1diosnuely Joyiny 1duosnuely Joyiny 1diosnuely Joyiny

1duosnuely Joyiny

Author manuscript
Comput Biol Med. Author manuscript; available in PMC 2023 June 01.

-~ HHS Public Access
«

Published in final edited form as:
Comput Biol Med. 2023 June ; 160: 106921. doi:10.1016/j.compbiomed.2023.106921.

Machine-learning Repurposing of DrugBank Compounds for
Opioid Use Disorder

Hongsong Feng', Jian Jiang?!, Guo-Wei Wei'34"
"Department of Mathematics, Michigan State University, Ml 48824, USA.

2Research Center of Nonlinear Science, School of Mathematical and Physical Sciences, Wuhan
Textile University, Wuhan, 430200, P R. China

3Department of Electrical and Computer Engineering, Michigan State University, Ml 48824, USA.
“Department of Biochemistry and Molecular Biology, Michigan State University, Ml 48824, USA.

Abstract

Opioid use disorder (OUD) is a chronic and relapsing condition that involves the continued and
compulsive use of opioids despite harmful consequences. The development of medications with
improved efficacy and safety profiles for OUD treatment is urgently needed. Drug repurposing is
a promising option for drug discovery due to its reduced cost and expedited approval procedures.
Computational approaches based on machine learning enable the rapid screening of DrugBank
compounds, identifying those with the potential to be repurposed for OUD treatment. We
collected inhibitor data for four major opioid receptors and used advanced machine learning
predictors of binding affinity that fuse the gradient boosting decision tree algorithm with

two natural language processing (NLP)-based molecular fingerprints and one traditional 2D
fingerprint. Using these predictors, we systematically analyzed the binding affinities of DrugBank
compounds on four opioid receptors. Based on our machine learning predictions, we were able

to discriminate DrugBank compounds with various binding affinity thresholds and selectivities
for different receptors. The prediction results were further analyzed for ADMET (absorption,
distribution, metabolism, excretion, and toxicity), which provided guidance on repurposing
DrugBank compounds for the inhibition of selected opioid receptors. The pharmacological effects
of these compounds for OUD treatment need to be tested in further experimental studies and
clinical trials. Our machine learning studies provide a valuable platform for drug discovery in the
context of OUD treatment.
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1 Introduction

Opioid use disorder (OUD) is a chronic illness characterized by periods of relapse

and remission, causing significant distress and impairment [1]. Despite the harmful
consequences, individuals with opioid addiction experience strong cravings to obtain and
use opioids. In the United States, three million people have experienced or are currently
struggling with OUD, while globally the number is 16 million [2]. The opioid epidemic
has raised public awareness and led to significant resources being invested in combating
the problem. Effective medications and behavioral interventions have played a key role

in preventing relapse, promoting longer periods of abstinence, and reducing mortality and
morbidity [3].

Currently, the US Food and Drug Administration (FDA) has approved three medications

for treating Opioid Use Disorder (OUD): methadone, buprenorphine, and naltrexone. These
medications target the mu, kappa, and delta opioid receptors, which are associated with
different pharmacological effects. The three major targets for opioids are the mu (MOR),
kappa (KOR), and delta (DOR) opioid receptors. MOR is linked to euphoria, drug use
maintenance, craving, and relapse [4]. KOR produces dysphoric effects and anti-reward
effects [5], while DOR induces anxiolytic effects and attenuates depressive symptoms [6].
Two other important receptors, the nociceptin opioid receptor (NOR) and opioid growth
factor receptor (ZOR), have not been studied extensively. Methadone, a full agonist of MOR,
reduces withdrawal and craving symptoms, has a longer half-life, and is less reinforcing
than other opioids [7]. However, it carries the risk of respiratory depression in overdose.
Buprenorphine, a partial MOR agonist and KOR antagonist, can suppress withdrawal,
protect against overdose [8], and has a reduced risk of respiratory depression compared

to methadone. Naltrexone, a MOR and KOR antagonist, has limited utility due to poor
adherence [9] but could contribute to mood improvements in OUD patients [10]. Naltrexone
can reduces craving, while naloxone, an opioid antagonist, is used to reverse respiratory
depression in opioid overdose. They have no effects such as sedation, analgesia, respiratory
depression, and euphoria [1].

Although current medications are effective in treating OUD, relapse and remission remain
common due to neurobiological changes and opioid receptor tolerance caused by repeated
opioid abuse [4]. The traditional process of developing new drugs is expensive and time-
consuming, taking over a decade and costing billions of dollars. However, advances in
technology and innovation in drug development, such as drug repurposing, can accelerate
this process. Drug repurposing, which investigates an existing drug for a new therapeutic
indication other than its original intended purpose, has been successful in several instances
and can reduce development costs and timelines [11]. To identify repurposable drug
candidates, computational and experimental approaches have been proposed and used
synergistically. Computational approaches are cost-effective and promote the discovery
for more repurposable candidates [12—14]. Among the various computational approaches,
molecular docking and other binding affinity predictors based on molecular dynamics
(MD) simulations have demonstrated success in numerous applications in biochemistry,
including protein-ligand docking and drug discovery. Physics-based models have been
employed to comprehend the molecular interactions involved in the binding process [15, 16].
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However, these models are not suitable for handling exponentially growing and increasingly
diverse experimental datasets. On the other hand, machine learning predictions employ
nonlinear regression and utilize available datasets to reveal underlying patterns within them.
Given the current massive and complex data challenges, machine learning screening often
outperforms molecular docking/MD predictions and enables the rapid screening of potential
drug candidates in large chemical libraries.

With the accumulation of genetic and structural databases, machine learning algorithms can
accelerate the discovery of new repurposable drugs including those for OUD treatment.

As previously mentioned, opioid receptors, specifically MOR, KOR, and DOR, are crucial
targets for developing medications to treat OUD. Binding affinity is a crucial factor for

the efficacy of drugs in exerting their pharmacological effects. Several approved agonist/
antagonist medications for OUD treatment have demonstrated high affinities for displacing
opioids from the receptors, which can alleviate withdrawal symptoms and drug cravings
[17].

Machine learning techniques can be utilized to predict the binding effects of compounds to
different opioid receptors and identify potential repurposable drugs. The ChREMBL database
[18] contains inhibitor compounds with experimentally determined binding labels that serve
as the foundation for machine learning predictions of binding affinity. The development of
molecular descriptors has been enhanced by natural language processing (NLP) [19, 20]
and mathematically-based 3D representations [21]. These approaches can extract important
molecular physical and stereochemical information, thus improving the descriptive and
predictive ability of machine learning methods for virtual screening of small molecules and
facilitating drug repurposing predictions.

DrugBank (version 5.1.10) is a publicly available database of pharmacological agents

that has a collection of 8865 compounds, including 1806 approved drugs and 7059
investigational or off-market drugs [22]. It provides convenient access to comprehensive
molecular information about current drugs and their mechanisms, as well as interactions
with targets, which facilitates efficient drug discovery and development. It has been
extensively used in repurposing studies to find therapeutic candidates for various diseases
[14, 23, 24], including COVID-19 [25, 26], with in silico or in vitro investigations. A recent
study proposed a machine-learning modeling approach to identify new analgesic opioids
with the aid of the PubChem portal and DrugBank [27].

