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Abstract The max-flow problem entails the compu-
tation of a maximum feasible flow from a source to a
sink through a network under constraints. Its connec-
tion to total variation presents an opportunity to apply
the problem to machine learning tasks by incorporat-
ing a similarity graph-based setting. In this paper, we
integrate max-flow and duality techniques, similarity
graph-based frameworks, semi-supervised procedures,
class size information and class homogeneity terms to
derive three algorithms for machine learning tasks, such
as classification, and image segmentation. The first al-
gorithm involves similarity graph-based max-flow incor-
porating supervised constraints and class size informa-
tion. The second method involves a duality approach
and global minimization of similarity graph-based total
variation problems incorporating class size information.
The third algorithm involves graph-based convex opti-
mization via max-flow techniques for image segmenta-
tion problems involving region parameters, in the case
the latter is unknown. An important advantage of the
methods is that they require only a small set of la-
beled samples for good accuracy, in part due to the inte-
gration of graph-based and semi-supervised techniques;
this is an important advantage due to the scarcity of la-
beled data. Moreover, some of the proposed algorithms
are based on global minimization, and are also able to
incorporate class size information, which often improves
performance. In addition, the methods perform well on
both large and small data sets, the latter of which can
result in poor performances for learning methods due
to a decreased ability to learn from observed data. The
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proposed methods are validated using benchmark data
sets and are compared favorably to recent methods.

Keywords similarity graph - max-flow - classification -
image segmentation - semi-supervised techniques

1 Introduction

The maximum flow (max-flow) problem [61], which in-
volves finding a maximum feasible flow from a source
to a sink through a flow network under certain con-
straints, has been studied in many sources, i.e. [54, 36,
37, 107, 62, 14, 24, 56, 60, 32, 42], with efficient al-
gorithms for versions of the problem outlined in, e.g.,
[61, 72, 94, 55, 53, 69, 65, 77]. Moreover, the prob-
lem has been adapted and extended to different areas
such as the stereo correspondence [104], image restora-
tion [24] and the disjoint path problem [64]. Connec-
tions to total variation have been described in works
such as [31], and the theory of the continuous maxi-
mum flow problem has been detailed in sources such as
[39, 17, 128, 126, 127, 113, 20].

Due to the connection of the max-flow problem to
total variation, its setting presents an opportunity to
link graph-based learning problems to a modified max-
imum flow framework on a similarity graph. One advan-
tage of a max-flow setting includes the possibility to de-
velop a global minimization framework through which a
global optimum can be found accurately. Thus, this pa-
per will consider reformulations of graph-based learning
problems in a similarity graph max-flow setting, with
some reformulations being able to incorporate class size
information, which often improves accuracy.

In general, machine learning tasks face several chal-
lenges. In particular, the success of many existing ap-
proaches for learning tasks, such as data classification,
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is dependent on a sufficient amount of labeled samples.
However, obtaining enough labeled data is difficult as
it is time-consuming and expensive, especially in do-
mains where only experts can determine labels; thus,
labeled data is scarce. Overall, one of the key limita-
tions of most existing machine learning approaches is
their reliance on large labeled sets. In addition, the per-
formance of machine learning methods can be severely
affected in case of smaller data sets or data associated
with areas of study where the size of the data sets is con-
strained by the complexity or high cost of experiments.
These cases are usually associated with an insufficient
number of labeled samples and a decreased ability for
machine learning-based models to learn from the ob-
served data, resulting in poor performance. These chal-
lenges call for innovative strategies in data science.
Recently, algorithms involving the graphical frame-
work have become some of the most competitive ap-
proaches for applications ranging from image processing
to social sciences. Such methods have been successful in
part due to the many advantages offered by a graphical
approach. For example, a similarity graph-based frame-
work provides valuable information about the extent of
similarity between data elements via a weighted similar-
ity graph and also yields information about the overall
structure of the data. Moreover, a graph setting is able
to handle nonlinear structure and it also embeds the di-
mension of the features in a graph during weight com-
putations, thus reducing the high-dimensionality of the
problem. In addition, the graphical framework is able
to incorporate diverse types of data, including images.
Inspired by the recent aforementioned successes, we
address the aforementioned challenges of machine learn-
ing by integrating maximum flow and dual-based tech-
niques, similarity graph-based settings, semi-supervised
procedures, class size information and class homogene-
ity terms, with both labeled and unlabeled data em-
bedded into a graph. In particular, in the experiments,
the overwhelming majority of the data embedded into
a graph is unlabeled data, which is often much easier
and much less costly to obtain than labeled data.
Overall, in this paper, we present three graph-based
methods involving maximum flow and dual-based tech-
niques for learning tasks, such as data classification
and image segmentation. The experiments on bench-
mark data sets indicate that the proposed algorithms
are highly competitive against other established meth-
ods, while using a small amount of labeled data.
There are many advantages of our algorithms:

— The proposed methods require only small amounts
of labeled data for accurate classification. In fact, in
most cases, a good accuracy can be obtained with
at most 1% - 2.5% of the data elements serving as

labeled data. This is a crucial advantage due to the
scarcity of labeled data for most applications, and
due to the reliance of many data classification al-
gorithms on large labeled sets. Our proposed algo-
rithms are able to perform well with a low number
of labeled elements in part due to the graph-based
setting used and the semi-supervised techniques em-
ployed in the procedures.

— In the proposed framework, the data is embedded
into a weighted similarity graph, which provides in-
formation about the extent of similarity between
data elements and the overall structure of data.

— Unlike many classification methods, the proposed
algorithms are able to incorporate class size infor-
mation, which often improves accuracy.

— Several of proposed models are based on global min-
imization, which avoid local but not global optima.
This allows one to accurately find the optimizer.

— The methods perform well for both large and small
data sets, the latter of which can result in poor per-
formances for existing learning techniques, due to
an often insufficient number of labeled samples.

— The methods are parallelizable during coding.

— Algorithm 3 simultaneously finds both the segmen-
tation result and the region parameters of the data
cost terms, when the latter is unknown.

An important machine learning task considered in
this paper involves classifying or segmenting data, where
the goal is to divide the data into a number of classes
or segments. In fact, data classification and segmenta-
tion is an integral part of many practical applications,
such as medical diagnosis, email spam detection, object
detection, video tracking, financial predictions, medical
imaging, machine vision and face recognition.

The paper is organized as follows. In Section 2, we
present the background, previous work and notation. In
Section 3, we derive the three proposed algorithms of
this paper (in Sections 3.1, 3.2 and 3.3, respectively).
The results of the experiments and a discussion are pre-
sented in Section 4. We conclude in Section 5.

2 Background and previous work
2.1 Graph-based framework

The methods developed in this paper integrate a graph-
ical framework, which consists of a graph G = (V, E),
where V and E are the vertices and edges, respectively.
The vertices of the graph are connected by edges, and
a nonnegative weight value is assigned on each edge;
this value describes the extent of similarity between
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the vertices the edge is connecting. The weight function
w:V xV — R is computed so that it assigns smaller
values for edges connecting dissimilar vertices, and big-
ger values for edges connecting similar vertices. In this
paper, we embed each data set in the graphical frame-
work by associating each element of the set with a vertex
in the graph. Naturally, the embedding of data into a
graph, as well as the performance of a graph-based algo-
rithm, depends greatly on the edge weights; this section
provides more details about graph construction in gen-
eral, but the exact manner of weight construction for
particular data sets is described in Section 6.

