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Abstract

Drug addiction or drug overdose is a global public health crisis, and the design of anti-addiction
drugs remains a major challenge due to intricate mechanisms. Since experimental drug screening and
optimization are too time-consuming and expensive, there is urgent need to develop innovative artificial
intelligence (AI) methods for addressing the challenge. We tackle this challenge by topology-inferred drug
addiction learning (TIDAL) built from integrating topological Laplacian, deep bidirectional transformer,
and ensemble-assisted neural networks (EANNs). The topological Laplacian is a novel algebraic topology
tool that embeds molecular topological invariants and algebraic invariants into its harmonic spectra
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and non-harmonic spectra, respectively. These invariants complement sequence information extracted
from a bidirectional transformer. We validate the proposed TIDAL framework on 22 drug addiction
related, 4 hERG, and 12 DAT datasets, showing that TIDAL is a state-of-the-art framework for the
modeling and analysis of drug addiction data. We carry out cross-target analysis of the current drug
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addiction candidates to alert their side effects and identify their repurposing potentials, revealing drug-
mediated linear and bilinear target correlations. Finally, TIDAL is applied to shed light on relative
efficacy, repurposing potential, and potential side effects of 12 existing anti-addiction medications. Our
results suggest that TIDAL provides a new computational strategy for pressingly-needed anti-substance
addiction drug development.

keywords: Persistent Laplacian; Bidirectional transformer; Drug addiction; side effect; repurposing;
drug-mediated bilinear target correlations; drug-mediated target-target networks.
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1 Introduction

Drug addiction, clinically termed drug use disorder, is a fast-growing worldwide social and health problem
with enormous economic and financial costs. For example, the United States (U.S.) recorded 70630 drug
abuse-related deaths in 2019, and that number exceeded 100,000 in 2021, up 15 percent from 2020,
becoming the leading cause of accidental deaths in the U.S. The current approaches to treating drug
addiction can be classified into two categories, one directly targeting the drug receptor system and the
other indirectly targeting non-drug receptor systems, like the dopamine and glutamate receptors [1]. For
psychostimulant drugs, like cocaine, the main mechanism for their treatment is to inhibit dopamine re-
uptake via blockading the dopamine transporter (DAT). When developing DAT inhibitors as medications,
it is very important to avoid off-target binding causing dangerous side-effect, such as the blockade of a
potassium channel, the human ether-a-go-go (hERG) which can lead to potentially lethal ventricular
tachycardia and even death. For opioid treatment, opioid replacement therapy (ORT) involves replacing
an opioid, such as heroin, with a longer-acting but less euphoric substance. Commonly used drugs
for ORT are methadone or buprenorphine which are taken under medical supervision. As of 2018,
buprenorphine/naloxone is preferentially recommended, as the addition of the opioid antagonist naloxone
is believed to reduce the risk of abuse via injection or insufflation without causing impairment. At present,
the clinical drugs used to treat opioid addiction, including the opioid receptor agonists methadone and
buprenorphine, and the opioid receptor antagonist naltrexone, are limited by their abuse liability and
poor compliance. Therefore, the development of effective medications with lower abuse liability and
better potential for compliance is urgently needed.

Currently, therapeutic development against drug addiction mainly targets various neural transporters.
A major complication originates from the intricate molecular mechanisms of drug addiction, which in-
volves synergistic interactions among proteins upstream and downstream of neural transporters [2]. Ad-
ditionally, it is too time-consuming and expensive to test so many proteins in traditional in vivo or in
vitro experiments. Moreover, experimental testing involving animals or humans usually raises serious
ethical concerns. Therefore, for large-scale assays, various computer-aided or in silico approaches, es-
pecially, machine learning (ML) and deep learning (DL) technologies have become highly attractive for
drug design and discovery. These approaches are very valuable in target identification, candidate screen-
ing, and generating new druglike compounds for further consideration, [3]. ML technologies have also
been applied to the lead optimization of different druggable properties, like partition coefficient, toxicity,
solubility, binding affinity, pharmacokinetics, repurposing existing drugs to new diseases, etc [4]. Various
technologies, such as graph convolutional networks (GCNs), convolutional neural networks (CNNs), re-
current neural networks (RNNs), generative adversarial networks (GANSs), etc, have become popular for
drug discovery and largely reduced the need for time-consuming and expensive experiments, and thus
benefited human health and welfare. In the ML study of potential drugs, molecules need to be repre-
sented by descriptors or features. Self-supervised learning (SSL) is a relatively new natural language
processing (NLP) algorithm [5] and has been successfully applied to many different fields, such as image
identify [6], bioinformatics [7], etc. SSL strategy can be utilized to pre-train an encoder model which
can generate latent space vectors as molecular representations without 3D molecular structures [8]. For
instance, bidirectional encoder representations from transformers (BERTS) was created to pre-train deep
bidirectional transformer representation from unlabeled texts [8,9]. This technology, designed for under-
standing sequential words and sentences in NLP, has been used for uncovering the basic constitutional
mechanism of molecules represented by simplified molecular-input line-entry system (SMILES) [10]. Un-
labeled SMILES strings can be treated as text-based chemical sentences and be considered as inputs for
SSL pre-training [11]. At present, large public chemical databases like ZINC, PubChem, and ChEMBL
make SSL an attractive option for molecular representation generation.

However, latent space representations from SSL are insensitive to stereochemical information, such
as chirality [12], steric effects, cis-trans isomerism, and the dihedral angle [13]. Chirality is a symme-
try property such that a chiral molecule cannot be superposed on its mirror image and has important
effects on physical, chemical, and biological properties. Chirality molecules, like (R)-thalidomide and
(S)-thalidomide, have totally different drug actions. Steric effects are caused by the coming close to-
gether of atoms or radical groups, which influence the shape and reactivity of ions or molecules and are
critical to chemistry, biochemistry, and pharmacology. For instance, steric effects in enzyme reaction



would enhance or reduce its catalytic activity. Cis-trans isomerisms often have different physical and
chemical properties due to different spatial arrangements of atoms, like trans-1,2-dichlorocyclohexane
and cis-1,2-dichlorocyclohexane. All these steric effects are not considered in the latent space represen-
tation of transformers or autoencoders, since the related steric molecules have the same input strings.
Additionally, latent space representations ignore specific physical and chemical information about task-
specific properties. For instance, hydrogen bond interaction or van der Waals interaction can play a more
important role than covalent interactions in drug binding properties [14]. Stereochemical information and
associated physical and chemical properties all depend on three-dimensional (3D) structures of molecules.
Especially, macromolecules associated with opioid or cocaine addiction have very complex structures [15].
Molecular structural complexity and high dimensionality are central challenges in the design of efficient
3D representations. Recently, a series of 3D molecular representations have been proposed to meet these
challenges, based on advanced mathematics, such as algebraic topology [16,17], differential geometry [18],
and algebraic graph theory [19].

Traditional topology and/or homology contain little geometric information, which limits their prac-
tical applications. Persistent homology (PH) overcomes this limitation by a multiscale representation
of data [20-22]. It incorporates geometric information in topological description and bridges the gap
between geometry and topology. Although persistent homology has had much success in computational
biology and chemistry [16,23], it is insensitive to the homotopic shape evolution of data.

In this work, we introduce topology-inferred drug addiction learning (TIDAL) to combine the advan-
tages of 3D persistent Laplacian (PL) and deep bidirectional transformers for learning drug addiction
data. PL, a topological Laplacian, is a brand new algebraic topology tool that not only fully recovers
PH’s topological invariants but also captures the homotopic shape evolution of data [24]. PL is designed
to effectively delineate the stereochemistry of 3D biomolecular structures and thus complements bidi-
rectional transformers. Ensemble learning and deep learning are the two most popular algorithms, each
having advantages for certain types of data. We introduce an ensemble-assisted neural network (EANN)
algorithm to automatically combine their advantages and build a robust model for a variety of datasets.
The proposed TIDAL is applied to 22 drug addiction-related, 4 hERG, and 12 DAT datasets, giving rise
to the best prediction. We investigate potential drug candidates that inhibit drug addiction targets, the
side effect from agents blocking unintended targets, and the drug repurposing potential. Additionally, we
interrogate the efficacy and potential side effects of 12 existing anti-addiction medications or candidates.
The proposed TIDAL framework not only achieves the state-of-the-art in the modeling, analysis, and
prediction drug addiction datasets but also sheds light on the side effect, repurposing potential, relative
efficacy, and hERG blockage, drug-mediated linear and bilinear target correlations.

2 Results

2.1  Overview of topology-inferred drug addiction learning (TIDAL)

Figure 1 shows the TIDAL platform for classification, which consists of two complementary embedding
modules, namely topology-based structural embedding and transformer-based sequence embedding, and
a novel ensemble-assisted deep learning architecture. These embeddings are fed into deep neural networks
and ensemble learning predictors. Predictions from deep learning and ensemble learning are automatically
weighted to achieve optimal performance. We utilize hundreds of millions of molecular sequences available
in various molecular databases to train our bidirectional transformer models as shown in Fig. la [9].
The transformer is an SSL-based deep-learning model inspired by natural language processing. It learns
synonyms and antonyms of a language for a better vocabulary and translates simple and short sentences
from one language to another one. Additionally, it utilizes an attention mechanism to single out certain
words in the sentence to better understand the context. We use a deep bidirectional transformer (DBT)
to learn basic constitutional rules from vast unlabeled SMILES data during an SSL-based pre-training
process. We denote the latent space vectors of DBT as bidirectional transformer-based fingerprints
(BT-FPs). Note that, BT-FPs are insensitive to steric effects in many molecules.

Our idea is to complement transformer-based sequence embeddings with topology-based structural
embeddings. Fig. 1b shows the topological embedding of 3D molecular structures. Topology measures
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Figure 1: Illustration of the TIDAL platform for a classification task. a Bidirectional transformer-based sequence embedding.
For a given molecule, its SMILES string is processed via a deep bidirectional transformer unit with pre-training or/and fine-
tuning options to generate BT-FPs/BT¢-FPs. b Persistent Laplacian-based 3D structure embedding. The 3D structure of
the given molecule is featured as PL-FPs by using persistent Laplacians to capture the topological persistence and geometric
shape evolution through the calculations of harmonic and non-harmonic spectra, respectively. ¢ Concatenation of sequence and
structure embeddings. d Ensemble-assisted neural network (EANN) model. After embeddings, PL-FPs and BT-FPs (or BT¢-
FPs) are fed into ensemble algorithms to obtain regression predictions or classification probabilities. Meanwhile, PL-FPs and
BT-FPs (or BT¢-FPs) are employed for a deep neural network. At the last hidden layer of a deep neural network, semi-results
(probabilities) from ensemble algorithms shown by two additional neural nodes on both sides of DNN are concatenated with
other DNN nodes to achieve automatically weighted consensus between ensemble algorithms and DNN. EANN automatically
integrates DNN and ensemble algorithms and robustly improves the final prediction results for diverse datasets.



how the continuous deformation of a geometric object can cause a change in topological invariants.
Persistent homology creates a family of multiscale geometric objects from filtration to enrich such a
measurement, leading to the so-called topological persistence. However, neither topology nor persis-
tent homology can capture the homotopic shape evolution of the data during the multiscale analysis.
PL [24], a new topological Laplacian, overcomes this difficulty and offers a shape-aware representation of
molecular structures. To further embed the physical and chemical interactions into the structural repre-
sentations, we design element-specific PL descriptors based on statistic analysis of dataset compositions.
The commonly occurring element types, such as C, H, O, N, etc. are grouped in pairs to describe various
interactions, such as hydrogen bonds, electrostatics, hydrophilicity, and hydrophobicity. The resulting
embeddings are called persistent Laplacian-based fingerprints (PL-FPs).