In this work, to assess the potential of repurposing DrugBank compounds as medications
for OUD, we collected four sets of inhibitor data for the four main opioid receptors: MOR,
KOR, DOR, and NOR. Using this curated data, we constructed machine learning (ML)
models with two NLP-based fingerprints generated by transformer and autoencoder models,
as well as one traditional 2D fingerprint ECFP. These models exhibited strong predictive
power in the five-fold cross-validation tests. With these ML models, we systematically
examined the binding affinities of these DrugBank drugs with various binding thresholds.
As the pharmacological effects of drugs in treating OUD are closely linked to the specific
functions of different opioid receptors [4], we conducted systematic ML predictions and
analysis to identify the DrugBank compounds that can be selectively active at specific
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opioid receptors. Based on these predictions, we identified a few drugs with satisfactory
binding energies at certain binding affinity thresholds or selectivities. We also performed
molecular docking for a few promising drugs to understand their interactions with target
opioid receptors. Furthermore, we employed ML-based models to evaluate some of the
FDA-approved OUD drugs or our ML-predicted promising drugs on their pharmacokinetic
properties, including absorption, distribution, metabolism, excretion, and toxicity (ADMET).
With satisfactory inhibition affinities on the receptors and desired ADMET properties, these
identified drugs require further animal experiments to evaluate their safety and efficacy in
treating OUD. Our machine learning studies yield valuable results for drug discovery in
OUD treatment.

2 Results

21

Figure 1 outlines the workflow of our machine learning-based virtual screening of the
DrugBank database for the treatment of opioid use disorder. Our study builds four
machine learning models for opioid receptors MOR, KOR, DOR, and NOR. These models
are used to screen 8865 compounds in the DrugBank database for their potency. The
resulting promising compounds are further screened for hERG side effects and ADMET
pharmacokinetic properties.

Opioid receptors and binding affinity predictors

MOR, KOR, DOR, and NOR are four crucial opioid receptors that have a significant impact
on the development of OUD. These receptors are the primary pharmacological targets

for the three FDA-approved drugs for OUD treatment: methadone, buprenorphine, and
naltrexone. These medications are categorized as opioid replacement therapy (ORT) drugs,
which involve substituting an opioid with a less euphoric opioid that has a longer duration of
action. Naloxone is another medication commonly used to mitigate the risk of overdose.

Our aim was to identify drugs with potential for use in opioid replacement therapy (ORT)
from the DrugBank [22] database. To achieve this, we collected inhibitor datasets for

the four major opioid receptors from the ChREMBL database and built machine learning
(ML) models to predict the binding effects of DrugBank compounds on these receptors.
Additionally, we considered the hERG side effect in our analysis, as it is a critical potassium
channel that must be avoided during drug discovery due to the risk of fatal arrhythmia [28].
To build an appropriate binding affinity (BA) predictor for hRERG, we collected a hERG
inhibitor dataset. Our machine learning models demonstrated reliable predictive power,
achieving Pearson correlation coefficients (R) of 0.842, 0.862, 0.866, and 0.783, and root
mean square errors (RMSE) of 0.969, 0.960, 0.944, and 0.961 kcal/mol for the MOR, KOR,
DOR, and NOR inhibitor datasets, respectively. The hERG dataset model showed an R

0f 0.786 and an RMSE of 0.773 kcal/mol in the five-fold cross validation. Using these
models, we systematically evaluated the binding affinities of approved and investigational or
off-market drugs in the DrugBank database while avoiding drugs that may have side effects
on hERG.

In this study, our focus was on identifying DrugBank compounds that could potentially
act as inhibitors of MOR, KOR, or DOR, since these targets are primarily modulated by
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approved or commonly used medications. To ensure safety, we used a binding affinity (BA)
threshold of —8.18 kcal/mol (K;= 1M) to screen out compounds with potential hERG side
effects. For identifying potent inhibitors of opioid receptors, we applied thresholds of —9.54
kecal/mol (K;= 0.12M), which is a widely accepted threshold for high affinity [29], as well
as more stringent thresholds of —10 kcal/mol and —11 kcal/mol.

2.2 Potential inhibitors of opioid receptors in the DrugBank

In order to find potential drugs for OUD treatment, we utilized our machine learning
predictors to evaluate the binding affinities of drugs in the DrugBank database on the

three opioid receptors. Since the 3D structures of these receptors are highly similar, a

single compound could bind to multiple opioid receptors. We also noted that FDA-approved
medications for OUD treatment could affect more than one of MOR, KOR, and DOR.

Our machine learning predictions identified DrugBank compounds that bound to the

three receptors. The reliability scores of our machine learning predictions are included in
parentheses, with higher scores indicating more reliable predictions.

2.2.1 FDA-approved drugs predicted to be effective on opioid receptors—
Table 1 showcases 15 FDA-approved compounds in DrugBank, which our machine learning
models predicted to be effective against all three opioid receptors. We distinguished the three
sets of drugs using BA thresholds of —11, —10, and —9.54 kcal/mol. Here’s a brief overview
of the 15 drugs:

The first four drugs listed in Table 1 are predicted to have high potency on all three
receptors with binding energies less than —11 kcal/mol. Our predictions assigned them
reliability scores of up to 1 on most of the opioid receptors, indicating that these drugs

are included in the training sets of our machine learning models. The predicted high
potency of these drugs on the three receptors suggests that they are validated opioids with
proven efficacy. Buprenorphine, one of the three FDA-approved medications for medication-
assisted treatment (MAT) for opioid use disorder [30], is a partial agonist with high affinity
for MOR and acts as a partial agonist or functional antagonist of KOR, as well as a weak
DOR antagonist [4]. Compared to the FDA-approved drug methadone, buprenorphine has a
lower ceiling effect when activating MOR, resulting in less respiratory depression [4]. It is
often combined with naloxone to minimize the risk of misuse [31].

Naldemedine is an FDA-approved drug used for treating opioid-induced constipation in
adults [32]. It functions as a peripherally acting antagonist of MOR, which means it blocks
opioid receptors outside of the brain and spinal cord. However, its ability to penetrate the
blood-brain barrier and enter the central nervous system is limited, which may render it
ineffective for treating opioid dependence or addiction.

Samidorphan is an opioid antagonist that is used to treat schizophrenia and bipolar disorder
[33]. It acts as a MOR antagonist and a partial agonist at KOR and DOR [34]. Research on
samidorphan has also explored its potential for treating alcoholism and cocaine addiction.
When combined with buprenorphine, it produces antidepressant effects without the typical
MOR-related euphoria or substance dependence [35].
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Levorphanol is an opioid medication that has been used to treat moderate to severe pain [36].
It primarily acts as an agonist of MOR but is also an agonist of DOR, KOR, and NOR [37].

Drugs five to nine in Table 1 were predicted to have binding affinities less than —10 kcal/mol
but greater than —11 kcal/mol on the three receptors. Levallorphan is an antagonist of MOR
and an agonist of KOR [38]. It blocks the effects of stronger agents such as morphine

while simultaneously producing analgesia [39], and was used to reverse the respiratory
depression induced by opioid analgesics. Butorphanol is a synthetic opioid analgesic that
acts as a partial agonist and antagonist at the MOR, as well as a partial agonist at the KOR
[40]. It exhibited effectiveness in reducing post-operative shivering and is commonly used

in the management of migraines [41]. Naltrexone is another FDA-approved drug used for
the treatment of OUD. It works as a non-selective opioid receptor antagonist and renders
subsequent opioid ingestion ineffective, reducing opioid withdrawal symptoms in dependent
individuals [4]. Its effectiveness in the management of alcohol dependence or OUD relies on
reduced cravings and feelings of euphoria associated with substance use disorder. Nalmefene
is an agonist of MOR and DOR and a partial agonist of KOR. Nalmefene showed
effectiveness in counteracting the respiratory depression produced by an opioid overdose
[42] and is also used in the management of alcohol dependence. Hydromorphone is an
opioid used to treat moderate to severe pain, with one of its major hazards being dose-related
respiratory depression. Injectable hydromorphone was also found to be effective for patients
with severe opioid use disorder and might provide greater benefit than the FDA-approved
drug methadone [43]. These drugs are opioids, according to their reliability scores, which
are mostly up to 1 on the three receptors.

