1

2h
T
⌃,⌃t � 1

2
⌃�1 � 1

2
Ep[r2

x ln⇡(x)] .

Zeroing this equation gives:

I = T
⌃,⌃t + h⌃�1 + hEp[r2

x ln⇡(x)] . (16)

Multiplying by ⌃ on the left, as well as on the right, yields the two following equations:

⌃ = ⌃T⌃,⌃t + hI + h⌃Ep[r2

x ln⇡(x)] , (17)

⌃ = T
⌃,⌃t⌃+ hI + hEp[r2

x ln⇡(x)]⌃ . (18)

Adding them we obtain the symmetrized form:

⌃ =
1

2
T
⌃,⌃t⌃+

1

2
⌃T⌃,⌃t + hI +

1

2
h⌃Ep[r2

x ln⇡(x)] +
1

2
hEp[r2

x ln⇡(x)]⌃ . (19)

Let us denote T⌃,⌃t = T (⌃). Since T (⌃) pushes forward ⌃ to ⌃t, it follows that T (⌃)⌃T (⌃) =
⌃t (which can be checked directly from the expression for T⌃,⌃t). The first variation of this equality
w.r.t. ⌃ at I gives

dT ⌃t + d⌃+ ⌃t dT = 0 . (20)

Let us now term ⌃ = ⌃t+h the solution to (19). Up to the first order in h we have ⌃t+h =
⌃t + d⌃ = ⌃t + h⌃̇t. Let dT denote the corresponding first variation of T , that is, T (⌃t+h) =
T (⌃t) + dT = I + dT up to the first order in h. Substituting into (19), using the previously found
relation (20), dividing by h and letting h& 0 , we finally obtain the desired ODE:

⌃̇t = 2I + ⌃t Ept [r2

x ln⇡(x)] + Ept [r2

x ln⇡(x)]⌃t (21)
= 2I + Ept [rx ln⇡(x)⌦ (x�mt)] + Ept [(x�mt)⌦rx ln⇡(x)] , (22)

where the relation Ep[r2
x ln⇡(x)]⌃ = Ep[rx ln⇡(x)⌦ (x�m)] comes from Gaussian integration

by parts and yields a Hessian-free form. Letting ⇡ / exp(�V ) yields the second line of (4).

Interpretation in terms of Wasserstein gradient flows. Let Tt+h!t denote the optimal transport
map from pt+h to pt, so that Tt+h!t = mt + T

⌃t+h,⌃t (x�mt+h). Combining the equations (15)
and (16), it reads

Tt+h!t(x)� x

h
=

1

h
{mt �mt+h + (T⌃t+h,⌃t � I) (x�mt+h)}

= Ept+h rV + (Ept+h r
2
V � ⌃�1

t+h
) (x�mt+h) .

In Section C, this equality will be written

Tt+h!t � id

h
= [rBW KL(· k ⇡)](pt+h) , (23)

14



WASSERSTEIN VARIATIONAL INFERENCE

where 1

h
(Tt+h!t � id) and [rBW KL(· k ⇡)](pt+h) are the Bures–Wasserstein gradients of the

functionals � 1

2h
W

2

2
(·, pt) and KL(· k ⇡) at pt+h respectively. The equation (23) is a first-order

optimality condition for the Bures–JKO scheme (6) and mimics the known optimality condition for
the original JKO scheme, see (Santambrogio, 2015, equation (8.4)).

The quantity 1

h
(Tt+h!t � id) is a difference quotient which measures the infinitesimal displace-

ment of a particle traveling along the gradient flow. As h& 0, we will interpret this quantity as �vt,
the negative of the tangent vector to the curve at time t (the negative sign appears because Tt+h!t

is the transport map backwards in time). Hence, the equation (23) states that as h& 0, the tangent
vector to the curve (pt)t�0

is the negative Bures–Wasserstein gradient of the KL divergence, which is
the definition of a gradient flow.

From this perspective, the computation of the linearization in (20) is equivalent to computing the
tangent vector to the Wasserstein geodesic, which is given in (32).

A.2. Extension to mixtures of Gaussians

We now consider a finite Gaussian mixture model p = 1

N

P
N

i=1
p
✓(i) where ✓(i) = (m(i)

,⌃(i)). We
consider the following variational problem:

min
✓(1),...,✓(N)2⇥

1

2Nh

NX

i=1

W
2

2 (p✓(i) , p✓(i)t
) + KL

⇣ 1

N

NX

i=1

p
✓(i)

��� ⇡
⌘
,

where, as before, W2 is the Wasserstein distance between two Gaussians distribution:

W
2

2 (p✓(i) , p✓(i)t
) = km(i) �m

(i)

t
k2 + B2(⌃(i)

,⌃(i)

t
) .

The KL divergence is now written

KL

⇣ 1

N

NX

i=1

p
✓(i)

��� ⇡
⌘
=

1

N

NX

i=1

Z
p
✓(i) ln p�

1

N

NX

i=1

Z
p
✓(i) ln⇡ .

For k 2 [N ], the derivative of this divergence with respect to m
(k) gives:

r
m(k) KL(p k ⇡) =

Z
1

N
r

m(k)p✓(k) ln p+

Z
pr

m(k) ln p�
Z

1

N
r

m(k)p✓(k) ln⇡

=

Z
1

N
p
✓(k)rx ln

p

⇡
,

where we have used the same integration by parts as in the Section A.1, i.e.,
R
p
✓(k) rm(k) ln p =R

p
✓(k) rx ln p, and the Fisher score property

R
pr

m(k) ln p = 0. Mimicking Section A.1, see (15),
we obtain in the limit h& 0

ṁ
(k) = �Ep

✓(k)

⇥
rx ln

p

⇡

⇤
,

which is the desired equation (11).
The derivative of the KL divergence with respect to ⌃(k) gives:

r
⌃(k) KL(p k ⇡) =

Z
1

N
r

⌃(k)p✓(k) ln p+

Z
pr

⌃(k) ln p�
Z

1

N
r

⌃(k)p✓(k) ln⇡

=
1

N

⇣1
2

Z
p
✓(k) r

2

x ln p�
1

2

Z
p
✓(k) r

2

x ln⇡
⌘
=

1

2N
Ep

✓(k)

⇥
r2

x ln
p

⇡

⇤
,
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where we have used a double integration by parts
R
r

⌃(k)p✓(k) ln p = 1

2

R
p
✓(k) r2

x ln p as in Sec-
tion A.1 and the Fisher score property

R
pr

⌃(k) ln p = 0.
Using the Bures derivative, the critical points of the variational loss with respect to ⌃k satisfy:

1

2Nh
(I � T

⌃
(k)

,⌃
(k)
t ) +

1

2N
Ep

✓(k)

⇥
r2

x ln
p

⇡

⇤
= 0 .

Multiplying on the left and on the right by ⌃(k) and taking the average as in Section A.1, we find:

1

h

�
⌃(k) � 1

2
(⌃(k)

T
⌃

(k)
,⌃

(k)
t + T

⌃
(k)

,⌃
(k)
t ⌃(k))

�

= �1

2

�
Ep

✓(k)

⇥
r2

x ln
p

⇡

⇤
⌃(k) + ⌃(k) Ep

✓(k)

⇥
r2

x ln
p

⇡

⇤�
.

We can now use the first-order approximation 1

2
(⌃(k)

T
⌃

(k)
,⌃

(k)
t + T

⌃
(k)

,⌃
(k)
t ⌃(k)) ⇡ ⌃(k) � h

2
⌃̇(k)

shown in Section A.1 to obtain:

⌃̇(k) = �Ep
✓(k)

⇥
r2

x ln
p

⇡

⇤
⌃(k) � ⌃(k) Ep

✓(k)

⇥
r2

x ln
p

⇡

⇤
.

This yields the desired ODE (12), which can be rewritten in a Hessian-free form:

⌃̇(k) = �Ep
✓(k)

⇥
rx ln

p

⇡
⌦ (x�mk)

⇤
� Ep

✓(k)

⇥
(x�mk)⌦rx ln

p

⇡

⇤
.

Appendix B. BACKGROUND ON OTTO CALCULUS

B.1. Overview and history

Historically, the connection between dissipative evolution equations and the theory of gradient flows
on the Wasserstein space was discovered in Otto (1998). Subsequently, this link was further developed
and strengthened in the seminal works Jordan et al. (1998); Otto (2001). Although the paper Jordan
et al. (1998) chronologically precedes Otto (2001), the intuition of the former is based heavily on the
work of Otto in the latter paper, in which he develops the formal2 rules governing the calculus which
now bears his name.

Otto calculus endows the space P2(Rd) of probability measures over Rd with finite second
moment with a formal Riemannian structure inspired by fluid dynamics. To describe the idea, suppose
that (µt)t�0

is a curve of probability measures, with µt representing the fluid density at time t. Also,
let (vt)t�0

denote the velocity vector fields governing the dynamics of the particles; this means that
the trajectory t 7! xt of an individual particle evolves according to the ODE

ẋt = vt(xt) . (24)

In probabilistic language, if x0 is a random variable drawn from the density µ0 and it evolves
according to (24), then xt ⇠ µt for all t � 0. From this, we can derive a partial differential equation
(PDE) governing the evolution of (µt)t�0

as follows: fix a test function ' : Rd ! R (which is
bounded, smooth, etc.). Formally, if the integration by parts is justified, then

Z
'@tµt = @t

Z
' dµt = @t E'(xt) =

Z
hr', vti dµt = �

Z
' div(µtvt)

2. Here, “formal” is not a synonym for “rigorous”.
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from which we deduce the continuity equation of fluid dynamics:

@tµt + div(µtvt) = 0 . (25)

Conversely, if (µt)t�0
is a sufficiently nice curve, then it is always possible to find a family of vector

fields (vt)t�0
such that the equation (25) holds, i.e., we can interpret (µt)t�0

as the evolution of a
fluid density. However, the choice of vector fields is not unique, since we may always replace vt with
another vector field ṽt such that div(µt (vt � ṽt)) = 0. This motivates the search for a distinguished
choice of vector fields to describe the evolution of the curve of measures.