In Fig. 1c, complementary BT-FPs and PL-FPs embeddings are fused to obtain a complete repre-
sentation of underlying datasets. The concatenated embeddings are fed into an ensemble-assisted neural
network (EANN) model shown in Fig. 1d. EANN automatically weights ensemble learning and deep
neural network models in a unified setting. It is well known that deep neural network models are suitable
for large datasets with nonlinear relationships between features and labels. They often outperform other
machine learning methods in numerous chemical and biological applications. However, for small datasets,
deep neural network models might not match ensemble learning models, such as random forest (RF) and
gradient-boosted decision trees (GBDT) [25]. RF and GBDT are the two most commonly used ensemble
models that combine many weak learners into strong ones. Although both RF and GBDT use decision
trees as weak learners, they are highly different methods. Essentially, RF needs no loss function and
is simple to use, while GBDT utilizes a loss function to successively reduce errors and achieves better
results. Both methods are suitable for small datasets which are very common for chemical and biolog-
ical problems. To take advantage of ensemble models and deep neural network models, it is extremely
common to construct a consensus in the literature. However, in such a consensus, results from different
models are put on an equal footing, which may not be optimal for many problems. In our EANN, we
create an extended neuron layer to automatically balance the contributions from the deep neural network
model and ensemble models.

2.2 Overview of persistent Laplacian

The persistent Laplacian is inspired by the wisdom of ancient Zenghouyi Chime bells in China (see Fig.
2a). The Zenghouyi Chime Bells, built in 433 B.C. in the Eastern Zhou Dynasty of ancient China have
65 bells in the whole set and are the largest in number, the best preservation, and the most complete
rhythm found so far in the world. These bells were designed, when struck, to produce distinct sounds
with appropriate frequencies, covering a wide range of the spectrum. The physics behind the Chime bells
is to create a nearly complete rhythm by a family of bells of varying sizes. The fundamental frequencies
of chime bells systematically decrease as their sizes increase gradually. Since the fundamental frequency
of a bell is its lowest frequency, it absorbs the highest amount of energy and is also perceived as the
loudest when the bell is struck. The human ear identifies it as the specific pitch of the musical tone.

From the perspective of topology, although these bells represent a deep mathematical filtration,
they are homotopic to each other without any topological difference. Therefore, persistent homology
cannot describe the shape evolution of these bells. We designed persistent Laplacians, aka persistent
spectral graphs to capture homotopic shape evolution. In particular, persistent Laplacian shares its
foundation with persistent homology on the point cloud, simplex, simplicial complex, and boundary
operator. However, harmonic spectra of persistent Laplacian fully recover the topological persistence
of persistent homology, while its non-harmonic spectra capture the shape evolution of Chime Bells.
Therefore, our persistent Laplacian can track the frequency changes of the Chime Bells.

We use the benzene molecule as another example to demonstrate the advantage of PL over PH. For
simplicity, let us only consider the C atoms of benzene. Fig. 2b shows the filtration process with the
increasing radius « of the C atom. The behaviors Betti-0 and Betti-1 of PH over filtration are illustrated
as the red lines Fig. 2c and Fig. 2d, respectively. When atom radius is smaller than 0.7 A, there are
six isolated C atoms and no ring exists, which corresponds to six counts in the Betti-0 ( 8"0 = 6) and
zero count in Betti-1 (4" = 0). When atom radius increases beyond 0.7 A, six C atoms form a ring,
then the number of Betti-0 changes from six to one, and the number of Betti-1 becomes one. With the
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Figure 2: Illustration of persistent Laplacian. a Homotopy and filtration process in the Zenghouyi Chime Bells; b The filtration
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increasing of atom radius to 1.4 A, the ring is filled and the number of Betti-1 goes back to zero. When
atom radius increases over 1.4 A, the six atoms undergo a homotopic evolution in which Betti-0 and
Betti-1 do not change. However, as shown in Fig. 2b, the shape of the six carbon atoms evolves as the
atom radius increases further, highlighting the inability and limitation of PH for molecular systems.

In contrast, the lowest non-zero eigenvalues ( AS° and A{"?) of PL over the same filtration are
illustrated by green circles in Fig. 2c and Fig. 2d for zero and 1st dimensional Laplacians, respectively.
PL captures not only all topological changes but also homotopic geometric evolution during filtration.
For instance, there are four jumps marked by four red arrows in Fig. 2c corresponding to different
connections between atoms under different atom radii in Fig. 2b, respectively. The value of the right
y-axis is the smallest nonzero eigenvalues of PL and varies with different atom radii, which cannot be
detected by the PH method.

Fig. 2e illustrates the advantage of the PL method over transformers in dealing with molecules having
steric effects. The cis-1,2 and trans-1,2 dichlorocyclohexane isomers are given in the left panel of Fig.
2e, omitting hydrogen atoms. These molecules have the same SMILES string “C1CCC(C(C1)Cl)ClI”,
and thus the same transformer representation. However, the steric effects of these two molecules can be
captured by the PL method as shown in the right panel of Fig. 2e with only two chlorine atoms taken
into consideration for simplicity. Both the harmonic spectra and non-harmonic spectra over filtration
can distinguish these isomers.

2.3 Overview of results

As shown in Fig. 3, our TIDAL model gives a state-of-the-art performance on 22 drug addiction related, 4
hERG, and 12 DAT datasets for both classification and regression tasks in terms of a variety of evaluation
metrics.

2.3.0.1 Drug addiction related classifications dataset Fig. 3a shows the comparison
of area under the ROC (receiver operating characteristic) curve (AUC) between our TIDAL model
and 8 other state-of-the-art models [26] on 11 drug addiction related datasets for classification tasks.
These models were created from pharmacophore fingerprints, which consist of 39973 bits and encode
the presence, types, and relationships between pharmacophore features of a molecule and all detailed in-
formation about this molecular representation [26]. The dimensionality reduction algorithm was also
used to reduce the length of molecular representations to 100 bits and enhance their performance.
These fingerprints were integrated with 8 ML algorithms [26], including logistic regression with autoen-
coder reduction algorithm (AE_LR), linear support vector machines (LSVM), support vector machine
(SVM), linear support vector machines with autoencoder reduction algorithm (AE_LSVM), neural net-
works with autoencoder reduction algorithm (AE_NN), neural networks with supervised autoencoder
reduction algorithm (sAE_NN), a single-layer linear classifier with supervised autoencoder reduction al-
gorithm (sAE_SoftMax), and logistic regression (LR). TIDAL significantly outperforms these advanced
ML, DL, and self-supervised learning models. In particular, on the 5-HT2¢, 5-HTs, and catB datasets,
AUC values obtained by TIDAL are 91.0%, 95.4%, and 93.0% higher than those of AE_LSVM, AE_LR,
and AE_NN [26], respectively. Note that, for the NMDA dataset with the smallest number of compounds
226, TIDAL’s AUC is 97.4% higher than those achieved by AE_.LSVM, AE_LR, and AE_NN [26]. These
findings suggest that the proposed TIDAL model has many advantages over dimensionality-reduction-
enhanced ML, DL, and self-supervised learning models [26] on small datasets. The details of values of
AUC and Matthews correlation coefficient (MCC) on drug addiction-related classification datasets can
be found in Supplementary Table 1. It worthy to note that Czarnecki et al. [27] and Smusz [28] also
reported their studies of 5-HT24, 5-HT2¢, and 5-HTs datasets (See Table.1). A detailed comparison
with their results is given in the next section.

2.3.0.2 DAT and hERG dataset classifications TIDAL classification results and comparison
on hERG and DAT datasets are illustrated in Fig. 3b. Two models, namely, eXtreme Gradient Boosting
(XGBoost) and random forest (RF) algorithms, were reported by Lee et al. [29] The features employed
in these models were selected from 200 different types of from _descList of rdkit.Chem.Descriptors and
the Gobbi 2D pharmacophore fingerprints. The 10 most correlated descriptors were utilized to optimize
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Figure 3: Predicted results of classification and regression tasks on drug addiction-related, hERG, and DAT datasets. a
Comparison results of AUC for TIDAL model and other advanced models in [26] on 11 drug addiction related classification
datasets. TIDAL model outperforms these models including AE_LR, LSVM, SVM, AE_LSVM, AE_NN, sAE_NN, sAE_SoftMax
on 11 drug addiction related datasets. In addition, we also compare the results obtained by using our TIDAL model with those
from other models in the literature [27,28] on 5-HT24, 5-HT2c, and 5-HTg datasets. Specifically, the values of AUC in our
results are 8.3%, 8.0%, and 4.3% higher than those by Bayesian method [27], and are 33.8% higher than that obtained by
homology model [28] on 5-HTg dataset. b gives the comparison results between our TIDAL model and other models (XGBoost
and RF) in [29] on hERG and DAT classification datasets. The TIDAL model delivers the best accuracy, sensitivity, specificity,
and F1 score values on all these datasets compared with the XGBoost method [29]. When compared with the RF method [29],
the TIDAL model achieves better performance in 7/8, 8/8, 6/8, and 6/8 of datasets on the above four metrics, respectively.
Additionally, on the all DAT _binding, all DAT uptake, and hERG_binding datasets, the TIDAL model yields higher F; score
compared with that by LV-FP, ECFP, Estatel, and Estate2 in [2], respectively. In terms of accuracy, the TIDAL model obtains
almost the best or better results compared with that of LV-FPs and traditional 2D fingerprints [2]. ¢ shows the comparison
results between TIDAL model and XGBoost [29] and RF [29] on hERG and DAT regression datasets. About metrics coefficient
of determination, R? and RMSE, the TIDAL model obtains both the best values than those by XGBoost [29] and RF [29] except
on the all DAT binding dataset. We also compared the performance of the TIDAL model and that of methods in Ref. [30] on
the all. DAT _binding, all. DAT _uptake, and hERG_binding datasets. For the metric of squared Pearson correlation coefficient
(P?), the TIDAL model performs better than or equivalently to that for different fingerprints in [30]. Especially, RMSE values
are raised up to 32%, 26.9%, and 33.8% on three datasets by the TIDAL model compared with the consensus of LV-FP and
ECF8 [30], respectively.



the performance of XGBoost and RF [29]. It is seen from Fig. 3b that: (1) TIDAL model attains
better performance on all eight datasets than the XGBoost method [29] on all evaluation metrics, i.e.,
accuracy, sensitivity, specificity, and Fy score. Particularly, on hERG_clamp dataset, the sensitivity and
F; values of TIDAL are about 21.0% and 10.1% higher than those of the XGBoost method, respectively.
In addition, TIDAL is 12.2% more accuracy than the XGBoost method on hDAT _uptake dataset [29]; (2)
For accuracy, the TIDAL model outperforms the RF method in 7/8 of datasets and is essentially as good
as RF for the hDAT binding dataset [29]. On hDAT _uptake dataset, the TIDAL model is 15.1% more
accurate than the RF method [29]; (3) in terms of metric sensitivity, the TIDAL model achieves the best
values on all eight datasets compared with RF [29]. On hERG_clamp dataset, the TIDAL model is 14.5%
more sensitive than the RF model; (4) Our model achieves the best specificity in 6/8 of cases, except
for hERG_clamp dataset and rDAT _uptake dataset. For hDAT _uptake dataset, both XGBoost and RF
had nearly zero specificity. In contrast, the specificity of our TIDAL model is 0.3; and (5) TIDAL model
performs better than RF [29] in 6/8 of datasets on F1 score except for hDAT binding and rDAT _uptake
datasets. On hERG_clamp dataset, the TIDAL model results in the growing up to 6.1% of F score. The
details of four metrics values on hERG and DAT datasets can be found in Supplementary Table 2, and
more metrics values of AUC and MCC are shown in Supplementary Table 3. Further comparison with
Gao et al [2] is given in the next section and the details of the comparison can be found in Table 2.

