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Abstract

Topological data analysis (TDA) is an emerging field in mathematics and data sci-
ence. Its central technique, persistent homology, has had tremendous success in many
science and engineering disciplines. However, persistent homology has limitations, in-
cluding its inability to handle heterogeneous information, such as multiple types of ge-
ometric objects; being qualitative rather than quantitative, e.g., counting a 5-member
ring the same as a 6-member ring, and a failure to describe non-topological changes,
such as homotopic changes in protein-protein binding. Persistent topological Laplacians
(PTLs), such as persistent Laplacian and persistent sheaf Laplacian, were proposed to
overcome the limitations of persistent homology. In this work, we examine the modeling
and analysis power of PTLs in the study of the protein structures of the severe acute res-
piratory syndrome coronavirus 2 (SARS-CoV-2) spike receptor binding domain (RBD).
First, we employ PTLs to study how the RBD mutation-induced structural changes of
RBD-angiotensin-converting enzyme 2 (ACE2) binding complexes are captured in the
changes of spectra of the PTLs among SARS-CoV-2 variants. Additionally, we use PTLs
to analyze the binding of RBD and ACE2-induced structural changes of various SARS-
CoV-2 variants. Finally, we explore the impacts of computationally generated RBD
structures on a topological deep learning paradigm and predictions of deep mutational
scanning datasets for the SARS-CoV-2 Omicron BA.2 variant. Our results indicate that
PTLs have advantages over persistent homology in analyzing protein structural changes
and provide a powerful new TDA tool for data science.
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1 Introduction

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the cause of the ongoing
global coronavirus disease 2019 (COVID-19) pandemic. Its evolution and future direction
are of major concern. It was well established that the emergence of SARS-CoV-2 new vari-
ants is dictated by mutation-induced infectivity strengthening [11] and antibody resistance
(or vaccine breakthrough) [41], two molecular mechanisms that determined the natural se-
lection at the population scale. More specifically, the binding of the viral spike protein, par-
ticularly the receptor-binding domain (RBD), to the human receptor angiotensin-converting
enzyme 2 (ACE2) facilitates the entry of the virus into host cells [20, 38]. In early 2020,
it was hypothesized that natural selection favors those SARS-CoV-2 RBD mutations that
strengthen the RBD-ACE2 binding, which leads to higher viral infectivity [11]. The hy-
pothesis was initially supported by the frequency analysis of 89 single RBD mutations
found from the genotyping of 15,140 complete SARS-CoV-2 genome samples [11] and later
confirmed beyond doubt by the evolution pattern of 651 RBD mutations found from the
genotyping of 506,768 SARS-CoV-2 genomes extracted from COVID-19 patients up to early
2021 [40].

The vaccine breakthrough mechanism was not discovered until vaccines became widely
available in industrialized countries in the summer of 2021. It was found that an RBD
mutation that weakens the viral infectivity had an unusually high observed frequency in
2,298,349 complete SARS-CoV-2 genomes isolated from patients. This abnormal statistics
was found to strongly correlate with the vaccination rates in a few industrialized countries,
including Denmark, the United Kingdom, France, Bulgaria, the United States, etc [41].
To understand this correlation, the mutational impact of a set of 130 antibodies extracted
from Covid patients that targets the RBD was studied. It was found that the abnormal



mutation on the RBD has a very strong ability to disrupt the binding of most antibody-
RBD complexes, which gives rise to antibody resistance (or vaccine breakthrough) at the
population scale [41].

As discussed above, the reveal of the natural selection mechanisms of SARS-CoV-2 evo-
lution is a typical example of a data-driven discovery that cannot be achieved by individual
experimental laboratories. In fact, the discovery utilized results from tens of thousands
of experimental laboratories around the world [11, 41]. Machine learning, including deep
learning, and also data-driven approach, played an essential role in the discovery. Deep
learning methods can offer some of the most accurate predictions of biomolecular proper-
ties, including the binding affinity of protein-protein interactions (PPIs). This approach
becomes particularly advantageous and outperforms other methods when good-quality ex-
perimental data are available. However, structure-based machine learning, including deep
learning methods encounter difficulties in PPI predictions due to their intricate structural
complexity and high dimensionality.

Advanced mathematics, such as topological data analysis (TDA), can provide an effec-
tive abstraction of PPIs [39]. TDA is an emerging mathematical field that utilizes algebraic
topology approaches to analyze data. Its main tool is persistent homology [5, 14, 15, 22, 25,
37, 49, 52], which integrates classical homology and filtration to create a multiscale analysis
of data, resulting in a family of topological invariants. Through analyzing the signature
and change of topological invariants during filtration, one can infer the shape of data [5].
However, persistent homology has limitations. Firstly, it is insensitive to homotopic shape
evolution that does not involve any topological change. Secondly, roughy speaking, it can-
not distinguish between a five-member ring and a six-member ring. Thirdly, it is incapable
of differentiating different types of atoms, unable to describe directed relations, and indif-
ferent to structured data such as functional groups. To overcome the first two limitations,
persistent spectral graph [42], also known as persistent Laplacian [30, 44], was proposed.
This method not only returns the full set of topological invariants as persistent homology
does but also captures additional homotopic shape evolution of data and is more quantita-
tive in its non-harmonic spectra. In addition to mathematical analysis [30], computational
algorithms, such as HERMES software package [44] and homotopy continuation [47], were
developed to facilitate topological deep learning, an emerging paradigm first introduced in
2017 [2, 3] for biomolecular studies, i.e., persistent Laplacian-assisted protein-ligand bind-
ing [31] and protein-protein binding [9, 45]. Neither persistent homology nor persistent
Laplacian is sensitive to heterogeneous information in data. The element-specific persis-
tent homology was designed to alleviate this difficulty. This approach has had tremendous
success in deciphering biomolecules [3, 2] and in worldwide computer-aided drug design
competitions [32]. Inspired by this success, various new TDA methods have been proposed
[1, 18, 26, 27]. Recently, a more elegant theory, persistent sheaf Laplacian, was proposed
to embed heterogeneous information, such as geometry and partial charges, in topological
analysis [48], utilizing the theory of cellular sheaves [19, 53]. Both persistent Laplacian
and persistent sheaf Laplacian belong to a class of persistent topological Laplacians (PTLs)
[46]. PTLs are a family of multiscale topological spectral methods, including continuous
(evolutionary) Hodge Laplacians defined on manifolds [13] and all other discrete multiscale