The use of the graphical framework offers many ad-
vantages. First, a graph-based framework provides valu-
able information about the extent of similarity between
pairs of elements of both labeled and unlabeled data
via a weighted similarity graph and also yields infor-
mation about the overall structure of the data. It also
provides a way to handle nonlinearly separable classes
and affords the flexibility to incorporate diverse types
of data. Moreover, a graph-based setting embeds the di-
mension of the features in the graph during weight com-
putations, thus reducing the high-dimensionality of the
problem. In addition, in image processing, the graphical
setting allows one to capture texture more accurately
due to the presence of non-local information.

The exact technique of computing the weight value
between two elements of data depends on the data set,
but first involves feature (attribute) vector construction
and a distance metric chosen specifically for the data
set at hand. For example, for hyperspectral data, one
may choose the feature vector to be the vector of in-
tensity values in the many bands of the image and the
distance measure to be the cosine distance. For 3D sen-
sory data, one can take the feature vector to contain
both the geometric and color information, and the Eu-
clidean distance as a distance measure; the weights can
be calculated using a Gaussian function incorporating
normal vectors, e.g., [15]. For text classification, pop-
ular feature extraction methods include bag-of-words
and term frequency-inverse document frequency, both
described in [8]. For biological data tasks, persistent
homology [28] can be used for feature construction.

In particular, for image segmentation applications,
each node in the graph represents a pixel of the im-
age. The features can be constructed in different ways;
one approach is to choose the feature vector to include
the intensity values of a neighborhood around a pixel.
Then, a chosen weight function, such as a Gaussian
weight function, can be used to numerically evaluate the
similarity of neighborhoods of two pixels. The weight on
an edge of the resulting graph thus represent the degree
of similarity between neighborhoods around the pixels

in question. One can then sparsify the graph by only
connecting two nodes representing two pixels with an
edge if their neighborhoods are sufficiently similar.
Once the attribute (feature) information of each in-
stance in the data set is obtained, the weight function w
can be computed. There are many choices, but a com-
monly used weight function is the Gaussian function:

2
w(ws, ;) = exp (—d(xo,“) 7 1)
where d(x;,x;) represents a distance, such as the Eu-
clidean distance or the cosine similarity measure, be-
tween attribute (feature) vectors of data elements x;
and zj, and ¢ > 0. One can also consider the Zelnik-
Manor and Perona weight function [95].

For some data, it is more desirable to compute the
weights directly by calculating pairwise distances; in
this case, the efficiency can be increased by using par-
allel computing or by reducing the dimension of the
data. Then, a graph is often made sparse using, e.g.,
thresholding or a [ nearest neighbors technique, result-
ing in graph where most of the edge weights are zero;
thus, the number of computations is reduced. Overall, a
nearest neighbor graph can be computed very efficiently
using the kd-tree code of the VLFeat library [12].

For very large data sets, one can very efficiently con-
struct an approximation to the full graph using, for
example, sampling-based approaches, such as the fast
Nystrom Extension technique [48, 49, 22].

2.2 Differential operators on graphs

Our definitions of operators on graphs are based on
[46, 23]. Consider two Hilbert spaces, V and &, which
are associated with the sets of vertices and edges of G =
(V, E), respectively, and the following inner products:

(w, )y = > u(@)y(z),

zeV

W.d)e =5 3 wlw)olw vy,

z,yeV
where a € [£,1]. From these definitions, we can define:

(Va)u(2,y) = wlz,y)' ~* (uly) — u(@)).

We use the equation (Vu,¢)e = —(u,div,, ¢)y to
define the graph-based divergence operator:

(v O)(x) = 5 3 wle, )" (6(2,) — 6(y.),
yev

where we have exploited symmetry w(z,y) = w(y, ) of
the undirected graph in the derivation of the operator.
We use a =1 in the derivations of the paper.
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2.3 Semi-supervised setting

Despite the tremendous accomplishments of machine
learning and deep learning, the success behind machine
learning algorithms depends on a sufficient amount of
labeled samples. However, obtaining enough labeled data
is difficult as it is time-consuming and expensive, es-
pecially in domains where only experts can accurately
determine labels. Therefore, labeled data is scarce.
However, unlabeled data is usually much easier and
less costly to obtain than labeled data. Thus, it is ad-
vantageous to use a semi-supervised setting, which uses
a large amount of unlabeled data and a small amount
of labeled data to construct the graph. In fact, the use
of unlabeled data for graph construction allows one to
obtain important structural information of the data.
A semi-supervised setting involves a collection of la-
bels {1,...,m} and a small subset of labeled vertices
whose ground-truth labels are known. One seeks to cor-
rectly label the remaining unlabeled points; a solution
is a partition X' = (X, ..., X,) of the set of vertices V,
where X; is the set of points assigned to label i. This
paper uses a semi-supervised setting, where the vast
majority of data embedded into a graph is unlabeled
data, which is much easier to obtain than labeled data.

2.4 Previous work
2.4.1 Overview of graph-based learning techniques

In this section, we review recent graph-based and semi-
supervised methods, including approaches related to
convolutional neural networks, support vector machines,
neural networks, label propagation, embedding meth-
ods, multi-view and multi-modal algorithms.

Neural networks have also been extended to a graph-
ical framework for the task of semi-supervised learning.
For example, [116] describes an attention-based graph
neural network. Graph partition neural networks [84],
which are extensions of graph neural networks for han-
dling large graphs, are presented in [84]. In [99], graph
Markov neural networks are proposed.

Specifically, convolutional neural networks have been
extended to a graphical framework for semi-supervised
learning. In particular, [73] presents a scalable approach
using graph convolutional networks via a convolutional
architecture motivated by a localized first-order approx-
imation of spectral graph convolutions. The work [82]
develops deeper insights into the graph convolutional
neural network model and addresses its fundamental
limits. Moreover, a dual graph-based convolutional net-
work approach is described in [135], while a Bayesian
graph convolutional network procedure is derived in

[130]. In [13], a multi-scale graph convolution model for
semi-supervised node classification is presented. In the
work [27], generalizations of convolutional neural net-
works to signals defined on more general domains using
two constructions are described; one of them is based
on the spectrum of the graph Laplacian matrix.
Moreover, support vector machines are applied to
semi-supervised learning using a graphical framework.
In [33], graph-based support vector machine methods
which emphasize low density regions are derived. In
[89, 21], Laplacian support vector machines are formu-
lated. A novel Laplacian twin support vector machine
for semi-supervised classification is introduced in [98].
Label and measure propagation methods include [63],
which describes a transductive label propagation method
that is based on a manifold assumption. Label propaga-
tion techniques and the use of unlabeled data to aid la-
beled data in classification are investigated in [134]. Dy-
namic label propagation, performing transductive learn-
ing through propagation in a dynamic process, is de-
tailed in [117], while semi-supervised learning with mea-
sure propagation is shown in [114]. Moreover, the work
[132] presents a robust inductive semi-supervised label
prediction model for data classification, while [66] pro-
poses a new transductive label propagation algorithm,
called Adaptive Neighborhood Propagation (ANP), for
semi-supervised data classification problems.
Embedding algorithms are also often used for semi-
supervised learning. In [121], it is shown how nonlinear
embedding methods for use with shallow semi-supervised
learning techniques such as kernel methods can be ap-
plied to deep architectures. Other examples include [122].
Examples of multi-view methods and multi-modal
algorithms include [92], which proposes a framework
via the reformulation of the standard spectral learning
model that can be used for multiview clustering and
semi-supervised tasks. The work [91] proposes a multi-
view learning model which performs semi-supervised
classification and local structure learning simultaneously.
Multi-modal curriculum learning is described in [58].
Other techniques for graph-based semi-supervised
learning and data classification include efficient anchor
graph regularization [119] and a Bayesian framework for
learning hyperparameters [68]. The work [125] focuses
on graph construction for semi-supervised learning and
proposes a novel method based on random subspace di-
mensionality reduction. The work [52] presents a semi-
supervised data classification algorithm that learns from
dissimilarity and similarity information on labeled and
unlabeled data using a novel graph-based encoding of
dissimilarity that results in a convex problem. While
random graph walks are used in [85], sampling the-
ory for graph signals is utilized in [50]. The work [118]
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proposes a bivariate formulation for graph-based semi-
supervised learning. Lastly, reproducing kernel Hilbert
spaces are integrated into the algorithm in [110].