2.3.0.3 DAT and hERG regression Regression analysis of hERG and DAT datasets is pre-
sented in Fig. 3c. Comparison is given to TIDAL, XGBoost, and RF models [29] in terms of two metrics
(coefficient of determination, R?, and RMSE). The TIDAL model outperforms XGBoost and RF in all
cases except for the all-DAT binding dataset, where TIDAL and RF have a similar performance. Specif-
ically, our TIDAL model is 64.0% more accurate than XGBoost, and RF models in terms of R? on the
hDAT _uptake dataset. Our TIDAL model is 12.7%, 11.5%, and 13.7% more accurate than RF in terms of
RMSE on hERG _binding, hERG _clamp, and rDAT _binding datasets, [29] respectively. The details of R?
and RMSE on hERG and DAT datasets are given in Supplementary Table 4 for TIDAL, XGBoost, and
RF models. The predictive results in terms of another metric, the squared Pearson correlation coefficient
(P2), are given in Supplementary Table 5. More comparison with the results in the literature [30] can
be found in Table 2 and is discussed in the next section.

Table 1: Comparison of classification results on 5-HT2 4, 5-HT2¢, and 5-HTg between TIDAL model and other methods [27,28].

Dataset 5-HT5 4 5-HT 2 5-HTg
Model  Bayesian [27] TIDAL Bayesian [27] TIDAL Bayesian [27] Homology [28] TIDAL
AUC 0.892 0.966 0.884 0.955 0.937 0.730 0.977

2.3.0.4 Results for 5-HT5 4, 5-HT>¢, and 5-HT datasets Having illustrated that TIDAL
outperforms 8 other machine learning models in Fig.3a, we further carry out additional performance
comparison for 5-HT24, 5-HT2c, and 5-HTs datasets (see Table 1). Two new models, Bayesian [27]
and homology [28], are included in this AUC analysis. Among them, the Bayesian model optimizes
Estate, extended, Klekota-Roth, MACCS, and Pubchem fingerprints, with the support vector machine
algorithm [27]. The homology model was constructed by integrating five machine learning algorithms, i.e.,
naive Bayes, sequential minimal optimization, k-nearest neighbor algorithm, decision tree, and random
forest, with two features, namely structural interaction fingerprints and Spectrophores descriptors [28].
As indicated in Table 1, our TIDAL model performs significantly better than these two models.

2.3.0.5 Results for all DAT binding, all DAT uptake, and hERG _binding datasets
To further analyze the performance of the proposed TIDAL model on all DAT _binding, all DAT _uptake,
and hERG _binding datasets, we consider four other models based on GBDT and four descriptors, namely
latent-vector fingerprint (LV-FP), ECFP, Estatel, and Estate2 [2]. LV-FP is extracted from our trans-
former, whereas ECFP, Estatel, and Estate2 are 2D fingerprints [2]. The consensus of LVFP and ECFP
was also presented. Table 2 illustrates the F; scores for various competing models. The TIDAL model
displays similar or better classification than other methods. In particular, for the hERG_binding dataset,
our TIDAL model achieves 6.2% and 7.0% higher F1 scores than LV-FP and ECFP do [2], respectively.

Moreover, Gao et al. [2] have carried out regression studies on all DAT binding, all DAT _uptake and
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Table 2: Comparison of classification and regression results on hERG and DAT datasets between TIDAL model and other
methods [2].

LV-FP ECFP Estatel Estatez _onsensus of

Task Dataset Metric TIDAL 2] 2] 2] 2] LVFP [Jg] ECFP
all DAT binding Fi 0.987 0.980 0.980 0.980 0.980 0.980
Classification all DAT uptake Fy 0.980 0.980 0.980 0.980 0.980 0.980
hERG _binding Fiq 0.942 0.880 0.880 0.870 0.870 0.880
all DAT binding RMSE 0.659 0.890 0.900 0.990 0.990 0.870
Regression  all DAT uptake RMSE 0.599 0.800 0.780  0.860 0.890 0.760
hERG binding RMSE 0.568 0.800 0.800 0.870 0.870 0.760

hERG_binding datasets [2]. They combined GBDT and LV-FPs and 2D fingerprints, like ECFP, Estatel,
Estate2, as well as the consensus of LV-FPs and ECFP. As shown in Table 2, our TIDAL model yields
the RMSE values of 0.659, 0.599, and 0.568 on all DAT _binding, all DAT _uptake, and hERG_binding
datasets, respectively. These results are about 32%, 26.9%, and 33.8% better than the best result in the
literature for three datasets, respectively.

3 Discussion

3.1 Side effect and repurposing

The mechanism of drug addiction is still not very clear, involving many proteins, like DAT, and D3R
for cocaine addiction and delta, kappa, mu, and nociceptin opioid receptor (NOP) for opioid addiction
as well as hERG, a crucial potassium ion channel for potential side effects [2]. These proteins form a
protein-protein interaction (PPI) network, having a complex relationship. On the one hand, they are
drug addiction treatment targets. On the other hand, they may bring unexpected off-target effects for
potential drugs. Hence, it is necessary to systematically investigate potential drug candidates that inhibit
drug addiction targets, the side effect from agents blocking unintended targets, and the drug repurposing
potential [2]. We carry out this exploration by cross-target binding affinity (BA) predictions. The
basic idea is to systematically predict the BAs of one target’s inhibitors with respect to another target.
Specifically, a drug candidate with a high BA (the absolute value of BA) for its original target may also
have high BAs for other human proteins, indicating strong side effects, which can disqualify its candidacy
for the original target. Additionally, if a drug candidate binds weakly to its designated target but has a
high BA with another unintended target, then it has a repurposing potential. Here, we build ML models
for 13 proteins that have sufficient inhibitor data to build such models based on drug addiction related
regression datasets. These models are used for drug side effect and repurposing analysis. Notably, our
analysis reveals the drug-mediated linear and bilinear target correlations and associated drug-mediated
target networks.

Fig. 4a shows the heatmap of cross-target BA predictions for 11 proteins. The diagonal elements
(n,n) are the squared Pearson correlation coefficients (P?s) of the 10-fold cross-validation (CV) of the
ML BA predictions (ML-BAs) for the corresponding protein inhibitor data sets. The minimum P?is
0.615 for catB-ext dataset and the maximum P? is 0.794 for delta-ext dataset, which suggests that 11
models have excellent model accuracy and are very reliable for cross-target predictions. Interestingly,
the catB-ext dataset has 2285 compounds, while the delta-ext dataset has 6338 compounds, indicating
that larger datasets lead to more reliable machine learning models than small datasets do. The details
of P? for 11 targets could be found in Supplementary Table 9 with the consensus method using BT-FPs
fingerprints.

The off-diagonal elements in Fig. 4a show cross-target predictions. The element (n,m), n # m, in the
heatmap is the highest BA value of the nth dataset predicted by the mth model. For example, element
(7,9) is the highest BA value out of 2285 values of the catB-ext dataset predicted by the delta-ext dataset
ML model established by 6338 compounds. The higher the highest predicted BA value is (i.e., the darker
the color is), the stronger the side effect or higher repurposing potential is. Therefore, some 5-HT24,
5-HT2¢, and Ds inhibitors may bind strongly to 5-HTs. Additionally, some delta and kappa inhibitors

11



o0 s
a LI <
| 0
ST, ot B 0 2
%
5-HT,-ext . 3
--75 E
5-HT4-ext T
[t}
D,-ext -8.0
z 5 5-HTc-ext ML-BA
NMDA-ext e
ad ~ =
85 3 5-HToa GFLVMP g RWP LP
NOP-ext g 5-HToc GLLVMP LSLLAIL¥D¥ VWP LP
catB-ext -9.0 <« 5-HToa SKIL WIY*LF“I,
om0 5-HToc RYLECPVWI SLDVLF [
catlL-ext 1
-95 = n 0 D o
delta-ext < mu-ext S PN
” -10.0 2
kappa-ext =
mu-ext v -10.5 E
[=3 >,
1 1 1 1 .“ a. s
0.62 0.64 0.66 0.68 0.70 0.72 0.74 0.76 0.78 =< -10.5 -10 -95
P2 of 10-fold CV delta-ext ML-BA A
X
b 5-HT,c-ext d NMDA-ext P K = ;
< ks < : appa - gigiN Psgv i
_,I-8.4 ol & e delta LMETWP FGEL VLS|
s . s° mu YLMGTWPFGTILCKIVI
xS C 3 s 68 kappa FTSIF 1AV
o o o ] X delta FTSIF 1AV
g -9 o oY ] g © -6.85 mu FTSIFTLC 1AV
-8 -7.8 -8 -78 -7.6 -8.05 -7.95
NMDA-ext ML-BA NMDA-ext ML-BA catL-ext ML-BA
< € NOP-ext <f cgtB-ext é g catL-ext CI S-HTa-ext ':9 delta-ext
o 95 §_7_7 i . % - gasailed,, <
= = E -9.7 . 31 0.4
% %79 3 T
o O ik Y -10 =
8 S . k) ey %08
T-105 &L S -8.1 | T -10.3 P o™ :
9 85 Z 98 -94 909 8 7.8 96 -9.2 -0 95 -9
h catL-ext ML-BA i D,-ext ML-BA . NMDA-ext ML-BA kappa-ext ML-BA kappa-ext ML-BA
< 5-HTa-ext NOP-ext g J 5-HToc-ext S all-DAT_binding t all-DAT_uptake
E -9.5 | b 96 7 -95 ; L g9 i L 9 i
s ] - = ] 2
5 z 101 -‘ ¢ %95 =
|i°_10 5 ?-'g o :3'10'2 A ?
e — 21067 % = o) ‘ o) ey
et -105 -10 -95 -10.5 95 © -10.5 9.5 -9.5 -9 9.5 -9
delta-ext ML-BA delta-ext ML-BA 5-HTg-ext ML-BA kappa-ext ML-BA kappa-ext ML-BA
-15 -1 -7 -3

Experimental BA (kcal/mol)