To do so, we pick vt to minimize the kinetic energy,

vt = argmin
nZ
kwtk2 dµt

��� wt : Rd ! R satisfies div(µtwt) = �@tµt

o
.

If µt is regular (admits a density w.r.t. Lebesgue measure), then the minimum is attained at a gradient
vector field: vt = r t for a function  t : Rd ! R. We are led to define the tangent space

TµP2(Rd) = {r |  : Rd ! R}

and endow it with the inner product

hv, wiµ =

Z
hv, wi dµ .

This yields a formal Riemannian structure on P2(Rd). Moreover, the choice of picking the vector
field with minimal kinetic energy is closely related to the idea of optimal transport of mass (see
Villani, 2003), and in fact Benamou and Brenier (1999) showed that

W
2

2 (µ0, µ1) = inf
nZ
kvtk2µt

dt
��� (µt, vt)t2[0,1] solves the continuity equation (25)

o
. (26)

From the lens of Riemannian geometry, this says that the notion of distance induced by the Riemannian
structure is precisely the quadratic Wasserstein distance, and hence we refer to the space P2(Rd)
equipped with this Riemannian structure as the Wasserstein space.

This formal picture already allows one to compute gradients of functionals defined over P2(Rd)
and hence to consider gradient flows, as well as to derive criteria which imply quantitative rates of
convergence for these flows. However, it is a considerable technical undertaking to make the preceding
formal considerations fully rigorous, and this was only accomplished later in the comprehensive
monograph Ambrosio et al. (2008). Instead, in Jordan et al. (1998), the authors sidestep this difficulty
by considering an implicit time-discretization scheme which only requires the metric structure of
(P2(Rd),W2). For a step size h > 0, define the discrete updates

µh,k+1 := argmin
µ2P2(Rd)

n
F(µ) +

1

2h
W

2

2 (µ, µh,k)
o
, (27)

where F : P2(Rd)! R [ {1} is the functional of interest defined over the Wasserstein space. Note
that in optimization, this is known as the “proximal point method” for minimizing F.

As h & 0, one hopes that we have convergence µh,bt/hc ! µt in a suitable sense, and then
the limiting curve (µt)t�0

can be interpreted as the Wasserstein gradient flow of F. This is indeed
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what Jordan et al. (1998) showed in a particular, but important case. Namely, if ⇡ / exp(�V ) is a
density on Rd obeying mild regularity conditions, and we take the functional to be the KL divergence,
F(µ) = KL(µ k ⇡), then the sequence of discrete approximations converges to the solution of the
Fokker–Planck equation

@tµt = div
�
µtr ln

µt

⇡

�
. (28)

It is well-known that the Fokker–Planck equation governs the evolution of the marginal law of the
Langevin diffusion

dXt = �rV (Xt) dt+
p
2 dBt ,

where (Bt)t�0
is a standard Brownian motion on Rd. Hence, this celebrated result says that the

Langevin diffusion can be interpreted as the Wasserstein gradient flow of the KL divergence. The
implicit discretization (27) is now commonly known as the “JKO scheme” after the authors Jordan,
Kinderlehrer, and Otto.

Although the Wasserstein space is not truly a Riemannian manifold, many of the formal calcula-
tions of Otto (2001) can now be justified rigorously, under appropriate technical conditions, due to
the extensive theory developed in Ambrosio et al. (2008); Villani (2009). This perspective leads to
intuitive derivations of gradient flows, as explained in Section C, and much more.

B.2. Geometry of the Wasserstein space

In this section, we provide further details about the geometry of (P2(Rd),W2).
Let µ0, µ1 2 P2(Rd), and for simplicity assume that µ0 admits a density with respect to Lebesgue

measure. Then, Brenier’s theorem (Villani, 2003, Theorem 2.12) says that there exists a proper,
convex, lower semicontinuous ' : Rd ! R[{1} such thatr' solves the optimal transport problem
from µ0 to µ1: namely, (r')

#
µ0 = µ1 and W

2

2
(µ0, µ1) =

R
kr'(x) � xk2 dµ0(x). We refer to

r' as the optimal transport map from µ0 to µ1.
The (unique) constant-speed geodesic (µt)t2[0,1] joining µ0 to µ1 is then described via

µt = (r't)#µ0 , r't := (1� t) id + tr' . (29)

In view of the fluid dynamical perspective, the constant-speed geodesics in the Wasserstein space
correspond to particle trajectories t 7! xt which are straight lines traversed at constant speed: indeed,
xt = r't(x0) = (1 � t)x0 + tr'(x0). Since ẋt = r'(x0) � x0 = (r' � id) � (r't)

�1(xt),
then along the geodesic we see that (µt, vt)t2[0,1] solves the continuity equation (25), where the vector
field is vt = (r'� id) � (r't)

�1. This solution achieves the minimum in (26).
Recall that on a Riemannian manifold M, the Riemannian exponential map at p is defined on a

subset of the tangent space TpM, and it maps v to the endpoint of the constant-speed geodesic at time
1 which emanates from p with velocity v (at time 0). The Riemannian logarithmic map logp is the
inverse mapping: it maps an element q 2M to the element v 2 TpM such that the constant-speed
geodesic joining p to q in one unit of time has velocity v at time 0. In the previous paragraph, we
have identified the logarithmic map: logµ ⌫ = r'µ!⌫ � id, where r'µ!⌫ is the optimal transport
map from µ to ⌫. Thus, the Riemannian exponential map is expµ v = (id + v)

#
µ.
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B.3. The Bures–Wasserstein space

The space of non-degenerate Gaussian distributions equipped with the W2 metric is known as the
Bures–Wasserstein space, after Bures (1969). We denote this space as BW(Rd).

Given m 2 Rd and ⌃ � 0, we denote by pm,⌃ the Gaussian on Rd with mean m and covariance
⌃. Conversely, for a non-degenerate Gaussian p we write (mp,⌃p) for its mean and covariance.
Via this correspondence, we can therefore identify the space of non-degenerate Gaussians with the
manifold Rd⇥Sd

++, where Sd
++ denotes the cone of positive definite matrices. Abusing notation, we

will do so whenever there is no danger of confusion.
Suppose that pm0,⌃0 , pm1,⌃1 2 BW(Rd). Then, the optimal transport map from p0 := pm0,⌃0 to

p1 := pm1,⌃1 is

r'(x) = m1 + ⌃�1/2

0
(⌃1/2

0
⌃1⌃

1/2

0
)
1/2

⌃�1/2

0
(x�m0) .

Observe that r' is an affine map. Since the pushforward of a Gaussian via an affine map is also
Gaussian, it follows from (29) that the constant speed geodesic (pt)t2[0,1] joining p0 to p1 also lies in
BW(Rd). In other words, BW(Rd) is a geodesically convex subset of P2(Rd).

The tangent vector to the geodesic at time 0 is always an affine map of the form x 7! a+ S (x�
mp0), where a 2 Rd and S is a symmetric matrix. The tangent space is

TpBW(Rd) = {x 7! a+ S (x�mp) | a 2 Rd
, S 2 Sd} ,

which can therefore be identified with pairs (a, S) 2 Rd ⇥ Sd. With this abuse of notation, if
(a, S), (a0, S0) 2 TpBW(Rd), then

h(a, S), (a0, S0)ip =
Z
ha+ S (x�mp), a

0 + S
0 (x�mp)i dp(x) = ha, a0i+ hS,⌃pS

0i . (30)

Specializing the notions from the previous section, we obtain

logp(q) =
�
mq �mp, ⌃

�1/2

p (⌃1/2

p ⌃q⌃
1/2

p )
1/2

⌃�1/2

p � I
�
,

expp(a, S) =
�
mp + a+ (S + I) (·�mp)

�
#
p = N

�
mp + a, (S + I)⌃p (S + I)

�
.

Here, expp(a, S) is defined if S � �I .
This definition of the tangent space is consistent with the Wasserstein space, in that we have the

inclusion TpBW(Rd) ,! TpP2(Rd), but the abuse of notation TpBW(Rd) = Rd⇥Sd can sometimes
cause confusion. Indeed, if (pt = pmt,⌃t)t2[0,1] is a constant-speed geodesic in BW(Rd), and the
tangent vector at time 0 is (a, S), then

pt = expp0
�
t (a, S)

�
= N

�
mp + ta, (tS + I)⌃p (tS + I)

�
.