topological Laplacians, namely, persistent sheaf Laplacians [48], persistent spectral graphs
[42], persistent path Laplacians [43], persistent topological hypergraph Laplacians [6], per-
sistent hyperdigraph Laplacians [6], etc. Among them, persistent path Laplacians were
designed to describe directed graphs (digraphs) and directed networks, while persistent
topological hypergraph Laplacians and persistent hyperdigraph Laplacians can further deal
with structured data. These new TDA methods can generate efficient mathematical repre-
sentations of macromolecules either being used to model molecular structures or being used
jointly with machine learning models for predicting various properties of molecules [9]. In
the past three years, TDA approaches have been applied to SARS-CoV-2 related databases
to predict PPI binding free energy (BFE) changes of RBD-ACE2 and RBD-antibody com-
plexes induced by RBD mutations [7, 8]. Particularly, the non-harmonic spectra of PTLs
can further unveil the homotopic geometric deformation induced by RBD mutations.

Although sequence-based approaches offer good predictions of mutational impacts on
proteins, structure-based methods outperform other approaches [34]. In machine-learning-
assisted directed evolution and protein engineering and machine-learning-based PPI and
protein folding stability predictions, mutant structures are typically not available and are
conventionally created by computational means for the machine learning predictions [3,
2, 7, 8, 27], which is a source of errors. It is interesting and important to quantify such
errors. Fortunately, since SARS-COV-2 variants are some of the most studied subjects,
some of their three-dimensional (3D) structures are available in the literature, which offers
an opportunity for in-depth analysis and comparison.

Our objectives for this work are three-fold. We are interested in both the structural
changes of the wild type RBD induced by mutations and the structural changes of the wild
type RBD or mutant RBDs induced by their binding to ACE2. To quantify structural
changes we first perform alignment of structures and calculate the distances between cor-
responding atoms (e.g., Cy). Then, we compute PTLs of different structures to further
characterize their structural changes. Finally, we study how the difference between exper-
imentally determined mutant structures and computationally generated mutant structures
affects PTL-based machine learning and topological deep learning predictions of PPIs. This
is important because we want to understand machine learning models’ stability with respect
to structural perturbations and approximations. To this end, we utilize the 3D structures
of SARS-CoV-2 RBD-ACE2 complexes of the wild type and mutants such as Alpha, Beta,
Gamma, and Omicron BA1 and BA2. We also employed the 3D spike protein structures of
the wild type and mutants such as Alpha, Beta, and Omicron BA.1 and BA.2. Persistent
Laplacian and persistent sheaf Laplacian are tested in our studies. To quantitatively ana-
lyze the influence of computationally generated structures on machine learning models, we
used two topological machine learning models, namely TopLapGBT and TopLapNet [9] and
a deep mutational scanning (DMS) dataset based on Omicron BA.2 [36]. We found that for
this dataset, the effects introduced by computationally generated structure on TopLapGBT
are not significant. However, they may slightly reduce the accuracy of TopLapNet.
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Figure 1: Sequence alignment of RBDs of the wild type, Alpha, Beta, Gamma, BA.1, and BA.2. Alpha has
one RBD mutation N501Y. Beta has three RBD mutations K417N, E484K, and N501Y. Gamma has three
RBD mutations K417T, E484K, and N501Y. BA.1 has 15 RBD mutations G339D, S371L, S373P, S375F,
K417N, N440K, G446S, S477N, T478K, E484A, Q493R, G496S, Q498R, N501Y, and Y505H. BA.2 has 16
RBD mutations G339D, S371F, S373P, S375F, T376A, D405N, R408S, K417N, N440K, S477N, T478K,
E484A, Q493R, Q498R, N501Y, and Y505H.

2 Results

2.1 PTL analysis of RBD structural changes induced by mutations

To understand the structural differences of RBD between the wild type and mutants in RBD-
ACE2 complex, we align the RBDs of SARS-CoV-2 variants Alpha (PDB ID: 8DLK][28]),
Beta (PDB ID: 8DLN]28]), Gamma (PDB ID: 8DLQ[28]), BA.1 (PDB ID: 7T9L[29]), and
BA.2 (PDB ID: 7XB0[24]) along with the wild type RBD (PDB ID: 6M0J[23]) in Figures
2 and 3. For Alpha, Beta, Gamma, BA.1, and BA.2, the maximal distances between
corresponding atoms of mutant RBDs and the wild-type RBD are 9.14A, 9.33A, 9.87A,
7.44A, and 14.32A respectively. For each mutant, the residues are recorded if they have
at least one atom whose distance to the corresponding atom in wild-type RBD is more
than 7.16A, which is half of the maximal distance, 14.32A. For variants Alpha, Beta, and
Gamma, such a residue is R346, while in BA.1 such residue is K386. BA.2 has most such
residues, which are N370, A372, K378, and K386, containing atoms deviating from the
wild type. However, these residues are not in the receptor-binding motif (RBM, residues
438-506) that interacts directly with ACE2.

Alternatively, for Alpha, Beta, Gamma, and BA.1 variants, we also change the threshold
from 7.16A to the half of maximal distance (4.57A, 4.67A, 4.94A, and 3.72A, respectively).
Then in the Alpha variant, such residues are T333, R346, K378, K386, R408, and N450.
In Beta and Gamma variants, such residues are T333, R346, K378, K386, and R408. In
BA.1 such residues are T333, N334, E340, R346, N360, D364, Y369, K378, K386, F392,
R408, K424, N450, K462, and H519. Also most large C, structural changes occur at the
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Figure 2: (a) Wild type RBD-ACE2 complex. The RBD is colored by light grey and mutated residues in
Alpha, Beta, Gamma, BA.1 and BA.2 are marked. (b, ¢, d, e, f) Atoms of the wild type RBD are colored by
their distances to corresponding atoms in a mutant RBD. Subfigures (a), (b), (c), (b), and (f) corresponds
to the Alpha, Beta, Gamma, BA.1, and BA.2 variants, respectively. Pink and red corresponds to 0A and
14.32A respectively. For each mutant we record the residues that have at least one atom whose distance
to the corresponding atom in the wild type RBD is larger than 7.16A. In Alpha, Beta, and Gamma, such
residue is R346. In BA.1, such residue is K386. In BA.2, such residues are N370, A372, K378, and K386.
These residues are marked in (g). (Plots generated by ChimeraX [33].)