Figure 4: Analysis of drug side effects and repurposing based on cross-target BA predictions. a Heat map of cross-target BA
predictions. The diagonal elements show the squared Pearson correlation coefficients of 10-fold cross-validation (P2 of 10-fold
CVs) on the machine-learning predicted BAs (ML-BAs) of targets. Other elements represent the highest ML-BAs among the
inhibitors in each dataset to other targets. b-j Nine typical examples of cross-target BA predictions of potential drug side
effects. In each ML-BA correlation plot, the title is the name of the dataset, and the colors of points indicate the experimental
BAs for the designated target. The z— and y—axes represent the predicted ML-BAs for two other proteins, respectively. The
first, second, and third row show the cases with substantial side effects of potent inhibitors on zero, one, and two targets,
respectively. The light blue background color outlines the optimal ranges without side effects on both targets (the values of BAs
on z— and y—axes are both larger than -9.54 kcal/mol). k Illustration of linear correlations in cross-target ML-BAs between
5-HT5 4 and 5-HT3¢, which reveals their binding site similarity and network connectivity. 1 3D structure alignment of 5-HT5 4
and 5-HT2¢ (PDB 6A93, 6BQG for 5-HT54 and 5-HT3¢, respectively). m Binding site sequence similarity between 5-HT'5 4
and 5-HTs¢. n The bilinear correlations among BAs for mu inhibitors with kappa, and delta receptors, reveal the binding site
similarity and network connectivity among three proteins. o 3D structure alignment (PDB 5C1M, 4N6H, 4DJH for mu, delta,
and kappa receptors, respectively). p 2D binding-site sequence alignment. g-t Four typical cases of cross-target BA prediction
of drug repurposing potentials, where some weak inhibitors of their designated targets are predicted to have high BAs to other
proteins. In each chart, the two yellow frames outline the BA domains with repurposing potential, which implies compounds
that have the potency to one target (BA values of <-9.54 kcal fmol) and do not have strong side effects on the other target (BA
value of >-9.54 kcal/mol).



are predicted to have strong effects on the mu receptor. These effects can be either off-target side effects
or repurposing potential, depending on the inhibitors’ BAs for their original targets. On the other hand,
Fig. 4a also reveals how safe a set of drug candidates is for other targets. For example, catB inhibitors
studied in this work may not pose any side-effect concern to 5-HT24, 5-HT2¢, 5-HTg, D2, NMDA, NOP,
catL, delta, kappa, and mu proteins.

Figures 4b-j give some typical examples of side effects detected by cross-target BA predictions. In
each chart, one target and two proteins are involved. The colors on the data points show the experimental
BAs (kcal/mol) for the target in the title. The z- and y-axes of each data point are the predicted BAs
by using ML models of the other two proteins, respectively. The light blue background color indicates
a side-effect free zone judged by the threshold value -9.54 kcal/mol. For example, Fig. 4b plots many
experimentally potent 5-HT2¢ inhibitors. Based on our ML models, none of them may induce any serious
side effect on NMDA (z-axis) or catL proteins (y-axis). It is interesting to note from Fig. 4c that most
D5 inhibitors are not potent and they are weak binders to NMDA and catB proteins, according to our
predictions. However, Fig. 4e and Fig. 4i shows that most NOP inhibitors are very potent and bind
strongly with delta and mu receptors.

Our cross-target analysis can be applied to identify not only compound-target interactions but also
target-target interactions. For example, Fig. 4k shows that the catB inhibitors bind nearly linearly to
5-HT2¢ and 5-HT24 receptors, which are crucial for modulating drug-addictive behaviors [31] (A similar
linear relation can be found in Fig. 4i.). Strong 5-HT24 binders are also strong 5-HT2¢ binders for
catB inhibitors. The correlation between their predicted BAs is as high as P = 0.625. This correlation
indicates that 5-HT2¢ and 5-HT24 receptors are strongly correlated, which is confirmed by the 3D protein
structure alignment (Fig. 41) and 2D sequence alignment of their binding sites (Fig. 4m), respectively.
The structure alignment shows 5-HT2c and 5-HT24 receptors have the same global structure. The
binding site sequence identity of these two proteins is as high as 78.7%.

A more interesting relationship is the drug-mediated bilinear correlation among the three targets. Fig.
4n displays an interesting example. The ML-predicted BAs of mu-ext inhibitors not only linearly correlate
to delta and kappa receptors but also have their experimental BA values (shown in colors) linearly
correlated with those of delta and kappa receptors. Therefore, a strong mu inhibitor is simultaneously
a strong delta and kappa binder. This bilinear relationship is confirmed by the 3D alignment of three
proteins, i.e., mu, delta, and kappa receptors in Fig. 40. The 2D sequence alignment among mu, delta,
and kappa receptors in Fig. 4p show minor differences in the three receptors. These high similarities
reveal the structural basis for the unveiled drug-mediated bilinear target relationship from our ML models.

Figures 4g-t depict repurposing potentials, which are evaluated by our cross-target BA predictions.
In each chart of Fig. 4qg-t, inhibitors that are inactive to their own target may be predicted to be effective
binders of other proteins. For example, Fig. 4r, some compounds that are experimentally inactive for
the delta receptor have very high ML-BAs (i.e., BA values <-9.54 kcal/mol) both on Dy and kappa
receptors, which means that these inactive delta inhibitors are possible inhibitors for Dy and kappa
receptors. Similarly, in Fig. 4s and Fig. 4t, many inactive DAT _binding and all-DAT _uptake inhibitors
are predicted to be potent to Dy and kappa receptors. Additional analysis of side effects and repurposing
can be found in Supplementary Fig. 2.

Figures 4i and 4n indicate that it is possible to develop drugs to simultaneously inhibit four major
opioid receptors, delta, kappa, mu, and NOP (Nociceptin). A trilinear relationship is already unveiled
in Fig. 4n, and NOP share many potent inhibitors with delta and kappa receptors as shown in Fig. 4i.
Supplementary Fig. 2 suggests that delta, kappa, and mu inhibitors may have serious side effects with
Dy and 5-HT> 4.

3.2 Evaluation of existing anti-addiction medications

The mechanism of opioid dependence is very complicated and mainly about the reward loop of the
brain and neurotransmitters, like dopamine and endorphin. Table 3 gives the binding affinity values
(kcal/mol) predicted by four key opioid targets (namely, NOP, mu, kappa, and delta), two DAT tar-
gets (all. DAT _binding and all DAT uptake), and two hERG targets (hRERG_binding and hERG_clamp)
by different ML models for 12 existing anti-addiction medications. The first nine medications (i.e.,
Buprenorphine, Methadone, Naltrexone, Naloxone, Dihydrocodeine, Tapentadol Hydrochloride, Oxy-
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morphone Hydrochloride, Morphine Sulfate, and Fentanyl) target opioid receptors, and the last three
ones (Rimcazole, Modafinil, and Ibogaine) were designed for cocaine addiction. The number in the
bracket is the maximal similarity score in the range of 0 and 1 determined via the Tanimoto coefficient
between a medication and molecules collected for each target. From the viewpoint of machine learning,
a higher similarity means a more reliable prediction.
Table 3: Binding affinity values (kcal/mol) predicted by eight ML models for 12 existing anti-addiction medications. The
number in the bracket is the similarity score.

Medication NOP-ext mu-ext kappa-ext  delta-ext  all DAT binding all DAT uptake hERG binding hERG_clamp

Buprenorphine  -9.4 (1.00) -12.5 (1.00) -12.9 (1.00) -11.6 (1.00) -9.0 (0.83) -8.7 (0.83) -7.4 (0.85) -6.9 (0.88)
Methadone ~ -9.2 (0.69) -11.8 (1.00) -9.0 (1.00) -85 (1.00)  -8.6 (0.80) -8.7 (0.80) 77(079)  -7.0 (0.90)
Naltrexone  -9.9 (0.77) -12.6 (1.00) -12.1 (1.00) -10.5 (1.00)  -8.7 (0.82) -8.3 (0.83) 74(081)  -6.9 (0.86)
Naloxone  -10.3 (0.70) -11.5 (1.00) -11.0 (1.00) -9.8 (1.00)  -8.5 (0.83) -8.4 (0.82) 7.3(0.81)  -7.0 (0.88)

Dihydrocodeine -11.1 (0.76) -9.4 (0.98) -7.9 (0.98) -7.4(0.98)  -8.8 (0.84) -8.4 (0.84) 76 (0.84)  -7.1(0.89)
Tapentadol .

Hydrochloride 100 (063) 9.5 (0.93) 0.1 (0.74) -85 (0.70) 8.8 (0.80) -9.0 (0.79) 87(0.78)  -7.8 (0.82)
Oxymorphone . . .

Hydrochloride 105 (070) -115 (098) -100 (098) 0.7 (0.98) 8.8 (0.83) -8.9 (0.82) -85(0.83)  -7.6 (0.84)
hgﬁf&‘e 210.7 (0.74) -11.2 (0.97) -9.8 (0.97)  -9.5 (0.97)  -8.4 (0.82) -8.8 (0.79) 8.9 (0.81)  -6.8 (0.81)
Fentanyl ~ -9.2 (0.84) -125 (1.00) -9.1 (1.00) -9.6 (1.00)  -8.8 (0.81) -8.4 (0.81) 8.0 (0.79)  -7.8 (0.89)
Rimcazole  -10.0 (0.67) -9.6 (0.69) -8.7 (0.69) -8.6 (0.69)  -8.8 (0.81) -8.8 (0.80) -8.1(0.81)  -7.9 (0.90)
Modafinil ~ -9.1 (0.55) -8.3 (0.56) -7.7 (0.57) -7.9 (0.56)  -8.0 (0.78) -8.0 (0.77) 77(0.78) 6.9 (0.87)
Thogaine  -10.8 (0.70) -9.5 (0.79) -8.9 (0.79) -88 (0.79)  -7.9 (0.85) -7.6 (0.83) -81(0.83)  -7.8 (0.89)

Buprenorphine is one of a few FDA-approved drugs for chronic pain, acute pain, and opioid use
disorder. It has a high experimental binding affinity to the mu receptor (-12.0 kcal/mol), but relatively
low binding affinities with other opioid receptors. Therefore, it is described as a partial agonist and
believed to only partially activate opiate receptors. Similar to the trilinear relation revealed in Fig.
4n, Buprenorphine is also an antagonist for kappa and delta receptors with binding affinities of -11.2
kcal/mol and -11.7 kcal/mol, respectively [32]. These results are highly consistent with the predicted
BAs of -12.5, -12.9, and -11.6 kcal/mol by our ML models in Table 3 for mu, kappa, and delta, re-
spectively. From the table, one can also find that buprenorphine strongly binds to the NOP receptor
with predicted BAs -9.4 kcal/mol and weakly binds to DAT receptors with predicted BAs -9.0 and -8.7
kcal/mol, respectively. Particularly, since hERG is a primary side effect concern for novel medications,
the side effect threshold to hERG was set to -8.18 kcal/mol (K; =1 uM). We find that buprenorphine
hardly has any hERG side effect, since the predicted hERG BAs are as low as -7.4 and -6.9 kcal/mol
for hERG _binding and hERG _clamp, respectively. Additionally, as buprenorphine blocks these opioid
receptors, it can decrease the effect of any subsequent opioid use. It also exhibits slower dissociation
from the mu receptor compared with other opioids, which may contribute to prolonged analgesia and
less potential for withdrawal when used appropriately for chronic pain. Other similar agonist drugs, such
as methadone and levomethadylacetate, also known as levo-a-acetylmethadol (LAAM) can be used for
maintenance treatment against opioid dependence [33].

