
GULP: a prediction-based metric between
representations

Enric Boix-Adserà
MIT

eboix@mit.edu

Hannah Lawrence
MIT

hanlaw@mit.edu

George Stepaniants
MIT

gstepan@mit.edu

Philippe Rigollet
MIT

rigollet@math.mit.edu

Abstract

Comparing the representations learned by different neural networks has recently
emerged as a key tool to understand various architectures and ultimately optimize
them. In this work, we introduce GULP, a family of distance measures between
representations that is explicitly motivated by downstream predictive tasks. By
construction, GULP provides uniform control over the difference in prediction
performance between two representations, with respect to regularized linear pre-
diction tasks. Moreover, it satisfies several desirable structural properties, such
as the triangle inequality and invariance under orthogonal transformations, and
thus lends itself to data embedding and visualization. We extensively evaluate
GULP relative to other methods, and demonstrate that it correctly differentiates
between architecture families, converges over the course of training, and captures
generalization performance on downstream linear tasks.

1 Introduction

The spectacular success of deep neural networks (DNN) witnessed over the past decade has been
largely attributed to their ability to generate good representations of the data [BCV13] . But what
makes a representation good? Answering this question is a necessary step towards a principled
theory of DNN design. This fundamental question calls for a metric over representations as a basic
primitive. Indeed, embedding representations into a metric space enables comparison, modifications
and ultimately optimization of DNN architectures [LTQ+18]; see Figure 1.

In light of the practical impact of a meaningful metric over representations, this question has
recently garnered significant attention, leading to a myriad of propositions such as CCA, CKA, and
PROCRUSTES. Their relative pros and cons are currently the subject of a lively debate [DDS21,
DHN+22] whose resolution calls for a theoretically grounded notion of metric.

Our contributions. In this work, we define a new family of metrics1, called GULP2, over the space
of representations. Our construction rests on a functional notion of what makes two representations
similar: namely, that two representations are similar if and only if they are equally useful as inputs to
downstream, linear transfer learning tasks. This idea is partially inspired by feature-based transfer
learning, in which simple models adapt pretrained representations, such as Inceptionv3 [SVI+16],

1More specifically, we define pseudo-metrics rather than metrics. However, these can be readily turned into a
metric using metric identification. This amounts to allowing equivalence classes of representations.

2GULP is Uniform Linear Probing.

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

ar
X

iv
:2

21
0.

06
54

5v
1

 [c
s.L

G
]

12
 O

ct
 2

02
2

Figure 1: t-SNE embedding of various pretrained DNN representations of the ImageNet [KSH12]
dataset with GULP distance (� = 10�2), colored by architecture type (gray denotes architectures that
do not belong to a family). The embedding shows a good clustering of various architectures (ResNets,
EfficientNets etc.), indicating that GULP captures intrinsic aspects of representations shared within an
architecture family.

CLIP [RKH+21], and ELMo [PNI+18], for specific tasks [RASC14]; indeed, this is a key use for
pretrained representations. Moreover, our application of linear transfer learning is reminiscent of
linear probes, which were introduced by [AB17] as a tool to compare internal layers of a DNN in terms
of prediction accuracy. Linear probes play a central role in the literature on hidden representations.
They have been used not only to study the information captured by hidden representations [RBH20],
but also to themselves define desiderata of distances between representations [DDS21]. However,
previous applications of linear probing required hand-selecting the task on which prediction accuracy
is measured, whereas our GULP distance provides a uniform bound over all norm-bounded tasks.

We establish various theoretical properties of the GULP pseudo-metric, including the triangle inequal-
ity (Thm 2), sample complexity (Thm 3), and vanishing cases. In particular, we show that akin to
the PROCRUSTES pseudo-metric, GULP is invariant under orthogonal transformations (Thm 1) and
vanishes precisely when the two representations are related by an orthogonal transformation (Thm 2).

In turn, we use GULP to produce low-dimensional embeddings of various DNNs that provide new
insights on the relationship between various architectures (Figures 1, 5, and 6). Moreover, in Figure 7,
we showcase a numerical experiment to demonstrate that the GULP distance between two independent
networks decreases during training on the same dataset.

Related work. This contribution is part of a growing body of work that aims at providing tools
to understand and quantify the metric space of representations [RGYSD17, MRB18, KNLH19,
AB17, ALM17, CLR+18, LC00, LV15, LYC+15, LLL+19, Mig19, STHH17, WHG+18, DDS21,
DHN+22, CKMK22]. Several of these measures, such as SVCCA [RGYSD17] and PWCCA [MRB18],
are based on a classical canonical correlation analysis (CCA) from multivariate analysis [And84].
More recently, centered kernel alignment CKA [CSTEK01, CMR12, KNLH19, DHN+22] has
emerged as a popular measure; see Section 2 for more details on these methods. The orthogo-
nal procrustes metric (PROCRUSTES) is a classical tool of shape analysis [DM16] to compute the
distance between labelled point clouds. Though not as conspicuous as CKA-based methods in the
context of DNN representations, it was recently presented under a favorable light in [DDS21].

Various desirable properties of a similarity measure between representations have been put forward.
These include structural properties such as invariance or equivariance [LC00, KNLH19], as well as
sanity checks such as specificity against random initialization [DDS21], for example. Such desiderata
can serve as diagnostics for existing similarity measures, but fall short of providing concrete design
guidelines.

Outline The rest of the paper proceeds as follows. Section 2 lays out the derivation of GULP, as
well as important theoretical properties: conditions under which it is zero, and limiting cases in terms
of the regularization parameter �, demonstrating that it interpolates between CCA and a version of
CKA. Section 3 establishes concentration results for the finite-sample version, justifying its use in

2

practice. In Section 4 we validate GULP through extensive experiments3. Finally, we conclude in
Section 5.

2 The GULP distance

As stated in the introduction, the goal of this paper is to develop a pseudo-metric over the space of
representations of a given dataset. Unlike previous approaches, which work with finite datasets, we
take a statistical perspective and formulate the population version of our problem. We defer statistical
questions arising from finite sample size to Section 3.

Let X 2 Rd be a random input with distribution PX and let f : Rd ! Rk denote a representation
map, such as a trained DNN. The random vector f(X) 2 Rk is the representation of X by f . We
assume throughout that a representation map is centered and normalized, so that E[f(X)] = 0 and
E kf(X)k2 = 1. In particular, this normalization allows us to identify (unnormalized) representation
maps �, that are related by (x) = a�(x) + b, PX -a.s. for a 2 R and b 2 Rd, down to a single
representation of X (after normalizing), which is a well-known requirement for distances between
representations [KNLH19, Sec. 2.3].

We are now in a position to define the GULP distance between representations; the terminology
“distance" is justified in Theorem 2. To that end, let � : Rd ! Rk and : Rd ! R` be two
representation maps, where ` may differ from k. Let (X,Y) 2 Rd ⇥ R be a random pair and let
⌘(x) = E[Y |X = x] denote the regression function of Y onto X . Moreover, for any � > 0, let ��
denote the population ridge regression solution given by

�� = argmin
�

E[(�>�(X)� Y)2] + �k�k2

and similarly for �� with respect to (·). Since we use squared error, these only depend the
distribution of Y through the regression function ⌘.
Definition 1. Fix � > 0. The GULP distance between representations �(X) and (X) is given by

d�(�,) := sup
⌘

⇣
E(�>

� �(X)� �>� (X))2
⌘ 1

2
,

where the supremum is taken over all regression functions ⌘ such that k⌘kL2(PX)  1.

The GULP distance measures the discrepancy between the prediction of an optimal ridge regression
estimator based on �, and its counterpart based on , uniformly over all regression tasks. While this
notion of distance is intuitive and motivated by a clear regression task, it is unclear how to compute it
a priori. The next proposition provides an equivalent formulation of GULP, which is amenable to
accurate and efficient estimation; see Section 3. It is based on the following covariance matrices:

⌃� = cov(�(X)) = E[�(X)�(X)>] ⌃ = cov((X)) = E[(X) (X)>] (1)

We implicitly used the centering assumption in the above definition, and the normalization condition
implies that the covariance matrices have unit trace. Throughout, we assume these matrices are
invertible, which is without loss of generality by projecting onto the image of the representation map.
We also define the regularized inverses:

⌃��
� := (⌃� + �Ik)

�1 , ⌃��
 := (⌃ + �I`)

�1

as well as the cross-covariance matrices ⌃� and ⌃ � as follows:

⌃� = E[�(X) (X)>] = ⌃>
 � . (2)

Proposition 1. Fix � � 0. The GULP distance between representations �(X) and (X) satisfies

d2�(�,) = tr(⌃��
� ⌃�⌃

��
� ⌃�) + tr(⌃��

 ⌃ ⌃
��
 ⌃)� 2 tr(⌃��

� ⌃� ⌃
��
 ⌃>

�) (3)

Proof. See Appendix A.1.
3Our code is available at https://github.com/sgstepaniants/GULP.

3

https://github.com/sgstepaniants/GULP

2.1 Structural properties

In this section, we show that GULP is invariant under orthogonal transformations and that it is a valid
metric on the space of representations. We begin by establishing a third characterization of GULP that
is useful for the purposes of this section; the proof can be found in Appendix A.1.
Lemma 1. Fix � � 0. The GULP distance d�(�,) between the representations �(X) and (X)
satisfies

d2�(�,) = E(�(X)>⌃��
� �(X 0)� (X)>⌃��

 (X 0))2 ,

where X 0 is an independent copy of X .

We are now in a position to state our main structural results. We begin with a key invariance result.
Theorem 1. Fix � � 0. The GULP distance d�(�,) between the representations �(X) 2 Rk and
 (X) 2 R` is invariant under orthogonal transformations: for any orthogonal transformations
U : Rk ! Rk and V : R` ! R`, it holds

d�(U � �, V �) = d�(�,)

Proof. We slightly abuse notation by identifying any orthogonal transformation W to a matrix W
such that W (x) = W · x. Note that for any representation map, we have ⌃W�f = W⌃fW> and

⌃��
W�f = (W⌃fW

> + �WW>)�1 = W (⌃>
f + �I)W> = W⌃��

f W> .

Hence, using Lemma 1, we get that

d2�(U � �, V �) = E(�(X)>U>U⌃��
� U>U�(X 0)� (X)>V >V ⌃��

 V >V (X 0))2

= E(�(X)>⌃��
� �(X 0)� (X)>⌃��

 (X 0))2 = d2�(�,) ,

where we used the fact that U>U = Ik and V >V = I`.