Figure 3: Atoms of the wild type RBD are colored by their distances to corresponding atoms in a mutant
RBD. Subfigures (a), (b), (c), and (b) corresponds to the Alpha, Beta, Gamma, and BA.1, variants, respec-
tively. Each alignment has its own color range. For each mutant, we record the residues that have at least
one atom whose distance to the corresponding atom in the wild type RBD is more than half of the maximal
distance (4.57A, 4.67A, 4.94A, and 3.72A) between corresponding atoms. In Alpha, such residues are T333,
R346, K378, K386, R408, and N450. In Beta and Gamma, such residues are T333, R346, K378, K386, and
R408. In BA.1, such residues are T333, N334, E340, R346, N360, D364, Y369, K378, K386, F392, R408,
K424, N450, K462, and H519. These residues are marked in (e). (Plots generated by ChimeraX [33].)



coil regions of the RBD. For the BA.2 variant, the half of maximal distance is 7.16A and we
have recorded such residues that have at least one atom whose distance to the corresponding
atom in the wild-type RBD is more than 7.16A.

To quantify the total structural differences between the wild type and mutants, we calcu-
late the sum of squares of distances between corresponding C,, atoms. The results of Alpha,
Beta, Gamma, BA.1, and BA.2 are 69 A2, 70 A2, 67A2, 93A2, and 255A2, respectively as
shown in Figure 4. The large values for BA.1 and BA.2 are consistent with fact that BA.1
and BA.2 are strongly antibody disruptive [10, 12]. The large structural changes induced by
BA.2 mutations create significant mismatch between antibodies and antigens, making BA.2
one of the most antibody resistant variants [12]. Arguably, the amount of mutation-induced
structural changes in RBD-ACE2 complexes also strongly correlates with viral infectivity
changes.
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Figure 4: The total structural changes of RBD between the wild type and mutants in RBD-ACE2 complex.
Given an alignment of a mutant RBD to the wild type RBD, the total structural changes is defined to be
the sum of squares of distances between corresponding C, atoms in RBD.
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Figure 5: Illustration of persistent (sheaf) Betti numbers of element nonspecific persistent Laplacian (PL)
and persistent sheaf Laplacian (PSL) of the residue 501 mutation site at different filtration values, i.e., radii
(unit: A). The wild type (PDB ID: 6M0J) and Alpha (PDB ID: 8DLK) are given in the first row. The Beta
(PDB ID: 8DLN) and Gamma (PDB ID: 8DLQ) are given in the second row. BA.1 (PDB ID: 7T9L) and
BA.2 (PDB ID: 7XB0) are given the third row.
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persistent sheaf Laplacian (PSL) of the residue 501 mutation site at different filtration values, i.e., radii
(unit: A). The wild type (PDB ID: 6M0J) and Alpha (PDB ID: 8DLK) are given in the first row. The Beta
(PDB ID: 8DLN) and Gamma (PDB ID: 8DLQ) are given in the second row. BA.1 (PDB ID: 7T9L) and
BA.2 (PDB ID: 7XB0) are given the third row.
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element nonspecific persistent Laplacians of the wild type N501 mutation site at different filtration values,
i.e., radii (unit: A) Alpha filtration is used. The graphs from top to bottom represent the results of
dimension-0, dimension-1, and dimension-2 Laplacians.



We are also interested in the topological characterization of the mutation-induced con-
formational changes. To this end, we employ persistent Laplacian (PL) and persistent
sheaf Laplacian (PSL) to examine the local RBD structural changes induced by the muta-
tion N501Y (a common mutation that exists in Alpha, Beta, Gamma, BA.1, and BA.2).
For the wild type and mutants, the residue 501 mutation site is defined as the set of neigh-
borhood heavy atoms (C, N, and O) in RBD such that the distance of any atom in the set
to the residue 501 C, is smaller than 10A. We calculate persistent Laplacians and persistent
sheaf Laplacians for mutation sites of the wild type and variants and compare the persistent
(sheaf) Betti number and the smallest nonzero eigenvalues of spectra at different filtration
values. Persistent Laplacians and persistent sheaf Laplacians can be calculated as either
element non-specifically or element specifically (i.e., considering carbon, nitrogen, and oxy-
gen atoms separately). We first employ the element non-specific approach and compare the
results of the wild type and variants. The results of persistent Laplacian and persistent
sheaf Laplacian are shown in Figures 5 and 6. The x axis represents the filtration values
of Rips filtration, such that at a filtration value r the Rips complex is constructed by con-
sidering balls of radius r. The sudden changes of persistent (sheaf) Betti number and the
first nonzero eigenvalues near 7 = 0.65A reflect the fact that most neighboring atoms are
about 1.3A away from each other. In Figure 5, The number of atoms is reflected in the
initial O-th Betti numbers. The 0-th Betti number dramatically decreases around 0.65 A
because covalent bond distances are about 1.5A. The 0-th Betti number decreases further
from 1.2A to 1.7A due to other many non-covalent bonds.

In Figure 6, the results of the wild type and mutants almost coincide, except that the first
nonzero eigenvalues of persistent sheaf Laplacians of BA.1 and BA.2 near r = 0.65A have
very different values. The results of persistent Laplacians are quite different from those
of persistent sheaf Laplacians at large filtration values. The significant changes around
r = 0.65A are due to the topological changes.

We are also interested in understanding whether higher dimensional persistent Lapla-
cians can offer an additional characterization of biomolecules. Figure 7 presents the higher
dimensional persistent Laplacian analysis of the wide type RBD near the N501 residue.
Obviously, higher dimensional persistent Laplacian offers significant structural information
about the distributions of circles and cavities of the macromolecule. Most dimension-1 cir-
cles occur in the range of 1.5-2.4A, whereas most 2-dimensional cavities locate around 1.8-
2.8A. 2-dimensional cavities are short-lived in the filtration, indicating the lack of multiple
large cavities in the structure (at most one large cavity in the structure). This distribution
can be used to understand interaction forces. For example, the length of hydrogen bonds
ranges from 2—3.6A(corresponding to 1-1.8 A in the filtration radii). This information is
valuable for the design of machine learning representations, including the selection of the
set of filtration intervals. We also note that the peak of )\;’0 is at the left of ﬁg’o. It’s possible
that when r is in the range of 1.2A-1.5A, many 2-simplices are born but no 2-cycles are
formed yet.