Drugs ten to fifteen in Table 1 were predicted to have binding energies ranging from —10
kcal/mol to —9.54 kcal/mol. Naloxone is a non-selective and competitive opioid receptor
antagonist commonly used to counteract acute opioid intoxication-induced respiratory
depression [42]. Oxymorphone is an opioid analgesic indicated for the management of
severe pain, including post-surgical pain. Both drugs were included in our training sets,

as indicated by their reliability scores of 1. The remaining four drugs, somatostatin,
pentetreotide, lurbinectedin, and dotatate, were not present in our training set. However,
their predicted high binding energies suggest that they could have potential in the treatment
of OUD.

2.2.2 Investigational drugs predicted to be effective on opioid receptors—
Through our ML models, we have identified 19 investigational drugs with potential as
effective inhibitors of three opioid receptors, presented in Table 2. These drugs were
categorized based on their predicted binding affinities, with thresholds of —11, —10, and
—9.54 kcal/mol. Although many of these drugs were not present in our training sets due

to their reliability scores not being equal to 1, the first seven drugs have been reported to
have potential uses as opioid analgesics or in the treatment of OUD. Despite the exclusion
from the training sets, our models were still able to accurately distinguish these effective
inhibitors, highlighting the predictive power of our ML models. Other drugs with high
prediction reliability scores may also have potential as opioid medications.
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Although binding affinity is an essential factor in drug development, other properties such as
toxicity, partition coefficient (log P), solubility (log S), synthesizability, pharmacodynamics,
and pharmacokinetics must also be considered. Developing medications with the desired
efficacy for treating OUD is a complex task, and investigational drugs may face difficulties
in meeting these critical characteristics. One significant issue is the limited ability of opioid
compounds to cross the blood-brain barrier and reach the opioid receptors in the central
nervous system, which may limit their effectiveness in treating OUD. Additionally, many
opioid medications produce euphoric effects due to their stimulation of MOR, which can
prevent them from being suitable analgesics or medications for OUD. Therefore, the agonist
or antagonist effects on specific opioid receptors are crucial factors in inducing therapeutic
benefits of medications for OUD treatment, and further research is needed in OUD drug
discovery. The FDA-approved drugs can provide better starting points for repurposing drugs,
and investigational drugs require further scrutiny of their druggability profiles before being
considered for clinical trials or approval.

2.2.3 Screening DrugBank compounds with various selectivity options—The
opioid receptors share high similarities in protein sequences or 3D structures, meaning that
an inhibitor compound can have binding effects on multiple receptors. Table 1 and 2 present
the DrugBank compounds that were predicted to be potent at MOR, KOR, and DOR. When
designing drugs, selectivity is a crucial property that enables the drug to produce the desired
therapeutic effect while minimizing undesirable side effects.

Using our models, we have identified several DrugBank compounds that have demonstrated
selective effectiveness on one or more of the opioid receptors, namely MOR, KOR, and
DOR. In addition, we have found three collections of FDA-approved drugs in DrugBank that
were predicted to be potent on two of the three receptors, but weak on the remaining one.
Tables 3, 4, and 5 present the FDA-approved drugs that were predicted to be potent at the
three pairs of receptors, MOR-DOR, MOR-KOR, and DOR-KOR, respectively. A potency
threshold of —9.54 kcal/mol was utilized.

Table 3 includes a few drugs, such as alvimopan and eluxadoline, which were potent at
MOR and DOR with similarity scores greater than 0.8 according to our predictions. These
drugs have been reported to interact with opioid receptors at the molecular level, affecting
activities in the nervous system. Other drugs, including morphine, pentazocine, nalbuphine,
dezocine, and methylnaltrexone, listed in Table 4, as well as tramadol in Table 5, also
showed high potency on the two receptors in each pair.

In addition, some drugs, such as naloxegol, used for treating opioid-induced constipation,
and gonadotropin-releasing hormone agonist drugs, including sincalide, nafarelin,
triptorelin, and goserelin, showed relatively high prediction scores. However, it remains
uncertain whether these hormone agonists can impact opioid receptors and function as
medications for treating OUD. Tables Tables S4 to S10 in the Supporting Information
provide additional DrugBank compounds that may be selectively effective on these
receptors.
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Selective inhibition of KOR is a highly anticipated pharmacotherapeutic intervention for
substance use disorders [44]. KOR has anti-reward effects in addiction, and heightened
stress during withdrawal and abstinence states can enhance KOR function, leading to
dysphoric mood and potential relapse [4]. Therefore, KOR antagonists could reverse
dysphoria and reduce drug-seeking behavior during withdrawal and abstinence. Both
naltrexone and naloxone are KOR antagonists that are effective for OUD treatment. Using
our machine-learning predictions, we identified seven FDA-approved drugs and thirty-one
investigational drugs that could act as KOR blockers, as shown in Tables S7 and S8.

The design of KOR antagonists provides a promising direction for OUD treatment.

Other therapies using opioid agonists or partial agonists may still be useful for OUD
treatment. Opioid agonist therapy utilizing drugs such as methadone can reduce euphoria
and withdrawal symptoms, while partial agonists like buprenorphine have a weaker effect
on respiratory depression [4]. The antagonist naltrexone or naloxone is also used to
improve treatment with buprenorphine. We obtained repurposing predictions of DrugBank
compounds for MOR and included the promising drugs in Table S6 in the Supporting
Information. In addition, DrugBank compounds predicted to be selectively potent at KOR
are presented in Table s9 and S10.

2.2.4 Molecular interactions between opioid receptors and potent inhibitors
—Understanding how drugs bind to their targets is crucial for comprehending the molecular
mechanism of drug-target interactions [45]. To predict the binding of several FDA-approved
and investigational drugs to opioid receptors, we utilized the molecular docking software
AutoDock Vina [46] in this study.

Buprenorphine is an FDA-approved drug used to treat OUD that was shown to be potent

at MOR, KOR, and DOR in our predictions. Figure 2b reveals a hydrogen bond between
buprenorphine and MOR, formed by the nitrogen atom of buprenorphine and the hydrogen
in the hydroxyl group on the residue Tyr326. Similarly, Figure 2c shows one hydrogen bond
between buprenorphine and KOR, formed by the hydrogen in the hydroxyl group of the drug
and an oxygen atom of residue Ile304. No hydrogen bonds were observed in the molecular
interactions of buprenorphine with DOR, as shown in Figure 2d. Hydrophobic interactions
may account for the drug’s promising binding affinity with DOR.