Next, we show that GULP satisfies the axioms of a metric.
Theorem 2. Fix � > 0. The GULP distance d�(�,) satisfies the axioms of a pseudometric, namely
for all representation maps �, ,', it holds

d�(�,�) = 0, d�(�,) = d�(,�), and d�(�,)  d�(�,') + d�(',)

Moreover, d�(�,) = 0 if and only if k = ` and there exists an orthogonal transformation U such
that �(X) = U (X) a.s.
Proof. Lemma 1 provides an isometric embedding of representations f 7! f(X)⌃��

f f(X 0) into the
Hilbert space L2(P⌦2

X). It readily yields that d� is a pseudometric. It remains to identify for which
�, it holds that d�(�,) = 0.

The “easy” direction follows from the invariance property of Theorem 1: if � and satisfy �(X) =
U (X) almost surely, then d�(�,) = d�(U ,) = 0. We sketch the proof of the other direction,
and defer the full proof to Appendix A.2. Define �̃ = (⌃� + �I)�1/2� and ̃ = (⌃ + �I)�1/2 .
By Lemma 1, the condition that d�(�,) = 0 is equivalent to �̃(X)>�̃(X 0) = ̃(X)> ̃(X) almost
surely over X,X 0. So if d�(�,) = 0, then we can leverage a classical fact that the Gram matrix of
a set of vectors determines the vectors up to an isometry [HJ12], to prove that there is an orthogonal
transformation U 2 Rk⇥k such that �̃(X) = U ̃(X) almost surely over X . Finally, via analyzing a
homogeneous Sylvester equation, this implies that �(X) = U (X) almost surely.

Note that when � = 0, the conclusion of this theorem fails to hold: d0 still satisfies the axioms of a
pseudo-distance, but the cases for which d0(�,) = 0 are different. This point is illustrated in the
next section where we establish that d0 is the CCA distance commonly employed in the literature.

2.2 Comparison with CCA, ridge-CCA, CKA, and PROCRUSTES

Throughout this section, we assume that k = ` for simplicity.

4

Ridge-CCA. Our distance is most closely related to ridge-CCA, introduced by [Vin76] as a regu-
larized version of Canonical Covariance Analysis (CCA) when the covariance matrices ⌃� or ⌃
are close to singular. More specifically, for any � � 0, define the matrix C� := ⌃��

� ⌃� ⌃
��
 ⌃ �;

the ridge-CCA similarity measure is defined as ⇢��CCA = tr(C�). Hence, we readily see from
Proposition 1 that GULP and ridge-CCA are describing the same geometry over representations. To see
this, recall that Lemma 1 provides an isometric embedding f 7! f(X)⌃��

f f(X 0) of representation
maps into L2(P⌦2

X). While GULP is the distance on this Hilbert space, ridge-CCA is the inner product.

Ridge-CCA was briefly considered in the seminal work [KNLH19] but discarded because of (i) its lack
of interpretability and (ii) the absence of a rule to select �. We argue that in fact, our prediction-driven
derivation of GULP gives a clear and compelling interpretation of this geometry (as well as suggests
several extensions; see Section 5). Moreover, we show that tunability of � is, in fact, a desirable
feature that allows to represent the space of representations at various resolutions, giving various
levels of information; for example, in Figure 6, higher � leads to a coarser clustering structure.

CCA. Due to the connection with ridge-CCA, our GULP distance is related to (unregularized) CCA
when � = 0. Specifically, defining C := ⌃�1

� ⌃� ⌃
�1
 ⌃ �, the mean-squared-CCA similarity

measure is given by (see [Eat07, Def. 10.2]):

⇢CCA(�,) :=
tr(C)

k
= 1� 1

2k
E
⇥
(�(X)>⌃�1

� �(X 0)� (X)>⌃�1
 (X 0))2

⇤
,

where X is an independent copy of X 0; the last identity can be checked directly. From Lemma 1 it
can be seen that our GULP distance d0(�,) with � = 0 is a linear transformation of ⇢CCA.

It can be checked that ⇢CCA takes values in [0, 1], which has led researchers to simply propose 1�⇢CCA

as a dissimilarity measure. Interestingly, this choice turns out to produce a valid (squared) metric, i.e.,
a dissimilarity measure that satisfies the triangle inequality. Indeed, we get that

d2CCA(�,) = 1� ⇢CCA(�,) =
1

2k
E
⇥
(K(�̃(X), �̃(X 0))�K(̃(X), ̃(X 0)))2

⇤

where K(u, v) = u>v is the linear kernel over Rd and �̃ := ⌃�1/2
� � (where ̃ and �̃ are the

whitened versions of and � respectively). These identities have two consequences: (i) we see
from Lemma 1 that dCCA corresponds to the GULP distance with � = 0 up to a scaling factor and
(ii) dCCA is a valid pseudometric on the space of representations, since we just exhibited an isometry
T : f̃ 7! K(f̃(X), f̃(X 0)) with L2(P⌦2

X). We show in Appendix A.2 that dCCA(�,) = 0 iff
 (X) = A�(X) a.s. for some matrix A. Note that the invariance of ⇢CCA to linear transformations
was previously known and criticized in [KNLH19] as arguably too strong.

CKA. In fact, thanks to the additional structure of the Hilbert space L2(P⌦2
X), the dCCA distance

comes with an inner product

hT (�̃), T (̃)iCCA :=
1

2k
E[K(�̃(X), �̃(X 0))K(̃(X), ̃(X 0))]

This observation allows us to connect CCA with CKA, another measure of similarity between distribu-
tions that is borrowed from classical literature on kernel methods [CSTEK01, CMR12] and that was
recently made popular by [KNLH19]. Under our normalization assumptions, CKA is a measure of
similarity given by

⇢CKA(�,) =
E[K(�(X),�(X 0))K((X), (X 0))]p

E[K(�(X),�(X 0))2]E[K((X), (X 0))2]

=
hT (�), T ()iCCA

kT (�)kCCAkT ()kCCA
= cos (](T (�), T ())) ,

where kTk2CCA = hT, T iCCA and] denotes the angle in the geometry induced by h·, ·iCCA . In turn,
d2CKA is chosen as d2CKA = 1� ⇢CKA, which does not yield a pseudometric. This observation highlights
two major differences between CCA and CKA: the first measures inner products and works with
whitened representations, while the second measures angles and works with raw representations. As
illustrated in the experimental section 4 as well as in [DDS21], this additional whitening step appears
to be detrimental to the overall qualities of this distance measure.

The fact that GULP with � = 0 recovers dCCA (i.e. d20 = 2kd2CCA) is illustrated in Figure 2. As shown,
although GULP has a roughly monotone relationship with CKA, they remain quite different.

5

Figure 2: Empirical relationship between distances. Each point in the scatter-plot corresponds to a
pair of ImageNet representations; the x-coordinate is the GULP distance, and the y-coordinate is the
CCA or CKA distance. Although CCA and GULP for � = 0 are related, their relationship is not linear
since the representations’ dimensionalities differ. Although CKA and GULP are related for large �,
their relationship is not linear due to the difference in normalization. Appendix B.2 contains more
details and comparisons, including a surprisingly strong correlation between GULP and PROCRUSTES
for some values of �.

PROCRUSTES. The relationship between GULP and PROCRUSTES is not as clean as in the previous
comparisons, but we include it for completeness. In the limit of infinite samples, the Procrustes
distance as derived by [Sch66] is

dProcrustes = tr(⌃�) + tr(⌃)� 2 tr
�
(⌃� ⌃

>
�)

1/2
�
.

Our normalization implies tr(⌃�) = tr(⌃) = k. However, the term tr
�
(⌃� ⌃>

�)
1/2

�
(which is

equal to the nuclear norm ||⌃� ||⇤) is not directly comparable to the preceding distances.

3 Plug-in estimation of GULP

In practice, the distribution PX of X is unknown, so we cannot compute the population version of
GULP exactly. Instead, we have access to a sample X1, . . . , Xn

i.i.d.⇠ PX . In all of the experiments of
this paper, we approximate GULP with the following plug-in estimator:

d̂2�,n(�,) = tr(⌃̂��
� ⌃̂�⌃

��
� ⌃̂�) + tr(⌃̂��

 ⌃̂ ⌃
��
 ⌃̂)� 2 tr(⌃̂��

� ⌃̂� ⌃̂
��
 ⌃̂>

�),

where

⌃̂� =
1

n

nX

i=1

�(Xi)�(Xi)
>, ⌃̂ =

1

n

nX

i=1

 (Xi) (Xi)
>, and ⌃̂� =

1

n

nX

i=1

�(Xi) (Xi)
>

are the empirical covariance and cross-covariance matrices, and

⌃̂��
� = (⌃̂� + �I)�1, and ⌃̂��

 = (⌃̂ + �I)�1

are the empirical inverse regularized covariance matrices. To justify our use of the plug-in estimator,
we prove concentration around the population GULP distance as n goes to infinity.
Theorem 3. Assume that k�(X)k2, k (X)k2  1 almost surely. Then, for any � 2 (0, 1), � > 0,
with probability at least 1� � the plug-in estimator d̂2�,n satisfies

���d̂2�,n(�,)� d2�(�,)
��� . 1

�3

r
log((k + l)/�)

n
.

We defer the proof of this theorem to Appendix A.3. At a high-level, we first show that the inverse
regularized covariance matrices, (⌃� + �I)�1 and (⌃ + �I)�1, are well-approximated in operator
norm, so the expectation of the plug-in estimator is close to the population distance. We then apply

6

Figure 3: Convergence of plug-in es-
imator as n ! 1. We plot relative
error |d̂2�,n � d2�,10000|/d2�,10000 aver-
aged over pairs of ImageNet DNNs.

Figure 4: GULP captures generalization of linear predictors.
We plot Spearman’s ⇢ between the differences in predic-
tions by �-regularized linear regression, and the different
distances. Results are averaged over 10 trials.

McDiarmid’s inequality to show that the plug-in estimator concentrates around its expectation. Note
that the boundedness conditions on the representations are here to simplify technical arguments by
appealing simply to McDiarmid’s inequality; these can be presumably be relaxed to weaker tail
conditions at the cost of more involved arguments.

Figure 3 supports our theoretical result by showing convergence on pairs of networks on the ImageNet
dataset. See Appendix B.3 for more details.

4 Experiments

We evaluate our distance in a variety of empirical settings, comparing to CCA, CKA, the classical
PROCRUSTES method from shape analysis, and a variant of CCA known as projection-weighted CCA
(PWCCA); see [DDS21, Sec. 2] for definitions.

4.1 GULP captures generalization performance by linear predictors

The GULP distance is motivated by how differently linear predictors using the representations � and
 generalize. In this section, we demonstrate that GULP indeed captures downstream generalization
performance by linear predictors. We consider the representation maps �1, . . . ,�m given by m = 37
pretrained image classification architectures on the ImageNet dataset PX (see Appendix B.5). For
each pair of representations, we estimate the CKA, CCA, PWCCA, and GULP distances, using the
plug-in estimators on 10,000 images, sufficient to guarantee good convergence (see Figure 3).