The element-specific results of the residue 501 mutation site of the wild type, and vari-
ants Alpha, Beta, Gamma, BA.1, and BA.2 are shown in Figures 8 and 9, as well as in
Figures 13 and 14 in the Appendix. We observe that the difference between the first nonzero

10



1 2
o
Lo
~
0
10 1 2 20 1 2
o
Yo
~
inn S R
10 1 2 2O 1 2
o
:‘<o
‘ J \ P
0 ‘ e 0 -
0 1 2 0 1 2

Figure 8: Illustration of the first nonzero eigenvalues of element-specific persistent Laplacian of the residue
501 mutation site at different filtration values, i.e., radii (unit: A). The wild type (PDB ID: 6M0J) and
Alpha (PDB ID: 8DLK) are given in the first row. The Beta (PDB ID: 8DLN) and Gamma (PDB ID:
8DLQ) are given in the second row. BA.1 (PDB ID: 7T9L) and BA.2 (PDB ID: 7XB0) are given the third

(¢}
2
0 — wild type
2 Q 1 z 3 __ Alpha

\ —— Beta

\ Gamma
0 \\,/ 7 —— BAA1
2 0 1 \_ 2 3 BA.2

Y/

0 1 3

TOoOwW.
150 ¢ 100 N 120 S
o
JTo
h 4%__1
0 0 0 — wild type
25 0 1 2 400 0 1 2 3 490 0 1 2 3 Nohs
o —— Beta
JTo
~ \ Gamma
0.0 A — [\\  —— BAfT
55 0 1 2 100 0 12 3 400 0 1 2 3 BA.2
S | [ Ju
f —
0.0 \. _ 0 2\ - 0 \\_ .
0 1 2 0 1 2 0 1 2 3

Figure 9: Illustration of the first nonzero eigenvalues of element-specific persistent sheaf Laplacian of the
residue 501 mutation site at different filtration values, i.e., radii (unit: A). The wild type (PDB ID: 6M0J)
and Alpha (PDB ID: 8DLK) are given in the first row. The Beta (PDB ID: 8DLN) and Gamma (PDB ID:
8DLQ) are given in the second row. BA.1 (PDB ID: 7T9L) and BA.2 (PDB ID: 7XB0) are given the third

TOow.

11



eigenvalues is much more obvious. For instance, in Figure 8 there is a higher spike near
0.7A in the graph of Alpha carbon atoms, and two spikes near 1.3A and 1.7A disappear
in the graph of the Alpha variant’s oxygen atoms. In Figure 8, all results of carbon atoms
have similar shapes, implying a relatively stable RBD carbon atom structure. In the re-
sults of nitrogen atoms, we notice that the results of Alpha, Beta, and Gamma variants
resemble each other, and the same can be said of the results of BA.1 and BA.2 variants.
In the results of oxygen atoms, the results of Alpha, Beta, and Gamma still resemble each
other, but the results of BA.1 and BA.2 are quite different. The results of the wild type are
unique in the sense that it has one or two spikes near 1.3A or 1.7A. These results indicate
that element-specific persistent Laplacians and element-specific persistent sheaf Laplacians
are better approaches in characterizing SARS-CoV-2 variants than element-non-specific ap-
proaches. We know that nitrogen and oxygen atoms are sparser in a protein, so if we
use element nonspecific approach, nitrogen atoms and oxygen atoms will first form edges
with neighboring carbon atoms, and we are not able to infer distances between nitrogen
atoms or oxygen atoms. This explains why element specific approach outperforms element
nonspecific approach.

2.2 PTL analysis of RBD structural changes induced by its binding to
ACE2

We investigate how binding to ACE2 changes the spike protein RBD structure from the
closed state to the open state for the wild type, Alpha, Beta, BA.1, and BA.2 variants.
The PDB IDs of the spike protein of wild type, Alpha, Beta, BA.1 and BA.2 used in this
section are TDF3 [51], TLWS [17], TLYM [17], 7TF8 [16] and 7XIX [4]. The analysis of the
Gamma variant is eliminated due to the lack of experimental structure. We first align each
of the three RBDs in the closed-state spike protein to the RBD in the RBD-ACE2 complex.
The maximal distances between corresponding atoms in the RBM of the three alignments
of BA.1 are 8.76A, 13.49A, and 9.44A, which are larger than those of alignments of the
wild type and other mutants. For each alignment, we record the RBM residues that have at
least one atom whose distance to the corresponding atom is larger than 5.28A, i.e., half of
the mean maximal distances between corresponding atoms in RBM of the three alignments
of BA.1. In wild-type RBD, such residues are K444 and K458. In Alpha there are no such
residues; In Beta, chains A and B have K458; chain C has T478 and P479. In BA.1, each
chain has different such residues: chain A has K440, Y453, K458, K478, and F486; chain
B has K440, Y453, R457, K458, R466, Y473, Q474, K478, F486, F490, R493; and chain C
has K440, Y453, Y473, K478, F486. In BA.2 such residues are E465, K478, and G482.