2.4.2 Maximum flow techniques

Since the methods derived in this paper involve max-
flow techniques, this section provides the background
on existing work using these techniques. Specifically,
the maximum flow problem [61] has been studied in
many sources such as [54, 107, 24, 42], as well as pa-
pers on push-relabel methods for the max-flow problem
[36], maximum flow problems in undirected graphs [37],
pseudoflow algorithms for the max-flow problem [62],
time bounds for the max-flow problem [14], parametric
max-flow [56], max-flow problem of uncertain networks
[60], and a study of pseudoflow and push-relabel algo-
rithms for the maximum flow problem [32].

Fast algorithms for versions of the max-flow prob-
lem are described in works such as [55, 77, 94], as well
as sources involving fast parametric methods for the
max-flow problem [51], successive approximation tech-
niques [53], almost-linear-time methods for undirected
graphs [69], and algorithms for max-flow in undirected
planar graphs [65]. Overall, the max-flow problem has
been adapted and extended to areas such as the stereo
correspondence problem [104], image restoration [24]
and the disjoint path problem [64]. Connections to to-
tal variation have been described in, e.g., [31]. More-
over, the theory of the continuous max-flow problem
has been detailed in sources such as [126, 113], as well
as those describing combinatorial continuous max-flow
[39], message-passing techniques for continuous max-
flow [17], max-flow procedures for binary labeling [128§],
a continuous max-flow approach for the max-flow prob-
lem [127], and a fast continuous max-flow approach to
non-convex multi-labeling problems [20].

The author’s prior work in this area [15, 90] involves
modifications and adaptations of the maximum flow
problem for data classification. In particular, [90] con-
siders the binary case of two classes, while [15] involves
interesting applications to 3D point cloud segmenta-
tion. The work presented in this paper is inspired by
and greatly expands upon the material in these papers.

2.5 Notation

The following notation will be used in this paper. We
first embed the data into a similarity graph G = (V, E),
where the vertices V' of the graph represent the com-
bined unlabeled and labeled data. Let m be the number
of classes and w be the weight function w : V x V —
R. Moreover, let {u;}; and u be functions such that

w V= 10,1, for i =1:m, and v : V. — R™ such
that u(x) = (uq(x),...um(x)). In addition, let L; and
U; be the lower and upper bounds for the size of class
1 of V, respectively. When no class size information is
available, L; = 0 and U; = |V|. The goal is to divide V'
into m classes, where class ¢ is denoted by the set V;.
For the methods presented in the paper, techniques
are derived to solve optimization problems involving the
aforementioned variable u. Overall, the optimal u;(z)
represents the probability that x belongs to class .

3 Proposed Work

In this section, we derive our three proposed algorithms
in Sections 3.1, 3.2 and 3.3, respectively.

3.1 Similarity graph-based max-flow algorithm
incorporating supervised constraints and class size
constraints

In this section, we derive a graph-based max-flow method,
denoted by Algorithm 1, for learning problems, such as
data classification. To derive our model, we start with
a dual formulation and then derive equivalent max-flow
problems. The notation in Section 2.5 is used.

The proposed algorithm incorporates:

— supervised constraints, i.e. class information of la-
beled elements.

— class size information, the use of which usually im-
proves prediction accuracy.

— class homogeneity terms, which describe how well
data elements fit to particular classes.

Regarding supervised information, the model in this
section incorporates the labels of labeled data using the
functions {k;} for i € {1,...,m}, where k;(z) = 1if z is
a labeled element of class ¢ and 0 otherwise.

Regarding class size information, there are two types
of class size constraints incorporated by this model. The
first takes the form of flexible class size constraints

S;<Ivill < 8¢, iefl,...m}, (2)

where the size of class i, denoted by ||V;]|, is constrained
to lie between a lower bound S¢ and an upper bound
Si. To avoid imposing absolute upper and lower bounds
on the class sizes, one can instead append a piecewise
linear penalty term >_.", P, (||V;]|) to the optimization
problem in question, where P, (||V;|| is defined as:

0 if
y(IVill = S¢) - if
y(Sf=vill) - if

St < ||Vi]] < S
[|[Vil| > S
|Vi]] < SE.

Py((IVill) =
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3)

The term P, (||Vi||) penalizes the size of a class from
being out of the range specified by lower and upper
bounds. Overall, using class size information usually
improves prediction accuracy, and, for most data sets,
there is at least some information available about the
class sizes, whether in the form of exact values or in the
form of upper and lower bounds on the class sizes.

The class homogeneity terms, which measure how
well each data element fits with each class, are incorpo-
rated using the functions {C;} for ¢ € {1, ..., m}, where
C;(x) indicates the cost of assigning x to class i. One
should formulate C;(z) so that it is small if = is likely
to belong to class ¢, and large otherwise. For instance,
the terms may be defined using the eigenvectors of the
correlation matrix or the graph Laplacian, or using a
fit to an expected value of a variable; in particular, the
eigenvectors of the graph Laplacian contain information
that can be used for classification. It is not necessary
to use the terms; one can set C;(z) = 0.

To derive Algorithm 1, we will first consider an opti-
mization problem involving u = (u1,...,uy,) : V.— R™
from Section 2.5. Overall, the optimal u;(x) will repre-
sent the probability that z belongs to class ¢. There-
fore, the optimization problem is equipped with the
constraint u(x) € ATV, where

: Zz =1}. (4)

Overall, the variable u will be constrained to lie in:

AT = {(z1, ..., zm) € [0,1]™

U ={u:V = R™ such that u(x) € A" Va}. (5)

The optional class size constraints (2) or penalty
term (3) (to be added to the optimization problem)
can now be rewritten in terms of the variable w:

SE< ui(x) < Sy, ie{l,..,m}, (6)
zeV

0 if SY< Y wi(w) <S¢
zeV

Py(u) = (X ui(z) — SY) if > u(x) > SH
zeV zeV

(S = 3 wia)) if ui(z) < S¢
zeV zeV

One can then consider the following multiclass clas-
sification model, where the optimal u,(x) represents the
probability that x belongs to class i:

min {E(u) =
weV s.t. ki(z)<u;(z) VzeV

Ps,P>q,pP

m

S5 wiey)luity)-

=1 z,yeV

@)+ Cila) m%
(8)

under optional constraints (6) or penalty term (7).

The first term in this model is a graph-based term
resembling a convexified graph cut, which attempts to
group data elements in a way such that the elements
grouped in ditferent classes are as dissimilar as possi-
ble; this is due to the property of the weight function
w : V — V which takes large values for similar data el-
ements and small values for dissimilar data elements.