Methadone is another FDA approved medication for opioid dependence. It is a full agonist, meaning
that it can occupy key opioid receptors, such as NOP, mu, kappa, and delta receptors, which is verified
in our ML models as shown in Table 3. Indeed, its predicted BAs for these four receptors are -9.2,
-11.8, -9.0, and -8.5 kcal/mol, respectively. As such, methadone reduces the painful symptoms of opiate
withdrawal and blocks the euphoric effects of other opioid drugs. Compared to heroin and other opioid
agonists used for non-medical purposes, methadone has a lasting effect and prevents the occurrence of
the frequent peaks and valleys associated with compulsive behaviors. Moreover, methadone only weakly
bind to DAT and has little effect on hERG (the predicted BA values for four models are -8.6, -8.7, -7.7,
and -7.0 kcal/mol, respectively). Our results in Table 3 indicate that methadone is less effective than
buprenorphine for treating opioid dependence.

Opioid antagonists are another class of medications for opioid dependence. An example is a naloxone
or naltrexone, an FDA-approved drug for counteracting opioid overdoses. These antagonists bind to
opioid receptors but exert no direct influence, either excitatory or inhibitory, on the post-synaptic cell.
They successfully block opioid receptors, rendering subsequent opioid ingestion ineffective, and thus
precipitating opioid withdrawal for dependent individuals [33]. As shown in Table 3, both naloxone
and naltrexone have high mean predicted BAs (around -10.7 and -11.3 kcal/mol) or strong effects on
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four receptors (i.e., NOP, mu, kappa, and delta), respectively, and they have weak side effects on DAT
(predicted BA values are over -9.54 kcal/mol), and has no side effects on hERG (predicted BA values are
larger than -8.18 kcal/mol), which is similar with that of buprenorphine and methadone. The predicted
BAs on different important opioid receptors verified that these approved medications could be potent in
the treatment of opioid addiction.

Dihydrocodeine is often prescribed as an alternative to methadone or buprenorphine for pain or severe
dyspnea, or as an antitussive, either alone or compounded with paracetamol (acetaminophen) (as in co-
dydramol) or aspirin. It is a semi-synthetic opioid analgesic and exists in both extended-release and
immediate-release form, which is confirmed by the predicted BA values for four key receptors (i.e., -11.1,
-9.4, -7.9, and -7.4 kcal/mol for NOP, mu, kappa, and delta, respectively), DAT and hERG in Table 3.
As an opioid agonist, dihydrocodeine could be used as the second line of treatment. A 2020 systematic
review found low-quality evidence that it may be no more effective than other routinely used medications
in reducing illicit opiate use [34]. Our results in Table 3 support this view.

Extended-release, long-acting (ER/LA), and immediate-release (IR) opioid analgesics, such as Tapen-
tadol Hydrochloride, Xylophone Hydrochloride, Morphine Sulfate, and Fentanyl in Table 3, are powerful
pain-reducing medications that have both benefits as well as potentially serious risks. For instance, the
predicted BA values on hERG _binding are as high as -8.7, -8.5, -8.9, and -8.0 kcal /mol for these four medi-
cations, respectively, which suggests serious heart failure concerns. Moreover, these four medications have
moderately high predicted binding affinities on mu, kappa, delta, and NOP receptors, indicating their
capacity for pain mitigation. For example, Fentanyl is a synthetic opioid that is 50-100 times stronger
than morphine (from DEA, United States Drug Enforcement Administration). Pharmaceutical fentanyl
was developed for the pain management treatment of cancer patients, and applied in a patch on the skin.
The experimental BA values for mu, kappa, and delta are around -12.8, -8.2, and -9.0 kcal/mol [35],
which are consistent with our predicted BA values -12.5, -9.1, and -9.6 kcal/mol, respectively.

The mechanism and potential treatment of other drug addictions, like cocaine addiction is much
more complicated than those of opioid addiction. Currently, no cocaine addiction medication has been
approved by FDA. The details of analysis and discussion about cocaine addiction medication can be found
in the literature [2]. Table 3 lists three potential medications for cocaine addiction, namely rimcazole,
modafinil, and ibogaine, which are not effective for four opioid targets, namely, NOP, mu, kappa, and
delta, as they could only partially block these targets. For instance, rimcazole and ibogaine can strongly
bind to NOP and mu receptors with predicted BA values smaller than or close to -9.54 kcal/mol, but
are not effective on kappa and delta receptors.

Rimcazole, as a DAT reuptake inhibitor, can reduce the effects of cocaine by binding to DAT, and
was reported to have a BA value of -9.54 kcal/mol to DAT [36]. However, we obtain a lower predicted
BA (i.e., -8.8 kcal/mol) for rimcazole, which suggests that its effect on DAT is questionable. Addition-
ally, the potential heart-related side effect is supported by the predicted BA value (-8.1 kcal/mol) for
hERG_binding in Table 3, which is close to the threshold value -8.18 kcal/mol. Rimcazole is not pursued
anticocaine addiction now.

Modafinil, as an atypical DAT inhibitor, is a potential treatment for cocaine addiction and has been
approved for the treatment of excessive sleepiness. Especially, it has a low DAT affinity (-6.9 kcal/mol)
lower than that of cocaine and still prevents DAT from being blocked by cocaine [36]. In Table 3,
the predicted BA values for modafinil to all. DAT binding and all DAT _uptake are about -8.0 kcal/mol.
Additionally, modafinil has a low predicted BA to hERG, suggesting no serious hERG risk. Note that
the reliability of our ML predictions for Modafinil is relatively low due to its low similarity to existing
molecules.

Ibogaine is also an atypical inhibitor of DAT with a BA value of -7.8 kcal/mol [37]. Importantly, its
severe side effects and related death are of serious concern [38]. As shown in Table 3, our ML model
predicted high BA values of ibogaine to hERG (as high as -8.1 kcal/mol on hERG_binding), which
confirms that ibogaine could have a high risk for heart failure.

The above analysis of 12 existing anti-addiction medications and the predicted binding affinity values
in Table 3 sheds light on the medication discovery of opioid or cocaine addiction. Additionally, the overall
high similarity scores given in the table ensure the reliability of our ML predictions.
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3.3 Impact of persistent Laplacian-based fingerprints

Although many self-supervised learning-based molecular fingerprints, including our BT-FPs/BT #-FPs,
have demonstrated a better performance than conventional fingerprints, which are often short of geo-
metric information about molecules. For example, some molecules share the same canonical SMILES
but may have different chemicals and/or biological properties, like Trans-1,2-Dichlorocyclohexane and
Cis-1,2-Dichlorocyclohexane (see Fig. 2e). To address this challenge, we introduce the persistent Lapla-
cian in combination with our TIDAL architecture to retain the stereochemical and physical information.
Additionally, we set the total dimension of molecular fingerprints TIDAL-FPs/TIDAL-FPs to 512 after
feature fusion, and thus we do not need to adjust the bidirectional transformer framework to achieve the
optimal learning results for different problems.

Supplementary Fig. 3a plots the prediction results of different combinations of fingerprints integrating
with EANN on 11 drug addiction-related classification datasets using the TIDAL framework. It is seen
that the persistent Laplacian-based fingerprints PL-FPs outperform BT-FPs and BT;-FPs in 7/11 and
9/11 of the cases, respectively. The AUC values of combined molecular fingerprints TIDAL-FPs are 1.7%
and 6.1% higher than those of BT-FPs and BT ;-FPs on average over all cases, respectively. Especially,
TIDAL-FPs outperform BT ¢-FPs by 16.4% in AUC on the 5-HT24 dataset. The details of AUC values on
drug addiction-related classification datasets are listed in Supplementary Table 6. Therefore, these results
validate that the stereochemical information exacted from the persistent Laplacian method indeed helps
the downstream prediction tasks. The fusion of PL-FPs and BT-FPs/BT;-FPs improves the accuracy
and stability of ML prediction. Furthermore, mathematics-based molecular fingerprints complement to
sequence-based fingerprints.

Additionally, we analyze prediction errors for molecules with trans-cis, chiral or steric effects in
Supplementary Table 7 to reveal the need for PL-FPs. For instance, for the classification task, there are
two molecules with the same molecule formula C24H3sN4O2 and SMILES in the Mu dataset. However,
they have different geometries, i.e., trans and cis isomers. The probabilities of classification with PL-FPs
and BT-FPs are 0.727 and 0.676 for the trans molecule, respectively. The errors in probability are 29.7%
and 32.4%, respectively, which means that although the predicted label is correct for both fingerprints,
PL-FPs have a higher probability and smaller error than BT-FPs. Similarly, for the regression task, PL-
FPs achieve smaller errors than BT-FPs for the molecules with the same SMILES in the hDAT binding
dataset. In the last second and fourth columns of the table, the predicted value and true value are listed,
and the error is in the percent of the difference between them over the true value.

Supplementary Table 8 gives the comparison results between the persistent Laplacian (PL) method
and traditional persistent homology (PH) on various datasets. Here, we consider two commonly used
complexes, the Rips complex and Alpha complex in the calculation of PH. For classification tasks, the
PL method achieves higher AUC values than PH on 9/10 datasets except for the 5-HTg dataset. For
regression tasks, PL gets a higher squared Pearson correlation coefficient (P2) and smaller RMSE than
PH on all 4 datasets. This is other evidence that PL proposed in the present work outperforms PH on
molecular property predictions.

3.4 Predictive power of bidirectional transformer-based fingerprints

In this work, we take the self-supervised learning (SSL) strategy in the fine-tuning stage and the workflow
of the SSL strategy can be found in Supplementary Fig. 4. During the fine-tuning phase, we use the
task-specific dataset with labels as input data. The labeled data promote the model to extract task-
related information from the training data, which may improve the accuracy of downstream tasks. The
molecular fingerprints generated from the fine-tuned model are called BT (-FPs. On the other hand, the
pre-trained model itself is generated based on the syntax information of SMILES and thus can also be
utilized directly to generate molecular fingerprints named BT-FPs.

Figure 5a shows the prediction performance with BT-FPs on molecular binding affinity datasets delta-
ext and NMDA-ext. The gray bar at each point is the deviation of predicted binding affinity with 10
repetitions with different random seeds. We find that the delta-ext dataset has good prediction results
with P2 = 0.780. For the NMDA-ext dataset, there are only 652 molecules used to train the model
consisting of BT-FPs and EANN algorithm, leading to the fluctuation in the prediction with P? = 0.725.
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Figure 5: Results from the TIDAL framework and feature analysis on molecular activity and binding affinity of drug addiction-
related datasets. a Prediction results of BT-FPs with GBDT algorithm on delta-ext (left) and NMDA-ext (right) datasets. The
box plots statistic P2 values for 633 (left) and 81 (right) independent samples examined over 10 independent machine learning
experiments. b The variance ratios in the first two components from the principal component analysis (PCA) for BT-FPs
(left) and BT ;-FPs (right) on the mu-ext dataset. ¢ The feature importance ranking of TIDAL-FPs (top panel)/TIDAL;-FPs
(bottom panel) on molecular binding affinity datasets, including NOP, kappa, catL, and NMDA. For four datasets, the most
important features of TIDAL-FPs/TIDAL;-FPs are from PL-FPs except the NMDA dataset with TIDAL-FPs. d Visualization
of top three important features of TIDAL-FPs (top panel) and TIDAL-FPs (bottom panel) on the NOP, kappa, catL, and
NMDA datasets.