Nalmefene, an MOR antagonist and KOR partial agonist, has been demonstrated to
effectively counteract opioid overdose-induced respiratory depression [42]. The docking
poses displayed in Figure 3 reveal that nalmefene forms hydrogen bonds with KOR and
DOR. As seen in Figure 3c, the drug forms three hydrogen bonds with KOR, one between a
hydrogen atom from a hydroxyl in the residue Tyr139 and one oxygen atom on the drug, and
two between a hydrogen atom in one hydroxyl with the nitrogen atom on residual GIn115
and oxygen atom on residual Asp138 of KOR. Figure 3d shows one hydrogen bond between
a hydrogen atom in one hydroxyl on the drug and an oxygen atom on residual Asp128

in DOR. The molecular interactions between the drug and MOR are mainly hydrophobic
bonds, as shown in Figure 3a.
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Dihydroetorphine is a promising investigational drug that has shown potential to be effective
on MOR, KOR, and DOR. This potent opioid analgesic is mainly used in China and has
gained attention as a substitute maintenance drug for treating opioid addiction, similar to
buprenorphine, which is widely used in western nations [47]. Its predicted binding affinities
on MOR, KOR, and DOR are —11.9, —11.97, —11.74 kcal/mol, respectively. The docking
mode of dihydroetorphine on MOR is shown in Figure 4b. Although no hydrogen bonds
were found, the binding energies may be attributed to hydrophobic interactions. The docking
poses of dihydroetorphine on KOR shown in Figure 4c¢ indicate the formation of two
hydrogen bonds between the N atom of the drug and hydrogen atoms from two hydroxyls
on the residue Asp138 of KOR. One hydrogen bond between dihydroetorphine and DOR is
shown in Figure 4d, which is formed between an oxygen atom on the drug and a hydrogen
atom in a hydroxyl on the residue Ile304.

Another investigational drug that has shown high potency on all three receptors is
cyprenorphine, which has mixed agonist-antagonist effects on opioid receptors similar to
those of buprenorphine. Studies have reported that cyprenorphine can block the binding of
morphine and etorphine to these opioid receptors [48]. The binding modes of cyprenorphine
on the three receptors are illustrated in Figure 5. No hydrogen bonds were observed between
the drug and two of the receptors, namely MOR and DOR, as shown in Figure 5b and 5d.
Their binding affinities may be mainly attributed to hydrophobic interactions. However, in
Figure 5c, a single hydrogen bond was observed between the drug and KOR, formed by the
nitrogen atom in the drug with a hydrogen atom in the hydroxyl of residue Asp138.

2.3 ADMET analysis

ADMET (absorption, distribution, metabolism, excretion, and toxicity) plays a critical

role in drug discovery and development as it encompasses a wide range of attributes

related to the pharmacokinetic studies of a compound. A drug candidate with satisfactory
therapeutic efficacy must also meet appropriate ADMET criteria. Accurate predictions of
ADMET could reduce the risk of late-stage failure in drug design. Therefore, to identify
promising candidates for treating OUD, screening for ADMET properties is necessary.

We used ADMET]lab 2.0 solvers [49, 50] for machine-learning predictions, and their
documentation provides optimal ranges for these properties, which are detailed in Table S3
in the supporting information. We mainly focused on thirteen indexes of ADMET properties
in their predictions.

The ADMET properties of three FDA-approved and three investigational drugs were
predicted using ADMETIab servers, and the predictions are shown in Figure 6.
Buprenorphine, which has been used to treat OUD, was predicted to have slightly low
profiles in the logP (log of octanol/water partition coefficient), logD (logP at physiological
pH 7.4), and nRing (number of rings) indexes. The drug’s most severe side effect

is respiratory depression or decreased breathing. The other two FDA-approved drugs,
nalmefene and naloxone, were predicted to be in the satisfactory ranges of all 13 indexes and
are useful in counteracting the effects of opioid overdose. The three investigational drugs,
dihydroetorphine, cyprenorphine, and diprenorphine, were predicted to have slightly poor
values for the logP and nRing indexes. They had similar predictions across all the indexes,
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which is understandable since these drugs share certain similarities in their molecular
structures.

3 Discussion

3.1 Performance comparisons of molecular fingerprints

The performance of our ligand-based machine learning models relies heavily on the
descriptive abilities of molecular fingerprints. In previous research, we examined the
predictive accuracy of traditional 2D fingerprints in forecasting various pharmacological
characteristics, such as solubility, partition coefficient, protein-ligand binding affinity, and
toxicity [51]. These fingerprints have proved valuable in drug discovery [26]. Recently, deep
learning models based on natural language processing (NLP) have been created to extract
molecular descriptors [19, 20], which are also beneficial for machine learning predictions.
For this study, we employed one traditional 2D fingerprint and two types of NLP-based
molecular fingerprints to build our machine learning models.

We conducted a comparative analysis of the predictive accuracy of three traditional 2D
fingerprints and two NLP-based fingerprints for creating machine learning models. We
generated the NLP-based fingerprints using transformer (TF) and autoencoder (AE) models,
while the traditional 2D fingerprints were ECFP, Estatel, and Estate2. We employed the
five inhibitor datasets for opioid receptors and hERG in our modeling comparisons. In
addition to modeling with individual fingerprints, we obtained predictions by averaging the
predictions from several individual models. These outcomes are referred to as consensus
predictions or consensus models, resulting in six models in this study. We constructed three
individual models using TF, AE, and ECFP fingerprints, and three consensus models using
TF and AE, TF, AE, and ECFP, and ECFP, Estatel, and Estate2. Their performances were
compared through five-fold cross-validation. The detailed comparisons can be found in
Figure 8 and Table S2 in the Supporting information.

Of the six models, the consensus model employing TF, AE, and ECFP fingerprints
demonstrated the best performance, achieving the highest R values in modeling four out of
the five datasets. It exhibited significant improvements compared to models using individual
fingerprints or other consensus models. In our previous research [51], the consensus model
with ECFP, Estatel, and Estate2 displayed high-quality performance in predicting binding
affinity. However, the consensus approach with TF, AE, and ECFP proved to be a better
option than the consensus model with ECFP, Estatel, and Estate2. Among the three
individual models, the ECFP model had higher R values for four out of the five tasks and
better RMSE values for three out of the five tasks. Despite the emergence of NLP-based
fingerprints [19, 20], ECFP fingerprints still demonstrated exceptional predictive ability in
modeling the five tasks. They even outperformed the consensus model with TF, AE, and
ECFP in terms of R and RMSE values on one and two of the five datasets, respectively.
Ultimately, the consensus models with TF, AE, and ECFP fingerprints were chosen to
predict the binding affinities of DrugBank compounds on the opioid receptors and hERG
since they exhibited the best overall performance.
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3.2 \Virtual screening of hERG side effects

The hERG potassium channel is a prime target for drugs with diverse structures that can
block it and potentially lead to fatal heart irregularities. Hence, evaluating hERG inhibition
is crucial in drug development, and machine learning models are excellent tools for virtual
screening of hERG side effects. Our machine learning model for hERG inhibition exhibited
robust predictive power with R values of 0.786 and RMSE of 0.773 in the five-fold cross-
validation. In this study, we used a threshold of —8.18 kcal/mol (K;= 1M) to differentiate
hERG blockers from non-blockers. Based on our predictions, 408 DrugBank compounds
did not pass the hERG screening, with predicted binding affinities (BAs) of less than —8.18
kcal/mol on hERG. The remaining 8457 DrugBank compounds provide a vast pool of drug
candidates for repurposing in OUD treatment. Consequently, we predicted their binding
energies on the four major opioid receptors.