We then draw n = 5,000 images from the dataset X1, . . . , Xn ⇠ PX , and assign a random label
Yk ⇠ N (0, 1) to each one. For each representation i 2 [m], we fit a �-regularized least-squares linear
regression to the training data {(Xk, Yk)}k2[n], which gives a coefficient vector ��,i. Finally, for
each 1  i < j  m, we estimate the distance ⌧ij = EX⇠PX [(�>

�,i�i(X)� �>
�,j�j(X))2] between

the predictions with representations �i and �j , by taking the empirical average over 3000 samples in
a test set. In Figure 4, we plot Spearman’s ⇢ rank correlation between ⌧ and each of the distances
GULP, CKA, CCA, PWCCA, viewed as vectors with

�m
2

�
entries, one for each pair of networks. Notice

that for each �, the distance that attains the best correlation is the GULP distance with that �. This
indicates that while GULP is a measure of distance that holds uniformly over prediction tasks, it
retains its meaning in the context of a single prediction task.

4.2 GULP distances cluster together networks with similar architectures

We are interested in how GULP can be used to compare networks of different architectures trained on
the same task. We begin by comparing fully-connected ReLU networks of widths ranging from 100
to 1,000 and depths ranging from 1 to 10, trained on the MNIST handwritten digit database. Every
architecture is retrained four times from different initializations (see Appendix B.1). We input all
MNIST training set images into each network, save their representations at the final hidden layer, and
compute CKA, PROCRUSTES, and GULP distances between all pairs of representations.

7

Figure 5: Two dimensional MDS embedding plots of fully-connected ReLU networks colored by
architecture width (top) and depth (bottom). Networks are fully-trained on MNIST and penultimate
layer representations are constructed from 60,000 input train images.

Figure 5 shows Multi-Dimensional Scaling (MDS) embeddings of the distances between all MNIST
networks, color coded by width and depth. For GULP with � = 10�6, the networks are largely
organized according to rank of the feature matrix: networks of large width and small depth, ones
whose representations have the largest rank, are the most different, as evidenced by the halo of points
in the MDS plots. This outcome confirms that CCA simply measures rank [KNLH19]. However, for
PROCRUSTES and GULP with � = 10�2, networks become clustered by their depth, as evidenced
by the striations in the MDS embeddings (plot colored by depth). Furthermore, networks of the
same depth look most similar at large widths, as shown by the red centerline in the MDS embedding
(plot colored by width), implying that as width increases networks converge to a shared limiting
representation. Finally, GULP with � = 1 closely resembles CKA and roughly organizes networks by
depth. A takeaway is that GULP with � = 1 resembles PROCRUSTES and CKA, and captures intrinsic
characteristics such as width and depth.

Next, we show how distances between penultimate layer representations allow us to cluster pretrained
networks with more complex architectures and, in turn, draw comparisons between them. To that
end, we study 37 state-of-the-art models on the ImageNet Object Localization Challenge, of which
the four major groups are ResNets, EfficientNets, ConvNeXts, and MobileNets (see Appendix B.1).

We compute the baseline distances between every pair of representations using 10,000 training
images, and visualize them using a two-dimensional t-SNE embedding in Figure 6. Below each
embedding plot we show the dendogram resulting from a hierarchical clustering of the networks based
on their distances. As seen from the embeddings, when � increases, the GULP distance separates the
ResNet architectures (blue) from the EfficientNet and ConvNeXt convolutional networks (orange
and red). Compared to other distances, GULP with large � is able to more compactly cluster ResNets
and convolutional networks separately. In Appendix B.5 we further quantify the compactness of
clusterings under each distance metric by computing the standard deviation of distances within each
cluster.

4.3 Network representations converge in GULP distance during training

So far, we have used GULP to compare static networks taken as a blackbox representation maps. Now
we use GULP to examine how representation maps evolve over the course of training. To that end,
we independently train 16 Resnet18 architectures on the CIFAR10 dataset [KH+09] for 50 epochs.
Figure 7 tracks the distance (averaged over all network pairs) at each epoch.

As shown, other distances change very little or even briefly increase over the course of training.
For GULP with small �, the previous sections have demonstrated that our distance captures fine-
grained differences between representations; here too, it accentuates differences in representations
mid-training (visible around epoch 25). However, as � increases, the GULP distance differentiates
less between representations, and smoothly decreases over the course of training, thus indicating that
it captures intrinsic properties of the representations rather than artifacts due to random seeds.

8

Figure 6: Embeddings of PWCCA, CKA, PROCRUSTES, and GULP distances between the last hidden
layer representations of 36 pretrained ImageNet models (top) along with their hierarchical clusterings
(bottom). All distance metrics separate ResNet architectures (brown dendogram leaves) from the rest
of the ConvNeXt and EfficientNet architectures (pink dendogram leaves). GULP at � = 1 is the most
effective distance at separating ResNets from the remaining architectures.

Figure 7: Empirical distances between representations of 16 independently trained ResNet18 archi-
tectures during training, computed using 3,000 samples and averaged over all

�16
2

�
pairs. Distances

are scaled by their average value at iteration 0.

9

4.4 Sensitivity versus specificity of GULP

In Appendix B.9, we reproduce the experiments of [DDS21]. Our distance compares favorably to
baselines and correlates with measures of a DNN’s functional behavior. It achieves the specificity of
CCA and PWCCA to random initializations, and improves the sensitivity of CKA to out-of-distribution
performance.

5 Conclusion

In this paper, we have defined a family of distances for comparing learned representations in terms of
their worst-case performance gap over all �-regularized regression tasks. We proved convergence
of the finite-sample estimator of this distance, quantified its relationship to existing notions such
as CCA, ridge-CCA, and CKA, and demonstrated promising performance in a variety of empirical
settings, including the ability to distinguish between network architectures and to capture performance
differences on regression tasks.

Further studying extensions beyond linear transfer learning could provide a rich direction for future
work. In fact, preliminary experiments reported in Appendix B.10 indicate that, compared to
section 4.1, GULP fails to predict generalization performance when the downstream task shifts
from linear to logistic prediction. This suggests extending GULP to a uniform bound over other
downstream predictive tasks, such as logistic regression, multi-class classification, or kernel ridge
regression. Although GULP under kernel ridge regression has a closed form using the kernel trick4,
GULP for logistic regression does not have a closed form. This brings additional computational
questions of interest that are beyond the scope of this work. Finally, it could be interesting to
consider the application of GULP to knowledge distillation, or alternatively to consider adding a ridge
regularization term to probing methods (inspired by GULP).

Acknowledgments and Disclosure of Funding

EB is supported by an Apple AI/ML Fellowship, and the National Science Foundation Graduate
Research Fellowship under Grant No. 1745302. HL is supported by the Fannie and John Hertz
Foundation and the National Science Foundation Graduate Research Fellowship under Grant No.
1745302. GS is supported by the National Science Foundation Graduate Research Fellowship under
Grant No. 1745302. PR supported by NSF awards IIS-1838071, DMS- 2022448, and CCF-2106377.

References
[AB17] G. Alain and Y. Bengio. Understanding intermediate layers using linear classifier

probes. In 5th International Conference on Learning Representations, ICLR 2017,
Toulon, France, April 24-26, 2017, Workshop Track Proceedings, 2017.

[ALM17] S. Arora, Y. Liang, and T. Ma. A simple but tough-to-beat baseline for sentence
embeddings. In International conference on learning representations, 2017.

[And84] T. W. Anderson. An introduction to multivariate statistical analysis. Wiley Series in
Probability and Mathematical Statistics: Probability and Mathematical Statistics. John
Wiley & Sons, Inc., New York, second edition, 1984.

[BCV13] Y. Bengio, A. C. Courville, and P. Vincent. Representation learning: A review and new
perspectives. IEEE Trans. Pattern Anal. Mach. Intell., 35(8):1798–1828, 2013.

[CKMK22] T. Cui, Y. Kumar, P. Marttinen, and S. Kaski. Deconfounded representation similarity
for comparison of neural networks. arXiv preprint arXiv:2202.00095, 2022.

[CLR+18] A. Conneau, G. Lample, M. Ranzato, L. Denoyer, and H. Jégou. Word translation
without parallel data, 2018.

[CMR12] C. Cortes, M. Mohri, and A. Rostamizadeh. Algorithms for learning kernels based on
centered alignment. The Journal of Machine Learning Research, 13:795–828, 2012.

4This can be easily derived from vanilla ridge regression as studied in this paper (see Appendix A.4), and is
related to “kernel ridge CCA” [KG03].

10

[CSTEK01] N. Cristianini, J. Shawe-Taylor, A. Elisseeff, and J. Kandola. On kernel-target alignment.
Advances in neural information processing systems, 14, 2001.

[DCLT18] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. Bert: Pre-training of deep bidi-
rectional transformers for language understanding. arXiv preprint arXiv:1810.04805,
2018.

[DDS21] F. Ding, J.-S. Denain, and J. Steinhardt. Grounding representation similarity through
statistical testing. Advances in Neural Information Processing Systems, 34, 2021.

[Den12] L. Deng. The mnist database of handwritten digit images for machine learning research
[best of the web]. IEEE signal processing magazine, 29(6):141–142, 2012.

[DHN+22] M. Davari, S. Horoi, A. Natik, G. Lajoie, G. Wolf, and E. Belilovsky. On the inadequacy
of cka as a measure of similarity in deep learning. In ICLR 2022 Workshop on
Geometrical and Topological Representation Learning, 2022.

[DM16] I. L. Dryden and K. V. Mardia. Statistical Shape Analysis, with Applications in R.
Second Edition. John Wiley and Sons, Chichester, 2016.

[Eat07] M. L. Eaton. Multivariate statistics, volume 53 of Institute of Mathematical Statistics
Lecture Notes—Monograph Series. Institute of Mathematical Statistics, Beachwood,
OH, 2007.

[HJ12] R. A. Horn and C. R. Johnson. Matrix analysis. Cambridge university press, 2012.

[HZRS15] K. He, X. Zhang, S. Ren, and J. Sun. Delving deep into rectifiers: Surpassing human-
level performance on imagenet classification. In Proceedings of the IEEE international
conference on computer vision, pages 1026–1034, 2015.

[KB14] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[KG03] M. Kuss and T. Graepel. The geometry of kernel canonical correlation analysis.
Technical Report 108, Max Planck Institute for Biological Cybernetics, January 2003.

[KH+09] A. Krizhevsky, G. Hinton, et al. Learning multiple layers of features from tiny images.
2009.

[KNLH19] S. Kornblith, M. Norouzi, H. Lee, and G. Hinton. Similarity of neural network
representations revisited. In International Conference on Machine Learning, pages
3519–3529, 2019.