Similar situations are found in other molecular binding affinity datasets as shown in Supplementary Fig.
5.

In Supplementary Fig. 3a, we find that bidirectional transformers framework with SSL strategy on
task-specific task performs better than that without SSL strategy, that is, the TIDAL¢-FPs achieve
higher AUC values than TIDAL-FPs for all 11 datasets. In particular, the SSL strategy performs better
on small datasets than that on big datasets. For instance, NMDA and NOP datasets have only 246
and 431 molecules in which 80% molecules are used for the training set, and AUC values with TIDAL ;-
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Figure 6: Visualization of NMDA and hERG_binding datasets with various fingerprints, like PL-FPs, BT-FPs, and BT ;-FPs
by RS plot and Umap, respectively. a-f: each section means a class one (c1) or two (c2) with labels L1 or L2, respectively,
and the samples are colored according to their predicted labels from GBDT algorithm. The z and y axes indicate the residue
and similarity scores, respectively. g-1: clustering visualizations by Umap for PL-FPs, BT-FPs, and BT ;-FPs on NMDA and
hERG_binding datasets.

FPs compared to those with TIDAL-FPs are increased up to 1.9% and 2.7%, respectively, which are
both larger than 1.3% the average improvement for the left large tasks. Conventional methods usually
cannot extract enough information from such a small dataset to obtain satisfactory results. In our TIDAL
model, the pre-training module with deep bidirectional transformers enables the model to capture general
information about molecules, and the fine-tuning process supplies additional task related knowledge
about molecules. We further complement this information with topological and geometric information
generated from persistent Laplacian to ultimately boost the generalization ability of the TIDAL model
and raise the performance on the NMDA and NOP cases with AUC values 0.987 and 0.985, respectively.

In Supplementary Fig. 3b and Fig. 3c, we compare the performance of binding affinity predictions
on 11 regression tasks of opioid datasets with and without fine-tuned process corresponding to BT s-FPs
(see Supplementary Fig. 3b) and BT-FPs (see Supplementary Fig. 3c), respectively, and find that BT-
FPs integrating with GBDT, DNN, and consensus method have better performance than BT ;-FPs for
all datasets with 16.4%, 12.2%, and 11.0% average increasing of P?, respectively. Especially, with the
GBDT algorithm, the value of P? for the NOP-ext dataset is increased up to 34.5% from 0.478 to 0.643
obtained by BT ;-FPs and BT-FPs, respectively. This result is also consistent with the performance on
classification tasks in Supplementary Fig. 3a where BT-FPs result in higher AUC values than BT ;-FPs
in 9/11 cases. Additionally, regardless of BT-FPs and BT ;-FPs, DNN has more advantages over GBDT
on big datasets. For BT-FPs, the values of P? with DNN are larger than those with GBDT in 9/11 tasks,
except for two small datasets, namely NMDA-ext with 815 samples and NOP-ext with 2063 samples. For
BT-FPs, DNN has better prediction performance than GBDT in all tasks. As the consensus method
takes the average predictive results of GBDT and DNN, it obtains the best performance in most cases
(9/11) with BT-FPs and in all cases with BT;-FPs. The complete results with P2, RMSE, and MAE
on regression tasks are listed in Supplementary Table 9.

The proposed TIDAL-FPs are fingerprints containing stereochemical information of molecules, which
are a projection of different physical and chemical information of molecules. A more detailed analysis of
TIDAL-FPs can be found in Supplementary Note 3.

3.5 Residue-Similarity (R-S) scores

In this section, we carry out Residue-Similarity (R-S) analysis [39] for the clustering visualization of
performance with different fingerprints, like PL-FPs, BT-FPs, and BT -FPs. For classification problems
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with 2 classes, the traditional methods, like receiving operation characteristic (ROC) curve and Area
Under the ROC Curve (AUC) curve can do similar work as R-S scores, however, R-S scores can be
applied to an arbitrary number of classes, which is its advantage over the traditional methods.

Figures 6 a-f show the R-S plot of the NMDA and hERG _binding datasets with different fingerprints,
including PL-FPs, BT-FPs, and BT ¢-FPs, where the R-S scores are represented as the x and y axes,
respectively, and the accuracy values of classification for each class are marked inside the plot. The left
and right sections in each panel correspond to the 2 classes, class one (c1) with the label (L1) (active),
and class two (c2) with the label (L2) (inactive). For the NMDA dataset, in panel (a) with PL-FPs,
we find that samples both with L1 and L2 having low residue scores are more likely to be mislabeled,
and the classification accuracy for L1 is higher than that for L2. In panels (b) and (c¢) with BT-FPs
and BT -FPs, respectively, we find that samples with low similarity scores tend to be mislabeled, and
the classification accuracy with PL-FPs is higher than that with BT-FPs or BT;-FPs. These findings
suggest that the samples with low R-S scores prefer to be misclassified, and samples with PL-FPs have
higher classification accuracy than those with BT-FPs and BT ¢-FPs, which is also consistent with the
results of Supplementary Fig. 3a. In panels (d)-(f), similar results are found on hERG_binding dataset.

Figures 6 g-1 give the visualizations by UMAP method [40] on NMDA and hERG_binding datasets.
For the NMDA dataset, there is a good clustering visualization for two classes marked by blue and red
colors except for a few points distributed around. For PL-FPs, the prediction accuracy values for the
classification of class ¢l and c¢2 are 0.736 and 0.950, respectively, which are comparable with those of
0.912 and 0.860 by RS plot, however, the whole accuracy value is 0.843 for the two classes by UMAP is
smaller than that by RS plot 0.886. For BT-FPs and BT_-FPs, the accuracy values for cl and c2 are
0.744 and 0.926, and 0.832 and 0.860, respectively. The whole accuracy values are 0.835 and 0.846, which
are both smaller than 0.869 and 0.858 from the RS plot. These findings suggest that though UMAP has
a good clustering visualization, RS plot has a better prediction performance than UMAP. Similar results
are found in the case of hERG_binding datasets.

4 Methods
4.1 Drug addiction related, DAT, and hERG datasets

The proposed TIDAL model and its results for molecular activity and binding affinity prediction involve
22 drug addiction-related datasets, 4 hERG datasets, and 12 DAT datasets. Detailed information on
these datasets and the CheMBL dataset used in the pre-training are given in Supplementary Table 10
and Table 11. More descriptions of the datasets can be found in Supplementary Note 1.

We implement our final predictions by EANN, and compare the results with other standard ML
algorithms, like logistic regression (LR), linear support vector machines (LSVM), support vector machines
with a radial basis function (RBF) kernel (SVM), and neural network (NN). In order to eliminate
systematic errors in the ML predictions, we take average values of 10 realizations of the results of
the models. Additionally, the method of consensus used on datasets refers to the average predicted
values from different ML models for each molecule. In this work, we use the area under the receiver
operating characteristic convex hull (AUC-ROC), Matthews correlation coefficient (MCC), accuracy,
sensitivity, specificity, and F; score to evaluate the performance of the classification model, while we
use the squared Pearson correlation coefficient (P?), root-mean-square error (RMSE), the coefficient of
determination (R?), and mean absolute error (MAE) to assess the performance of regression task. All
definitions of these metrics can be found in Supplementary Note 2 and the hyperparameters of the ML
algorithm are provided in Supplementary Table 12 and Table 13. Moreover, we applied the repeated
tenfold cross-validation method to assess the generalization of prediction models.

For 22 drug addiction related datasets, they are collected from literature [26] and ChEMBL database
[41], including 11 classification tasks and 11 regression tasks. As ChEMBL contains numerical values of
particular parameters that determine the activity of the compounds, molecules are only considered in
our model if their activities and binding affinity are quantified by K;, pK; or ICs¢ and have been tested
in human protein assays. The IC5 values are approximately converted to K; by expression K; = ICs0/2.
For each dataset, we consider all the compounds with K; or ICs¢ values but delete redundant ones and
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the label we used for training and testing is the binding affinity (1.3633*log10K;) in regression task. For
classification task, fetched compounds are classified to actives (pK; or equivalent > 7) and inactive (pK;
or equivalent < 6) [42]. Note that we distinguish the regression and classification task by the term “ext”,
like 5-HT24 dataset is for classification, and 5-HT24-ext is for regression. Term “ext” also means no
limitation about the value of K;, pK; or ICs0. The details of the datasets can be found in Supplementary
Table 10.

Additionally, 4 hERG and 12 DAT datasets are adopted from the literature [29], where the filters
were developed to sort the data based on how they were acquired, that is, from either patch-clamp
electrophysiology (referred to as “clamp”) or radioligand binding assays “binding”), or inhibition of
dopamine uptake (“uptake”). As expected, in the DAT dataset, the majority of the data are of human
DAT (hDAT) and rat DAT (rDAT) since most experiments were carried out with hDAT heterogeneously
expressed in vitro cell lines or with rat brain tissues. So the all-DAT dataset includes hDAT, rDAT, and
a few other species.

4.2 Persistent Laplacian-based molecular fingerprints (PL-FPs)

Graph theory, including geometric graph theory, algebraic graph theory, and topological graph theory,
focuses on the relationship among nodes, edges, faces, and their high-dimensional extensions. Mathemat-
ically, combinatorial graph theory (CGT) is intrinsically related to simplicial complexes and algebraic
topology. One of the important development of CGT is the formulation of topological Laplacians (TLs),
which offer topological information in its harmonic spectra and geometric information, including alge-
braic connectivity, in its non-harmonic spectra. One specific TLs is defined on a compact Riemannian
manifold based on the de Rham-Hodge theory [43]. The harmonic part of the Hodge Laplacian spectrum
gives rise to topological invariants, however, the non-harmonic part of the Hodge Laplacian spectrum
provides geometric shape analysis [43]. Evolutional de Rham-Hodge theory was developed for a family
of evolving manifolds [44].

Recently, persistent Laplacian (PL) or persistent spectral graph (PSG) theory has been introduced
to connect persistent homology and CGT [24]. Like persistent homology, a filtration process is used to
create a series of simplicial complexes, on which persistent spectral graphs are defined. The persistent
spectral analysis (PSA) resulting from PSGs extends topological data analysis (TDA) to geometric shape
analysis. Specifically, the change in the null space dimensions of the PLs during the filtration represents
the persistence of topological invariants, while the non-zero eigenvalues and associated eigenfunctions of
the PLS reveal the geometric shape evolution of the data during the filtration [24].