3.3 Model reliability associated with label distributions

The predictive performance of our ligand-based models relies heavily on the descriptive
capabilities of molecular fingerprints. It is essential to have high-quality data with a wide
distribution of labels and high diversity of molecular compounds to reduce bias and improve
real-world predictions. Our five models exhibited strong predictive power with superior R
and RMSE values in the five-fold cross-validation tests, indicating their reliability as binding
affinity predictors. Figure S1 in the information section displays the label distributions

of the five training sets, which were reasonable except for the NOR dataset. The NOR
dataset had low-quality labels with a high percentage of high-affinity values, resulting in

a machine-learning model that consistently yields inaccurate predictions in the direction of
high-affinity.

In Figure 8c, the five-fold cross-validation predictions for the five models are shown, with
the predicted BAs from the NOR model having distributions consistent with those of the
experimental BAs. However, when estimating the BAs of DrugBank compounds on NOR,
our machine-learning model could give overestimated predictions due to the low similarity
score of DrugBank compounds with the NOR dataset. The DrugBank compounds had
relatively high similarity scores with the MOR, KOR, and DOR inhibitor datasets, but a
lower score with the NOR dataset. Therefore, we are only concerned with the binding
effect of DrugBank compounds with similarity scores > 0.8 on NOR, and the DrugBank
compounds with predicted high BAs are listed in Table S11 in the Supporting information.
Unfortunately, addressing the bias in the NOR data or machine-learning prediction is
challenging for us.

3.4 Dataset element distributions

Understanding the data distribution is important for featurization. Additionally, the similarity
among data distribution is also an important concept in machine learning, as it can impact
the performance of various algorithms and techniques. In machine learning, the assumption
is often made that the training data is representative of the data that the model will be
applied to in the future. This assumption is based on the idea that if the training data is
similar to the test data, the model will be able to generalize well to new, unseen data. If the
data distribution in the training set is significantly different from the distribution in the test
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set, the model’s performance may suffer. This is because the model will be trained on data
that does not represent the types of inputs it will encounter in the future. In such cases, the
model may fail to generalize well and may perform poorly on the test set.

In Figure 7, we analyzed the element distributions of MOR, KOR, DOR, NOR, hERG, and
DrugBank datasets. The x-axis represents the percentage of a specific element in a molecule,
while the y-axis shows the density of percentages. The elements H, C, N, and O are the most
dominant elements observed in these distributions. We show that MOR, KOR, DOR, NOR,
and hERG datasets have nearly identical element distributions for their major elements.
These similarities ensure the accuracy and reliability of the our cross-predictions presented
in this work. We further analyzed the element distribution of molecules in the DrugBank, as
show the last panel of Figure 7. We noted that the element distribution of DrugBank dataset
is also very similar to those of other five datasets, ensuring our machine learning models’
ability for repurposing the DrugBank compounds for opioid use disorder. More information
about dataset element distributions is given in Table S1 in the Supporting information.

4 Methods

41

Data preparation

To build our machine learning models, we obtained the inhibitor datasets for MOR, KOR,
DOR, and hERG from the ChEMBL database, which include SMILES strings of molecular
compounds paired with corresponding labels. The original labels for the data points were
IC50 or K;. To convert these experimental labels to binding affinities (BAs) for our models,
we used the formula BA=1.3633 x log;( Kj (kcal/mol). ICsq labels were approximated to
K, values using the relation K =IC50/2, as recommended by Kalliokoski [52]. DrugBank
database (version 5.1.10) has 1806 approved drugs and 7059 investigational or off-market
drugs, giving rise to a total 8865 compounds [22]. A summary of all the datasets used in this
study is presented in Table 6.

4.2 Molecular fingerprints

The molecular inhibitors in the five datasets were represented by their 2D SMILES

strings, from which three types of molecular features were generated. These features were
created using two natural language processing (NLP)-based techniques and a traditional

2D fingerprint. The transformer and sequence-to-sequence autoencoder algorithms were
used to generate two types of fingerprints, referred to as TF-FP and AE-FP, respectively.
These algorithms utilized pretrained models to generate latent embedding vectors of length
512 from the SMILES strings. Additionally, the traditional 2D fingerprint used was ECFP
(extended-connectivity fingerprints), which was generated using the RDKit package [53].
The ECFP used in this study had a length of 2048. Further details about the three molecular
fingerprints are provided below.

4.21 Sequence-to-sequence auto-encoder—A recent study introduced an
unsupervised learning model that can extract molecular information from SMILES
representations using data-driven techniques [20]. This model uses a sequence-to-sequence
autoencoder, which consists of an encoder and a decoder neural network, to compress
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the molecular information into a latent representation. Physicochemical information can
be encoded in the intermediate vectors during the translation process, and the resulting

pretrained model can extract molecular descriptors from query SMILES strings without
requiring retraining or labels. Additionally, the intermediate latent space vectors between the
encoder and decoder can serve as molecular fingerprints for various prediction tasks.

The encoder and decoder networks of the autoencoder model are connected through an
information bottleneck that compresses the input SMILES data and feeds the essential
information to the decoder. The encoder network uses both convolutional neural network
(CNN) and recurrent neural network (RNN) architectures, and fully connected layers map
their outputs to intermediate vector representations. The decoder network is primarily
composed of RNN networks that receive the intermediate vector representations as input.
To incorporate more physicochemical information about molecules in the latent vectors,
a classification model was added to predict certain molecular properties based on these
vectors. The output of the decoder’s RNN network is probability distributions over the
different characters in the translated molecular representations. The loss function during
training of the autoencoder model is calculated by summing cross-entropies between
probability distributions and one-hot encoded correct characters, as well as mean squared
errors for molecular property predictions. The model was trained using a large dataset of
molecular compounds from the ZINC [54] and PubChem [55] databases.

4.2.2 Bidirectional transformer—Chen et al. recently developed a self-supervised
learning (SSL) platform to pretrain deep learning models on millions of unlabeled
molecules, providing latent space vectors for input SMILES [19]. These vectors contain
valuable molecular biochemical information and can be used as molecular fingerprints
for predictive tasks. The SSL pretraining was achieved using the bidirectional encoder
transformer (BET) model, which relies on the attention mechanism. The BET model is
advantageous for parallelism capability and faster training since it avoids the traditional
encoder-decoder framework for sequential data processing.

In the SSL pretraining platform for encoding SMILES, pairs of real SMILES and masked
SMILES were constructed with a certain percentage of symbols in the strings hidden, and
the model was then trained in a supervised way with the data-mask pairs [19]. In order to
construct pairs of real and masked SMILES strings for the SSL pretraining platform, 15%
of the symbols in all SMILES were used for data masking. Of these masked symbols, 80%
were fully masked, 10% were unchanged, and the remaining 10% were randomly altered.
The BET model used in the pretraining platform incorporates an attention mechanism to
capture the significance of each symbol in the SMILES strings. To train the model, the
Adam optimizer was utilized with a weight decay of 0.1. In this study, the mean of 256
embedding vectors for a given SMILES string was utilized as its molecular fingerprint.

In Chen et al.’s work, SMILES strings from one or the union of the ChEMBL, PubChem,
and ZINC databases were used for the SSL-based BET model training [19]. Three models
were trained, and a fine-tuning strategy was introduced for these pretrained models for
specific downstream predictive tasks. In the current study, the BT-FPs generated directly
from the pretrained model on ChREMBL without fine-tuning were used for each dataset.
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4.2.3 Extended-connectivity fingerprints—Extended-connectivity fingerprints
(ECFPs) are a commonly used type of topological fingerprints for molecular
characterization. The ECFP algorithm is based on a variant of the Morgan algorithm

that assigns numeric identifiers to each atom through an iterative process. This results in
numbering-invariant atom information being encoded into an initial atom identifier, which
is then combined with identifiers from the previous iteration to create a unique canonical
numbering scheme for the atoms. Unlike the Morgan algorithm, ECFP generation continues
until a predetermined number of iterations is reached. The initial atom identifiers and

all intermediate identifiers in each iteration are collected into a set, which defines the
extended-connectivity fingerprint [56]. We used the RDKit library [53] to generate ECFPs,
which builds circular fingerprints based on the Morgan algorithm and requires a radius
parameter that determines the number of iterations the algorithm should perform. In our
implementation, we set the ECFP radius to 3 and the length of the ECFP fingerprint to 2048.