In particular, ⌃t 6= ⌃0 + t (S � I), and

ṁ0 = a , (31)

⌃̇0 = S⌃0 + ⌃0S . (32)

Although we derived the equations (31) and (32) for geodesic curves, they also hold for any curve
(pt)t�0

with tangent vector equal to (a, S) at time 0. Using this, we can derive an expression for the
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Bures–Wasserstein gradient rBWf of a function f : Rd ⇥ Sd
++ ! R. By definition, this satisfies,

for any curve (mt,⌃t)t�0
with tangent vector (a, S) at time 0,

hrBWf(m0,⌃0), (a, S)ipm0,⌃0
= @t

��
t=0

f(mt,⌃t) .

Write (ā, S̄) = rBWf(m0,⌃0). Then, we want

hā, ai+ hS̄,⌃0Si = hrmf(m0,⌃0), ṁ0i+ hr⌃f(m0,⌃0), ⌃̇0i
= hrmf(m0,⌃0), ai+ 2 hr⌃f(m0,⌃0),⌃0Si ,

where rm, r⌃ denote the usual Euclidean gradients. Hence, by identification, we conclude that the
Bures–Wasserstein gradient of f is related to the Euclidean gradient of f via

rBWf(m,⌃) =
�
rmf(m,⌃), 2r⌃f(m,⌃)

�
. (33)

See (Altschuler et al., 2023, Appendix A) for further discussion.

B.4. Evolution of the mean and covariance along the Fokker–Planck equation

It is known that the Wasserstein gradient of F := KL(· k ⇡) is

rW2F(µ) = r ln
µ

⇡
. (34)

(See, e.g., Ambrosio et al., 2008, Theorem 10.4.13.) Also, as shown by Jordan et al. (1998), the
Langevin diffusion is the gradient flow of KL(· k ⇡). In Otto calculus, this means that the law
(⇡t)t�0

of the Langevin diffusion obeys the continuity equation (25) with velocity vector field
vt = �rW2F(⇡t) = �r ln(⇡t/⇡), which is consistent with the Fokker–Planck equation (28).

According to the particle interpretation (24) of dynamics in the Wasserstein space, if x0 ⇠ ⇡0 and

ẋt = vt(xt) = �r ln
⇡t

⇡
(xt) ,

then xt ⇠ ⇡t. Note that (xt)t�0
is not the Langevin diffusion (1) as it is the solution to a deterministic

ODE (albeit with random initial condition), but the marginal law of (xt)t�0
agrees with that of the

Langevin diffusion. This provides a convenient tool for calculating the evolution of the mean and
covariance along the Fokker–Planck equation, as we now demonstrate.

The evolution of the mean is

ṁt = @t Ext = E ẋt = �Er ln
⇡t

⇡
(xt) .

Since Er ln⇡t(xt) = 0 (which is verified via integration by parts), and ⇡ / e
�V , this can also be

written as

ṁt = �E⇡t rV .

Next, for the evolution of the covariance,

@t E(xt ⌦ xt) = E(xt ⌦ ẋt + ẋt ⌦ xt) = �E
�
xt ⌦r ln

⇡t

⇡
(xt) +r ln

⇡t

⇡
(xt)⌦ xt

�

@t E(xt)⌦ E(xt) = mt ⌦ E(ẋt) + E(ẋt)⌦mt = �E
�
mt ⌦r ln

⇡t

⇡
(xt) +r ln

⇡t

⇡
(xt)⌦mt

�
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which yields

⌃̇t = �E
�
(xt �mt)⌦r ln

⇡t

⇡
(xt) +r ln

⇡t

⇡
(xt)⌦ (xt �mt)

�
.

Integration by parts yields
Z

(•�mt)⌦r ln⇡t d⇡t +

Z
r ln⇡t ⌦ (•�mt) d⇡t

=

Z
(•�mt)⌦r⇡t +

Z
r⇡t ⌦ (•�mt) = �2I .

Hence,

⌃̇t = 2I � E⇡t [rV ⌦ (•�mt) + (•�mt)⌦rV ] .

This verifies equation (3). The equations in this section can also be derived using Itô calculus.

Appendix C. PROOFS VIA OTTO CALCULUS

Our aim in this section is to derive the Wasserstein gradient flow of the KL divergence KL(· k ⇡)
constrained to lie in the Bures–Wasserstein space of non-degenerate Gaussian measures.

Since the Bures–Wasserstein space can be formally viewed as a submanifold of the Wasserstein
space, it leads to two natural approaches for computing the constrained gradient flow. In the first
approach, we take the Wasserstein gradient of KL(· k ⇡) and we compute the orthogonal projection
onto the tangent space of the Bures–Wasserstein space. In the second approach, we note that the
geometry of the Bures–Wasserstein space has been studied in its own right (see, e.g., Bhatia et al.,
2019) and in particular, the explicit expression (33) for the Bures–Wasserstein gradient is known.
We can therefore view KL(· k ⇡) as a functional over BW(Rd) and compute its gradient directly
using (33).

C.1. Orthogonal projection approach

First, we justify why computing the orthogonal projection of the P2(Rd) gradient gives the same
result as computing the intrinsic gradient on BW(Rd). Let F be any functional on P2(Rd). By
definition, the Bures–Wasserstein gradientrBWF satisfies

@tF(pt) = hrBWF(pt), vtipt (35)

for any curve (pt)t2R in BW(Rd) with tangent vectors (vt)t2R. Here,rBWF(pt) 2 TptBW(Rd). On
the other hand, since (pt)t�0

is also a curve in P2(Rd) and the Riemannian structure of BW(Rd) is
consistent with that of P2(Rd), the definition of the gradient in P2(Rd) yields

@tF(pt) = hrW2F(pt), vtipt .

Note that the orthogonal projection

projTptBW(Rd)rW2F(pt) = argmin
w2TptBW(Rd)

kw �rW2F(pt)k2pt
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is characterized as the unique element of TptBW(Rd) satisfying

hprojTptBW(Rd)rW2F(pt), vipt = hrW2F(pt), vipt

for all v 2 TptBW(Rd). Thus, (35) holds with

rBWF(p) = projTpBW(Rd)rW2F(p) .

This argument clearly works for arbitrary Riemannian submanifolds.
Next, we compute the projection of the P2(Rd) gradient of the KL divergence.
Using the formula (34) for the P2(Rd) gradient of the KL divergence and the description of the

tangent space to BW(Rd) in Section B.3 and (30), the projected gradient (ā, S̄) 2 Rd ⇥ Sd is such
that for all (a, S) 2 Rd ⇥ Sd,

Z ⌦
r ln

p

⇡
(x), a+ S (x�mp)

↵
dp(x) = h(ā, S̄), (a, S)ip = hā, ai+ hS̄,⌃pSi .

Using rp(x) = �⌃�1
p (x�mp) p(x) and integration by parts,

Z ⌦
r ln

p

⇡
(x), a+ S (x�mp)

↵
dp(x)

=
⌦
Epr ln

p

⇡
, a
↵
+

Z ⌦
⌃pSr ln

p

⇡
(x),⌃�1

p (x�mp)
↵
dp(x)

=
⌦
Epr ln

p

⇡
, a
↵
�
Z ⌦

⌃pSr ln
p

⇡
(x),rp(x)

↵
dx

=
⌦
Epr ln

p

⇡
, a
↵
+

Z
div

�
⌃pSr ln

p

⇡

�
(x) dp(x)

=
⌦
Epr ln

p

⇡
, a
↵
+
⌦
Epr2 ln

p

⇡
,⌃pS

↵
.

Hence,

(ā, S̄) =
�
Epr ln

p

⇡
, Epr2 ln

p

⇡

�
. (36)

Using the fact that Epr ln p = 0, this can also be written

(ā, S̄) = (EprV, Epr2
V � ⌃�1

p )

which corresponds to the affine map

x 7! EprV + (Epr2
V � ⌃�1

p ) (x�mp) . (37)

If (pt = pmt,⌃t)t�0
evolves according to the constrained gradient flow, then using the expression

for the projected Wasserstein gradient together with (31) and (32),

ṁt = �Ept rV ,

⌃̇t = 2I � ⌃t Ept r2
V � Ept r2

V ⌃t .
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The sign in the above equations comes from the fact that we perform steepest descent in Bures–
Wasserstein descent, i.e., the tangent vector to the curve at time t is � projTptBW(Rd)rW2F(pt).

The system of equations we have derived here differs from the system (4), but we can check that
they agree using integration by parts. Indeed,

⌃̇t = 2I � ⌃t

Z
r2

V dpt �
Z
r2

V dpt = 2I + ⌃t

Z
rpt ⌦rV +

Z
rV ⌦rpt⌃t

= 2I + ⌃t

Z
r ln pt ⌦rV dpt +

Z
rV ⌦r ln pt dpt⌃t

= 2I � Ept [(•�mt)⌦rV +rV ⌦ (•�mt)] .

C.2. Alternate proof using direct Bures–Wasserstein calculation

In the second approach, we view F as a functional on the Bures–Wasserstein space. Explicitly,

F(m,⌃) =

Z
pm,⌃ ln

pm,⌃

⇡
.

Using (33),

rBWF(m,⌃) =
�
rmF(m,⌃), 2r⌃F(m,⌃)

�

=
⇣Z
rmpm,⌃ ln

pm,⌃

⇡
, 2

Z
r⌃pm,⌃ ln

pm,⌃

⇡

⌘
. (38)

Furthermore, using the identities

rmpm,⌃(x) = �rxpm,⌃(x) and r⌃pm,⌃(x) =
1

2
r2

xpm,⌃(x) (39)

for the Gaussian distribution, integration by parts verifies that (38) agrees with (36).