The second term in this model incorporates the class
homogeneity terms and labeled data, while the class
size information is incorporated by the optional class
size constraints (6) or the penalty term (7).

Note that (8) is a convexified version of a problem
with the same terms, but where w is only allowed to
take values in {0, 1} as in a graph cut formulation; that
problem is non-convex due to the binary constraints.
It turns out that the convex relaxation indeed closely
approximates the non-convex problem, where u takes
only binary values. For more information on how the
non-convex problem is well approximated by the convex
relaxation, please refer to the sources [90, 15].

At the end, the data elements assigned to class ¢ can
be obtained using the optimal u* via:

Vi ={z st. argmaxuj(x)=i}.
J

Overall, it turns out that the dual problem (8) can
be equivalently formulated as a ‘max-flow’ problem:

Theorem 1 The following maz-flow problem can be
reformulated as the dual problem (8) with optional class
size constraints (6) or penalty term (7):

D pa(@)= > ki@)pi(a

L7 eV zeV i=1

sup

¥3 (ol Si—p2sy)
=1

subject to, for all i € {1,...,m},

|Ql(xay)| S 17 V(m,y) € E7 (10)
pi(z) < Cyi(x), Yz eV, (11)
(divwgi —ps +pi)(x) = pj —p;, VzeV, (12)
0<pi,pi <. (13)

No class size information is incorporated by v = 0. The
size penalty term (7) is incorporated by 0 < v < 0.
Size constraints (6) are incorporated by v = oo.
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Proof By adding an unconstrained Lagrange multiplier
for the flow conservation constraint (12) to optimization
problem (9), one obtains the following formulation:

min  sup {E(u,ps,pyq,PlaPQ):

Y ps.pg,pt.p?

m

z)+ > (pi S - p?Sy)

€V eV i=1 i=1
Jrzzui dlvw% ps+Pi+P$*P%)(5ﬂ)}
i=1zeV
subject to (10), (11) and (13). (14)
We then regroup like terms to obtain:
min  sup {E(u,ps,p,q,pl,pQ):
U ps.pia,pt,p?
Z Zuz(x) divy, g;(z) + Z (1- Zuz(x))ps(ac))
zeV i=1 zeV i=1
+ 0D (uile) —k +sz (Sf =D ui))
zeV i=1 eV

+sz > i

zeV
subject to (10), (11) and (13).

S“)}
(15)

The optimization problems (14) and (15) satisfy the
conditions of the mini-max theorem, described in sources
such as Chapter 6, Proposition 2.4 of [45]. In fact, the
constraint sets for ¢, p!, p? and u are compact and con-
vex, and the energy is convex lower semi-continuous for
fixed ¢ and concave upper semi-continuous for fixed wu,
indicating the existence of at least one primal-dual so-
lution, i.e., saddle point, of finite energy value.

An important distinction between (8) and (9) is the
fact that u is unconstrained in (9) and the simplex con-
straint on u is handled implicitly. This allows one to
formulate an algorithm without projections of u, which
can restrict step sizes and reduce accuracy.

Now, for a given variable u, one can rewrite the first
term of (15) in the following manner:

sup{ Z u;(x

zeV

x) divy, é(

P

z,yeV

x), where ¢ : VXV, |¢],, < 1}

(@, y)|ui(y) — wi(2)].  (16)

In addition, the maximization with respect to ps of
(15) at the point = can be viewed as

o i ui(e) =1
sup 1—Zu1ps _{oo it Yo 1uz(x)7é1.

ps(x)
(17)

Now, if u does not satisfy the sum to one constraint at
2 in (8), then the primal-dual energy in (15) would be
infinite, contradicting boundedness from above.

In a similar manner, the optimization with respect
to p; in (15) can be expressed as

sup

(ui(z) — ki(2))pi(x) =
pi(2)<Ci(x)

(ui(x) = ki(2))Ciz)  if wi(z) = ki(z) (18)
00 if ui(z) < ki(x),
which would make the energy in (15) infinite if u does
not satisfy the constraints u;(z) > k;(x) of (8).

It will now be shown that the flexible class size con-
straints (6) or the penalty term (7) can be implicitly
incorporated via the two variables p; and ps. In partic-
ular, for a given u, the terms of (15) involving p! and
p? correspond to the following optimization problems:

> wile) =

1/t
sup pl (8! -
0<p; <y

eV

0 if Y, ey ui(x) =S¢

. P ) (19)
'y(Si - erv ul(x)) if Za:EV ui(x) < Sy.

2 u
sup p; ui(z) — Si') =
0<p?<vy (mezv
0 if Y ey ui(z) < S}
’y( Zmev ui(x) — Szu) if erv ui(x) > SP.
(20)

If v = 0, the class sizes do not contribute to the en-
ergy; thus, the case of no class size information can be
incorporated with v = 0. When 0 < v < 0o, the terms
(19) and (20) summed together is exactly equal to the
size penalty term (7). When v = oo, the constraint set
on p!, p? is no longer compact, but we can apply Sion’s
generalization of the mini-max theorem [111], which al-
lows either the primal or dual constraint set to be non-
compact. It follows that if the size constraints (6) are
not satisfied, the energy in (15) would be infinite, con-
tradicting existence of a primal-dual solution.
Combining (16)-(20), one can see that (9) subject to
(10)-(13) can be reformulated as (8) with optional class
size constraints (6) or the penalty term (7). |

The optimization problem (9) with constraints (10)-
(13) has structural similarities to a max-flow problem
over m copies of the graph G = (V1, E1) X...x (Vi, B,
where (V;, E;) = G for i € {1,...,m}. Overall, the aim
of a maximum flow problem is to maximize the flow
from a source vertex to a sink vertex under certain con-
straints. Moreover, ps(z) can be viewed as the flow on
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the edges from the source to the vertex x in each of
the subgraphs (Vi, Ey), ..., (V,, Ey,), all of which have

2k+ k 2 v
unbounded capacities. In addition, the variables p;(x) Fi = &Br;g 12n<ax Z -5 sz 3 HQ’ ¢
and C;(z) can be viewed as the flow and capacity on the Py
edge from Ve.rtex x irll the subgraph (V;, EZ) to the.s'%nk. where FF = k+1 _div qk+1+ +pk+1+p1k+1
The constraint (12) is the flow conservation condition.
In case of class size constraints, instead of the flow be- (26)
ing conserved, there is a constant excess flow of p} — p? . -
for each node in the subgraph (V;, E;). The energy in  uf™! = u¥—c(div,, ¢ —ptHi4phtlyp? - —p} * ).
(9) is the total amount of flow in the graph. (27)

We now formulate a method to solve (9) with con-
straints (10)-(13) using augmented Lagrangian theory;
the technique is efficient, accurate and tolerates a wide
range of step sizes since it does not involve any pro-

Optimization problems (22) and (24) can be solved
easily; the closed form solutions are:

jections of u. Moreover, the convergence of augmented il L1
Lagrangian techniques is often guaranteed by theories, P Z(Az + E)/ m, (28)
such as the ones in [47, 57]. To derive the method, we ‘
consider the augmented Lagrangian functional:
k+1 : k i
o a pi (x) = min{(D; () — ——=,Ci(x)} Vo, (29)
€V zeV i=1 i=1

where A¥ and DF are denoted in (22) and (24).