4.3 Machine-learning models

Our machine learning models were developed using the gradient boosting decision tree
(GBDT) algorithm, which is known for its robustness against overfitting, insensitivity to
hyperparameters, and ease of implementation. The GBDT algorithm creates multiple weak
learners or individual trees by bootstrapping training samples and integrates their outputs

to make predictions. Although weak learners are prone to making poor predictions, the
ensemble approach can reduce overall errors by combining the predictions of all the weaker
learners. GBDT is particularly useful for training with small datasets and has been observed
to outperform deep neural networks (DNNs) and other machine learning algorithms in a
range of quantitative structure-activity relationship (QSAR) prediction problems [21, 57],
making it a popular choice for developing predictive ML models. We used the GBDT
algorithm provided in the Scikit-learn (version 0.24.1) library for our work.

The study employed three types of molecular fingerprints (TF-FP, AE-FP, and ECFP) to
represent inhibitor compounds and built three separate machine learning (ML) models
using the gradient boosting decision tree (GBDT) algorithm. To enhance the reliability and
robustness of the models for predicting binding affinities (BAs) for MOR, KOR, DOR,
NOR, and hERG, a consensus strategy was employed. The consensus model was constructed
by taking the average of the predicted BAs from the three individual models. This approach
is commonly used to improve predictive performance and has been shown to be more
effective than using individual models alone [51, 58]. Figure 8 presents a comparison of
models using various fingerprints or modeling strategies based on five-fold cross-validation
tests. The results indicate that the consensus models outperformed the individual models,
and the consensus model using all three fingerprints showed the best predictive ability for
the five datasets. To alleviate the effects of randomness, each individual model was built

ten times using different random seeds. In total, the 30 predictions from the three individual
models were used to calculate the consensus BAs, which were used as the predicted binding
affinities for each protein.
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5 Conclusion

Opioid use disorder (OUD) is a chronic and complex disease characterized by compulsive
and uncontrollable opioid use, leading to physical and psychosocial disruptions. In response
to the worsening substance use crisis in the United States, significant efforts are being
invested to combat this issue, especially during the coronavirus pandemic. However, the
effectiveness of currently available medications for OUD is limited by low utilization rates
and high relapse rates. Hence, there is a pressing need for medications with superior
therapeutic effects that can prevent relapse and promote longer periods of abstinence.
Repurposing existing drugs could expedite the development of additional medications.

Machine learning-based computational approaches can systematically and rapidly screen the
repurposing potential of many drugs at a low cost. Opioid receptors, including MOR, KOR,
and DOR, are the primary pharmacological targets of medications used to treat OUD. In
this study, we curated inhibitor data from the ChEMBL database to build machine-learning
predictive models of binding affinity. Using these models, we carried out predictions and
analyses to identify DrugBank compounds that can selectively bind to different opioid
receptors. We discriminated approved or investigational drugs based on various binding
affinity thresholds to identify repurposable candidates. We focused on drugs that have
demonstrated pharmacological effects in treating OUD and further analyzed their molecular
interactions by docking with the receptors. We screened ADMET properties using machine
learning-based models. However, a candidate’s therapeutic efficacy in OUD treatment needs
to be further investigated for many other indexes, including antagonist/agonist effect and
blood-brain barrier permeability, which partially explains the complexity of drug design for
the treatment of substance use disorder.

Machine learning has shown potential as a valuable tool in aiding drug discovery efforts

for the treatment of OUD. One approach involves leveraging approved drugs or other
DrugBank compounds with repurposing potential as a starting point to design new candidate
compounds, which can be assisted by generative network modules [59]. Additionally,
machine learning-based virtual screening approaches are increasingly being used for opioid
drug discovery [27, 60]. These machine learning studies have the potential to offer valuable
insights and assist in the development of pharmacological treatments for OUD.
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Figure 1:

Schematic illustration of our machine learning platform for screening the DrugBank

1806 FDA
Approved Drugs

7059 FDA
Investigational Drugs

@RUGBANK

database for the treatment of opioid use disorder. Inhibitor datasets of MOR, KOR, DOR,

NOR, and hERG were used to building machine-learning (ML) predictors of binding

affinity. Three molecular fingerprints from transformer, autoencoder, and ECFP were paired

with gradient boosting decision algorithm to build the ML predictors. A total of 8865

DrugBank drugs were screened for their potency on the major opioid receptors, hERG side

effects and ADMET properties.
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Figure 2:

The docking structures of buprenorphine on the mu (MOR), kappa (KOR), and delta (DOR)
receptors, along with their corresponding 2D interaction diagrams, are presented. The PDB
IDs we used in the ducking analysis for the three receptors are SC1M, 6B73, and 6BT3.

Comput Biol Med. Author manuscript; available in PMC 2023 June 01.



1duosnuely Joyiny 1duosnuely Joyiny 1duosnuely Joyiny

1duosnuelp Joyiny

Feng et al. Page 22

Tyr148(A)

S

is54(.
Sers;&é o 144(A)

ML BA-MOR: -12.40 keal/mol s297(A)
ML BA-KOR: -11.97 Keal/mol _
ML BA-DOR: -10.82 keal/mol Tep31506) w‘% -
Gn124(K) i
p147(A)

H,C OH

ar
W/% iﬁ:ﬂA)
Val236(K)
g

(a) Nalmefene (b) Docking on MOR (5C1M) Met151(A)

0

Tyr312(A)

Pl ol
= 4 &

w%m(A)

316(A)

,, (g;;w 1-%287(1& |

19(A)

Val217(4)

Lylenté) ‘%27;‘1(14)

Tgs,os(A)

Gly307(A)
Tyr320(A) Trp274(A)

(c) Docking on KOR (6B73) (d) Docking on DOR (6BT3)

Figure 3:
The docking structures of nalmefene on the mu (MOR), kappa (KOR), and delta (DOR)

receptors, along with their corresponding 2D interaction diagrams, are presented. The PDB
IDs we used in the ducking analysis for the three receptors are SC1M, 6B73, and 6BT3.
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Figure 4:
The docking structures of dihydroetorphine on MOR, KOR, and DOR, as well as the

corresponding 2D interaction diagrams. The PDB IDs we used in the ducking analysis for
the three receptors are SC1M, 6B73, and 6BT3.

Comput Biol Med. Author manuscript; available in PMC 2023 June 01.