We also calculate the total structural changes of the RBM between the closed state
RBD and the open state RBD induced by its binding to the human ACE2. Here, the total
structural changes are defined to be the sum of squares of distances between C, atoms in
the RBM. Since spike protein is a trimer, we calculate the total structural changes for each
chain and report the average (see Figure 10). It turns out that the average total structural
changes induced by binding to ACE2 do not increase too much with respect to the number
of RBD mutations.
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Figure 10: The total structural changes of the RBM between the closed state RBD and the open state
RBD induced by ACE2 binding. Here the total structural changes are defined to be the sum of squares of
distances between C, atoms in the RBM.
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Figure 11: Hlustration of persistent Betti numbers (red line) and the first nonzero eigenvalues (blue line) of
persistent Laplacian of the RBD binding site of the wild type RBD-ACE2 complex (PDB ID: 6M0J) and
closed state spike protein (PDB ID: 7DF3, Chain ID: A) at different filtration values, i.e., radii (unit: A).
The graphs from top to bottom represent the results of carbon atoms, nitrogen atoms, and oxygen atoms,
respectively.
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Now, we calculate persistent Laplacians and persistent sheaf Laplacians for the RBD
binding site in the closed state spike protein and the RBD-ACE2 complex. For the wild
type and mutants, we define the RBD binding site as the set of RBD residues whose Cgs
are within 10A from the Cos of ACE2 residues. We choose 10A as the cutoff distance,
because if we used 11A then the RBD binding site would include non-RBM residues. Spike
protein as a trimer has three chains. In the results of alignments, the recorded residues
of the wild type, Alpha, and BA.2 are the same for the three chains. Therefore, for the
wild type, Alpha and BA.2 we only use chain A, and for Beta and BA.1, we use all three
chains. The study was carried out in an element-specific manner for carbon atoms, nitrogen
atoms, and oxygen atoms. The results of the wild type are shown in Figure 11. We noted
that persistent Betti numbers cannot distinguish two structures. However, the first nonzero
eigenvalues of the persistent Laplacian capture the difference, demonstrating the advantage
of persistent Laplacian over persistent homology in protein structure analysis.

Additional analysis is presented in Figures 15, 16, 17, 18, 19, 20, 21, 22, 23, and 24 in
the Appendix. In Figure 15, the results of the wild type, Alpha, Beta, BA.1, and BA.2 RBD
binding sites are quite similar except that the wild type RBD binding site has relatively
lower first nonzero eigenvalues near r = 0.7A. Tt is seen that peak appears or disappears in
the graph of the nitrogen atoms, whereas for BA.1 and BA.2, the results of the nitrogen
atoms resemble each other, sometimes even coincide.

In general, the first nonzero eigenvalues of the persistent Laplacian are able to distinguish
the structural difference before and after the complex formation in various variants. In
contrast, the harmonic spectra, or equivalently, persistent homology, cannot always capture
the structural changes.

The results of persistent Laplacians and persistent sheaf Laplacians are similar in this
work. However, this similarity is due to the specific implementation of persistent sheaf
Laplacians. In general, persistent sheaf Laplacians enable the embedding of non-geometric
chemical and physical information of biomeolecules in topological and spectral representa-
tions.

2.3 Impacts of computationally generated mutant structures on PTL-
based topological deep learning predictions

15.14

Figure 12: Atoms of BA.2 RBD (PDB ID: 7XB0) are colored by their distances to corresponding atoms
in the computationally generated structure. Blue, white, and red corresponds to 0A, 7.57A, and 15.14A
respectively. We record the residues that have at least one atom whose distance to the corresponding atom
in wild type RBD is more than 7.57A. Such residues are 370, 375, 378, 386, 387, and 519.
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The understanding of PPIs is a vital task in computational biology. With the availability
of large amounts of good quality data, machine learning approaches have demonstrated their
unique capability [27]. This is specifically true for the prediction of SARS-CoV-2 infectivity
and antibody resistance using topological deep learning [10]. In this work, we explore the
impact of computationally generated structures on the predictive accuracy of our topological
deep learning framework. We use a BA.2 RBD deep mutational scanning dataset which
involves the systematical mutations of each residue on the BA.2 RBD to 19 others and
records corresponding binding affinity changes [36].

The deep mutational scanning covers the RBD residues from 333 to 527. In order to
apply machine learning models, such as TopLapGBT and TopLapNet [9], to this dataset,
BA.2 RBD mutants need to be computationally generated based on a BA.2 RBD structure
and the choice of the BA.2 RBD structure can affect the performance of machine learning
models. We can employ either an experimentally determined BA.2 RBD-ACE2 complex
structure or a BA.2 RBD-ACE2 complex structure computationally generated based on an
experimentally determined BA.1 RBD-ACE2 complex structure. These two complexes are
systematically mutated to all possible mutants in the deep mutational scanning dataset
[36]. Two deep learning models, namely TopLapGBT and TopLapNet, are used to predict
the binding affinity changes induced by all BA.2 RBD mutations. The results from these
complexes are compared to examine the performance of computationally generated mutants.
Here, we computationally generate mutant structures for mutations L371F, T376A, D405N,
R408S, S446G, and S496G.

When the given BA.2 RBD structure is experimentally determined (PDB ID: 7XB0), and
the resulting models are referred to as ExpTopLapGBT (experimental TopLapGBT) and
ExpTopLapNet. When the BA.2 RBD structure is computationally generated from BA.1
RBD (PDB ID: 7T9L) by Jackal [50], the resulting model is referred to as ComTopLapGBT
(computational TopLapGBT) or ComTopLapNet. The distances of corresponding atoms
between the experimentally determined RBD (PDB ID: 7XB0) and the RBD generated
computationally from BA.1 RBD (PDB ID: 7T9L) is shown in Figure 12.

Method Ry(Exzp,True) | R,(Com,True) | Ry(Exp, Com)
TopLapGBT 0.901 0.898 0.990
TopLapNet 0.879 0.849 0.925

Table 1: R,(Ezp,True) is the correlation coefficient between predictions of ExpTopLapGBT (or ExpTo-
pLapNet) and true affinity changes. Here, R,(Com,True) is the correlation coefficient between predictions
of ComTopLapGBT (or ComTopLapNet) and true affinity changes. R,(Exp, Com) is Pearson the correlation
coefficient between the predictions of ExpTopLapGBT and ComTopLapGBT (or between ExpTopLapNet
and ComTopLapNet). A random state affects the 10-fold splitting and the training of GBT and neural
networks.

To evaluate the validity of computationally generated BA.2 complex structure, we com-
pare the results of two topological deep learning methods, ExpTopLapGBT and ComTo-
pLapGBT, on the predictions of the RBD deep mutational scanning dataset. We split the
dataset into 10 folds, and for each fold, we use the other 9 folds as the training set to build a
machine learning model, which is used to predict ACE2-binding affinity changes for the fold.
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Therefore, for a given 10-fold splitting we get the ExpTopLapGBT and ComTopLapGBT
predictions of RBD-ACE2 binding affinity changes for the deep mutational scanning dataset.
We denote R,(Exp,True) the Pearson correlation coefficient between ExpTopLapGBT
predicted binding affinity changes and experimental binding affinity changes. Similarly,
R,(Com,True) (or Ry(Exp, Com)) is the Pearson correlation coefficient between ComTo-
pLapGBT predicted binding affinity changes and experimental binding affinity changes (or
ExpTopLapGBT predicted binding affinity changes).