PL generates a sequence of simplicial complexes by filtration. An oriented simplicial complex K is a
sequence of sub-complexes (K3)i~, of K:

)=KoCKiCKyC---CKp=K. (1)

Let Cq(K¢) be the corresponding chain group of each subcomplex K; and 9} : Cq(K;) — Cq—1(Ky) be
the g-boundary operator. If 0 < ¢ < dim K, we have

q

Ob(og) = Z(—l)iaé,l, Vo, € K¢, (2)

7

where 04 = [vo, - -+ , V4] is any ¢-simplex and crf],l = [vo, -, Ui, ,Vq] being the oriented (¢g—1)-simplex
constructed by removing v;. If ¢ < 0, then Cy(K;) = {0} and 9 is a zero map [45]. It is important to
define an adjoint operator of 9} as the coboundary operator 82* : C17H(K,) — C(K}), mapping from
Cq—1(K¢) to Cy(K¢) by the isomorphism between cochain groups and chain groups C9(K;) & Cy(Ky).
For simplicity, denote Cj the chain group Cy(K;). Using the natural inclusion map from C}_; to

C’;f‘f, one defines the subset of C:1? as C4” with the boundary being in C}_; as

CLP = (B O | 9L77(B) € Ol (3)

On this subset, denote the p-persistent g-boundary operator by 52’7’ : (CZ”’ — C’;,land the corresponding
adjoint operator by (52’7’)* : Cé_l — (sz‘p through the identification of cochains with chains. We define
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the g-order p-persistent Laplacian operator AL : Cf — Cf in the filtration [24]
t, t, tp \* t* ot
AP = 6q}r)1 (8q£1) +0q Og- (4)
The matrix representation of AL in the simplicial basis is
t, t, t,p \T T 1t
[’qp:qul(qul) +(Bq) Bm (5)

where Bf]’fl is the matrix representation of 52’11. The spectrum of L£5P is given as Spec(Ly?) =
{)\iv,z’)\;az’ . ’)\’;\’%q}, where Né = dim C; is the number of g-simplices in K:, and the eigenvalues
are ordered. Here, )\;’fz denotes the smallest non-zero eigenvalue of Lé‘p . The Betti number is related
to g-cycle information, and the number of zero eigenvalues of in the spectrum of Llfl’p is the qth order
p-persistent Betti number 857

BLP = dimker 9} — dim im 82’_{1 = dimker £,? = #0 eigenvalues of L}? (6)

In this study, we pay attention to the 0, 1, 2th-order persistent Laplacians for molecular datasets. Math-
ematically, 85 from the null space of LPs tracks the number of independent g-dimensional holes in K
that are still alive in K¢4,. Therefore, it gives the same topological information as persistent homology
does. However, the non-zero eigenvalues of the PLs reveal the homotopic shape evolution of data during
filtration.

For each molecule, PLs are constructed from element-specific combinations of the molecule. For each
combination, the statistics of PL eigenvalues are used for PL-FPs.

4.3 Deep bidirectional transformer fingerprints (BT-FPs)

A bidirectional transformer (BDT) utilizes a self-supervised learning process to learn the constitutional
rules of chemical data. It employs an independent positional embedding scheme to deal with unlabeled
molecular data, and acquires the importance of each symbol in the input sequence that is different from
sequences learning models such as RNN and LSTM-based models [46]. Partially masked chemical symbols
are used as input during the training to improve the model’s ability to recover the original molecules.
Additionally, DBT uses an attention mechanism to take care of memory loss issues in sequential learning.
An important trait of BDT is that it can be fully parallelized to well reduce the training time for massive
data, which makes the training of a network with over 700 million unlabeled SMILES data possible [47].

In the present work, the input of the deep bidirectional transformer is a molecular SMILES string,
which is different from the sentences in traditional BERT for natural language processing, and the
SMILES strings of molecules are not logically connected. So only the encoder of the transformer is used
and only the masked learning task in the pre-learning process is kept, to mask part of the input SMILES
symbols during the training process and then recover the masked symbols by training. Specifically, a
SMILES string is divided into symbols, like C, H, N, O, =, etc., representing the atoms, chemical bonds,
and connectivity. During the pre-training stage, a certain percentage of input symbols are selected
randomly for three types of operations: mask, random changing, and no changing. The pre-training aims
to learn fundamental constitutional information about molecules using the SSL method with unlabeled
data. Moreover, a loss function is proposed to improve the rate of correctly predicted masked symbols in
the pre-training process. Here, for each SMILES string, two special symbols, < s > and < \s > are added
and the former is used as the beginning of a SMILES string and the latter is a special terminating symbol.
All symbols are embedded into input data with a fixed length. Additionally, a position embedding is
also added to every symbol to denote the order of the symbol. The embedded SMILES strings are fed
into the BERT architecture for further operation and the detailed process of the pre-training procedure
can be found in Supplementary Fig. 10. In our study, more than 2.0 million unlabeled SMILES data
from CheMBL are borrowed for pre-training, and thus not only the fundamental syntactic information
of SMILES strings can be learned but also the global information of molecules is captured by the model.

Both BT-FPs and BT;-FPs are based on the pre-trained model and BT;-FPs has an additional
fine-tuning procedure by SSL strategy with labeled task-specific data compared to BT-FPs. The SSL-
based fine-tuning is shown in Supplementary Fig. 4. Here, in our DBT, the maximal sequence length
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of an input SMILES string is set to 256 symbols, including the start and terminate ones. During the
training, the embedding dimension of each symbol is set to 512 and the 512-dimensional vector retains
the information of the whole SMILES string. In this extended 256 x 512 representation, one or multiple
512-dimensional vectors can be selected to represent the original molecule in principle. In our work,
the corresponding vector of the leading symbol < s > of a molecular SMILES string is chosen as the
BT-FPs or BT;-FPs of the molecule, and in the downstream tasks, these molecular fingerprints are used
for molecular property prediction.

4.4 Ensemble-assisted neural network (EANN)

For the downstream machine learning module, we take two steps to get the output result. First, we
combine PL-FPs and BT-FPs/BT¢-FPs and rank the importance of combined fingerprints by gradient
boosting decision tree (GBDT) algorithm, and then select an optimal set of TIDAL-FPs/TIDAL¢-FPs
with a fixed number of components (such as 512) to feed the deep neural network (DNN) with M hidden
layers. Each layer has m neural nodes. Second, we use ensemble learning models, i.e., gradient boosting
decision tree (GBDT) and random forest algorithms, to train a model with TIDAL-FPs/TIDAL¢-FPs,
respectively. After training, we add two trained weights (or probabilities) as two additional neural nodes
on both sides of DNN in the last hidden layer. Hence, through the training of m + 2 neural nodes of the
last hidden layer, we obtain automatically optimized consensus on various datasets. This framework of
machine learning integrates both advantages of DNN and GBDT named EANN. For traditional classifi-
cation ML algorithms, before getting the predictive class for data, one needs to change the output, the
probability values for different classes to class value. EANN is introduced here, however, no change is
needed and the output is the class label we want, which can be seen as another advantage of the TIDAL
model.

4.5 Residue-Similarity (R-S) scores

R-S scores were proposed in our recent work for analyzing and visualizing dimensionality reduction and
classification algorithms [39]. Assume that the data is {(xi,3:) | x; € RY,y; € Zr},, where x; is the
1th data entry, y; is the ground truth for the classification task, and/or the cluster label for the clustering
task. Here, N is the feature dimension, and M is the total number of samples. Here, L is the number
of classes, and y; € [0,1,...,L — 1]. The data X = {x;}}, can be divided into L classes by taking
C={xi€X|yi=1}and W )'C =

An R-S plot has two components, i.e., residue score and similarity score. Supposing y; = [, the residue
score is defined as the inter-class sum of distances. For x;, it is defined as

Ri=RBix) = =— 3 lxi—xl, ™)
max
x;#Cy
where || - || is the distance between a pair of vectors x; and x; and Rmax = max R(x;) is the maximum
X; €
value of the residue score. We use the Euclidean distance for || - ||. The similarity score is given by taking

the average intra-class score and is defined as
Xi — Xj
5= 5x) = 7 3 (1- =l 0
l x,€C; rnax

where dmax = max_||x; — X;|| is the maximum value of pairwise distance of the dataset. Specially,
X@,XJE

R(x;) and S(x;) are between 0 and 1 after scaling for all x;. In general, larger R(x;) means that the
data is further from other classes, and larger S(x;) means that the data is better clustered. The residue
score and similarity score can be used to visualize each class separately.

In R-S plot, R(x) is the z-axis, and S(x) is the y-axis. For classification task, we define {(x:, s, J:) |
i € RNy € Zp, i € Zr},, where §; is the predicted label for the ith sample, and then we repeat
the above process by using the ground truth and visualize each class separately. Finally, we get the R-S
score visualization of the classification by coloring the sample with the predicted label.
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Data availability

The 22 drug addiction related datasets, 4 hERG datasets, and 12 DAT dataset can be obtained from
https://weilab.math.msu.edu/Datalibrary/2D/ and https://weilab.math.msu.edu/DatalLibrary/3D/,
respectively.

Code availability

The code of pre-trained model is available in the Github repository: https://github.com/WeilabMSU
/PretrainModels and the code of the calculation of persistent Laplacian-based fingerprints is available
via https://github.com/wangru25/HERMES.

Acknowledgements

The work of Zailiang Zhu, Jian Jiang, and Bengong Zhang was supported by the National Natural Science
Foundation of China under Grant No.11971367 and No0.11972266. The work of Dong Chen and Guo-Wei
Wei was supported in part by NIH grants RO1GM126189 and R01AI164266, NSF Grants DMS-1721024,
DMS-1761320, and 11S1900473, NASA grant 8ONSSC21M0023, Bristol Myers Squibb, Pfizer, and MSU
Foundation. All authors appreciate the technology assistance from Rui Wang.

Authors’ contributions

Zailiang Zhu, Yucang Cao, Bozheng Dou, Yueying Zhu, Dong Chen, and Hongsong Feng performed
computational studies. Jian Jiang analyzed data, wrote the draft, and revised the manuscript. Guo-Wei
Wei designed and supervised the project, revised the manuscript, and acquired funding. Jie Liu, Bengong
Zhang, and Tianshou Zhou supervised the project and acquired funding.

Competing interests

The authors declare no competing interests.

References

[1] Dan-ni Cao. Insights into the mechanisms underlying opioid use disorder and potential treatment
strategies. Br J Pharmacol, pages 1-17, 2021.

[2] Kaifu Gao, Dong Chen, Alfred J. Robison, and Guo Wei Wei. Proteome-Informed Machine Learning
Studies of Cocaine Addiction. Journal of Physical Chemistry Letters, 12(45):11122-11134, 2021.

[3] Kaifu Gao, Duc Duy Nguyen, Meihua Tu, and Guo-Wei Wei. Generative network complex for
the automated generation of drug-like molecules. Journal of chemical information and modeling,
60(12):5682-5698, 2020.

[4] Kaifu Gao, Duc Duy Nguyen, Vishnu Sresht, Alan M Mathiowetz, Meihua Tu, and Guo-Wei Wei. Are
2d fingerprints still valuable for drug discovery? Physical Chemistry Chemical Physics, 22(16):8373—
8390, 2020.

[5] Hang Li. Deep learning for natural language processing: advantages and challenges. National Science
Review, 2017.

[6] Li Yuan, Yunpeng Chen, Tao Wang, Weihao Yu, Yujun Shi, Zihang Jiang, Francis EH Tay, Ji-
ashi Feng, and Shuicheng Yan. Tokens-to-token vit: Training vision transformers from scratch on
imagenet. arXiv preprint arXiv:2101.11986, 2021.