1duosnuely Joyiny 1duosnuely Joyiny 1duosnuely Joyiny

1duosnuelp Joyiny

Feng et al. Page 24

is54(

HO 0

Ser55(.
Glm&é) nn“(@ u T%g'ls(A)
A Val300(A)
lle29":§) %mé )

IleSZLZLf%)
1148(A)
Asp::%) ‘ 1%:;‘3[((/&
P

Met151(A)

OH

ML BA-MOR: -12.04 kcal/mol
N ML BA-KOR: -12.72 Kcal/mol
ML BA-DOR: -12.04 kcal/mol

\{
(a) Cyprenorphine (b) Docking on MOR (5C1M)
éﬂr;l Vai281(A)
LYSZI%@ TIe277(A)
Vaul% ’

)
C1§
His27§§)

Val230 )Ilg;;:é@

N

11e29g§) ola
y

Met142(A) yju/

His29l(A9§ C2s

m:.,;
o, - e
Trp274(x) gﬁ;‘:ﬁ)
N

Gly307(A)

N
Gly“;%) He3164) y1080a)

\-W(% t
Trp287(A)

(c) Docking on KOR (6B73) (d) Docking on DOR (6BT3) Tyr308(&)

Figure 5:
The docking structures of cyprenorphine on MOR, KOR, and DOR, as well as the

corresponding 2D interaction diagrams. The PDB IDs we used in the ducking analysis for
the three receptors are 5SC1M, 6B73, and 6BT3.

Comput Biol Med. Author manuscript; available in PMC 2023 June 01.



1duosnuely Joyiny 1diosnuely Joyiny 1duosnuely Joyiny

1diosnuely Joyiny

Feng et al. Page 25
Upper Limit ~ Lower Limit Compound Properties Upper Limit = Lower Limit Compound Properties Upper Limit ~ Lower Limit Compound Properties
MW Mw Mw
LogP nRig LogP nRig LogP nRig
LogS fChar LogS fChar LogS fChar
LogD nHet  LogD nHet LogD nHet
nHA MaxRing  nHA MaxRing nHA MaxRing
nHD nRing nHD nRing nHD nRing
TPSA nRot TPSA nRot TPSA nRot
(a) Buprenorphine (b) Nalmefene (c) Naloxone
MwW MW
LogP M nRig LogP nRig LogP nRig
LogS fChar LogS fChar LogS fChar
LogD nHet LogD nHet LogD nHet
nHA MaxRing  nHA MaxRing  nHA MaxRing
nHD nRing nHD nRing nHD nRing
TPSA nRot TPSA nRot TPSA nRot
(d) Dihydroetorphine (e) Cyprenorphine (f) Diprenorphine

Figure 6:
Panels a and b show the comparisons of R and RMSE, respectively, for the machine

learning models during the five-fold cross-validation tests. The abbreviations used are TF
(transformer) and AE (autoencoder). The consensus represents the average of predictions
from models built using individual fingerprints. Panel c displays the distribution of
experimental and predicted binding affinity (BA) values in the five-fold cross-validation
tests of the five machine learning models, with the consensus predictions from the model
that uses TF, AE, and ECFP fingerprints being presented. More abbreviations: MW
(Molecular Weight), logP (log of octanol/water partition coefficient), logS (log of the
aqueous solubility), logD (logP at physiological pH 7.4), nHA (Number of hydrogen bond
acceptors), nHD (Number of hydrogen bond donors), TPSA (Topological polar surface
area), nRot (Number of rotatable bonds), nRing (Number of rings), MaxRing (Number

of atoms in the biggest ring), nHet (Number of heteroatoms), fChar (Formal charge), and
nRig (Number of rigid bonds). The optimal ranges of these indexes are shown in S3 in the
Supporting information.
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The element distributions in molecules of the used six datasets in this study. Elements H, C,

N, 0, S, F, ClI are the most dominating elements in all the six datasets.
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Figure 8:
Panels a and b present comparisons of R and RMSE values for the machine learning models

in the five-fold cross-validation tests. The abbreviations used are TF (transformer) and AE
(autoencoder). The consensus represents the average of predictions from models built using
individual fingerprints. Panel c displays the distribution of experimental and predicted BA
values in the five-fold cross-validation tests of the five machine learning models, with the
consensus predictions from the model that uses TF, AE, and ECFP fingerprints.
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Summary of FDA-approved drugs with potential to inhibit MOR, KOR, and DOR, including predicted binding
affinities (measured in kcal/mol) by our ML-models, along with the reliability scores of the predictions (given

in parentheses). The first three drugs correspond to predicted BAs of less than —11 kcal/mol, the first eleven

correspond to BAs less than —10 kcal/mol, and all fifteen drugs have BAs less than —9.54 kcal/mol.

Drugbank ID  Generic Name BA-MOR BA-KOR BA-DOR
1 DB00921 Buprenorphine ~ —12.13 (1.00) —13.70(1.00) —11.93 (1.00)
2 DB11691 Naldemedine —12.05(1.00) —11.07(0.69) —12.19 (1.00)
3 DB12543 Samidorphan —13.65(1.00) —12.86(1.00) —11.57(1.00)
4 DB00854 Levorphanol —12.98 (1.00) —11.58(1.00) —11.21 (1.00)
5 DB00504 Levallorphan —12.13(1.00) —10.91(0.85) —11.06 (0.89)
6 DB00611 Butorphanol —12.49 (1.00) —13.11(1.00) —10.70 (1.00)
7 DB00704 Naltrexone —12.34(1.00) —11.81(1.00) —10.51 (1.00)
8 DB06230 Nalmefene —12.40(1.00) —11.97(1.00) —10.82 (1.00)
9 DB00327 Hydromorphone —12.82 (1.00) —11.36(1.00) —10.03 (1.00)
10 DB01183 Naloxone —11.53(1.00) —10.61 (1.00)  —9.90 (1.00)
11 DB01192 Oxymorphone  —11.83(1.00) —10.23 (1.00) —9.92 (1.00)
12 DB09099 Somatostatin —9.97 (0.70)  —9.64 (0.68) —9.67 (0.70)
13 DB12602 Pentetreotide —9.81(0.66)  —9.58 (0.64) —9.61 (0.66)
14 DB12674 Lurbinectedin ~ —10.19 (0.63)  —9.55 (0.62) —9.74 (0.62)
15 DB14554 Dotatate —-10.12 (0.72)  —9.55(0.70) —9.79 (0.71)
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Summary of investigational or off-market drugs that have the potential to inhibit MOR, KOR, and DOR. The
predicted binding affinity values (unit: kcal/mol) generated by our ML-models are provided, along with the

corresponding reliability scores in parentheses. The first four, first eight, and all seventeen drugs correspond to

predicted BAs of <—11 kcal/mol, <—10 kcal/mol, and < —9.54 kcal/mol, respectively.

Drugbank ID Generic Name BA-MOR BA-KOR BA-DOR
1 DB01450 Dihydroetorphine —11.90 (0.85) —11.97(0.91) —11.74(0.91)
2 DB01480 Cyprenorphine —12.04 (0.93) —12.72(0.93) —12.04(0.93)
3 DB01497 Etorphine -11.36(0.79) —11.22(0.87) —11.69 (0.88)
4 DB01548 Diprenorphine —13.00 (1.00) —13.18(1.00) —12.81 (1.00)
5 DB01469 Acetorphine —10.89(0.79) —10.98 (0.88) —10.83 (0.88)
6 DB14682 Dextrorphan —11.98 (0.98) —10.57(0.98) —10.16 (0.98)
7 DB16117 Buprenorphine hemiadipate —10.92 (0.83) —10.99 (0.83) —10.64 (0.83)
8 DB16072 ORP-101 —10.91 (0.80) —10.98 (0.80) —10.24 (0.80)
9 DB04894 Vapreotide —10.48 (0.80) —10.08 (0.73) —10.09 (0.75)
10 DB01531 Desomorphine —11.49(0.84) -9.91(0.84)  —9.73(0.84)
11 DB06409 Morphine glucuronide —10.40 (1.00)  —9.66 (0.76)  —9.57 (0.78)
12 DB12088 TT-232 —10.87 (0.83)  —9.69(0.77)  —10.03 (0.78)
13 DB12454 Zalypsis —-10.23 (0.61)  —9.67(0.61)  —9.93(0.61)
14 DB15341 Dinalbuphine sebacate —10.91 (0.86) —10.87(0.86) —9.77 (0.86)
15 DB15646 Fasitibant —9.64 (0.51) —9.57(0.51)  —9.76 (0.51)
16 DB16323 Satoreotide tetraxetan —9.84 (0.65) —10.01 (0.64) —9.81(0.69)
17 DB17150 Ukrain cation —9.88 (0.55) —10.04 (0.54)  —9.59 (0.55)
18 DB17158 Satoreotide trizoxetan —9.65 (0.65) —9.88 (0.64) —9.84 (0.69)
19 DB17160 Edotreotide yttrium Y-90 —10.00 (0.65)  —9.59(0.66)  —9.60 (0.67)
N-[2-hydroxy-1-indanyl]-5-[(2-
20 DB01721 tertiarybutylaminocarbonyl)-4(benzo[ 1,3]dioxol-5-ylmethyl)- -10.14 (0.62)  —9.79 (0.61)  —10.00 (0.66)