- = Z ||d1vu, ¢ — ps +pi + P2 — pi H2 The optimization problem (23) can be solved by a
few steps of the projected gradient method:
+ Z wi(@) (dive g = ps +pi + p} = pi ) (2). (21)
zeV gFtt = Projectionn(qéC + ¢V (divy,qF — BF)),
One can then formulate a procedure to minimize uk k k
k_ o k+l k 2 1

(21), where one alternatively maximizes (21) for the where By =p,""" —pi” + ?Z pi +pi - (30)
variables ¢, p, ps, p1 and po and then updates the La-

grange multiplier . In particular, our algorithm in- In (23), Projection,, is a projection operator which
volves the following steps, where || f||3 = 32, f(z)?: is defined as
k+1 _ ¢ k|2 .
= argmax -5 = A7, s(x if |s(x <mn,
Pt =argmax ) pe = 5 oo = A, Projection, (s(z,)) = § =) it [s( )| <
i sgu(s(z,y)) -n if [s(z,y)[ > n,
. u; k k
where AF = p;* 4 div,, ¢F — ?1 + 02" =it (22) (31)
qzk-&-l argmax —o Hlew q— Bf”; Vi where sgn is the sign function.

lq(e)|<1 VeeE There are extended convergence theories for the aug-
k mented Lagrangian method in the case when one of the
h E_ . k+1 E Ui 2k 1k
where B = p""" —pi + . P +pi - (23)  subproblems is solved inexactly, see e.g. [47, 57]. In our
experience, one gradient ascent iteration is enough.
2 . For problems (25) and (26), in case no constraints
=3 k= 5 lpe = DEL . i probletis (25) gue 20

arg max
Ps (z)<gc @ ve ‘oo are given on p! and p?, the maximizers over the sum
uk of the concave quadratic terms can be computed as the
where D —div,, qk+1+ pfk—k pi —ki. average of the maximizers to each individual term as
(24) S¢ Su
mean(EgC + —), mean(Fi’c - —=), (32)
1kt 3ol k2 IVl |Vl
pi —argrlnax pzSI _7||p7, El H27 VYW
0<pl< . . _— .
Pi=T zev i respectively for p' and p?. Since the objective function
where EF = pic-l—l T diquf"’l _ L gy p " is concave and the maximization variable is just a con

stant, an exact solution to the constrained maximiza-

(25)  tion problems (25) and (26) can now be obtained by a
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Algorithm 1

Require: m, V, w : V. xV = R, {C;},, k; : V — {0,1} Vi € {1,....,m}, {S}m ., {S¥},, ¢, n and «y, where m is
the number of classes, V' is the set of data elements, w is the weight function, {C;} are class homogeneity terms, k; is a
function where k;(xz) =1 if z is a labeled element of class ¢ and 0 otherwise, Sf is the lower bound for class i, S} is the
upper bound for class i, ¢ > 0, n > 0 and v > 0. No class size information is incorporated by v = 0. The class size penalty
term (7) is incorporated by 0 < v < oco. Class size constraints (6) are incorporated by v = co

Ensure: out = u, where u;(z) is the probability of data element z belonging to class i.

Initialize k =0, u =0, p} = p? =q; =0 Vi € {1,...,
Let divy, q(z) = 32, w(z,y)q(z,y).

while Stop criterion not satisfied do

k
Let k + k+ 1, and set pFt+! = Zl(plk +divy gF — % +p$k

fori=1— m do

m}, ps = Cr and p; = ps Vi € {1,...,m}.

k—ﬁ—%)/m.

k
qf+l = Projectionn(qf + ¢V (divy,gf — BF)), where BF = p b+l —p;* + UTZ —p2k 4 p%k
k
P (@) = min{(D¥(x) — 22, Cy(0)}, Va, where DF(@) = pa 1 — div,, g+ 4+ 2 — 2% 4 p1*
k
pI* ! = min (max (mean(E¥F + c\IVH) 0), ), where EF = pFt1 4 div,, "t — B pht +p2k

pfk+1 = min (max (mean(Fik - %), O),7>, where Fff = —pf+1
ui”l = uP — c(divy qf+ — phti +pk+1 + p2k+1
end for

end while

k+1 , uf k41
div q+ T+p§+1+p} .

k+1
— ).

projection onto that constraint as follows:

St
! 707 b
c||V||) )

k
oy k
+ divgFt - —pitt 4 p?)

1k+1
i

= min (max (mean(EF +

where EF = pft!

u

gt
— 70 9 9
||V||> 1)
1kt+1

k+1 —div C]f—H‘F + k+1+pz

k+1 :
P = min (max (mean(F}" —

where FF =

(33)

Algorithm 1 is parallelizable on GPU. This is due to
the fact that the subproblems at each substep can be
solved pointwise independently of each other. Moreover,
the update formula (30) only necessitates access to the
values of neighboring nodes at the previous iteration.

3.2 Global minimization of similarity graph-based
problems incorporating class size constraints via a
duality approach

In this section, we derive Algorithm 2, which considers
a duality approach to solving certain graph-based prob-
lems for learning tasks, such as data classification. The
notation of Section 2.5 is used. In particular, we first

under optional constraints (6) or penalty term (7).

consider the following optimization problem, which is
similar to the one studied in the previous section:

s~ £ o
+ ZCi(x)ui(:v)>},

zeV

2, y)ui(y) — ui(e) |+

(34)

The first term in this model is a graph-based term
resembling a convexified graph cut, which attempts to
group data elements in a way such that the elements
grouped in different classes are as dissimilar as possible.
The second term incorporates the class homogeneity
terms and labeled data, while the class size informa-
tion is incorporated by optional class size constraints
(6) or penalty term (7). Note that (34) is a convexified
version of a problem with the same terms but where
u is allowed to only take values in {0,1}; the latter
problem is non-convex due to the binary constraints. It
turns out that the convex relaxation indeed closely ap-
proximates the non-convex problem, where u takes only
binary values; please refer to [90] for more information.

At the end, the data elements assigned to class ¢ can
be obtained using the optimal u* via:
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Vi ={z st. argmaxuj(x)=i}.

J

It turns out that (34) has an interesting equivalent
formulation, as shown in the next theorem.

Theorem 2 The following problem is equivalent to the
convex relazed problem (34) under optional class size
constraints (6) or penalty term (7):

sup {E(pﬂpQ, 0)=>_ (oS —p}Sy)+

pt,p%€[0,7],]qle0 <1 p
+ > min (Cile) + (divaai) (@) + o p}) . (35)
zeV

No size information is incorporated by v = 0. The size
penalty term (7) is incorporated by 0 < v < oo. Size
constraints (6) are incorporated by v = 0.

Proof First, note that, for any arbitrary vector g =
(91; 7gm) € Rm7

min z —m1n sy 36
(21,-4.,zm)6A$; i9i (G155 Gm)- (36)

Applying (36) to (35), one obtains

= > (oisi - pisy)

i

+Z (mziniui(x) (Ci(x)‘f‘(divw qi)(x)+pf—pzl)> }’
(

sup E(p', 0%, q)
ptp2€[0,7],]ql 0 <1

zeV =1

where X' = {(u1(x),...,um(x)) € AT}, where AT is
defined in (4). One can then rewrite (37) as

sup mln{E(p17p2,q,U) =
Pl e[w lgloo <1 4EY

> 3w (G

z€eV i=1

+ (divy, ¢;)(x) + p; — p; ) +

+3 (pkst - pist) ). (38)

The above problem satisfies the conditions of the mini-
max theorem, described in, e.g., Chapter 6, Proposition
2.4 of [45]. In fact, the constraint sets for g, p!, p? and
u are compact and convex, and the energy is convex
lower semi-continuous for fixed ¢ and concave upper
semi-continuous for fixed u, indicating the existence of
at least one primal-dual solution of finite energy.