The results of TopLapGBT and TopLapNet are shown in Table 1. Generally, the perfor-
mance of models using experimentally determined structures is better than that of models
using the computationally generated structure. This is not surprising since the compu-
tationally generated structure is an approximation of the experimental structure. The
performance of ExpTopLapGBT and ComTopLapGBT are extremely close, whereas the
performance of ComTopLapNet differs very much from that of ExpTopLapNet. We also see
that ExpTopLapGBT outperforms ExpTopLapNet.

3 Theories and methods

3.1 Persistent topological Laplacians

Persistent topological Laplacians (PTLs) are a family of topological data analysis methods
that are topological, multiscale, and spectral. Loosely speaking, their kernel space dimen-
sions coincide with the topological invariants or Betti numbers in each topological dimen-
sion and their non-harmonic spectra describe homotopic shape evolution during filtration or
multiscale analysis. Various discrete PTLs, e.g., persistent Laplacian [42], persistent sheaf
Laplacian [48], persistent path Laplacian [43], and persistent directed hypergraph Laplacian
[6] have been proposed for point cloud data. For volumetric data, evolutionary de Rham-
Hodge method has been developed [13], which is defined on a family of evolving manifolds.
Evolutionary de Rham-Hodge method is based on differential geometry, algebraic topology,
multiscale analysis, and partial differential equations. In this work, we focus on persistent
Laplacian and persistent sheaf Laplacian.

Suppose K and L are two simplicial complexes and K is a subset of L. We denote by
CE and CF the simplicial chain complexes of K and L with real coefficients. As a chain
group Cj in a simplicial chain complex is formally generated by simplices, it is naturally a
finite-dimensional inner product space, and the adjoint of boundary map 9, is well defined.

Let Cquff be the subspace {c € CqLH | 8qL+1(c) € C’é{} of C’qLJrl and ﬁqul( the restriction of

E?qLH to CqL +I1( The g¢-th persistent Laplacian Af’L is defined by
LK [ oL, K \x *
LN (DK ) + (9K )l (1)

Before we define the persistent sheaf Laplacian, we need to explain what a cellular sheaf
is first. A cellular sheaf .# is a simplicial complex X (viewed as a cell complex) with an
assignment to each cell o of X a finite-dimensional vector space . (o) (referred to as the
stalk of . over o) and to each face relation o < 7 (i.e., 0 C 7) a linear morphism of vector
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spaces denoted by .7,<, (referred to as the restriction map of the face relation o < 7),
satisfying the rule

pgagTiypgfzyggfypgg

and .%,<, is the identity map of . (o). Like a simplicial complex, a cellular sheaf gives rise
to a sheaf cochain complex. The g-th sheaf cochain group C’f; is the direct sum of stalks
over g-dimensional cells. To define coboundary maps, we can globally orient the simplicial
complex X and obtain a signed incidence relation, i.e. an assignment to each ¢ < 7 an
integer [0 : 7]. Then the coboundary map d? : C’qy — C’Eq;rl is defined by

d (o) = Z[U T r
o<T

Now suppose we have two cellular sheaves . on K and .7 on L such that K C L and stalks
and restriction maps of K are identical to those of L.

q—1

q
N d; 1
Cq Cq o N CQ+
7 <—(dq_1)* 5 dqsﬂ 5 5
& \’
q *
T T (dy’g) Cyly T
N
y
dit d?
q—1 T N q g N q+1
Cﬂ ’ C? ’ Cﬂ

Let C{q;} ={ce C’f];l | (d%)*(c) € C%L}. We denote the adjoint map of (dqﬁ)*|cgj19 as

dqf 7 and define the g-th persistent sheaf Laplacian A’Z’g as

AL = (dYy g Yy +dy (A
Of course, to define adjoint maps cochain groups need to be inner product spaces. In this
work, cellular sheaves are constructed in the same way as in Section 2.4 of [48]. The non-
geometrical information we consider is the set of atomic partial charges. We employ partial
charges from the PDB2PQR package [21]. We build a Rips filtration of graphs. For each
simplicial complex X, we denote each vertex by v;, the edge connecting v; and v; by e;;
and the partial charges ¢;. Then the cellular sheaf is such that each stalk is R, and for face
relation v; < e;; the morphism is the multiplication by g;/7i;, where r;; is the length of e;;.
Spectra of persistent sheaf Laplacians are not used in TopLapGBT and TopLapNet.

3.2 TopLapGBT and TopLapNet

TopLapGBT and TopLapNet [9] have been employed to study mutational effects on protein-
protein interaction. Gradient boosted trees are employed in TopLapGBT, whereas, TopLap-
Net is based on artificial neural networks. Both models are constructed by using persistent
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Laplacians. These methods require the 3D structures of both wide-type PPI complexes and
mutant complexes. For instance, the AB-Bind S645 dataset[35] includes 645 mutants with
experimentally determined BFE changes across 29 antibody-antigen complexes. Mutant
structures can be computationally generated based on experimentally determined structures
of the wild-type antibody-antigen complexes and mutation information (chain id, residue
id, mutant residue, etc.). Representation of mutant structures, including the persistent ho-
mology and persistent Laplacian representations, and other auxiliary representations, can
be used as feature vectors to train machine learning models (such as gradient boosting trees
and deep neural networks) that can predict mutation-induced BFE changes.

When we apply persistent homology and persistent Laplacian to the study of protein-
protein interactions, we always extract the atoms within a certain cutoff distance r of the
binding site and construct a distance matrix such that if two atoms are in the same protein
then the distance between them is an extremely large constant number. If we want to
further characterize the interaction between atoms of certain elements F; and Es, we can
consider the point cloud formed by the atoms of an element E; of protein A within r of
the binding site, and the atoms of element E5 of protein B within r of the binding site.
After the calculation of persistent homology and persistent Laplacian, the next step is
to transform the barcodes of persistent homology or spectra of persistent Laplacians into
vector representations of fixed lengths. For barcodes, there are at least two ways: either
we divide the interval [0, 7] into bins of even length and count the occurrence of bars, birth
values, and death values in each bin, or we simply compute statistics such as sum, maximum,
minimum, mean, and standard deviation for bar lengths, birth values, and death values. The
former method is often applied to 0-dimensional barcodes and the latter to 1-dimensional
and 2-dimensional barcodes. For the spectrum of a persistent Laplacian, we separate zero
eigenvalues (harmonic spectra) and nonzero eigenvalues (non-harmonic spectra). We use the
number of zero eigenvalues, the sum, the minimum, the maximum, the mean, the standard
deviation, the variance, and the sum of squares of nonzero eigenvalues.