Appendix D. PROOF OF COROLLARY 3

Corollary 3 is a consequence of general and well-known principles for gradient flows. To emphasize
this generality, we will consider an abstract ↵-convex differentiable functional F defined over a
geodesically convex subset of a Riemannian manifold; this ensures that the logarithmic map is
well-defined in the following calculations. We assume that F is minimized at p?; by adding a constant
to F, we can assume inf F = 0. Let d denote the distance function on the manifold. If (pt)t�0

,
(qt)t�0

are two solutions to the gradient flow for F, then

@td
2(pt, qt) = 2 hlogpt(qt),rF(pt)ipt + 2 hlogqt(pt),rF(qt)iqt .

(The reader who is unfamiliar with Riemannian geometry should keep in mind that in Euclidean
space, logp(q) = q � p.) Next, the ↵-convexity of F implies

F(pt) � F(qt) + hrF(qt), logqt(pt)iqt +
↵

2
d
2(pt, qt) ,

F(qt) � F(pt) + hrF(pt), logpt(qt)ipt +
↵

2
d
2(pt, qt) .
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Adding these equations and rearranging yields

@td
2(pt, qt)  �2↵ d

2(pt, qt) .

By Grönwall’s inequality, it implies

d
2(pt, qt)  exp(�2↵t) d2(p0, q0) .

This inequality has two consequences. First, for any ↵ 2 R, p0 = q0 implies pt = qt: the solution
to the gradient flow is unique. Second, if ↵ > 0, then we can set qt = p

? for all t � 0 to deduce
exponential contraction of the gradient flow to the minimizer p?, which is the first statement of
Corollary 3.

To obtain convergence in functional values, observe that by definition of the gradient flow, we
have on the one hand that

@tF(pt) = �krF(pt)k2pt . (40)

On the other hand, if ↵ > 0, the convexity inequality and Young’s inequality respectively, yield

0 = F(p?) � F(p) + hrF(p), logp(p?)ip +
↵

2
d
2(p, p?) (41)

� F(p)� 1

2↵
krF(p)k2p �

↵

2
klogp(p?)k2p| {z }

=d2(p,p?)

+
↵

2
d
2(p, p?)

and hence krF(p)k2 � 2↵F(p). Substituting this into (40) and applying Grönwall’s inequality
again, we deduce

F(pt)  exp(�2↵t)F(p0) .

Finally, suppose ↵ = 0. We consider the Lyapunov functional

Lt := tF(pt) +
1

2
d
2(pt, p

?) .

Differentiating in time,

@tLt = F(pt)� t krF(pt)k2pt + hlogpt(p
?),rF(pt)ipt .

On the other hand, applying the convexity inequality in (41) with ↵ = 0 yields @tLt  0. Hence,
Lt  L0, and

F(pt) 
d
2(p0, p?)

2t
.

Appendix E. PROOF OF THEOREM 4

In this section, we use the Riemannian exponential and logarithmic maps, as discussed in Section B.3.
Also, let F := KL(· k ⇡) denote the KL divergence.
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For ⌧ > 0, the eigenvalue clipping operation is defined as

clip⌧ : ⌃ =
dX

i=1

�iuiu
T
i 7! clip⌧ ⌃ :=

dX

i=1

(�i ^ ⌧)uiuTi . (42)

In the proof of Theorem 1 in Section C, we showed that the Bures–Wasserstein gradient is

gp := rBWF(p) =
�
EprV, Epr2

V � ⌃�1
�

(43)

where ⌃ is the covariance matrix of p. Here, the first component of the gradient governs the evolution
of the mean, whereas the second component governs the evolution of the covariance; see Section B.3.
We propose to estimate the gradient in (43) via a sample,

ĝp :=
�
rV (X̂), r2

V (X̂)� ⌃�1
�
, X̂ ⇠ p .

By comparing Algorithm 1 and the definition of the exponential map in Section B.3, one can check
that for p+

k
:= p

mk+1,⌃
+
k

and3
h  1

p
+

k
= exppk(�hĝk) ,

where ĝk 2 TpkBW(Rd) is the stochastic gradient

ĝk(x) = rV (X̂k) + (r2
V (X̂k)� ⌃�1

k
) (x�mk) .

Thus, aside from the eigenvalue clipping operation (which is harmless, due to Lemma 7 below),
Algorithm 1 is exactly a stochastic gradient descent scheme on BW(Rd). Note also that from the
definition of the exponential map in Section B.2, the update can also be written at the particle level: if
Xk ⇠ pk is independent of ĝk, then

X
+

k
:= Xk � h ĝk(Xk) ⇠ p

+

k
. (44)

In the next lemma, we obtain a uniform control on the smallest eigenvalues of the covariance
matrices of the iterates.

Lemma 6 Assume that 0 � ↵I � r2
V � I holds and h  ↵

2
/60. Also, in Algorithm 1, assume

that ⌃k ⌫ ↵

9
I . Then, ⌃+

k
⌫ ↵

9
I .

Proof Since the statement of the lemma only involves the covariance matrices, we can suppose that
all of the mean vectors are zero.

The key is to write ⌃+

k
as a generalized Bures–Wasserstein barycenter at ⌃k for an appropriate

distribution. Recall that

⌃+

k
=

�
I + h⌃�1

k
� hr2

V (X̂k)
�
⌃k

�
I + h⌃�1

k
� hr2

V (X̂k)
�
. (45)

Note that ⌃�1

k
is the optimal transport map from the Gaussian p0,⌃k to p

0,⌃
�1
k

.4 Hence,

h⌃�1

k
� hr2

V (X̂k) = h (⌃�1

k
� I) + h (I �r2

V (X̂k))

= h log⌃k
(⌃�1

k
) + h log⌃k

(⌃̃)

3. This latter requirement is needed because BW(Rd) has a finite injectivity radius.
4. This observation was also used in the analysis of Bures–Wasserstein gradient descent for entropically regularized

barycenters in Altschuler et al. (2023).

25



WASSERSTEIN VARIATIONAL INFERENCE

where we defined the matrix ⌃̃ = (2I �r2
V (X̂k))⌃k (2I �r2

V (X̂k)). To check that this is valid,
we need 2I �r2

V (X̂k) ⌫ 0, i.e., r2
V (X̂k) � 2I , which follows from r2

V � I .
We have shown that

⌃+

k
= exp⌃k

⇣Z
log⌃k

(⌃) dP (⌃)
⌘

where

P = (1� 2h) �⌃k + h �
⌃

�1
k

+ h �
⌃̃
= (1� 2h) �⌃k + 2h

�1
2
�
⌃

�1
k

+
1

2
�
⌃̃

�
.

This is precisely the definition of a generalized Bures–Wasserstein barycenter.
Next, suppose that ⌃k ⌫ �I for some � > 0. Since ⌃k � ↵�1

I , and I � 2I �r2
V (X̂k) � 2I ,

↵ I � ⌃�1

k
� 1

�
I , and � I � ⌃̃ � 4

↵
I .

Then, (Altschuler et al., 2023, Theorem 1)5 implies the following. If we define the quantities

�� :=
⇣1
2

p
↵+

1

2

p
�

⌘
2

, �+ :=
1

2

1

�
+

1

2

4

↵
,

then for step sizes 2h  ��
2�+

and if ⌃k ⌫ ��
4
I , we also have ⌃+

k
⌫ ��

4
I . To use this result, let us

choose � such that ��
4

= �; it can be seen that this holds with � = ↵

9
. Since �+ = 13

2↵
, the step size

condition then translates into h  2↵
2

117
, for which it suffices to have h  ↵

2

60
.

We also recall an important fact about the eigenvalue clipping operation.

Lemma 7 (Altschuler et al. (2023, Proposition 3)) For any m 2 Rd, ⌧ > 0, and ⌃,⌃0 2 Sd
++,

W2(pm,clip
⌧
⌃, pm,clip

⌧
⌃0) W2(pm,⌃, pm,⌃0) .

We now turn towards the proof of Theorem 4. In the proof, we let

Fk := �(X̂0, X̂1, X̂2, . . . , X̂k�1)

be the �-algebra generated by the random samples up until iteration k.

Proof [Proof of Theorem 4] Conditioned on Fk, and independently of X̂k, let Xk ⇠ pk and Z ⇠ ⇡̂
be optimally coupled; let Ē denote the expectation taken w.r.t. (Xk, Z). Using Lemma 7, the fact that
⌃̂ � 1

↵
I (see discussion in Section 3.3), and (44), we have

E[W 2

2 (pk+1, ⇡̂) | Fk]  E[W 2

2 (p
+

k
, ⇡̂) | Fk]

 E
⇥
Ē[kXk � h ĝk(Xk)� Zk2]

�� Fk

⇤

= E
⇥
Ē[kXk � Zk2 � 2h hĝk(Xk), Xk � Zi+ h

2 kĝk(Xk)k2]
�� Fk

⇤

= W
2

2 (pk, ⇡̂)� 2h Ēhgk(Xk), Xk � Zi+ h
2 E

⇥
Ē[kĝk(Xk)k2]

�� Fk

⇤
,

5. See the latest revision.
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where we abbreviated gk := gpk . From strong convexity of KL(· k ⇡) on BW(Rd) (Lemma 2),

Ēhgk(Xk), Xk � Zi � KL(pk k ⇡)� KL(⇡̂ k ⇡) + ↵

2
W

2

2 (pk, ⇡̂)

� ↵W
2

2 (pk, ⇡̂) .