37)

Using the mini-max theorem, one can interchange
the operators in (38), resulting in:

min sup
uEY o1 p2€10,9],]ql oo

> $-ue(cie

zeV i=1

{E(p17p2,q7U) =

+ (diva 00) (@) + 92 = p}) +
+Z pzsf_pz z)} (39)

Rearranging the terms of (39), one obtains

. 1 2 —

B el 00 =
Z Zuz lew QZ ‘T) + Z Zui(x)c ($)+
zeV i=1 zeV i=1
D oS = i +sz > ui( S“)}
i=1 eV zeV

One can then derive the following formulations:

> wila)) =

zeV
{0 i Yoepuile) >80
7(522 - EIEV ul(x)) if EmEV Ul(l') < Sf

1/t
sup ph(S¢ -
0<p; <y

2 U
sup pi (Y wi(z)—S)) =
0<p?<y g;/
{0 if Y,y wil) < S
’y( Y opey Ui(x) — Sz“) if > oy ui(z) > S
(42)

If v = 0, the class sizes do not contribute to the en-
ergy; thus, the case of no class size information can
be incorporated with v = 0. When 0 < v < o0, the
terms (41) and (42) summed together is equal to the
size penalty term (7). When vy = oo, the constraint
set on p', p? is no longer compact, but one can apply
the Sion’s generalization of the mini-max theorem [111],
which allows either the primal or dual constraint set to
be non-compact. Therefore, if the class size constraints
(6) are not satisfied, the energy in (40) would be infi-
nite, contradicting existence of a primal-dual solution.

Combining (40) - (42) with (16), one can see that
(35) can be reformulated as (34) under optional class
size constraints (6) or penalty term (7). |

A drawback to (35) is the non-smoothness of its
objective function. In order to derive an alternate and
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Algorithm 2

Require: m, V, w: V xV = R, {C;}m,, {SIm,, {S¥}m,

, 8, &, 8, n and ~, where m is the # of classes, V is the set of

data elements, w is the weight function, {C;} are class homogeneity terms, S¢ is the lower bound for class i, S} is the
upper bound for class i, s < 0, « > 0,4 > 0, 7 > 0 and v > 0. No class size information is incorporated by v = 0. The
class size penalty term (7) is incorporated by 0 < v < oco. Class size constraints (6) are incorporated by v = oo.

Ensure: out = u, where u;(z) is the probability of data element z belonging to class i.

Initialize k =0, p} = p2 =¢; =0 Vi € {1,...,m}.
Let divy q(z) =3, w(z,y)%q(z,y), VT
while Stop criterion not satisfied do
Let k < k+ 1.
fori=1— mdo

k41
T;

k+1

i(z,y) = w(z,y)' = (Ti(y) —

Ti(z)), where a € [ ,1]. We usually set a = 1.

— <6(—C,—d1qu —p2 " +p*) /s )/(Z:’;l e(—Ci—divy, qf —p? " +p1*) /s )

q; " = Projection, (gF — onwTik'H), where Projection,; is a projection operator defined in (31).

— (X, T (@) —

P; = min (max (p} k
p3k+1 = min (max (
end for

end while

§6),0),7)-
55y = 30, T (2)),0),7).

The final variable u is computed via the converged values g7, p}* , p%*:

=1,..., m

u;(x) =

1 ifi= argmln (Cj +d1quj+p] —p] )
=1
0 otherw1se

slightly simpler scheme to a max-flow technique of Sec-
tion 3, we propose to use a smoothing technique, leading
to a smoothed primal-dual version of (35).

In particular, to derive the aforementioned tech-
nique, we consider the asymptotic functions as defined
n [115, 102]. Specifically, the asymptotic function he,
of a proper convex function h(u) can be defined as:

. u
hoo(u) = Slir(r)lJr sh(g) (43)
If h(u) = log 2211 e, then using (43), one obtains

heo(u) = sl_i>161+ sh(%) = max u; = — min —u;, where

1<j<k 1<j<k
u is a vector in R™ written as u = (U1, ..., Um,)-
By applying the asymptotic approximation to the
min operator of (35) using a small s value, we get:

> (pisi—pisy)

%

Z (1ogz —Ci(z)—dive, q?(m)fp?kerik)/S) }

zeV (44)

sup E(p',p*,q) =
pLp%2€(0,7],]gloo <1

Now, using [102} for any h € R™,

m
1 i = h) — il i -
ogZe urga)ncl {(u ;u ogu }

(45)

Using (45), one can formulate the following smoothed
model from (44):

p1,p2€[0,7],]ql 00 <1 UEAT

> (Z“z
+ sZui(x)log(ul ) + Z prSt— p? SZ“)}. (46)

sup min {E(pl,pz,q,w =

)+ divy qi(x) + o — p})

As s — 0, (46) approaches (39), which according to
the proof of Theorem 2, can be reformulated as (34)
under optional class size constraints (6) or penalty term
(7). Similar techniques but for non-graphical settings,
without class size incorporation, were proposed in [18].

The smoothed formulation in (46) allows one to for-
mulate an efficient and simple algorithm. We propose a
projected gradient algorithm, which is detailed as Al-
gorithm 2 and contains similar steps as the techniques
proposed by [74, 30]. The projected gradient algorithm
is constructed from (44); this method can be viewed as
a forward-backward splitting algorithm. Convergence
proofs for such methods have been shown in, e.g., [38].
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For this algorithm, the labeled points are not explic-
itly implicitly incorporated as they are for Algorithm 1.
However, they can be incorporated by setting C;(z) to
be large if = is a labeled point which is not of class i.

3.3 Graph-based convex optimization in image
segmentation involving region parameters

In this section, we derive Algorithm 3 which is useful for
image segmentation problems, where the goal is to seg-
ment an image into regions. In particular, we consider
a model based on a Potts regularity formulation [97],
which favors region boundaries of minimal length and
contains data cost functions, often depending on pa-
rameters. While the number of regions is often known
in advance, the region parameters are usually unknown.
We will formulate a model which simultaneously finds
these parameters and the segmentation regions.

In more detail, we start by briefly considering a con-
tinuous setting. Let the goal be to divide an image into
m regions, let u; represent the characteristic function
of region i, let v; represent an unknown parameter of a
data cost term for region ¢, let X be the set of feasible
parameter values, and let R(x, ;) represent the data
cost term for region i. As an example, R(z, v;) can take
the form of [£2°(z) — v;|®, where k > 0 and (2° is the
original image. In a continuous setting, if {2 is an image,
one can consider the following Potts model (see [97])
written in terms of the characteristic functions {u;};,
to be later transferred to a graphical setting:

/ |Vuz|dac+2/ R(z,v;)u;(z)dz,

(47)

min min
{ui Y €T {vi} e 1€X

subject to Zul(x) =1 Vzel, (48)
where T = {u € BV({2) such that u € {0,1}}, and BV
indicates functions of bounded variation. One can then
transfer (47)-(48) to a graphical setting by using graphi-
cal operators, and incorporate class size constraints (6)
or penalty term (7); in particular, the total variation
term can be written in a graphical setting (see (16)):

min min
{uitiz, €{0,1} {v;}j2, €X

:iz

z,yev

{BQuy, {nm) =

(z,y)|ui(y |+ZZR(EVZU1 )}

i=1zeV
(49)

subject to Z u;(x) =1 Vo € V,and optional class size
i
constraints (6) or penalty term (7).
(50)

The first term in this model is a graph-based term
resembling a graph cut, which attempts to group data
elements in a way such that the elements grouped in dif-
ferent classes are as dissimilar as possible. The second
term incorporates the data cost terms.