In this study, we use scikit-learn to build a gradient boosting tree whose parameters
are n_estimators=20000, learning rate = 0.005, max_features = ‘sqrt’, max_depth = 9,
min_samples_split = 3, subsample = 0.4, and n_iter no_change=500. Additionally, we use
PyTorch to build a neural network with 7 hidden layers and each layer has 8000 neurons.

4 Concluding remarks

Persistent topological Laplacians (PTLs) are a class of newly proposed multiscale topolog-
ical spectral approaches in data science. These methods can be used either in a discrete
setting for point cloud data [42, 48, 43] or in a continuous setting for volumetric data [13].
Their mathematical underpinnings for discrete formulations are algebraic topology, sheaf
theory, and combinatorial graphs, while those for the continuous formulations is algebraic
topology, differential geometry, and partial differential equation. Among mutants Alpha,
Beta, Gamma, Omicron BA.1, and Omicron BA.2, BA.2 has the largest total structural
changes from the wild type, which agrees with the significant antibody escape of the Omi-
cron BA.2 variant. As to the total structural changes of a closed state RBD induced by

18



its binding to ACE2, total structural changes of Alpha, Beta, Omicron BA.1, and Omicron
BA.2 do not differ too much. It is noted that most large structural changes of C,, occur at
flexible random coil regions at the epitope.

We also demonstrate how to use PTLs to characterize structural changes induced by
SARS-CoV-2 variant spike protein receptor-binding domain (RBD) mutations and by its
binding to human angiotensin-converting enzyme 2 (ACE2). Two PTLs, namely persistent
Laplacian and persistent sheaf Laplacian, are utilized in our work. We also analyze two im-
plementations, i.e., element-nonspecific and element-specific Laplacian models of persistent
Laplacian and persistent sheaf Laplacian. We show that persistent Laplacian and persistent
sheaf Laplacian provide similar results. These methods capture homotopic shape evolution
information, which persistent homology cannot offer. We expect other persistent topolog-
ical Laplacians, such as persistent path Laplacian [43], can uncover similar information.
Additionally, element-specific approaches reveal more information than element-nonspecific
ones as shown in literature [3].

More specifically, the results of persistent Laplacian and persistent sheaf Laplacian indi-
cate that at the residue 501 mutation site, the structure of RBD carbon atoms is less affected
by mutations than that of RBD nitrogen atoms and RBD oxygen atoms, partially due to the
fact that the bond nature of carbon atoms is mostly covalent, whereas the distances among
oxygen atoms are mostly non-covalent. The topological Betti numbers of oxygen atoms are
associated with possible hydrogen bonds. Additionally, structural similarity of mutation
sites is observed in the spectra of persistent Laplacian and persistent sheaf Laplacian.

As for the RBD structural changes induced by its binding to ACE2, for wild type, Alpha
and Beta, a significant difference can be observed in the result of nitrogen atoms, whereas for
BA.1 and BA.2, a significant difference can be observed in the result of oxygen atoms. We
show that the non-harmonic spectra (the first non-zero eigenvalues) of persistent Laplacian
are more sensitive to structural changes than the harmonic spectra. Therefore, persistent
Laplacian has an advantage over persistent homology in protein analysis.

Finally we test how a computationally generated structure impacts the prediction of
PTL-based machine learning models, i.e., TopLapGBT and TopLapNet [9]. The results in-
dicate that a computationally generated structure harms the performance of TopLapGBT
and TopLapNet. However, TopLapGBT is much less affected by a computationally gen-
erated structure than TopLapNet, implying a resistance to the structural approximation
from computations. TopLapNet is more affected by a computationally generated structure
probably because neural networks are more prone to overfitting than gradient-boosted trees.

This work reveals that PTLs are a class of powerful new methods for topological data
analysis (TDA) or more precisely, spectral data analysis (SDA). These methods can certainly
be applied to the data analysis in other fields and disciplines, including image science,
physical science, medical science, social science, engineering, financial industrial, musical
science [46], etc.

Data availability

The related datasets studied in this work are available at: https://github.com/WeilabMSU/PTLvirus.
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5 Appendix

In the appendix, we provide the information of PDB structures we used and additional
topological analysis using persistent Laplacian and persistent sheaf Laplacian. The infor-
mation of PDB structures is given in Table 2. PTL results are given in Figures 13, 14, 15,
16, 17, 18, 19, 20, 21, 22, 23, and 24.

Specifically, Figures 13, and 14 are element-specific analysis of the wide type, Alpha,
Beta, Gamma, BA.1, and BA.2 using LP and PSL, respectively. Figure 15 presents carbon
specific analysis of the wide type, Alpha, Beta, Gamma, BA.1, and BA.2. Figures 16, 17,
18, and 19 demonstrate the PL analysis of Alpha, Beta, BA.2, and BA.2, respectively. The
spectral analysis of three major types of elements, namely carbon atoms, nitrogen atoms,
and oxygen atoms, is presented in these figures. Finally, 20, 21, 22, 23, and 24 illustrate
the PSL analysis of the wide type, Alpha, Beta, BA.2, and BA.2, respectively. These
figures display the spectral analysis of three major types of elements, namely carbon atoms,
nitrogen atoms, and oxygen atoms.