Thus,

E[W 2

2 (pk+1, ⇡̂) | Fk]  (1� 2↵h)W 2

2 (pk, ⇡̂) + h
2 E

⇥
Ē[kĝk(Xk)k2]

�� Fk

⇤
| {z }

=:err

.

It remains to bound the error term.
Recall that

ĝk(Xk) = (r2
V (X̂k)� ⌃�1

k
) (Xk �mk) +rV (X̂k) .

We bound the terms one by one. First,

Ē[k⌃�1

k
(Xk �mk)k2] = tr(⌃�1

k
)  9d

↵

where we used Lemma 6. Next, sincer2
V � I by assumption,

Ē[kr2
V (X̂k) (Xk �mk)k2]  Ē[kXk �mkk2] = tr(⌃k) 

d

↵
.

Lastly, let Ẑ ⇠ ⇡̂ be optimally coupled with X̂k. By the optimality condition for ⇡̂ (Section 3.3), we
know that ErV (Ẑ) = 0. Applying the Poincaré inequality for ⇡̂ (which holds because ⇡̂ is strongly
log-concave, see (Bakry et al., 2014, Theorem 4.8.4))

Ē[krV (X̂k)k2]  2 Ē[krV (Ẑ)k2] + 2 Ē[kX̂k � Ẑk2]

 2

↵
E⇡̂[kr2

V k2HS] + 2W 2

2 (pk, ⇡̂)

 2d

↵
+ 2W 2

2 (pk, ⇡̂) .

Collecting the terms,

err  36d

↵
+ 6W 2

2 (pk, ⇡̂) .

From the assumption h  ↵
2

60
.

E[W 2

2 (pk+1, ⇡̂) | Fk]  (1� ↵h)W 2

2 (pk, ⇡̂) +
36dh2

↵
.

Iterating this bound proves the result.
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Appendix F. PROOF OF THEOREM 5

In order to present the proof of Theorem 5, we first review relevant facts about the Wasserstein space
over a Riemannian manifold (M, g). We refer readers to Villani (2009) for an in-depth treatment.

Similarly to the Euclidean setting, we can define the space of probability measures over M with
finite second moment,

P2(M) :=
n
µ 2 P(M)

���
Z

d
2(p0, ·) dµ <1 for some p0 2M

o
,

where d denotes the induced distance on M. We equip P2(M) with the 2-Wasserstein metric

W
2

2 (µ, ⌫) :=
h

inf
�2C(µ,⌫)

Z
d
2(x, y) d�(x, y)

i
1/2

,

which makes (P2(M),W2) into a metric space. Moreover, at each regular measure µ 2 P2(M), we
can define the tangent space

TµP2(M) := {r |  2 C1
c (M)}L

2
(µ)

equipped with the inner product

hv, wiµ :=

Z
gp
�
v(p), w(p)

�
dµ(p) ,

which endows (P2(M),W2) with the structure of a formal Riemannian manifold. Curves (µt)t�0
in

P2(M) are still described by the continuity equation

@tµt + div(µtvt) = 0 (46)

where now vt is an element of the tangent bundle TM and div denotes the divergence operator on the
Riemannian manifold. Equation (46) is to be interpreted in the weak sense, i.e., for any test function
' : M! R,

@t

Z
' dµt =

Z
g(r', vt) dµt . (47)

If (µt)t�0
is a smooth curve such that µt admits a density ⇢t w.r.t. the Riemannian volume measure,

then this is equivalent to the partial differential equation (PDE)

@t⇢t = div(⇢tvt) .

As before, the continuity equation admits a particle interpretation: if p0 ⇠ µ0 and (pt)t�0
evolves

via the ODE

ṗt = vt(pt) , (48)

then pt ⇠ µt for all t � 0.
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Given a functional F : P2(M)! R [ {1} defined over the Wasserstein space, its gradient at µ
is, by definition, the elementrW2F(µ) 2 TµP2(M) such that: for all curves (µt)t2R satisfying the
continuity equation (46) with µ0 = µ, it holds that

@t

��
t=0

F(µt) = hrW2F(µ), v0iµ =

Z
g
�
rW2F(µ), v0

�
dµ .

Using the continuity equation (47), it follows by direct identification that

rW2F(µ) = r�F(µ) ,

where �F(µ) : M! R, the first variation of F at µ, is defined up to an additive constant and satisfies

@t

��
t=0

F(µ) =

Z
�F(µ) @t

��
t=0

µt .

A gradient flow of F is a curve (µt)t�0
which satisfies the continuity equation (46) with velocity

vector field vt = �rW2F(µt), which in turn admits the particle interpretation (48).
We now consider the functional

F(µ) := KL(pµ k ⇡)

and compute its first variation. Let m denote the Riemannian volume measure; let (⇢t)t2R be a
smooth curve of densities ⇢t = dµt

dm . Since

F(µ) =

Z
V dpµ +

Z
pµ ln pµ

=

ZZ
V dp✓ ⇢(✓) dm(✓) +

ZZ
ln
⇣Z

p✓0 ⇢(✓
0) dm(✓0)

⌘
dp✓ ⇢(✓) dm(✓)

then

@tF(µt) =

ZZ
V dp✓ ⇢̇t(✓) dm(✓) +

ZZ R
p✓0 ⇢̇t(✓0) dm(✓0)R
p✓0 ⇢t(✓0) dm(✓0)

dp✓ ⇢t(✓) dm(✓)

+

ZZ
ln
⇣Z

p✓0 ⇢(✓
0) dm(✓0)

⌘
dp✓ ⇢̇t(✓) dm(✓)

=

ZZ
(V + ln pµt + 1) dp✓ ⇢̇t(✓) dm(✓) .

From this,

�F(µ) : ✓ 7!
Z

(V + ln pµ + 1) dp✓ =

Z
ln

pµ

⇡
dp✓ + 1 .

Next, we compute the Bures–Wasserstein gradient using (33) and (39):

rBW�F(µ)(m,⌃) =
⇣Z

ln
pµ

⇡
rmpm,⌃, 2

Z
ln

pµ

⇡
r⌃pm,⌃

⌘

=
⇣Z
r ln

pµ

⇡
dpm,⌃,

Z
r2 ln

pµ

⇡
dpm,⌃

⌘
.

Finally, to derive the system of ODEs (10), we combine the above expression for the Wasserstein
gradient of F together with the particle interpretation (48) and the equations (31) and (32) for
dynamics on the Bures–Wasserstein space.
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Appendix G. LACK OF CONVEXITY OF THE KL DIVERGENCE FOR
MIXTURES OF GAUSSIANS

In this section, we provide counterexamples for the lack of convexity of the objective functional
µ 7! F(µ) = KL(pµ k ⇡) on the space P2(BW(Rd)).

First, we point out that even when ⇡ is strongly log-concave, the functional F can be badly
behaved. For example, if ⇡ = p0,1 = N (0, 1) is a Gaussian of variance 1, then we can write it as a
Gaussian mixture in many ways: ⇡ =

R
N (m, a) d⌫1�a(m) for any a 2 [0, 1], where ⌫a = N (0, a).

In particular, the set of minimizers of F is not a singleton, and includes all of the measures ⌫a ⌦ �a
((m,�

2) is a random pair with independent components, where m ⇠ N (0, 1� a) and �2 = a almost
surely) for a 2 [0, 1] (as well as all convex combinations—i.e., mixtures—thereof).

Next, we give an explicit example which demonstrates the lack of convexity of the entropy
functional µ 7! H(pµ) :=

R
pµ ln pµ. This can be understood as the KL divergence with zero

potential (V = 0). Note that the entropy functional H is convex on P2(Rd) (Ambrosio et al.,
2008, Section 9.4), but our claim is that its composition with the map µ 7! pµ is not convex on
P2(BW(Rd)).

In one dimension let µ0 = N (0, 1) ⌦ �1 and µ1 = N (0, ⌧2) ⌦ �1. In words, a random pair
(m0,�

2

0
) drawn from µ0 satisfies m0 ⇠ N (0, 1) and �2

0
= 1, and similarly for µ1. What is the optimal

coupling of µ0 and µ1? Clearly �2
0
= �

2

1
= 1 is the trivial coupling, and since the Bures–Wasserstein

distance over the means is the same as the Euclidean distance between the means, we want the usual
W2 optimal coupling between N (0, 1) and N (0, ⌧2); it follows that m1 = ⌧m0. Hence, the Bures
geodesic between is {(mt,�

2
t ) = ((1� t+ t⌧)m0, 1)}t2[0,1]; equivalently the (Bures–)Wasserstein

geodesic between µ0 and µ1 is {µt = N (0, (1� t+ t⌧)2)⌦ �1}t2[0,1].
Next, recall that the Gaussian mixture pµt is the law of X drawn in the two-stage procedure: first

we draw (mt,�
2
t ) ⇠ µt, and given (mt,�

2
t ) we draw X ⇠ p

mt,�
2
t
. Thus,

pµt =

Z
N (m,�

2) dµt(m,�
2) =

Z
N (m, 1) d⌫

(1�t+t⌧)
2(m) = N (0, 1 + (1� t+ t⌧)2) .

Hence,

H(pµt) =

Z
pµt ln pµt = �

1

2
ln(2⇡e)� 1

2
ln
�
1 + (1� t+ t⌧)2

�
.