piperazino]-4-hydroxy-2-(1-phenylethyl)-pentanamide
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Summary of the FDA-approved drugs that are potential potent inhibitors of MOR and DOR with BA <-9.54
kcal/mol whist being potential weak inhibitors of MOR and DOR with BA >—9.54 kcal/mol. The predicted
binding affinities (unit: kcal/mol) by our ML-models are provided. The reliability scores of the ML-prediction

are given in the parenthesis.

Drugbank ID Generic Name BA-MOR BA-KOR BA-DOR
1 DB00309 Vindesine —9.72(0.62)  -9.36(0.65)  —9.54 (0.65)
2 DB00541 Vincristine —9.77 (0.63)  —9.30(0.64)  —9.57(0.65)
3 DB00570 Vinblastine —9.87(0.63) —9.41(0.64) —9.54(0.65)
4 DB04911 Oritavancin —9.91(0.53) -9.36(0.54) —9.54(0.54)
5 DB06274 Alvimopan —12.31(1.00) —9.38(1.00) —10.87 (1.00)
6 DB06791 Lanreotide —10.04 (0.69) —9.51(0.67) —9.72(0.67)
7 DB08890 Linaclotide —9.82(0.61)  —9.40(0.61)  —9.65 (0.66)
8 DB09097 Quinagolide —9.56 (0.54)  —9.51(0.53) —9.69 (0.54)
9 DB09142 Sincalide —9.61(0.78)  —9.13(0.72)  —9.84(0.79)
10 DB09272 Eluxadoline —11.04 (0.96) —8.85(0.57) —10.04 (0.58)
11 DB13925 Dotatate gallium Ga-68 —10.03 (0.68) —9.48 (0.66)  —9.77 (0.69)
12 DB13985 Lutetium Lu 177 dotatate —10.05 (0.68) —9.48 (0.66)  —9.73 (0.68)
13 DB15494 Edotreotide gallium Ga-68 ~ —10.00 (0.64) —9.53 (0.64)  —9.58 (0.66)
14 DB15873 Copper oxodotreotide Cu-64  —9.96 (0.69)  —9.52(0.67)  —9.71 (0.69)
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Summary of the FDA-approved drugs that are potential potent inhibitors of MOR and KOR with BA <—9.54
kcal/mol whist being potential weak inhibitors of MOR and DOR with BA >—9.54 kcal/mol. The predicted
binding affinities (unit: kcal/mol) by our ML-models are provided. The reliability scores of the ML-prediction

are given in the parenthesis.

Drugbank ID Generic Name BA-MOR BA-KOR BA-DOR
1 DB00014 Goserelin —9.58(0.77) -11.01(0.82) —8.89(0.77)
2 DB00035 Desmopressin —10.15(0.70)  -9.92(0.70)  —9.31(0.72)
3 DB00199 Erythromycin —9.65(0.58)  —9.55(0.60) —8.75(0.61)
4 DB00207 Azithromycin —9.71 (0.57)  —9.56 (0.58)  —8.93 (0.60)
5 DB00295 Morphine —11.64 (1.00) -9.55(1.00) —9.12 (1.00)
6 DB00520 Caspofungin -9.83(0.59)  —9.64(0.59) —8.91 (0.60)
7 DB00615 Rifabutin —9.74 (0.57)  —9.78 (0.58)  —9.13 (0.58)
8 DB00644 Gonadorelin —9.57(0.71)  -11.02(0.82) —9.00(0.71)
9 DB00652 Pentazocine —10.27 (0.83) —10.13(0.83) —8.91(0.83)
10 DB00666 Nafarelin —9.75(0.72)  -11.04(0.84) —9.34(0.74)
11 DB00803 Colistin —9.58 (0.61)  —9.72(0.61)  —8.96 (0.63)
12 DB00844 Nalbuphine —11.23(1.00) —10.94(1.00) —9.07 (1.00)
13 DB01201 Rifapentine —9.74 (0.56)  —9.71 (0.57)  —9.43(0.57)
14 DB01209 Dezocine —10.65(0.81) -9.77(0.77)  —8.71(0.77)
15 DBO01211 Clarithromycin -9.60 (0.57)  —9.57(0.59) —8.80(0.61)
16 DB01301 Rolitetracycline ~ —10.10 (0.55)  —9.60 (0.55)  —9.49 (0.55)
17 DB06663 Pasireotide —9.75(0.73)  —9.58(0.73)  —9.31(0.73)
18 DB06800 Methylnaltrexone  —11.07 (0.98) —10.47 (0.94) —8.89(0.98)
19 DB06825 Triptorelin —9.67 (0.74)  -10.98 (0.86) —9.03 (0.75)
20 DB09049 Naloxegol —9.99(0.78)  —9.80(0.78)  —9.09 (0.78)
21 DB11700 Setmelanotide —9.98 (0.70)  —10.01 (0.69) —9.45(0.73)
22 DB12825 Lefamulin —9.62(0.57)  —9.64(0.59) —8.77(0.57)
23 DB00781 Polymyxin B —9.77 (0.64)  —9.73(0.64)  —9.09 (0.65)
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Table 5:

Summary of the FDA-approved drugs that are potential potent inhibitors of KOR and DOR with BA <-9.54
kcal/mol whist being potential weak inhibitors of MOR and DOR with BA >—9.54 kcal/mol. The predicted
binding affinities (unit: kcal/mol) by our ML-models are provided. The reliability scores of the ML-prediction
are given in the parenthesis.

Drugbank ID  Generic Name  BA-MOR BA-KOR BA-DOR

1 DB00193 Tramadol —7.72 (1.00)  —10.40 (1.00) —10.62 (1.00)
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Table 6:

The summary of all the datasets used in this study.

Dataset Protein name ChEMBL ID Dataset size | Binding affinity range (kcal/mol)
MOR Mu opioid receptor CHEMBL233 4667 [-15.27,-5.60]
DOR Delta opioid receptor CHEMBL236 4033 [-15.00,-5.46]
KOR Kappa opioid receptor CHEMBL237 4249 [-14.80,-5.47]
NOR Nociceptin opioid receptor | CHEMBL2014 1494 [-14.59,-6.00]
hERG hERG potassium channel CHEMBL240 6298 [-13.84,-3.27]
DrugBank - - 8865 -
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