We now assume that the set of feasible data cost
term parameters is finite; specifically, the set of values
v; is restricted to X = {g1,...,ga }. This often occurs
in image segmentation problems when X may be the
set of quantized gray values. In this case, in order to
optimize over a single variable, one may formulate an
equivalent extended model, where instead of minimiz-
ing over m characteristic functions, one minimizes over
M characteristic functions, where each function corre-
sponds to a feasible value in X, and M > m:

mljn {Eextended Z Z ZL' Y ‘ul ) — U1($)|
i=1 z,yeV
M
+2.2. R(x,gi)ui(x)} (51)
i=1xeV

subject to Zul )=1VzeV, Zbupuz r) <m,

i—1 €V
wi(z) € {0,1} Yz €V, Vi

constraints (6) or penalty term (7).

and optional class size
(52)

One can show that (51) subject to (52) is equivalent to
original model (49) subject to (50) if the feasible values
of {v;}; are restricted to a finite set X.

Theorem 3 Let u* be an optimal value of (51)-(52),
m* be the # of indices i for which u} # 0. If {zj};”z*l C
{1, ..., M} such that u;, # 0, then ({u], T;l,{gij};-”z*l)
is a global optimum to (49)-(50) with X = {g1,....,g9m}-

Proof First, m* < m, since otherwise (52) would be
violated. Then, let ({@;}7,,{g;, }j21) be any other so-
lution to (49)-(50), and define the following function:

u; =0, for j € {1, ...,

MY {iy, eoosim}, (53)

ﬂ;j =du;forj=1,..,m. (54)
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Therefore, @ belongs to the feasible set of (51).

Then Eextended (,&) —

—Z > w(z,y)lis(y) H—ZZRﬁgzuZ

i=1 x,yeV i=1xeV
m m

=Y > wlaylis, () =iz, (@)|+)_ Y Rl g;,)i;, («)
j—la:yGV j=lzeVv

=3 Yl )@Y Y R0 i)
j=1lz,yeV j=lzeV

= B({@;}0, {95, }110)-

Since u* is a global minimizer of Fextended

= E({’aj };‘n:l? {gij };nzl)
(56)

(55)

Ecxtcndcd (u*) < Ecxtcndcd (’ll)

Eextended (

*):
*Z way\u

Now

|+Z > R(x,gi)u

i= lw,yEV i=1xzeV
—E > w(@, y)luy, (y |+§ > R(x,g;,)ui, (x)
j=lz,yeV j=lzeV

= E({UZJ };n 1 {gz‘j };n:*l) (57)

Using (56) and (57),

E({u, }jx 1,{9zJ 5) < E({ag 3y, {95, 1im)-

Thus, ({uf, }7L:, {gij };”:1) is a solution to (49)-(50). W

Due to the equivalence of the models, we will focus
on solving the extended model (51)-(52) which finds the
unknown parameters and the optimal regions simulta-
neously. However, it is nonconvex due to the binary
constraints on u. In this case, one can perform a con-
vex relaxation procedure, similarly to [78, 16, 129], by
allowing u(z) to take any values in A7 in (4).

We thus consider the model (51), but allow u to take
any value in [0,1]. Let p be a Lagrange multiplier for
the second constraint in (52). This results in:

max min { z; mge:v @, y)lui(z) — wiy)|
M M
3 F Rnaute)+ (L) <) |
i=1zeV i=1
(58)

subject to Zul(x)
i
under optional class size constraints (6) or

penalty term (7), (59)

=1VeeV, u(z)>0 VeV, Vi

where R(z,g;) is a data cost function for a potential
class ¢ at z which can be formulated as a class homo-
geneity term, m is the desired number of classes, and
M > m is the number of terms in the discrete parame-
ter set X = {g1, ..., gar}. The third term of (58) instills
a penalty on the number of classes. Overall, for some
fixed i, the optimal w;(z) might take a small or zero
value for all x so that no data element would be clas-
sified into that potential class i. By using many more
classes than necessary (i.e. M > m), a method which
minimizes (58) subject to (59) would simultaneously se-
lect the optimal region parameters and optimal u. Sim-
ilar techniques but for non-graphical settings, without
class size incorporation, were proposed in [19].

To solve the problem (58), one can apply an aug-
mented Lagrangian technique, the convergence of which
is often guaranteed by theories, such as the ones in
[47, 57]. The technique is also accurate and tolerates
a wide range of step sizes. One can apply this proce-
dure to solve (58) by alternating between the following
two steps until convergence, where £ is defined in (58):

1) w"* = argmin £(u, u™)

Zm(x) =1,

under optional class size constraints (6) or

ui(x) >0 Ve eV Vi.

penalty term (7), (60)

2) ptt = rnaX(O7 w4 A( [Zg?g uf“(x)} - m))
’ (61)

We now show that the first subproblem (60) can be
rewritten as a primal-dual problem with a max-flow set-
ting. In particular, we show the connection between the
label cost constraint in (51) and adding an additional
flexible flow constraint in the max-flow setting. Before
going into detail in Theorem 4, we define:

O ={r; : V — R such that Z Iri(z)] < p} (62)

zeV

Theorem 4 The following primal-dual problem with
a maz-flow setting can be written as the optimization
problem in (60) :

IILiIl sup { Z ps() (prSt— p2Sy)

Ps,P, 45T 0% N ey

+ZZul

i=1zeV

i=1

—pi)(w)}

(63)

(dive ¢; —ps+pi —1i + p;
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subject to, for all i € {1,...,m},

lgi(z,y)| < 1, V(r,y) e B, (64)

> Iri(@)] < pt (66)
zeV
0<pf,p; <. (67)

Proof By regrouping like terms, one obtains:

min sup

{E(ps,p, g.r.p'p*u) =
Y ps,p,q,ript,p?

ZZul ) divy, gi(z Jrz 1—Zul

zeV i=1 zeV

+ Z Zui(x)pi(z) - Z ui(z)ri(z)
zeV 1=1 zeV

FY S - S +zmz: 0 -9}
i=1 zeV eV

subject to (64)—(67) (68)

For a given variable u, the maximization of the term
involving r can be written as:

Z w;(z)r;(x)

zeV

sup = — (69)

= u" maxu;(x).
m(w)E@fn zeV

For a given variable u, the maximization of the term
involving p; can be written as:

wi(x)R(x,g;) if u;(x) >0

sup  u;(z)pi(x) = {oo( )R(, 9:) ifuéx; 0
pi(z)<R(z,9;) i .
(70)

An important distinction between (60) and (63) is the
fact that w is unconstrained in (63) and the simplex
constraint on u is handled implicitly. This allows one to
formulate an algorithm without projections of u, which
can restrict step sizes and reduce accuracy.