Then, the convexity of t 7! H(pµt) is equivalent to the convexity of t 7! � ln(1 + (1� t+ t⌧)2),
which fails when, e.g., ⌧ = 1/2; in that case, the function is, in fact, concave on the interval [0, 1].

Appendix H. THE WASSERSTEIN–FISHER–RAO GRADIENT FLOW

Similarly to the setting in Section 5, here we identify probability measures µ over the Bures–
Wasserstein space with the corresponding Gaussian mixture pµ. The aim of this section is to derive
the gradient flow of the KL divergence µ 7! KL(pµ k⇡), except we now equip the space P2(BW(Rd))
with the Wasserstein–Fisher–Rao geometry (Liero et al., 2016; Chizat et al., 2018; Liero et al., 2018).
Deriving the gradient flow with respect to this geometry leads to dynamics for a system of interacting
Gaussian particles in which the weight of each particle is also updated at each iteration.
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H.1. Background on Wasserstein–Fisher–Rao geometry

Here we briefly summarize the relevant background on the Wasserstein–Fisher–Rao (WFR) geometry.
The WFR metric is also called the Hellinger–Kantorovich metric by some authors.

The Fisher–Rao metric. The Fisher–Rao metric is a metric on the space M+(Rd) of positive
measures (not necessarily probability measures). It is the induced metric on M+(Rd) if we enforce
that the mapping µ 7! pµ (defined for smooth probability densities µ) is an isometry into L

2(Rd).
This means that

d
2

FR(µ0, µ1) =

Z
(
p
µ0 �

p
µ1)

2
,

and if µ0 and µ1 are probability measures then this is known to statisticians (up to a constant factor) as
the squared Hellinger distance. (If we apply the analogous procedure to discrete probability measures,
then this amounts to identifying the simplex with a subset of the unit sphere.) The Fisher–Rao metric
is well-studied in the field of information geometry (Amari and Nagaoka, 2000; Ay et al., 2017).

Next, we describe the Riemannian geometry underlying the Fisher–Rao metric. Consider a curve
t 7! µt of positive measures with time derivative µ̇. Since the Fisher–Rao metric endows the square
root of the density with a Hilbert metric, we place endow the time derivative of the square root,ṗ
µ = µ̇/(2

p
µ), with the Hilbert norm kµ̇/(2pµ)kL2(Rd). Thus, the norm at the tangent space

TµM+(Rd) is given by

kµ̇k2µ =

Z
µ̇
2

4µ
.

Actually, because we are working with positive measures (called unbalanced measures to dis-
tinguish from the usual optimal transport problem which requires the measures to have the same
total mass), this kind of geometry is useful for studying problems in which the total mass changes
over time. For example, PDEs of the form @tµt = ↵tµt are called reaction equations because they
describe, e.g., how the concentration of a chemical changes over time in reaction to the environment.
Motivated by this application, we parameterize µ̇ via µ̇ = ↵µ, in which case the norm is

k↵k2µ =
1

4

Z
↵
2 dµ . (49)

Wasserstein geometry. We recall from Section B that Wasserstein geometry is motivated by a
completely different class of PDEs, namely transport equations encoded by the continuity equation

@tµt + div(µtvt) = 0 ,

which describe the evolving law of a particle xt tracing out an integral curve of the family of vector
fields: ẋt = vt(xt). The Riemannian structure is obtained by equipping the tangent space TµP2(Rd)
with the norm

kvk2µ =

Z
kvk2 dµ .
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Wasserstein–Fisher–Rao geometry. Next we combine the two geometric structures, which can
model transport-reaction equations such as

@tµt + div(µtvt) = ↵tµt . (50)

The tangent space norm is then given by the combination combination

k(↵, v)k2µ =

Z
(↵2 + kvk2) dµ .

(At this point some authors add a factor 1

4
in front of the ↵2, which is natural in view of (49). This is

convenient for studying geometric properties of the space, but it is not necessary for our purposes.)
As in the pure Fisher–Rao case, this is a metric on the space of positive measures M+(Rd).

It induces the distance

WFR
2(µ0, µ1) := inf

nZ 1

0

k(↵t, vt)k2µt
dt

��� (µt,↵t, vt)t2[0,1] solves (50)
o
.

One can show that the tangent space to M+(Rd) consists of pairs (↵, v) for which ↵ = u and
v = ru for some function u : Rd ! R. Thus, compared to the Wasserstein metric in which the
tangent space norm is the Ḣ

1(µ) norm kuk
Ḣ1(u)

= krukL2(µ), the Wasserstein–Fisher–Rao metric
has the interpretation of completing the tangent space norm to the full Sobolev norm H

1(µ).

Constraining the dynamics to lie within probability measures. In order to have our dynamics
stay on the space of probability measures, we follow Lu et al. (2019) and consider instead the equation

@tµt + div(µtvt) =
⇣
↵t �

Z
↵t dµt

⌘
µt ,

which now conserves mass. The tangent space norm is modified to read

k(↵, v)k2µ =

Z h⇣
↵�

Z
↵ dµ

⌘
2

+ kvk2
i
dµ .

Particle interpretation. The particle interpretation of the WFR geometry is more complicated to
state than for the Wasserstein geometry, but it can be done. Instead of considering a particle x, we
consider a pair (x, r) consisting of a particle x 2 Rd and a number r > 0 (this number is actually
interpreted as the square root of the mass of the particle). The pair (x, r) should be thought of as
an element of the cone space C(Rd) := (Rd ⇥ R+)/(Rd ⇥ {0}) (in other words, we take the space
Rd ⇥ R+ and identify all of the points with zero mass which sit at the “tip of the cone”). The cone
space is the natural setting for WFR geometry; for example, one can introduce a metric on C(Rd)
and show that the WFR distance is an optimal transport problem w.r.t. this metric. We will not go
into such detail, but nevertheless we introduce the cone space because is important for the particle
interpretation of WFR dynamics.

Curves of measures (µt)t2[0,1] in the WFR geometry admit a particle interpretation in terms of
trajectories on C(Rd). Namely, the equation (50) can be interpreted as follows. There exists a curve
of measures t 7! eµt over the cone space C(Rd), such that if r : C(Rd)! R+ denotes the mapping
(x, r) 7! r, and x : C(Rd)! Rd maps (x, r) 7! x, then

µt = x#(r
2eµt) .
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Moreover, if we draw (x0, r0) ⇠ eµ0 and follow the ODEs

ẋt = vt(xt) ,

ṙt =
⇣
↵t(xt)�

Z
↵t dµt

⌘
rt ,

then (xt, rt) ⇠ eµt. Here the notation ⇠ is an (egregious) abuse of notation because eµt is not a
probability measure; by (x, r) ⇠ eµ more precisely we mean that eµt = (ODEt)#eµ0 where ODEt is
the solution mapping (x0, r0) 7! (xt, rt) to the above system of ODEs at time t.

To make this interpretation more concrete, we specialize to the case of discrete measures. Suppose
that we start at a probability measure

µ0 =
NX

i=1

w
(i)

0
�
x
(i)
0

.

Then, we lift to the cone space:

eµ0 =
NX

i=1

�
(x

(i)
0 ,

q
w

(i)
0 )

=
NX

i=1

�
(x

(i)
0 ,r

(i)
0 )

where we set r(i)
t

=
q
w

(i)

t
. Next, we follow the ODEs

ẋ
(i)

t
= vt(x

(i)

t
) ,

ṙ
(i)

t
=

⇣
↵t(x

(i)

t
)�

NX

j=1

w
(j)

t
↵t(x

(j)

t
)
⌘
r
(i)

t
.

Upon projecting back to the base space, we obtain another discrete measure

µt =
NX

i=1

w
(i)

t
�
x
(i)
t

=
NX

i=1

(r(i)
t
)2 �

x
(i)
t

.

As a sanity check, we check that these dynamics ensure that µt is a probability measure for all t. The
time derivative of the sum of the weights is

@t

NX

i=1

w
(i)

t
= 2

NX

i=1

r
(i)

t
@tr

(i)

t
= 2

NX

i=1

(r(i)
t
)2
�
↵t(x

(t)

i
)� Eµt ↵t

�

= 2
⇣ NX

i=1

w
(i)

t
↵t(x

(t)

i
)� Eµt ↵t

⌘
= 0 .

H.2. Derivation of the gradient flow

Next, we derive the Wasserstein–Fisher–Rao gradient flow of the functional µ 7! F(µ) := KL(pµ k⇡)
on the space (P2(BW(Rd)),WFR) of Gaussian mixtures equipped with the Wasserstein–Fisher–Rao
metric (over the Bures–Wasserstein space). The WFR gradient of F, rWFRF(µ), is the pair

rWFRF(µ) =
⇣
rBW�F(µ), �F(µ)�

Z
�F(µ) dµ

⌘
.

33



WASSERSTEIN VARIATIONAL INFERENCE

This result is essentially stated as Lu et al. (2019, Proposition A.1), although we have generalized the
formula to hold when the base space is no longer Rd. Note also that we have already calculated the
first variation of F, as well as the BW gradient, in Section F.