[KSH12] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep
convolutional neural networks. In Advances in Neural Information Processing Systems
(NeurIPS), 2012.

[LC00] A. Laakso and G. Cottrell. Content and cluster analysis: assessing representational
similarity in neural systems. Philosophical psychology, 13(1):47–76, 2000.

[LIE+22] G. Leclerc, A. Ilyas, L. Engstrom, S. M. Park, H. Salman, and A. Madry. ffcv.
https://github.com/libffcv/ffcv/, 2022.

[LLL+19] R. Liang, T. Li, L. Li, J. Wang, and Q. Zhang. Knowledge consistency between neural
networks and beyond. In International Conference on Learning Representations, 2019.

[LTQ+18] R. Luo, F. Tian, T. Qin, E. Chen, and T.-Y. Liu. Neural architecture optimization. In
Proceedings of the 32nd International Conference on Neural Information Processing
Systems, NIPS’18, page 7827–7838, Red Hook, NY, USA, 2018. Curran Associates
Inc.

[LV15] K. Lenc and A. Vedaldi. Understanding image representations by measuring their
equivariance and equivalence, 2015.

[LYC+15] Y. Li, J. Yosinski, J. Clune, H. Lipson, and J. Hopcroft. Convergent learning: Do
different neural networks learn the same representations? In Feature Extraction:
Modern Questions and Challenges, pages 196–212. PMLR, 2015.

[Mig19] V. N. Miglani. Comparing learned representations of deep neural networks. Master’s
thesis, Massachusetts Institute of Technology, 2019.

11

https://github.com/libffcv/ffcv/

[MML19] R. T. McCoy, J. Min, and T. Linzen. Berts of a feather do not generalize together: Large
variability in generalization across models with similar test set performance. arXiv
preprint arXiv:1911.02969, 2019.

[MPL19] R. T. McCoy, E. Pavlick, and T. Linzen. Right for the wrong reasons: Diagnosing
syntactic heuristics in natural language inference. arXiv preprint arXiv:1902.01007,
2019.

[MRB18] A. Morcos, M. Raghu, and S. Bengio. Insights on representational similarity in neural
networks with canonical correlation. In Advances in Neural Information Processing
Systems, pages 5727–5736, 2018.

[NRS+18] A. Naik, A. Ravichander, N. Sadeh, C. Rose, and G. Neubig. Stress test evaluation for
natural language inference. arXiv preprint arXiv:1806.00692, 2018.

[PNI+18] M. E. Peters, M. Neumann, M. Iyyer, M. Gardner, C. Clark, K. Lee, and L. Zettlemoyer.
Deep contextualized word representations. arXiv preprint arXiv:1802.05365, 2018.

[RASC14] A. S. Razavian, H. Azizpour, J. Sullivan, and S. Carlsson. Cnn features off-the-shelf:
An astounding baseline for recognition. In 2014 IEEE Conference on Computer Vision
and Pattern Recognition Workshops, pages 512–519, 2014.

[RBH20] A. Ravichander, Y. Belinkov, and E. Hovy. Probing the probing paradigm: Does
probing accuracy entail task relevance? arXiv preprint arXiv:2005.00719, 2020.

[RGYSD17] M. Raghu, J. Gilmer, J. Yosinski, and J. Sohl-Dickstein. Svcca: Singular vector
canonical correlation analysis for deep learning dynamics and interpretability. In
Advances in Neural Information Processing Systems, pages 6076–6085, 2017.

[RKH+21] A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal, G. Sastry,
A. Askell, P. Mishkin, J. Clark, et al. Learning transferable visual models from natural
language supervision. In arXiv preprint arXiv:2103.00020, 2021.

[Sch66] P. H. Schönemann. A generalized solution of the orthogonal procrustes problem.
Psychometrika, 31(1):1–10, 1966.

[SPW+13] R. Socher, A. Perelygin, J. Wu, J. Chuang, C. D. Manning, A. Y. Ng, and C. Potts.
Recursive deep models for semantic compositionality over a sentiment treebank. In Pro-
ceedings of the 2013 conference on empirical methods in natural language processing,
pages 1631–1642, 2013.

[STHH17] S. L. Smith, D. H. P. Turban, S. Hamblin, and N. Y. Hammerla. Offline bilingual word
vectors, orthogonal transformations and the inverted softmax, 2017.

[SVI+16] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna. Rethinking the inception
architecture for computer vision. In Computer Vision and Pattern Recognition (CVPR),
2016.

[Tro12] J. A. Tropp. User-friendly tail bounds for sums of random matrices. Foundations of
computational mathematics, 12(4):389–434, 2012.

[Vin76] H. Vinod. Canonical ridge and econometrics of joint production. Journal of Economet-
rics, 4(2):147–166, 1976.

[WHG+18] L. Wang, L. Hu, J. Gu, Z. Hu, Y. Wu, K. He, and J. Hopcroft. Towards understanding
learning representations: To what extent do different neural networks learn the same
representation. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi,
and R. Garnett, editors, Advances in Neural Information Processing Systems, volume 31,
pages 9584–9593. Curran Associates, Inc., 2018.

[WNB17] A. Williams, N. Nangia, and S. R. Bowman. A broad-coverage challenge corpus for
sentence understanding through inference. arXiv preprint arXiv:1704.05426, 2017.

[WSM+18] A. Wang, A. Singh, J. Michael, F. Hill, O. Levy, and S. R. Bowman. Glue: A multi-task
benchmark and analysis platform for natural language understanding. arXiv preprint
arXiv:1804.07461, 2018.

[YH20] G. Yang and E. J. Hu. Feature learning in infinite-width neural networks. arXiv preprint
arXiv:2011.14522, 2020.

12

[ZGKS21] R. Zhong, D. Ghosh, D. Klein, and J. Steinhardt. Are larger pretrained language
models uniformly better? comparing performance at the instance level. arXiv preprint
arXiv:2105.06020, 2021.

[ZSQ17] Z. Zhang, Y. Song, and H. Qi. Age progression/regression by conditional adversarial
autoencoder. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
IEEE, 2017.

A Deferred proofs

A.1 Alternate characterizations of GULP, proofs of Proposition 1 and Lemma 1

We provide proofs of the two alternative characterizations to the GULP distance that were claimed in
the main text.

Proof of Lemma 1. Fix a distribution of (X,Y), and let ⌘(x) = E[Y |X = x] be the regression
function. Since we are using squared error, with � features the best linear predictor is �� that solves

�� = ⌃��
� E[Y �(X)] = ⌃��

� E[⌘(X)�(X)] = ⌃��
�

Z
⌘(x)�(x)dPX(x)

where PX is the marginal distribution of X . Similarly

�� = ⌃��

Z
⌘(x) (x)dPX(x)

In particular, for a given distribution of (X,Y), the distance between the best linear predictors is

E(�>
� �(X)� �>� (X))2.

We rewrite this in terms of ⌘:

E(�>
� �(X)� �>� (X))2 = E

✓Z
⌘(x)

h
�(X)>⌃��

� �(x)� (X)>⌃��
 (x)

i
dPX(x)

◆2

= Eh⌘,�(X)>⌃��
� �(·)� (X)>⌃��

 (·)i2L2(PX)

Therefore to sup out the distribution over Y , we take the sup of ⌘ such that k⌘kL2(PX)  1. It yields
the claim of Lemma 1.

d2�(�,) := sup
k⌘kL2(PX)1

Eh⌘, · · · i2L2(PX)

= E k�(X)>⌃��
� �(·)� (X)>⌃��

 (·)k2L2(PX)

= E(�(X)>⌃��
� �(X 0)� (X)>⌃��

 (X 0))2

where X,X 0 ⇠ PX are independent.

Using Lemma 1, we can easily prove Proposition 1.

Proof of Proposition 1. Start with the characterization in Lemma 1, expand the square and use the
cylicity and linearity of the trace:

d2�(�,) = E(�(X)>⌃��
� �(X 0)�(X 0)>⌃��

� �(X))

+ E((X)>⌃��
 (X 0) (X 0)>⌃��

 (X))

� 2E(�(X)>⌃��
� �(X 0) (X 0)>⌃��

 (X))

= trE(⌃��
� �(X 0)�(X 0)>⌃��

� �(X)�(X)>)

+ trE(⌃��
 (X 0) (X 0)>⌃��

 (X) (X)>)

� 2 trE(⌃��
� �(X 0) (X 0)>⌃��

 (X)�(X)>)

= tr(⌃��
� ⌃�⌃

��
� ⌃�) + tr(⌃��

 ⌃ ⌃
��
 ⌃)� 2 tr(⌃��

� ⌃� ⌃
��
 ⌃>

�).

13

A.2 GULP is a distance, proof of Theorem 2

We complete the proof of Theorem 2 by characterizing when the GULP distance is zero in the
following lemma.
Lemma 2 (Characterization for when GULP is zero, for � > 0). For any � > 0, the two representation
maps � : Rd ! Rk, : Rd ! Rl have zero GULP distance, d�(�,) = 0, if and only if k = l
andthere exists an orthogonal transformation U 2 R such that �(X) = U (X) a.s.

Proof of Lemma 2. In the main text it was shown that if � and are related by an orthogonal
transformation, then d�(�,) = 0. It remains to prove the converse direction, which is more
involved. Define �̃(x) = (⌃� + �I)�1/2�(x) and ̃(x) = (⌃ + �I)�1/2 (x). We make the
following claim, whose proof we defer:

Claim 1. Let � > 0 and suppose d�(�,) = 0. Then k = l and there is an orthogonal transformation
U 2 Rk⇥k such that �̃(X) = U ̃(X) almost surely.

Let U 2 Rk⇥k be the orthogonal transformation guaranteed by the above claim. We can write

⌃� = E[�(X)�(X)>]

= (⌃� + �I)1/2U(⌃ + �I)�1/2 E[(X) (X)>](⌃ + �I)�1/2U>(⌃� + �I)1/2

= (⌃� + �I)1/2U(⌃ + �I)�1/2⌃ (⌃ + �I)�1/2U>(⌃� + �I)1/2.

Since ⌃� and (⌃� + �I)1/2 commute, and similarly for ⌃ and (⌃ + �I)1/2, we have

⌃�(⌃� + �I)�1 = U⌃ (⌃ + �I)�1U>.

Write the SVDs ⌃� = V�D�V >
� and ⌃ = V D V >

 . Then

D�(D� + �I)�1V >
� UV = V >

� UV D (D + �I)�1. (4)

Define the diagonal matrices ⇤� = D�(D�+�I)�1 and D (D +�I)�1, and define the orthogonal
matrix M = V >

� UV . Equation (4) is a homogeneous Sylvester equation:

⇤�M = M⇤ .