PDB ID Method Resolution (unit: A) Description
6MO0J[23] X-ray diffraction 2.45 wild type RBD-ACE2
8DLK][28] | Electron microscopy 3.04 Alpha RBD-ACE2
8DLN|[28] | Electron microscopy 3.04 Beta RBD-ACE2
8DLQ[28] | Electron microscopy 2.77 Gamma RBD-ACE2
7TO9L[29] | Electron microscopy 2.66 BA.1 RBD-ACE2
7XB0[24] | Xray diffraction 2.90 BA.2 RBD-ACE2
7DF3[51] | Electron microscopy 2.70 wild type spike
7TLWSI17] | Electron microscopy 3.22 Alpha spike
TLYM][17] | Electron microscopy 3.57 Beta spike
7TF8[16] | Electron microscopy 3.36 BA.1 spike
7XIX[4] | Electron microscopy 3.25 BA.2 spike

Table 2: Information of PDB 3D structures used in this work.
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Figure 13: Illustration of persistent Betti numbers of element specific persistent Laplacian of the residue 501
mutation site at different filtration values, i.e., radii (unit: A). The wild type (PDB ID: 6M0J) and Alpha
(PDB ID: 8DLK) are given in the first row. The Beta (PDB ID: 8DLN) and Gamma (PDB ID: 8DLQ) are
given in the second row. The BA.1 (PDB ID: 7T9L) and BA.2 (PDB ID: 7XB0) are given the third row.
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Figure 14: Illustration of persistent Betti numbers of element specific persistent sheaf Laplacian of the
residue 501 mutation site at different filtration values, i.e., radii (unit: A). The wild type (PDB ID: 6M0J)
and Alpha (PDB ID: 8DLK) are given in the first row. The Beta (PDB ID: 8DLN) and Gamma (PDB ID:
8DLQ) are given in the second row. The BA.1 (PDB ID: 7T9L) and BA.2 (PDB ID: 7XBO0) are given the

third row.
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Figure 15: Illustration of persistent Betti numbers (red line) and the first nonzero eigenvalues (blue line)
of persistent Laplacian of carbon atoms of the RBD binding site in RBD-ACE2 complex of the wild type
(PDB ID: 6M0J), Alpha (PDB ID: 8DLK), Beta (PDB ID: 8DLN), BA.1 (PDB ID: 7T9L), and BA.2 (PDB
ID: 7XBO0) at different filtration values, i.e., radii (unit: A). The graphs from top to bottom represent the
results of the wild type, Alpha, Beta, BA.1, and BA.2 variants, respectively.
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Figure 16: Illustration of persistent Betti numbers (red line) and the first nonzero eigenvalues (blue line) of
persistent Laplacian of the RBD binding site of Alpha RBD-ACE2 complex (PDB ID: 8DLK) and closed state
spike protein (PDB ID: 7LWS, Chain ID: A) at different filtration values, i.e., radii (unit: A) The graphs
from top to bottom represent the results of carbon atoms, nitrogen atoms, and oxygen atoms, respectively.
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Figure 17: Illustration of persistent Betti numbers (red line) and the first nonzero eigenvalues (blue line)
of persistent Laplacian of the RBD binding site of Beta RBD-ACE2 complex (PDB ID: 8DLN) and closed
state spike protein (PDB ID: 7LYM, Chain ID: A, B, C) at different filtration values, i.e., radii (unit: A).
The graphs from top to bottom represent the results of carbon atoms, nitrogen atoms, and oxygen atoms,
respectively.
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Figure 18: Illustration of persistent Betti numbers (red line) and the first nonzero eigenvalues (blue line)
of persistent Laplacian of the RBD binding site of BA.1 RBD-ACE2 complex (PDB ID: 7T9L) and closed
state spike protein (PDB ID: 7TF8, Chain ID: A, B, C) at different filtration values, i.e., radii (unit: A).
The graphs from top to bottom represent the results of carbon atoms, nitrogen atoms, and oxygen atoms,

respectively.
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Figure 19: Illustration of persistent Betti numbers (red line) and the first nonzero eigenvalues (blue line) of
persistent Laplacian of the RBD binding site of BA.2 RBD-ACE2 complex (PDB ID: 7XB0) and closed state
spike protein (PDB ID: 7XIX, Chain ID: A) at different filtration values, i.e., radii (unit: A). The graphs
from top to bottom represent the results of carbon atoms, nitrogen atoms, and oxygen atoms, respectively.
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Figure 20: Illustration of persistent sheaf Betti numbers (red line) and the first nonzero eigenvalues (blue
line) of persistent sheaf Laplacian of the RBD binding site of the wild type RBD-ACE2 complex (PDB ID:
6MO0J) and closed state spike protein (PDB ID: 7DF3, Chain ID: A) at different filtration values, i.e., radii
(unit: A) The graphs from top to bottom represent the results of carbon atoms, nitrogen atoms, and oxygen
atoms respectively.
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Figure 21: Illustration of persistent sheaf Betti numbers (red line) and the first nonzero eigenvalues (blue
line) of persistent sheaf Laplacian of the RBD binding site of Alpha RBD-ACE2 complex (PDB ID: 8DLK)
and closed state spike protein (PDB ID: TLWS, Chain ID: A) at different filtration values, i.e., radii (unit:
A). The graphs from top to bottom represent the results of carbon atoms, nitrogen atoms, and oxygen
atoms, respectively.
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Figure 22: Illustration of persistent sheaf Betti numbers (red line) and the first nonzero eigenvalues (blue
line) of persistent sheaf Laplacian of the RBD binding site of Beta RBD-ACE2 complex (PDB ID: 8DLN)
and closed state spike protein (PDB ID: 7TLYM, Chain ID: A, B, C) at different filtration values, i.e., radii
(unit: A) The graphs from top to bottom represent the results of carbon atoms, nitrogen atoms, and oxygen
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Figure 23: Illustration of persistent sheaf Betti numbers (red line) and the first nonzero eigenvalues (blue
line) of persistent sheaf Laplacian of the RBD binding site of BA.1 RBD-ACE2 complex (PDB ID: 7T9L)
and closed state spike protein (PDB ID: 7TF8, Chain ID: A, B, C) at different filtration values, i.e., radii
(unit: A). The graphs from top to bottom represent the results of carbon atoms, nitrogen atoms, and oxygen
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Figure 24: Illustration of persistent sheaf Betti numbers (red line) and the first nonzero eigenvalues (blue
line) of persistent sheaf Laplacian of the RBD binding site of BA.2 RBD-ACE2 complex (PDB ID: 7XB0)
and closed state spike protein (PDB ID: 7XIX, Chain ID: A) at different filtration values, i.e., radii (unit: A).
The graphs from top to bottom represent the results of carbon atoms, nitrogen atoms, and oxygen atoms,
respectively.
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