The interpretation of the formula is that in the gradient flow of F, we have a particle (m,⌃)
associated with some mass w evolving according to

ṁ = �Epm,⌃ r ln
pµ

⇡
,

⌃̇ = �⌃Epm,⌃ r2 ln
pµ

⇡
� Epm,⌃ r2 ln

pµ

⇡
⌃ ,

ṙ = �
⇣
Epm,⌃ ln

pµ

⇡
� Epµ ln

pµ

⇡

⌘
r ,

where r =
p
w. The interpretation may be clearer in the discrete case, so suppose that we initialize

the dynamics at a discrete measure

µ0 =
NX

i=1

w
(i)

0
�
(m

(i)
0 ,⌃

(i)
0 )

.

Next we solve the coupled system of ODEs, for i 2 [N ],

ṁ
(i) = �Ep

m(i),⌃(i)
r ln

pµ

⇡
,

⌃̇(i) = �⌃(i) Ep
m(i),⌃(i)

r2 ln
pµ

⇡
� Ep

m(i),⌃(i)
r2 ln

pµ

⇡
⌃(i)

,

ṙ
(i) = �

⇣
Ep

m(i),⌃(i)
ln

pµ

⇡
� Epµ ln

pµ

⇡

⌘
r
(i)

,

where r
(i) =

p
w(i) and

µt =
NX

i=1

w
(i)

t
�
(m

(i)
t ,⌃

(i)
t )

.

Since the normalization constant of ⇡ cancels out in the above equations, they are implementable
without this knowledge.

Appendix I. EXPERIMENTS FOR GAUSSIAN VI

The goal of the present section is to conduct numerical experiments that illustrate the convergence of
the Gaussian distribution corresponding to the ODE (4) to an approximation of the target distribu-
tion. We consider two kinds of targets: a mixture of two Gaussians, and a log-concave target that
corresponds to the likelihood function in logistic regression.

I.1. Setup

I.1.1. DEFINITION OF THE TARGET DISTRIBUTIONS

Bimodal target: mixture of two Gaussians

We define a bimodal target as a mixture of two Gaussians ⇡ = 1

2
N (µ1,⌃1) +

1

2
N (µ2,⌃2) where
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⌃1 and ⌃2 have non isotropic covariances with a ratio of 3 between the largest and the smallest
eigenvalues.

Log-concave target: Bayesian logistic regression

The proposed log-concave target is generated in the context of the Bayesian treatment of logistic
regression associated with a two-class synthetic dataset D = {(xi, yi) : i = 1, . . . , N}. The
probability of the binary label yi 2 {0, 1} given the corresponding covariate xi and parameter z 2 Rd

is defined by the following Bernoulli distribution:

⇡(yi|xi, z) = �(xTi z)
yi (1� �(xTi z))1�yi , (51)

where �(x) = 1/(1 + exp(�x)) is the logistic function. We define the target distribution as the
posterior associated to data D starting from an uninformative (flat) prior on z, that is,

⇡(z|D) =
1

Z

NY

i=1

⇡(yi|xi, z) , (52)

with Z the normalization constant. The Langevin dynamics are associated with the gradient of V
then defined by:

�rV (z) = r log ⇡(z|D) =
NX

i=1

(yi � �(xTi z))xi .

To generate the synthetic data D, we randomly draw labels yi 2 {0, 1} and for the problem
to be well-specified we have drawn the class-conditional covariates xi from Gaussian distributions
N (m⇤

yi
,⌃⇤) with m

⇤
1
= �m⇤

0
= m

⇤. We call s the separation factor defined by km⇤
1
� m

⇤
0
k =

k2m⇤k = s. For illustrative purposes we also plot Fisher’s linear discriminant vector defined by
z
⇤ = 2⌃⇤�1

m
⇤ (see Bishop, 2006, chapter 4). An example of the generated data is displayed in

Figure 4.

Figure 4: The dataset D (left figure) used to generate the target distribution (right figure). The two
Gaussians of equal covariance ⌃⇤ from which the covariates are generated are shown as red ellipsoids.
The arrow represents Fisher’s linear discriminant z⇤ = 2⌃⇤�1

m
⇤.

I.1.2. EVALUATION OF THE KL DIVERGENCE FOR THE PROPOSED LOG-CONCAVE TARGETS

The target distribution (52) may be written ⇡(z|D) = 1

Z
⇡̃(z|D) where ⇡̃(z|D) =

Q
N

i=1
⇡(yi|xi, z)

is the unnormalized distribution. The divergence between any Gaussian distribution p = N (m,⌃)
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and the target then writes

KL(p(z) k ⇡(z|D)) =

Z
p(z) ln

p(z)

⇡(z|D)
dz =

Z
p(z) ln

p(z)

⇡̃(z|D)
dz + lnZ (53)

= �
Z

p(z) ln ⇡̃(z|D) dz +H(p) + lnZ (54)

where H(p) is the negative entropy of a Gaussian distribution for which a closed-form expression is
known. We will see shortly we can approximate the expectation under the Gaussian p as follows

KL(p(z) k ⇡(z|D)) ⇡ �
KX

i=1

↵i ln ⇡̃(m+ ciRei|D) +H(p) + lnZ , (55)

using K = 2d sigma points with cubature rules (↵i, ci) = ( 1

2d
,
p
d) for all i, and where R is defined

via the Cholesky decomposition RR
T = ⌃ (see Section I.2 for details).

I.1.3. THE LAPLACE APPROXIMATION AS A BASELINE

We use the widespread Laplace approximation (see Bishop, 2006, chapter 4) as a baseline for
comparisons. In dimension 2, we compute the normalization constant Z of (52) using a grid. When
we turn to high dimension, normalization becomes intractable. However, we may still compare
our algorithm with Laplace approximation as follows. Since our goal is mainly to illustrate the
convergence of our algorithm using Laplace approximation as a baseline, we may choose an arbitrary
value for the normalization constant Z when evaluating the divergence to the target in equation (55).
This allows for comparison of the KL divergence between the approximating distribution—given by
either Gaussian VI or Laplace approximation—and the target ⇡ up to the same additive constant for
both methods. By default, we let Z = 1, but we sometimes use larger values of Z in order to avoid
plotting negative values for the unnormalized KL (albeit an arbitrary choice).

To obtain the Laplace approximation, we first compute a mode of the target distribution ⇡. Once
the mode z0 has been found, we consider the following Taylor approximation around the mode:

ln⇡(z) ⇡ ln⇡(z0)�
1

2
(z � z0)

T
H(z � z0) , (56)

where H is the Hessian of the negative log-likelihood around z0 defined by H = r2 log 1

⇡
(z0).

Renormalizing, this yields the approximation

⇡ ⇡ ⇡̂Laplace = N (z0, H
�1) . (57)

In our experiments, we use the L-BFGS algorithm (Liu and Nocedal, 1989) to find the mode z0.

I.2. Implementation

We follow Särkkä (2007); Lambert et al. (2022b) to compute the expectations involved in equation (4)
using quadrature rules. We then numerically integrate the set of coupled ODEs in equation (4) using
a fourth-order Runge–Kutta method. As a first step, we introduce a method to enforce that the
covariance matrix ⌃ remains symmetric and positive at all times.
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• Covariance matrices in square root form: To numerically enforce that the covariance matrix
⌃ remains symmetric and positive at each step, as is customary in the Kalman filtering literature,
we consider a continuous-time “square-root” form of the covariance as developed in Morf et al.
(1977) and applied in Särkkä (2007). Let R be a lower triangular matrix such that ⌃ = RR

T.
An ODE for R is obtained as follows.

⌃̇ = ṘR
T +RṘ

T (58)

Multiplying by R
�1 on the left and R

�T on the right yields:

R
�1

Ṙ+ Ṙ
T
R

�T = R
�1 ⌃̇R

�T
. (59)

As R�1
Ṙ+ Ṙ

T
R

�T = R
�1

Ṙ+ (R�1
Ṙ)T, the solution is given by:

R
�1

Ṙ = Tria(R�1 ⌃̇R
�T) , (60)

Ṙ = RTria(R�1 ⌃̇R
�T) , (61)

where Tria(A) gives the lower triangular matrix L corresponding to A such that A = L+ L
T

where Li,i =
1

2
Ai,i, Li,j = Ai,j if i > j, and Li,j = 0 otherwise. Letting ⌃̇ be as in (4), this

yields an ODE in terms of the square root factor R.

• Computing expectations: We compute Gaussian expectations using a quadrature rule based
on 2d sigma points x1, . . . , x2d (Julier and Uhlmann, 2004):

Epm,⌃ [f(x)] ⇡
2dX

n=1

↵nf(xn) ,

where the sigma points are distributed according to xn = m + cnRen, where RR
T = ⌃,

en|n=1,...,d is a basis, and en|n=d+1,...,2d is its negative. Many variants exist to choose ↵n

and cn; here, we consider the cubature points of Arasaratnam and Haykin (2009) defined by
↵n = 1

2d
and cn =

p
d which are well-adapted for Gaussian integration.

I.3. Results in dimension 2

We first conduct experiments in dimension 2 to easily visualize the true posterior (normalization is
performed using a discrete grid of size 100⇥ 100).

I.3.1. TRAJECTORIES GENERATED BY NUMERICAL INTEGRATION OF THE ODES

In Figure 5, we see that Gaussian VI converges quickly to one mode of the bimodal target, and to the
unique mode of the logistic target. As shown in Figure 6, the results still hold if we choose a larger
step size for the Runge–Kutta scheme.