Therefore (⇤)ii = (⇤�)jj if Mij 6= 0. Since f : R+ ! [0, 1] defined by f(x) = x
x+� is invertible,

this implies that (D�)ii = (D)jj if Mij 6= 0. From this it follows that

(D� + �I)�1/2M(D + �I)1/2 = M.

Plugging in M and rearranging, we obtain

U>V >
� (D� + �I)�1/2V�U = V (D + �I)�1/2V >

 ,

which simplifies to

U>(⌃� + �I)�1/2U = (⌃ + �I)�1/2.

By combining this with the guarantee from Claim 1 that �(X) = (⌃�+�I)1/2U(⌃ +�I)�1/2 (X)
almost surely, we obtain

�(X) = U (X),

almost surely. This shows the converse direction of the theorem.

We conclude with a proof of the claim.

Proof of Claim 1. Let (X1, . . . , Xn, . . .) be an infinite sequence of i.i.d copies of X . For each n, let

An = [�̃(X1), . . . , �̃(Xn)] 2 Rk⇥n, Bn = [̃(X1), . . . , ̃(Xn)] 2 Rl⇥n.

Since d�(�,) = 0, by the characterization of GULP in Lemma 1 we have �̃(X)>�̃(X 0) =
 ̃>(X) ̃(X 0) almost surely, so A>

nAn = B>
n Bn almost surely. Suppose without loss of generality

14

that l  k. Then by Theorem 7.3.11 of [HJ12], we can construct a semi-orthogonal Un 2 Rl⇥k such
that An = UnBn almost surely. Define the event

E1 = {An = UnBn for all n � 1}.

Taking a union bound over countably many n, we see that E1 holds almost surely.

Define W = span{ ̃(Xi)}1i=1. We claim that there is a deterministic vector space V ✓ Rl such
that W = V almost surely. Let W 0 be an independent copy of W . Then W

d
= W +W 0. For any

i 2 {0, . . . , k},

P[rank(W)  i] = P[rank(W +W 0)  i]  P[rank(W)  i]� P[rank(W)  i, and W 0 6✓ W].

We conclude that P[rank(W)  i, and W 0 6✓ W] = 0 for all i, so P[W 0 6✓ W] = 0 for the two
independent copies. Therefore W is deterministic, and equals V almost surely.

Let N = sup{n+ 1 : span{ ̃(X1), . . . , ̃(Xn)} = Rl} [{1}. Define the event that N is finite,

E2 = {N < 1}.

Since we have shown that span{ ̃(Xi)}1i=1 = V almost surely, it follows that E2 holds almost
surely.

We now prove that the semi-orthogonal random matrix UN 2 Rk⇥l satisfies our conditions. Under
the almost-sure events E1 and E2, we can write ̃(XN+1) =

PN
i=1 �i ̃(Xi), and it holds that

�̃(XN+1) = UN+1 ̃(XN+1) =
NX

i=1

�iUN+1 ̃(Xi) =
NX

i=1

�i�̃(Xi) =
NX

i=1

�iUN ̃(Xi) = UN ̃(XN+1).

Since events E1 and E2 hold almost surely, and XN+1 is independent of N and X1, . . . , XN ,

P[�̃(X) = UN ̃(X)] = P[�̃(XN+1) = UN ̃(XN+1)] = 1.

So we conclude that there is a deterministic semi-orthogonal matrix U 2 Rk⇥l such that �̃(X) =
U ̃(X) almost surely. Finally, recall that we have assumed that ⌃� and ⌃ are invertible. There-
fore k = rank(⌃�) = rank(⌃�̃)  min(rank(U), rank(⌃ ̃)) = min(rank(U), rank(⌃)) =

min(rank(U), l). We conclude that k = l, and U 2 Rk⇥k is an orthogonal transformation.

For � = 0, we also characterize when the GULP distance is zero. Since GULP corresponds to the
CCA distance, with slightly different normalization, this is also a characterization of when the CCA
distance is zero.
Lemma 3 (Characterization for when GULP is zero, for � = 0). If � = 0, the two representation
maps � : Rd ! Rk and : Rd ! Rl have zero GULP distance, d0(�,) = 0, if and only if k = l
and there exists an invertible linear transformation M 2 Rk⇥k such that �(X) = M (X) a.s.

Proof. For the “easy” direction, suppose that k = l and � = M for an invertible M 2 Rk⇥k. Then
⌃� = M⌃ M> and ⌃� = M⌃ . Using the characterization of GULP from Proposition 1, we
obtain

d20(�,) = tr(⌃�1
� ⌃�⌃

�1
� ⌃�) + tr(⌃�1

 ⌃ ⌃
�1
 ⌃)� 2 tr(⌃�1

� ⌃� ⌃
�1
 ⌃>

�)

= tr(Ik) + tr(Ik)� 2 tr((M�1)>⌃�1
 M�1M⌃ ⌃

�1
 ⌃ (M

�1)>)

= k + k � 2 tr(Ik)

= 0.

For the converse direction, we construct the representations �̃ = ⌃�1/2
� � and ̃ = ⌃�1/2

 . By
the characterization of GULP in Lemma 1, the condition d0(�,) = 0 implies that �̃(X)>�̃(X 0) =
 ̃(X)> ̃(X 0), almost surely over independent X,X 0 ⇠ PX . Therefore, analogous reasoning to
Claim 1 applies, and implies that k = l and that there is an orthogonal transformation U such that
�̃(X) = U ̃ almost surely. So �(X) = ⌃1/2

� U⌃�1/2
 (X), almost surely.

15

A.3 Convergence of plug-in estimator, proof of Theorem 3

In order to prove Theorem 3, we first show the following lemma.
Lemma 4. There is a universal constant C > 0, such that for any B such that k�(X)k2, k (X)k2 
B almost surely, and for any � > 0, the plug-in estimator d̂2�,n converges to the population distance
d2�, with the following guarantee for any t > 0 and any number of samples n > 0,

P[|d̂2�,n(�,)� d2�(�,)| � t+ 4B2/(n�2)]  exp(�Cnt2�4/B4) + (k + l) exp(�Cnt2�6/B6).

Proof. By the expanding the square and using cyclicity and linearity of the trace, similarly to the
proof of Proposition 1, the plug-in estimator can alternatively be written as:

d̂2�,n(�,) =
1

n2

nX

i,j=1

(�(Xi)
>(⌃̂� + �I)�1�(Xj)� (Xi)

>(⌃̂ + �I)�1) (Xj))
2. (5)

For the analysis, also define the plug-in estimator, but with the true covariance matrices,

d̃2�,n(�,) =
1

n2

nX

i,j=1

(�(Xi)
>(⌃� + �I)�1�(Xj)� (Xi)

>(⌃ + �I)�1) (Xj))
2. (6)

We bound the error between the plug-in estimator and the true distance by the triangle inequality:

|d̂2�,n(�,)� d2�(�,)|  |d̂2�,n(�,)� d̃2�,n(�,)|| {z }
Term 1

+ |d̃2�,n(�,)� d2�(�,)|| {z }
Term 2

. (7)

We bound Term 1 and Term 2 separately, stating our bounds in the following claims.

Claim 2 (Bound on Term 1). Under the conditions of Lemma 4, for any t > 0,

P[|d̂2�,n(�,)� d̃2�,n(�,)| � t]  (k + l)e�nt2�6/(2048B6)

Proof. For any i, j 2 [n], define T̂ij,� = �(Xi)>(⌃̂� + �I)�1�(Xj) and Tij,� = �(Xi)>⌃� +
�I)�1�(Xj). We have

|T̂ij,� � Tij,�|  Bk(⌃̂� + �I)�1 � (⌃� + �I)�1k,

and

|T̂ij,�|, |Tij,�|  Bk(⌃̂� + �I)�1k  B/�.

Analogous definitions and inequalities hold if we replace � by . Therefore,

|d̂2�,n(�,)�d̃2�,n(�,)|

= | 1
n2

nX

i,j=1

(T̂ij,� � T̂ij,)
2 � (Tij,� � Tij,)

2|

= | 1
n2

nX

i,j=1

(T̂ij,� � T̂ij, � Tij,� + Tij,)(T̂ij,� � T̂ij, + Tij,� � Tij,)|

 4B2(k(⌃̂� + �I)�1 � (⌃� + �I)�1k+ k(⌃̂ + �I)�1 � (⌃ + �I)�1k)/�.

So the bound on Term 1 follows from combining with the following technical claim:

Claim 3. For any t > 0,

P[k(⌃̂� + �I)�1 � (⌃� + �I)�1k � t]  ke�nt2�4/(32B2). (8)

P[k(⌃̂ + �I)�1 � (⌃ + �I)�1k � t]  le�nt2�4/(32B2). (9)

16

Proof of Claim 3. We prove the claim for �, since the reasoning for is analogous. First, let
us prove that ⌃̂� concentrates around ⌃� in operator norm. For each i 2 [n], let Zi =
1
n

�
�(Xi)�(Xi)> � ⌃�

�
, which is self-adjoint, satisfies E[Zi] = 0 and has operator norm bounded

by kZ2
i k  1

n2

�
2k�(Xi)�(Xi)>k2 + 2k⌃�k2

�
 4B2/n2 almost surely. So applying the matrix

Hoeffding inequality (Theorem 1.3 of [Tro12]) to ⌃̂� =
Pn

i=1 Zi, we have, for any t > 0,

P[k⌃̂� � ⌃�k � t]  ke�t2n/(32B2).

Now let us show that (⌃̂�+�I)�1 concentrates to (⌃�+�I)�1 in operator norm. Since 0 . ⌃̂�,⌃�,
for any v 2 Rk, we have

k((⌃̂� + �I)�1 � (⌃� + �I)�1)vk  1

�
k(I � (⌃̂� + �I)(⌃� + �I)�1)vk

=
1

�
k((⌃̂� � ⌃�)(⌃� + �I)�1)vk

 1

�2
k⌃̂� � ⌃�kkvk.

We now bound the second term in (7).

Claim 4 (Bound on Term 2). Under the conditions of Lemma 4, for any t > 0,

P[|d̃2�,n(�,)� d2�(�,)| � 4B2/(n�2) + t]  exp(�t2�4n/(8B4)).

Proof. Write d̃2�,n(�,) =
Pn

i,j=1 sij , where

sij =
1

n2
(�(Xi)

>(⌃� + �I)�1�(Xj)� (Xi)
>(⌃ + �I)�1) (Xj))

2

is the i, j term in the sum. Since k(⌃̂�+�I)�1k, k(⌃̂ +�I)�1k  1/�, and k�(Xi)k2, k (Xi)k2 
B, we have almost surely

|sij | 
4B2

n2�2
.