[7] Jaswinder Singh, Kuldip Paliwal, Jaspreet Singh, and Yaoqi Zhou. Rna backbone torsion and
pseudotorsion angle prediction using dilated convolutional neural networks. Journal of Chemical
Information and Modeling, 2021.

23



(8]

(9]

(10]

(1]

(12]

(13]

(14]
(15]

[16]

(17]

18]

(19]

20]
(21]
22]

23]

24]

[25]

[26]

27]

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.
Dong Chen, Kaifu Gao, Duc Duy Nguyen, Xin Chen, Yi Jiang, Guo-Wei Wei, and Feng Pan.
Algebraic graph-assisted bidirectional transformers for molecular property prediction. Nature Com-
munications, 12:3521, 2021.

David Weininger. Smiles, a chemical language and information system. 1. introduction to method-
ology and encoding rules. Journal of chemical information and computer sciences, 28(1):31-36,
1988.

Sheng Wang, Yuzhi Guo, Yuhong Wang, Hongmao Sun, and Junzhou Huang. Smiles-bert: large
scale unsupervised pre-training for molecular property prediction. In Proceedings of the 10th ACM
international conference on bioinformatics, computational biology and health informatics, pages 429—
436, 2019.

Paula Y Bruice. Organic Chemistry: Pearson New International Edition. Pearson Education Lim-
ited, 2014.

Arnaud Blondel and Martin Karplus. New formulation for derivatives of torsion angles and improper
torsion angles in molecular mechanics: Elimination of singularities. Journal of computational chem-
istry, 17(9):1132-1141, 1996.

Zhenxing Chi, Rutao Liu, Bingjun Yang, and Hao Zhang. Toxic interaction mechanism between
oxytetracycline and bovine hemoglobin. Journal of hazardous materials, 180(1-3):741-747, 2010.
Jitender Verma, Vijay M Khedkar, and Evans C Coutinho. 3d-gsar in drug design-a review. Current
topics in medicinal chemistry, 10(1):95-115, 2010.

Zixuan Cang and Guo-Wei Wei. Topologynet: Topology based deep convolutional and multi-task
neural networks for biomolecular property predictions. PLoS computational biology, 13(7):€1005690,
2017.

Zhenyu Meng, D Vijay Anand, Yunpeng Lu, Jie Wu, and Kelin Xia. Weighted persistent homology
for biomolecular data analysis. Scientific reports, 10(1):1-15, 2020.

Duc Duy Nguyen and Guo-Wei Wei. Dg-gl: Differential geometry-based geometric learning of molec-
ular datasets. International journal for numerical methods in biomedical engineering, 35(3):e3179,
2019.

Duc Duy Nguyen and Guo-Wei Wei. Agl-score: Algebraic graph learning score for protein-ligand
binding scoring, ranking, docking, and screening. Journal of chemical information and modeling,
59(7):3291-3304, 2019.

Afra Zomorodian and Gunnar Carlsson. Computing persistent homology. Discrete € Computational
Geometry, 33(2):249-274, 2005.

Herbert Edelsbrunner, John Harer, et al. Persistent homology-a survey. Contemporary mathematics,
453:257-282, 2008.

Konstantin Mischaikow and Vidit Nanda. Morse theory for filtrations and efficient computation of
persistent homology. Discrete & Computational Geometry, 50(2):330-353, 2013.

Maria-Veronica Ciocanel, Riley Juenemann, Adriana T Dawes, and Scott A McKinley. Topological
data analysis approaches to uncovering the timing of ring structure onset in filamentous networks.
Bulletin of Mathematical Biology, 83(3):1-25, 2021.

Rui Wang, Duc Duy Nguyen, and Guo-Wei Wei. Persistent spectral graph. International journal
for numerical methods in biomedical engineering, 36(9):e3376, 2020.

Jian Jiang, Rui Wang, Menglun Wang, Kaifu Gao, Duc Duy Nguyen, and Guo-Wei Wei. Boosting
tree-assisted multitask deep learning for small scientific datasets. Journal of chemical information
and modeling, 60(3):1235-1244, 2020.

Dawid Warszycki, Lukasz Struski, Marek Sémieja, Rafal Kafel, and Rafat Kurczab. Pharmacoprint:
A combination of a pharmacophore fingerprint and artificial intelligence as a tool for computer-aided
drug design. Journal of Chemical Information and Modeling, 61(10):5054-5065, 2021.

Wojciech M Czarnecki, Sabina Podlewska, and Andrzej J Bojarski. Robust optimization of svm
hyperparameters in the classification of bioactive compounds. Journal of cheminformatics, 7(1):1-
15, 2015.

24



(28]

29]

(30]

(31]

32]

(33]

34]

(35]

(36]

37]

(38]

(39]

(40]

[41]

(42]
[43]
(44]

[45]

Sabina Smusz, Stefan Mordalski, Jagna Witek, Krzysztof Rataj, Rafal Kafel, and Andrzej J Bojarski.
Multi-step protocol for automatic evaluation of docking results based on machine learning methods
a case study of serotonin receptors 5-ht6 and 5-ht7. Journal of chemical information and modeling,
55(4):823-832, 2015.

Kuo Hao Lee, Andrew D Fant, Jiging Guo, Andy Guan, Joslyn Jung, Mary Kudaibergenova,
Williams E Miranda, Therese Ku, Jianjing Cao, Soren Wacker, et al. Toward reducing herg affinities
for dat inhibitors with a combined machine learning and molecular modeling approach. Journal of
Chemical Information and Modeling, 61(9):4266-4279, 2021.

Hongsong Feng, Kaifu Gao, Dong Chen, Li Shen, Alfred J. Robison, Edmund Ellsworth, and
Guo Wei Wei. Machine Learning Analysis of Cocaine Addiction Informed by DAT, SERT, and
NET-Based Interactome Networks. Journal of Chemical Theory and Computation, 18(4):2703-2719,
2022.

Emma SJ Robinson, Jeffrey W Dalley, David EH Theobald, Jeffrey C Glennon, Marie A Pezze,
Emily R Murphy, and Trevor W Robbins. Opposing roles for 5-ht2a and 5-ht2c receptors in the
nucleus accumbens on inhibitory response control in the 5-choice serial reaction time task. Neu-
ropsychopharmacology, 33(10):2398-2406, 2008.

Ish K Khanna and Sivaram Pillarisetti. Buprenorphine—an attractive opioid with underutilized
potential in treatment of chronic pain. Journal of pain research, 8:859, 2015.

Jennifer C Veilleux, Peter J Colvin, Jennifer Anderson, Catherine York, and Adrienne J Heinz.
A review of opioid dependence treatment: pharmacological and psychosocial interventions to treat
opioid addiction. Clinical psychology review, 30(2):155-166, 2010.

Tara Carney, Marie Claire Van Hout, lan Norman, Siphokazi Dada, Nandi Siegfried, and Charles DH
Parry. Dihydrocodeine for detoxification and maintenance treatment in individuals with opiate use
disorders. Cochrane Database of Systematic Reviews, (2), 2020.

Karen Raynor, Haeyoung Kong, Yan Chen, KAZUKI Yasuda, Lei Yu, Graeme I Bell, and TERRY
Reisine. Pharmacological characterization of the cloned kappa-, delta-, and mu-opioid receptors.
Molecular pharmacology, 45(2):330-334, 1994.

Amy Hauck Newman, Therese Ku, Chloe J Jordan, Alessandro Bonifazi, and Zheng-Xiong Xi. New
drugs, old targets: tweaking the dopamine system to treat psychostimulant use disorders. Annu.
Rev. Pharmacol. Tozicol, 61:609-628, 2021.

Simon MN Efange, Deborah C Mash, Anil B Khare, and Quinjie Ouyang. Modified ibogaine
fragments: Synthesis and preliminary pharmacological characterization of 3-ethyl-5-phenyl-1, 2, 3,
4, 5, 6-hexahydroazepino [4, 5-b] benzothiophenes. Journal of medicinal chemistry, 41(23):4486—
4491, 1998.

Xaver Koenig and Karlheinz Hilber. The anti-addiction drug ibogaine and the heart: a delicate
relation. Molecules, 20(2):2208-2228, 2015.

Yuta Hozumi, Rui Wang, and Guo-Wei Wei. Ccp: Correlated clustering and projection for dimen-
sionality reduction. arXiv preprint arXiv:2206.04189, 2022.

Leland MclInnes, John Healy, and James Melville. Umap: Uniform manifold approximation and
projection for dimension reduction, 2018.

Anna Gaulton, Louisa J Bellis, A Patricia Bento, Jon Chambers, Mark Davies, Anne Hersey, Yvonne
Light, Shaun McGlinchey, David Michalovich, Bissan Al-Lazikani, et al. Chembl: a large-scale
bioactivity database for drug discovery. Nucleic acids research, 40(D1):D1100-D1107, 2012.

Marek Smieja and Dawid Warszycki. Average information content maximization—a new approach
for fingerprint hybridization and reduction. PloS one, 11(1):e0146666, 2016.

Rundong Zhao, Menglun Wang, Jiahui Chen, Yiying Tong, and Guo-Wei Wei. The de rham—hodge
analysis and modeling of biomolecules. Bulletin of mathematical biology, 82(8):1-38, 2020.

Jiahui Chen, Rundong Zhao, Yiying Tong, and Guo-Wei Wei. Evolutionary de rham-hodge method.
Discrete and continuous dynamical systems. Series B, 26(7):3785, 2021.

Franz W Kamber and Philippe Tondeur. de rham-hodge theory for riemannian foliations. Mathe-
matische Annalen, 277(3):415-431, 1987.

25



[46] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in neural information processing
systems, pages 5998-6008, 2017.

[47] Dong Chen, Jiaxin Zheng, Guo-Wei Wei, and Feng Pan. Extracting predictive representations from
hundreds of millions of molecules. The Journal of Physical Chemistry Letters, 12(44):10793-10801,
2021.

26



	1 Introduction
	2 Results
	2.1  Overview of topology-inferred drug addiction learning (TIDAL) 
	2.2  Overview of persistent Laplacian 
	2.3 Overview of results
	2.3.0.1 Drug addiction related classifications dataset 
	2.3.0.2 DAT and hERG dataset classifications
	2.3.0.3 DAT and hERG regression
	2.3.0.4 Results for 5-HT2A, 5-HT2C, and 5-HT6 datasets 
	2.3.0.5 Results for all_DAT_binding, all_DAT_uptake, and hERG_binding datasets 



	3 Discussion
	3.1 Side effect and repurposing
	3.2 Evaluation of existing anti-addiction medications
	3.3  Impact of persistent Laplacian-based fingerprints 
	3.4 Predictive power of bidirectional transformer-based fingerprints
	3.5 Residue-Similarity (R-S) scores 

	4 Methods
	4.1 Drug addiction related, DAT, and hERG datasets
	4.2 Persistent Laplacian-based molecular fingerprints (PL-FPs)
	4.3 Deep bidirectional transformer fingerprints (BT-FPs)
	4.4 Ensemble-assisted neural network (EANN)
	4.5 Residue-Similarity (R-S) scores 