I.3.2. COMPARISON WITH THE LAPLACE APPROXIMATION

We compare Gaussian VI with the Laplace approximation on the logistic target in dimension 2 for
the setting described in Section I.1 with an arbitrary ⌃⇤ and N = 10. We plot the convergence
speed of our algorithm for Gaussian VI in Figure 7 for separation parameters s = 1.5 and s = 2,
the latter corresponding to a sharper density. Gaussian VI converges very fast and produces a better
approximation of the target in terms of KL divergence than the Laplace approximation.
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Figure 5: Approximation of a bimodal target (left) and a logistic target (right). We use a Runge–Kutta
scheme with step size 0.1 and a time duration of T = 30 (i.e., 300 steps). The ellipsoids represent
the Gaussian computed at successive steps.

Figure 6: Same as Figure 5 with a larger Runge–Kutta step size 1 (i.e., 30 steps). In both cases, the
algorithm converges to the same approximation as in Figure 5.

I.4. Results in higher dimensions

We now compare Gaussian VI with the Laplace approximation on the logistic target in dimension
d = 10 and d = 100. We consider the setting described in Section I.1 where we let ⌃⇤ = 1

d
I , to have

consistent norms of the inputs accross dimensions.
For Gaussian VI in high dimension, we find that a step size 1 for the Runge–Kutta integration

method is too large and leads to singular covariance matrices. We thus take the step size equal to 0.1.
The initial Gaussian is taken to be N (0, 100I), to better cover regions of low density initially.

Results are shown in Figures 8 and 9 in dimension d = 10 and 100 respectively. Gaussian
VI converges very fast and always produces a better approximation of the target in terms of KL
divergence than the Laplace approximation. Note that the Laplace approximation can have a very
high left KL divergence when the target distribution is sharp (i.e., when the two classes are well-
separated). This is because the Gaussian approximation computed with the Laplace method tends to
spill out of the target distribution in region of very low densities.
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Figure 7: Results in dimension d = 2, N = 10 for a separation factor s = 1.5 (upper row) and s = 2
(lower row). The left column shows the true density via contour lines, the true mean (black dot) and
covariance (black ellipsoid), and the results of the Laplace and Wasserstein VI approximations as
blue and red ellipsoids respectively. The right column shows the evolution of the left KL divergence
for Gaussian VI on a logarithmic scale. The corresponding KL divergence obtained with Laplace
approximation is shown as a blue straight line.
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Figure 8: Results in dimension d = 10, N = 50 for a separation factor s = 0.6 (upper row) and
s = 1.5 (lower row). Left column: synthetic dataset projected onto the two first coordinates. Middle
column: histogram representing the number of examples predicted at a given probability by the
obtained classifier. Right column: convergence in terms of unnormalized KL divergence. The
unnormalized KL is computed via (55) letting Z = 1 (upper row) and Z = 1020 (lower row). The
Runge–Kutta step size is set to 0.1.
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Figure 9: Same as Figure 8 but with dimension d = 100, N = 500, with separation factor s = 0.05
(upper row) and s = 0.3 (lower row). The unnormalized KL is computed letting Z = 1 (upper row)
and Z = 10100 (lower row). The unnormalized KL divergence for the Laplace method is not shown
in the lower plot because it is too large to be visualized.
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Appendix J. EXPERIMENTS FOR MIXTURE OF GAUSSIANS VI

In this section, we consider a mixture of Gaussians model to approximate a target distribution in the
simple two-dimensional case. The goal is to illustrate the convergence of the approximating particles
system (11)-(12) to an approximation of the target in the form of a finite mixture of Gaussians.

J.1. Setup

We consider the bimodal and logistic targets defined in Section I, as well as more complex targets
defined as finite mixtures of Gaussians:

⇡ =
MX

i=1

w
⇤
i N (m⇤

i ,⌃
⇤
i ) .

The gradient rx log ⇡(x) then writes:

rx log ⇡(x) =
1

⇡(x)
rx⇡(x) =

1

⇡(x)

MX

i=1

w
⇤
i ⌃

⇤
i

�1 (x�m
⇤
i )N (x | m⇤

i ,⌃
⇤
i ) .

We consider K Gaussian samples equally weighted such that our mixture model is p = 1

K

P
K

i=1
pi =

1

K

P
K

i=1
N (mi,⌃i). Even if we are using an approximation with equal weights, contrary to the

target (which can be arbitrary in practice), we can hope from Theorem 5 convergence to a good
approximation of ⇡ when letting K �M .

J.2. Implementation details

J.2.1. INTEGRATION OF THE ODES

Following equations (11)-(12), we implement the system of ODEs

ṁk = Epk [rx ln⇡]� Epk [rx ln p] ,

⌃̇k = A+A
T
,

where A = Epk [(x� µk)⌦rx ln⇡]� Epk [(x� µk)⌦rx ln p] .

We recall that these equations arise from applying Theorem 5 to a discrete mixing measure and
applying integration by parts to obtain Hessian-free updates. To constrain the covariance matrix to
remain definite positive along the numerical integration process, we use the same method as in the
Gaussian VI case (Section I.2): we replace each ODE for a covariance matrix ⌃ by an ODE for its
lower triangular matrix factor R where ⌃ = RR

T. To compute the expectations, we use the sigma
points with cubature rules as described in Section I.2.

Finally, to solve the ODEs we consider a classical Runge–Kutta scheme of 4th order. The coupling
between the ODEs is taken into account by applying the Runge–Kutta algorithm on the joint ODE
Ẋ = F (X) where the Gaussian parameters are stacked as follows:

X =
⇥
m1, . . . ,mK , vec(R1), . . . , vec(RK)

⇤
.

For our problem, setting the Runge–Kutta step size to 0.1 is sufficient. We observe that asymptotic
convergence, i.e., complete stability of the ODE system, may require many iterations when we
propagate a large number of coupled Gaussian particles. On the other hand, the KL divergence is
roughly stable after 30 steps.

42



WASSERSTEIN VARIATIONAL INFERENCE

J.2.2. INITIALIZATION OF THE GAUSSIAN PARTICLES

We start by illustrating the sensitivity of the algorithm to the initialization on a simple example with
one Gaussian particle and a bimodal target (Figure 10). When the initial particle is close to one
of the two modes and has same covariance as each mode, then it moves towards that mode and its
covariance remains constant. When the particle is equidistant from the two modes, then the mean of
the particle converges to the average of the two modes, and its covariance increases. Perturbing the
initial condition slightly leads the particle to be attracted to one of the two modes.

Figure 10: Trajectory of a Gaussian particle for different initial conditions. In the three left plots, we
initialize the particle with the same covariance as each mode, and in the right plot we initialize the
particle with a large covariance.

To avoid bad initialization, the idea is to generate instead more particles than the number of
modes of the target. Finally, we initialize our Gaussian particles with means randomly chosen from a
Euclidean ball which covers most of the mass of the target density.

J.3. Experimental results

We show qualitative fits by plotting the contour lines of the approximated density (compared to the
true density), as well as quantitative evaluation of the KL divergence to the target.

The true posterior is computed using a discrete grid of size 100⇥ 100. The KL divergences are
evaluated using Monte Carlo sampling.

J.3.1. SIMPLE TARGETS

We consider a mixture of 20 Gaussians to approximate the targets defined in Section I.1. We see in
Figure 11 that the algorithm captures both modes of the bimodal distribution, and approximates well
the logistic target also, see Figure 12.

J.3.2. MORE COMPLEX TARGETS

We assess the sensitivity to the number of particles in Figures 13, 14, and 15. When the number
of particles increases, better KL divergence is achieved and the distribution is better approximated.
We also note that when the samples initially cover a low density mode as in Figure 14, they tend to
overestimate the local density before they escape the mode.
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Figure 11: Approximation of the bimodal target using 20 Gaussian particles at initialization (left) and
at final step (right). We use Runge–Kutta integration with step size 0.1 and integrattion time T = 30
(i.e., 300 steps).

Figure 12: Approximation of the logistic target with 20 Gaussian particles. We use Runge–Kutta
integration with step size 0.1 and integration time T = 30 (i.e., 300 steps).
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Théo Galy-Fajou, Valerio Perrone, and Manfred Opper. Flexible and efficient inference with particles
for the variational Gaussian approximation. Entropy, 23(8):Paper No. 990, 34, 2021.

Antti Honkela and Harri Valpola. Unsupervised variational Bayesian learning of nonlinear models.
In Advances in Neural Information Processing Systems, volume 17, 2004.

Daniel Z. Huang, Jiaoyang Huang, Sebastian Reich, and Andrew M. Stuart. Efficient derivative-free
Bayesian inference for large-scale inverse problems. arXiv e-prints, art. arXiv:2204.04386, 2022.

Michael I. Jordan, Zoubin Ghahramani, Tommi S. Jaakkola, and Lawrence K. Saul. An introduction
to variational methods for graphical models. Mach. Learn., 37(2):183–233, 1999.

Richard Jordan, David Kinderlehrer, and Felix Otto. The variational formulation of the Fokker–Planck
equation. SIAM Journal on Mathematical Analysis, 29(1):1–17, 1998.

Simon J. Julier and Jeffrey K. Uhlmann. Unscented filtering and nonlinear estimation. Proceedings
of the IEEE, 92(3):401–422, 2004.

Simon J. Julier, Jeffrey K. Uhlmann, and Hugh F. Durrant-Whyte. A new method for the nonlinear
transformation of means and covariances in filters and estimators. IEEE Trans. Automat. Control,
45(3):477–482, 2000.
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