Furthermore, term sij only depends on Xi and Xj . Therefore, by McDiarmid’s inequality,

P[|d̃2�,n(�,)� E[d̃2�,n(�,)]| � t]  exp(�t2�4n/(8B4)), (10)

where we have used that |
Pn

j=1 sij |  4B2/(n�2) for each i. Finally, we bound the difference
between d̃2�,n and d2� in expectation over the samples. Notice that if i 6= j we have E[sij] =

d2�(�,)/n
2. So the only terms that can add bias are the diagonal terms sii, so

|d2�(�,)� E[d̃2�,n(�,)]| 
nX

i=1

|sii|  4B2/(n�2) (11)

Combining (10) and (11) proves the claim.

Combining Claims 2 and 4 with the triangle inequality (7) proves Lemma 4.

Theorem 3 is now a simple consequence of Lemma 4.

Proof of Theorem 3. Under the conditions of Theorem 3, we have k�(X)k2, k (X)k2  1 almost
surely and � 2 (0, 1). For any t > 0, Lemma 4 implies

P[|d̂2�,n(�,)� d2�(�,)| � t+ 4/(n�2)]  exp(�Cnt2�4) + (k + l) exp(�Cnt2�6).

17

Let 0 < �  1 and let t = 2
C�3

q
log((k+l)/�)

n . Then

P[|d̂2�,n(�,)� d2�(�,)| � t+ 4/(n�2)] < �/2 + �/2 = � .

Finally, since � 2 (0, 1) we have

1

�3

r
log((k + l)/�)

n
& t+ 4/(n�2),

which proves the theorem.

A.4 Transfer learning distance under kernel ridge regression

Consider comparing the predictors output by kernel ridge regression with some kernel K(x, y) =
h⌧(x), ⌧(y)i, applied to different representations. This corresponds to the case F = {f�(·) : f�(x) =
�>⌧(x)} and r(f�) = ||�||22. Although ⌧ may be high or even infinite dimensional, we now show
that computing GULP under this F requires only access to K(·, ·), and not ⌧ directly.

This is equivalent to defining new representations �0 = ⌧ �� and 0 = ⌧ ��, and computing d�(�0, 0).
However, ⌧ may be high or even infinite-dimensional; traditionally in kernel ridge regression, one
only wishes to compute K(·, ·) but never ⌧ explicitly. Here, we show that d�(�,) is computable in
terms of only inner products h�(x),�(y)i and h (x), (y)i, or put differently, that d�(�,) can be
written in terms of only the kernel functions associated with � and . By applying this result to �0
and 0, this implies we only need to access h�0(x),�0(y)i = h⌧(�(x)), ⌧(�(y))i = K(�(x),�(y)).

Recall that d�(�,)2 = tr((⌃�+�I)�1⌃�(⌃�+�I)�1⌃�)+tr((⌃ +�I)�1⌃ (⌃ +�I)�1⌃)�
2 tr((⌃� + �I)�1⌃� (⌃ + �I)�1⌃>

�). We prove the result for the finite sample case discussed
in 3, where we approximate ⌃� = V V >, ⌃ = WW>. Here, V consists of all the samples �(x),
with number of columns equal to the number of samples. By the kernel trick, (⌃� + �I)�1⌃� =
(V V > + �I)�1V V > = V (V >V + �I)�1V >. Thus:

tr((⌃� + �I)�1⌃�(⌃� + �I)�1⌃�) = tr(V (V >V + �I)�1V >V (V >V + �I)�1V >)

= tr((V >V + �I)�1V >V (V >V + �I)�1V >V)

This term is expressible in terms of only (V >V)ij , which only depends on h�(xi),�(xj)i for
samples xi and xj . Similar reasoning holds for the term tr((⌃ + �I)�1⌃ (⌃ + �I)�1⌃).
Finally, consider the cross-term:

tr((⌃� + �I)�1⌃� (⌃ + �I)�1⌃>
�) = tr((V V > + �I)�1VW>(WW> + �I)�1WV >)

= tr(V (V >V + �I)�1W>W (W>W + �I)�1)

= tr((V >V + �I)�1V >V (W>W + �I)�1W>W)

Again, this term is expressible only in terms of V >V and W>W .

B Supplementary experiments

B.1 Experimental Setup

Here we briefly describe all of the network architectures used in this paper as well as the procedure
for training them. All experiments were run on Nvidia Volta V100 GPUs.

Networks on MNIST For the MNIST handwritten digit database [Den12], we initialize 400 fully-
connected networks with ReLU activations. Each networks accepts a flattened 28⇥ 28 image (784
grayscale pixels) as input and outputs at its last layer a vector of 10 probabilities for a given digit 1-10.
The number of hidden layers in the networks range from 1 to 10 and the widths of all hidden layers are
constant and range from 100 to 1000 in multiples of 100. Each model architecture with a fixed width
and depth is randomly initialized 4 separate times with uniform Kaiming initialization [HZRS15]
and zero bias. Every network is trained for 50 epochs and a batch size of 100 on all 60,000 images of
the MNIST train set using the Adam optimizer [KB14] with a learning rate of 10�4.

18

Networks on ImageNet For the ImageNet Object Localization Challenge [KSH12], we use 37
state-of-the-art models downloaded both in untrained and pretrained form from the PyTorch database
of models5. All models can be separated into the following classes

• ResNets: regnet_x_16gf, regnet_x_1_6gf, regnet_x_32gf, regnetx_3_2_gf, regnet_x_400mf,
regnet_x_800mf, regnet_x_8gf, regnet_y_16gf, regnet_y_1_6gf, regnet_y_32gf, reg-
net_y_3_2gf, regnet_y_400mf, regnet_y_800mf, regnet_y_8gf, resnet18, resnext50_32x4d,
wide_resnet50_2

• EfficientNets: efficientnet_b0, efficientnet_b1, efficientnet_b2, efficientnet_b3, efficient-
net_b4, efficientnet_b5, efficientnet_b6, efficientnet_b7

• MobileNets: mobilenet_v2, mobilenet_v3_small, mobilenet_v3_large
• ConvNeXts: convnext_base, convnext_tiny, convnext_small, convnext_large
• Miscellaneous: alexnet, googlenet, inception, mnasnet, vgg16

All models accept 3-channel RGB images of size 224⇥ 224 (i.e. total dimension 3⇥ 224⇥ 224).
We normalize the 1,281,119 images in the train set of ImageNet to have mean (0.485, 0.456, 0.406)
and standard deviation (0.229, 0.224, 0.225) in each RGB channel. Every models embeds the images
into a latent space with dimension ranging from 400 to 4096 depending on the architecture.

Networks on CIFAR For CIFAR [KH+09], we train 16 ResNet18 architectures from independent,
random initializations for 50 epochs each using the FFCV library [LIE+22]. They were trained with
batch size 512, learning rate 0.5 on a cyclic schedule, momentum parameter 0.9, and with weight
decay parameter 5e� 4.

B.2 Relationship of GULP to other distances

Embeddings of ImageNet Figure 2 of the main text compares the CKA, CCA, and GULP distances
between pairs of representations of 37 ImageNet representations, estimated from 10,000 samples.
In Figure 8, we extend the comparison to PWCCA and PROCRUSTES. We note that at certain �, our
distance has near-linear relationships with PROCRUSTES and CKA.

Embeddings of MNIST In Figure 9, we repeat the same experiment for MNIST embeddings
with trained fully-connected networks of depths in the range from 1 to 10, and widths in
{200, 400, 600, 800, 1000}.

B.3 Convergence of the plug-in estimator

In Figure 3, we estimated the distances between
�15
2

�
= 105 pairs of ImageNet networks with the

plug-in estimator as we increased the number of samples n. We plotted the average relative error to
the 10000-sample estimate. We supplement this result with Figure 10, which shows that for n � 2000,
two independent estimates of GULP have average relative error smaller than 2%. Therefore, if there is
error in the plug-in estimator it is mainly due to bias, apart from roughly 2% relative error. Since the
convergence in 3 indicates that the plug-in estimator is unbiased, this reinforces our claim that the
plug-in estimator concentrates quickly around the true distance.

Runtime The 12 ImageNet networks for these plots were alexnet_pretrained_rep, con-
vnext_small_pretrained_rep, efficientnet_b0_pretrained_rep, efficientnet_b3_pretrained_rep, effi-
cientnet_b6_pretrained_rep, inception_pretrained_rep, mobilenet_v3_large_pretrained_rep, reg-
net_x_1_6gf_pretrained_rep, regnet_x_400mf_pretrained_rep, regnet_y_16gf_pretrained_rep, reg-
net_y_3_2gf_pretrained_rep, regnet_y_8gf_pretrained_rep, subsampled from the 37 models at our
disposal so as to reduce the computational burden. Generating these plots took 11 minutes with an
Nvidia Volta V100 GPU. The computational cost is due to the fact that distances are computed for a
range of increasing number of samples n, on 66 pairs of networks and two independent trials.

B.4 GULP captures generalization performance by linear predictors

Here we supplement the experiments of Section 4.1, which show how the GULP distance captures
generalization performance by linear predictors. We provide an experiment on the UTKFace dataset

5https://pytorch.org/vision/stable/models.html#classification

19

https://pytorch.org/vision/stable/models.html#classification

Figure 8: Scatter plots showing relationships between network distances on ImageNet. Each point is
a pair of ImageNet representations, and the x and y coordinates correspond to two distances that are
being compared. There is a surprising near-linear relationship between PROCRUSTES and GULP for
intermediate �. The title of each plot shows the Pearson correlation coefficient.

[ZSQ17] using the age of a face as the regression label, instead of using a random label. We consider
the representation maps �1, . . . ,�m given by m = 37 pretrained Imagenet image classification
architectures, applied to the UTKFace dataset PX . For each pair of representations, we compute the
CKA, CCA, PWCCA, and GULP distances with the plug-in estimator on 10,000 images. We then draw
n = 5000 data points (Xi, Yi) ⇠ PX , where Xi is the face image and Yi is the corresponding age.
The remaining experiment details are the same as in Section 4.1. For each representation i 2 [m]
we fit a �-regularized least-squares linear regression to the training data {(Xk, Yk)}k2[n], yielding
a coefficient vector ��,i. Finally, for each 1  i  j  m, we compute the distance ⌧ij between
predictions as an empirical average over 3000 samples in a testset. In Figure 11, we plot the Spearman
⇢ correlations between the prediction distances ⌧ij and the different distances between representations
(similarly to Figure 4). We run one trial, since the labels are no longer random. The GULP distance
again performs favorably compared to other methods. For linear regression with � = 1 and � = 10�6,
the GULP distance with � = 1 and � = 10�6, respectively vastly outperform previously-proposed
distances in terms of predicting generalization. For linear regression with � = 10�4 and � = 10�2,
GULP with � = 10�2 predicts the generalization performance on par with the CKA and PROCRUSTES
distances. Notice that unlike the experiment with random labels, the best � for GULP does not exactly
match the � used in the linear regression task, but instead is close to it.

B.5 GULP distances cluster together networks with similar architectures

Here we elaborate further on the experiments described in Section 4.2 on embeddings of MNIST
networks. As described previously, we generate four independent copies of fully-connected ReLU
networks with depths ranging from 1-10 and widths ranging from 100-1000. Network depth refers to

20

Figure 9: Scatter plots showing relationships between network distances of fully-connected network
representations on MNIST. For � = 0, there is no straight-line relationship with CCA, since the
dimensions of the representations differ, and the normalization of CCA is different from that of GULP
because it depends the representation dimension. Each point is a pair of MNIST representations,
and the x and y coordinates correspond to two distances that are being compared. The near-linear
relationship between CKA and GULP is quite evident for large �, as it turns out that all of the kernels
are closer to having the same normalization than in the case of the ImageNet dataset. Furthermore,
there is a surprising near-linear relationship between CKA and PROCRUSTES for intermediate �. The
title of each plot shows the Pearson correlation coefficient.

Figure 10: Relative error |d̂(1)�,n � d̂(2)�,n|/(d̂
(1)
�,n + d̂(2)�,n) between plug-in estimator on two trials d̂(1)�,n

and d̂(2)�,n with independent samples. We have averaged across the 66 pairs of ImageNet networks.
For � = 0, due to numerical precision issues we do not plot the relative error in the estimate for
n  2000.

21

Figure 11: GULP captures generalization of linear predictors. We plot Spearman’s ⇢ between the
differences in predictions by �-regularized linear regression, and the different distances.

the number of hidden layers in a model and network width refers to the width of each hidden layer.
All networks are fully-trained on MNIST, and their last hidden layer representations are computed on
60,000 input images from the train set. For every pair of widths and depths (w1, d1) and (w2, d2),
there are four trained networks with dimensions (w1, d1) and four trained networks with dimensions
(w2, d2). For a given metric, we compute 4 · (3� 1) = 12 distances between the penultimate layer
representations of these networks and average them. This gives us the average distance between
the penultimate layer representations of a network with dimensions (w1, d1) and a network with
dimensions (w2, d2). In Figure 12 (left) we show the average PWCCA, CKA, PROCRUSTES, and GULP
distances between each pair of width-depth architectures for varying �. We also display the MDS
embeddings of all 4⇥ 10⇥ 10 networks colored by width and depth (center and right).

In Figure 13 we perform a very similar experiment to the one above with networks trained on
CIFAR10 instead of MNIST. We generate five independent copies of fully-connected ReLU networks
with depths ranging from 1-5 and widths ranging from 200-1,000. All networks are fully-trained on
60,000 images of the CIFAR10 train set by SGD in the maximal-update parametrization [YH20],
where for a width-one network our hyperparameters would be learning rate ⌘ = 0.1 and we would
initialize weights and biases as Gaussian with standard deviation 1. The distances between their
penultimate layer representations are computed using 10,000 randomly selected CIFAR10 images.
Figure 13 shows the average PWCCA, CKA, PROCRUSTES, and GULP distances between each pair of
width-depth architectures and show the MDS embeddings of all 5⇥ 5⇥ 5 networks colored by width
and depth (center and right).

22

Now we describe in more detail how various distance metrics cluster state-of-the-art network ar-
chitectures on the ImageNet Object Localization Challenge. In Figure 14 (left) we compute the
CCA, PWCCA, CKA, PROCRUSTES, and GULP distances for five groups of networks: 17 ResNets, 8
EfficientNets, 4 ConvNeXts, and 3 MobileNets. These 32 networks are fully-trained on ImageNet
and are given the same 10,000 input training images to form their last hidden layer representations.
As discussed in Section 4.2, all distance metrics separate ResNet architectures (blue) from the Effi-
cientNet and ConvNeXt convolutional networks (orange and red) with GULP at � = 1 achieving the
best separation between these two clusters. To further quantify the compactness of the clusterings
given by these distance metrics, we compute a standard deviation ratio for each of the five network
classes. Given a distance metric, this ratio is computed as the sum of squared distances between all
36 networks divided by the sum of squared distances between networks in each class:

standard deviation ratio for class k =
⇣ 1

n(n� 1)

X

1i 6=jn

d2ij

. 1

|Ck|(|Ck|� 1)

X

i 6=j2Ck

d2ij

⌘ 1
2

(12)

where n = 36 and Ck ⇢ {1, . . . , n} is the subset of networks in class k = 1, . . . , 5. Note that
a ratio of 1 implies that the size of the cluster is equal to the average distance between any two
ImageNet networks. In Figure 14 (right) we plot the standard deviation ratio for each of the five
network classes. As expected, the ratios under the GULP distance increase for large � and the residual
and convolutional network architectures become well separated at � = 1. The CCA, PWCCA, CKA,
and PROCRUSTES distances do not achieve the same level of separation between different network
architectures but are similar to the GULP distance at � = 10�2.

Now we study distances between the same ImageNet models when they are untrained and are at
random initialization. Again there are 32 untrained networks consisting of 17 ResNets, 8 EfficientNets,
4 ConvNeXts, and 3 MobileNets. Each of the untrained networks is randomly initialized ten
separate times and is given the same 10,000 input training images from ImageNet. We compute
the CKA, PROCRUSTES, and GULP distances between their penultimate layer representations which
are displayed in Figure 15 (left). The distances between these networks are visualized using a
two-dimensional t-SNE embedding and the standard deviation ratio (12) of each of the four groups
is calculated [Figure 15 (center and right)]. Under all distance metrics we see that the ResNets
(blue), EfficientNets (orange), and ConvNeXts (red) all form their own clusters. As evidenced by
the standard deviation ratios, the ConvNeXt networks under the GULP distance form a tighter cluster
as � increases. Both CKA and GULP with � = 1 achieve the most compact clusterings of ResNets,
EfficientNets, and ConvNeXts.

In Figure 16 for several distance metrics we display the standard deviation ratios for the five network
groups before and after training. On untrained and pretrained networks, CKA and PROCRUSTES are
competitive with GULP at clustering ResNet, EfficientNet, and ConvNeXt architectures. However on
ConvNeXt models, for untrained networks GULP achieves the highest standard deviation ratio with
large � and for pretrained networks it achieves the highest standard deviation ratio at intermediate
values of �.

B.6 GULP does not strongly depend on input data distribution

Here we test how the GULP distance between network architectures depends on the distribution of the
input data X from which the last hidden layer representations are computed. In Figure 1 we showed
a t-SNE embedding of the GULP distance (� = 10�2) between the last hidden layer representations
of 37 networks pretrained on ImageNet. These penultimate layer representations were computed by
passing 10,000 images from the ImageNet train set into each network. In Figure 17 we repeat this
experiment and generate a t-SNE embedding of the GULP distance (� = 10�2) between ImageNet
networks where each network is passed in 10,000 images from the MNIST train set. In order to
input MNIST grayscale images into these networks, we convert them to RGB images where each
channel has a copy of the same image and is centered and normalized as described in Section B.1.
Even though all 37 networks were trained on the ImageNet train set, GULP is able to separately
cluster EfficientNet, ResNet, and ConvNeXt architectures from their last hidden layer representations
of MNIST images. In Figure 18 we show yet another example of this phenomenon, where GULP
properly clusters ImageNet architectures when their last hidden layer representations are constructed
from 10,000 face input images taken from the UTKFace train dataset [ZSQ17]. This shows that in
practice the GULP distance consistently captures the same relationships between network architectures
and does not strongly depend on the input data distribution used to build the network representations.

23

Figure 12: Average CKA, PROCRUSTES, and GULP distance between last hidden layer representations
of two fully-connected ReLU networks with a given width and depth (left). Networks are fully-trained
on MNIST and penultimate layer representations are constructed from 60,000 input train images.
Ordering of networks along rows and columns of distance matrices has outer indices as network
depths 1-10 and inner indices as network widths 100-1000. Two dimensional MDS embedding plots
(center and right) of all networks colored by architecture width and depth.

24

Figure 13: Average CKA, PROCRUSTES, and GULP distance between last hidden layer representations
of two fully-connected ReLU networks with a given width and depth (left). Networks are fully-trained
on CIFAR and penultimate layer representations are constructed from 10,000 input train images.
Ordering of networks along rows and columns of distance matrices has outer indices as network
depths 1-5 and inner indices as network widths 200-1000. Two dimensional MDS embedding plots
(center and right) of all networks colored by architecture width and depth.

25

Figure 14: CCA, CKA, PROCRUSTES, and GULP distances between last hidden layer representations
of 36 pretrained ImageNet networks. Representations are formed by passing 10,000 train images
from ImageNet into each network. For five groups of pretrained networks (ResNet, EfficientNet,
MobileNet and ConvNeXt), we compute their distance matrices (left) and two-dimensional t-SNE
embeddings (center). Separation of the five network groups is quantified by their standard deviation
ratios which measure the the standard deviation of the distance across all networks divided by the
standard deviation of the distance in a given group. GULP, CKA, and PROCRUSTES successfully
separate all four network types from each other.

26

Figure 15: CKA, PROCRUSTES, and GULP distances between penultimate layer representations
of 32 untrained ImageNet networks where each network model is randomly intialized 10 times.
Representations are formed by passing 10,000 train images from ImageNet into each network. For
four groups of pretrained networks (ResNet, EfficientNet, MobileNet, ConvNeXt), we compute
their distance matrices (left) and two-dimensional t-SNE embeddings (center). Separation of the
four network groups is similarly quantified by their standard deviation ratios which measure the
the standard deviation of the distance across all networks divided by the standard deviation of the
distance in a given group. Under all distance metrics ResNets, EfficientNets, and ConvNeXts are
clustered separately with CKA and GULP at � = 1 forming the most compact clusters.

B.7 Network representations converge in GULP distance during training

Here, we repeat Figure 7, but plot each distance separately and with a greater variety of regularization
values � (see Figure 19).

B.8 GULP distance at intermediate network layers

Throughout this paper, we have primarily used GULP to compare neural networks using their last
hidden layer representations. Here we study how the GULP distance compares intermediate hidden
layers of neural networks. Namely, we take 10 NLP BERT base models from Zhong et al. [ZGKS21]
which are pretrained with different random initializations on sentences from the Multigenre Natural
Language Inference (MNLI) dataset [WNB17]. Each model has 12 hidden layers and we save the
representations at every hidden layer on 3,857 MNLI input train samples. In Figure 20 we plot the
distance matrices for GULP at varying values of � between every pair of hidden layers across 10 BERT
networks. We also plot the tSNE, MDS, and UMAP embeddings with each colored line representing
one of the 10 BERT models. In each embedding plot, earlier layers are drawn as points with a dark

27

Figure 16: Standard deviation ratio of distances for five groups of architectures (ResNet, EfficientNet,
MobileNet, and ConvNeXt) both for untrained and pretrained networks.

Figure 17: t-SNE embedding of penultimate layer representations of pretrained ImageNet networks
with GULP distance (� = 10�2), colored by architecture type (gray denotes architectures that do
not belong to a family). For each network pretrained on ImageNet we input MNIST images and
compute their last hidden layer representations. Even though these ImageNet networks were not
trained on MNIST data, the GULP distance is able to cluster their penultimate layer representations
and consistently forms groups of MobileNet, EfficientNet, ResNet, and ConvNeXt architectures. This
indicates that the GULP metric does not depend strongly on the data distribution which networks are
trained on.

28

Figure 18: t-SNE embedding of penultimate layer representations of pretrained ImageNet networks
with GULP distance (� = 10�2), colored by architecture type (gray denotes architectures that do
not belong to a family). Contrary to Figure 1, here for each network pretrained on ImageNet we
input 10,000 face images from the UTKFace train dataset and compute their last hidden layer
representations. Even though these ImageNet networks were not trained on UTKFace data, the GULP
distance is able to cluster their last hidden layer representations and consistently forms groups of
MobileNet, EfficientNet, ResNet, and ConvNeXt architectures. This in conjunction with Figure 17
shows that the GULP metric is not overly sensitive to the input data distribution from which network
representations are constructed.

hue while layers closer to the end of the network are represented by points with a faded color. As
expected, for each of the BERT model the GULP distances arrange their hidden layers linearly in
order from their input layer to their output layer. When � is small, the earlier layers of all 10 networks
are grouped together while the later layers have large GULP distances between all 10 models. As
� increases, the later layers of all 10 models also become grouped together and GULP arranges all
BERT models linearly in the order of their hidden layers. Therefore, tuning the � parameter in GULP
allows us to make distinctions between earlier and later layers of a network architecture.

B.9 Specificity versus sensitivity of GULP

Here we run three benchmark experiments of [DDS21] to compare the sensitivity and specificity of
our GULP distance to CCA, PWCCA, CKA, and PROCRUSTES.

In the first experiment, we take 10 BERT base models from Zhong et al. [ZGKS21] which are
pretrained with different random initializations on sentences from the Multigenre Natural Language
Inference (MNLI) dataset [WNB17]. All BERT base models have 12 hidden layers of transformer
blocks with dimension 768 [DCLT18]. For each of the 10 networks, at each of the 12 layers we save
the representations on 3,857 MNLI input train samples. We compute the probing accuracies of all 120
representations on the Question-answering Natural Language Inference dataset (QNLI) [WSM+18]
and the Stanford Sentiment Tree Bank Task (SST-2) [SPW+13]. For a given dataset (QNLI and
SST-2), we find the representation X⇤ 2 R768⇥3857 which has the best probing accuracy and we
compare the accuracies of all 120 representations to it. For every representation X 2 R768⇥3857, the
difference in probing accuracy from the best representation X⇤ is correlated with the distance between
between the two representions d(X,X⇤) under a given distance metric (CCA, CKA, PROCRUSTES,
etc.). In Figure 21 we display Spearman’s ⇢ and Kendall’s ⌧ rank correlations of the CCA, PWCCA,
PROCRUSTES, CKA, and GULP distances against the probing accuracy differences between two
representations. On the QNLI dataset we see in Figure 21 (left) that GULP with large � outperforms
all other metrics including CKA and achieves the largest rank correlations with statistically significant
p-values that are below 0.05. Similar results are obtained on the SST-2 dataset as seen in Figure 21
(right). This shows that the GULP distance with large � has better specificity (is less sensitive) to
random initializations of a network as this has less of an effect on its correlation with probing accuracy
compared to the other metrics.

In the second experiment, we study 50 BERT base models from McCoy et al. [MML19] which are
trained on MNLI and finetuned for classification with different finetuning seeds at initialization.
Similar to the experiment above, we compute 600 representations of the 50 BERT models at each of

29

Figure 19: The empirical distances between penultimate layer representations of 16 independently
trained ResNet18 architectures during training, computed using 3, 000 samples and averaged over all
pairs. Distances are scaled by their average value at iteration 0 for the sake of comparison between
metrics.

30

Figure 20: Top row shows GULP distance matrices between 12 hidden layers of 10 fully-trained
NLP BERT base models with different random initializations. Representations at every hidden layer
are constructed from 3,857 MNLI input train samples which are then used to compute the GULP
distance between every pair of layers across the 10 models. Distance matrices are embedded using
tSNE, MDS, and UMAP where each colored line represents one of the 10 BERT models. Earlier
layers are drawn as dark saturated points while layers close to the output of the network are drawn as
faded points. For each of the 10 BERT networks, GULP finds a one-dimensional embedding of its
layers which respects their ordering. Across all BERT models, GULP with small � groups together
the earlier layers of the 10 network architectures but assigns large distances between the later layers.
This is particularly emphasized in the top left tSNE embedding. As � increases, the later layers of all
10 models also become grouped together until all BERT networks are linearly aligned in the order of
their hidden layers.

the 12 layers using 3,857 MNLI input train samples. We are interested in studying how distances
between these representations correlate with their out-of-distribution (OOD) performance on a
different task. Namely, as our measure of OOD performance we compute each representation’s
accuracy on the “Lexical Heuristic (Non-entailment)” subset of the HANS dataset [MPL19]. As
before, we choose the best representation X⇤ with the lowest OOD accuracy. Then for every
representation X the difference in OOD accuracy from the best representation X⇤ is correlated
with the distance between between the two representions d(X,X⇤) under a given distance metric.
Spearman’s ⇢ and Kendall’s ⌧ rank correlations of the CCA, PWCCA, PROCRUSTES, CKA, and GULP
distances are shown in Figure 22. Note that CCA, PWCCA, PROCRUSTES, and GULP with small � have
the largest correlation with OOD accuracy. Since the BERT model representations were constructed
on in-distribution MNLI data, this implies that these distance metrics can detect differences between
OOD accuracy of different models without access to OOD data.

Lastly, for the third experiment we study 100 BERT medium models taken from Zhong et
al. [ZGKS21] which are fully-trained on the MNLI dataset with 10 pretraining seeds and further
finetuned on MNLI with 10 different finetuning seeds by Ding et al. [DDS21]. Each BERT medium
model has 8 hidden layers of width 512 [DCLT18]. We study the OOD accuracy of these models
on the antonymy stress test and the numerical stress test defined in Naik et al. [NRS+18]. As with
the previous experiments, we compute 800 representations of the 100 BERT models at each of
the 8 layers using 3,857 MNLI input train samples. For every representation X the difference in
OOD accuracy from the best representation X⇤ is correlated with the distance between between
the two representions d(X,X⇤) under a given distance metric. Spearman’s ⇢ and Kendall’s ⌧ rank
correlations of the CCA, PWCCA, PROCRUSTES, CKA, and GULP distances are shown in Figure 23.
As shown in the original experiments by Ding et al. [DDS21], none of the distance metrics show a
large rank correlation with the OOD accuracy for either of the stress tests and the associated p-values
are not significant at the 0.05 level except for GULP with � > 10�2.

31

Figure 21: Spearman’s ⇢ and Kendall’s ⌧ rank correlations and associated p-values for difference of
probing accuracy between two representations vs. distance between two representations. Representa-
tions are constructed from 12 layers of 10 BERT base models using 3,857 MNLI input train samples.
Rank correlations are computed with probing accuracy on the QNLI and SST-2 datasets (left and
right).

In summary, these benchmark experiments show that the GULP distance exhibits specificity (is not
sensitive) to random initializations of a network as shown in Figure 21 and this become particularly
apparent at large �. Additionally, it is sensitive to the out-of-distribution accuracy of a model as
supported by Figure 22 where it improves upon the performance of CCA, PWCCA, and PROCRUSTES.

B.10 GULP distances do not especially capture generalization on logistic regression

In this section, we provide Figure 24, which replicates the experiment of Figure 4, but where the
downstream transfer learning task is binary logistic regression instead of ridge regression. We assign
labels of 0 and 1 with equal probability, and compute the resultant test prediction accuracy averaged
over 3000 samples. We find (perhaps unsurprisingly) that GULP, as defined for ridge regression,
does not capture downstream generalization better than baselines on logistic regression tasks. This
motivates the extension of GULP to logistic regression in future work.

32

Figure 22: Spearman’s ⇢ and Kendall’s ⌧ rank correlations and associated p-values for difference of
OOD accuracy between two representations vs. distance between two representations. Representa-
tions are constructed from 12 layers of 50 BERT base models using 3,857 MNLI input train samples.
The BERT base models are finetuned for classification and the OOD accuracy is computed on the
“Lexical Heuristic (Non-entailment)” subset of the HANS dataset.

33

Figure 23: Spearman’s ⇢ and Kendall’s ⌧ rank correlations and associated p-values for difference
of OOD accuracy between two representations vs. distance between two representations. Represen-
tations are constructed from 8 layers of 100 BERT medium models using 3,857 MNLI input train
samples. The BERT base models are trained from a combination of 10 pretraining and 10 finetuning
seeds and the OOD accuracy of each model is measured on the antonymy stress and the numerical
stress tests.

Figure 24: GULP does not capture generalization of the predictors output by logistic regression. We
plot Spearman’s ⇢ between the differences in predictions by �-regularized linear regression, and the
different distances. Results are averaged over 10 trials.

34

	1 Introduction
	2 The gulp distance
	2.1 Structural properties
	2.2 Comparison with cca, ridge-cca, cka, and procrustes

	3 Plug-in estimation of gulp
	4 Experiments
	4.1 gulp captures generalization performance by linear predictors
	4.2 gulp distances cluster together networks with similar architectures
	4.3 Network representations converge in gulp distance during training
	4.4 Sensitivity versus specificity of gulp

	5 Conclusion
	A Deferred proofs
	A.1 Alternate characterizations of gulp, proofs of Proposition 1 and Lemma 1
	A.2 gulp is a distance, proof of Theorem 2
	A.3 Convergence of plug-in estimator, proof of Theorem 3
	A.4 Transfer learning distance under kernel ridge regression

	B Supplementary experiments
	B.1 Experimental Setup
	B.2 Relationship of gulp to other distances
	B.3 Convergence of the plug-in estimator
	B.4 gulp captures generalization performance by linear predictors
	B.5 gulp distances cluster together networks with similar architectures
	B.6 gulp does not strongly depend on input data distribution
	B.7 Network representations converge in gulp distance during training
	B.8 gulp distance at intermediate network layers
	B.9 Specificity versus sensitivity of gulp
	B.10 gulp distances do not especially capture generalization on logistic regression