The rest of the proof follows similarly to that of The-
orem 1. In particular, we use the mini-max theorem,
described in sources such as Chapter 6, Proposition 2.4
of [45], and Sion’s generalization of the mini-max theo-
rem [111], as done in the proof of Theorem 1. In addi-
tion, keeping the u variable constant, the optimization
of the ¢;, ps, p* and p? terms can be written as (16),
(17), (19) and (20), respectively. Overall, the simplex
and non-negativity constraint on « in (60) and the op-
tional class size constraints (6) or penalty term (7) are
implicitly incorporated into the primal-dual formula-
tion (63) in the manner shown in the proof of Theorem
1. Specifically, the positivity constraint on u can be ob-
tained from (70), the simplex constraint on w can be
obtained from (17), and the class size constraints are
implicitly incorporated by (19) and (20).

Therefore, (63) subject to (64)-(67) can be rewritten
as the first subproblem in (60). |

As stated previously, the first subproblem (60) of
the scheme (60) - (61) can be approached via the aug-
mented Lagrangian technique, as in Section 3. The tech-
nique is efficient, accurate and tolerates a wide range
of step sizes since it does not involve any projections of
u. Moreover, the convergence of augmented Lagrangian
techniques is often guaranteed by theories, such as the
ones in [47, 57]. To derive the method, we consider the
augmented Lagrangian functional:

L= Z]h‘kzpzsf*pz 1,))

zeV

— *ZHdlvw qi —Ps +Dpi — Tz"'pz plng

+Zuz lesz Ps +Pi—7"i+:0¢2_/)zl>(37)-

(71)

One can then formulate a procedure to minimize
(71), where one alternatively maximizes (71) for each
of the variables q, p, ps, 7, p1 and ps separately, and
then updates the Lagrange multiplier u.

In practice, the alternating scheme for the first sub-
problem (60) becomes the following, where we perform
these steps for Ny iterations, where Ny, is a small
number (we use 5), and ||f||2 >, f@)*

k+1 _argmaxz ps_*ZHps Ak”ga

CE

€V
k 3
where A?: k+diqug€77‘ffuil+pi2kfpzlk.
c
(72)
2
gt = argmax —- Hdlqu BY|2, vi
la(e)|<1VeeE
k k+1 k k Uf ok
where Bj' = p,""" —pi T TP T h
(73)
c 2
pF = argmax —5 [pi = D[l Vi
pi(z)< Ci(x) Vo
uk
k
where D} = p " 41} —div, ¢f T+ =L —p? ot
(74)
k+1 9
A = argmax 3 plst = 3 ol = B, v
0<pi<r zeV
k
where B} —pf“+diquf+l—%—rf P p2r
(75)
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Algorithm 3

Require: m, V, w:V xV = R, {R(x,g:)}/21, ks : V — {0,1} Vi € {1, ..., m}, {Se » 1 {SEI 1, Binitial, G A, 1, Y, Niter,
Where m is the # of classes, V' is the set of data elements, w is the weight functlon {R(x,9i)}™ , are the data cost terms,
ki(xz) = 1if z is a labeled element of class ¢ and 0 otherw1se Se and S} are lower and upper bounds for class 4, pinitial > 0,
¢>0,A>0,17>0,7>0and Njter is a small number (we choose 5). No class size information is incorporated by v = 0.
The class size penalty term (7) is incorporated by 0 < v < oco. Class size constraints (6) are incorporated by v = co.

Ensure: out = u, where u;(z) is the probability of data element z belonging to class i.
Initialize n = 1, u' = pinitial and let divy, g(z) = Zy w(z,y)q(z,y).
while Stop criterion not satisfied do
Initialize u = p} = p2 =q; =7; =0 Vi € {1,...,m}, ps = R(z,9m), pi = ps Vi € {1,...,m}.
for k =1 — Njter do

Set pk+1 =3 (pi® + divy ¢F —rk +p p%k—l—%)/m.
fort:=1— mdo

k
ot = Projection, (¢f + ¢V (divewgy — Bf)), where BF = p*t1 —p;F 4 rF + uT — p2F 4 pLF

k
k+1(a¢) = min{(D¥(z), R(z, g;)}, Yz, where DF(z) = ps**1 + rF — div,, qlCle + u—CL — p2F 4 plF

. St . k :
pzlk+l = min (max (mean(E¥ + T"/H),O),'y), where EF = pf'H +d1qui?+1 _ “Tw —rk _pktl 4 p2§.
) gu
pfk"'l = min (max (mean(Fik = STV ),0),7), where Ff = fpf"'l divy, qf+1 +rk+ X +pk+1 + p%’“’l.
P = argmax — ri — GE||2, where GF = divy, qF T — phHl 4 phtl o MLy pak L ik
ri(z)cor”
u§+1 _ uic _ c(divw qf+1 k+1 +pi‘~+1 +p2k+1 P3k+l f+1).
end for
end for

Set unt! = yNiter and pnt1 = max((), u" + )\([Zl ma‘)/(u?Jrl(x)} — m))
e

end while

k+1 w C 2 .
A g 3 gir < ot~ FE . k
0<p?<Y zev szr (z) = min{(D; (v), R(=, gi)}, Yz,

where FF = k+1 dlquk+1+7’ + + kHer%k-H. (80)

(76) where A¥ and D¥ are denoted in (72) and (74).
The optimization problem (73) can be solved by a

k+1 _ ¢ k .
Ty = argmax Hn i H2 » Vi, few steps of the projected gradient method:
Tl(x)E@“
where GF = divy gF 1 —pht1ppitl Y Jr/)12’“1 plETt gt = Projection, (¢} + ¢V (divwg) — BY)),
k
ur
(77) where BF = p M —pF 4k 4 ?Z - p?k + p}k
ubtl = uf — HF, where (81)
. k1 qk+1
Hf = c(dive g; M =pi pf ol —pin T ),

where Projection,, is a projection operator in (31).
(78) There are extended convergence theories for the aug-

After Ny, iterations of the above, we set un! = gNiter mented Lagrangian method in the case when one of the

For (72) and (74), the closed form solutions are: subpr.oblems is solvesi inexactly, see e.g. [4%7, 57]. In our
experience, one gradient ascent iteration is enough.
1 ; .
Pl = Z(Aic +3)/m, (79) C'on51der n(iw (75) 2and (76). I.n case no constraints
- c are given on p- and p“, the maximizers over the sum
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of the concave quadratic terms can be computed as the
average of the maximizers to each individual term as

¢
1k+1 k S;
, = E! 82
pz mean( ) + CHVH)’ ( )
2k+1 k Sy
; = mean(F;" — . (83)
( CHVH)

with EF and FF defined in (75) and (76), respectively.
Since the objective function is concave and the maxi-
mization variable is just a constant, an exact solution
to the constrained maximization problem can now be
obtained by a projection onto that constraint as follows:

p}k+1 — min (max (mean(Ef + c||‘i/||),0),’7>7 (84)
ka = min (max (mean(Fl-k - I%;H), 0),7) (85)

Here, EF and FF are defined in (75) and (76).

The optimization problem (77) involving r; can be
addressed by the projection of G* to the L;—ball 6
defined in (62) using a fast projection algorithm [44, 86].

Just like Algorithm 1, Algorithm 3 has the desired
property of being parallelizable on GPU. This is due to
the fact that the subproblems (72)- (77) can be solved
pointwise independently of each other. Moreover, the
update formula (81) for ¢ only necessitates access to
the values of neighboring nodes at the previous iterate.

In addition, we note that Algorithm 3 can be applied
in an unsupervised setting and in a semi-supervised set-
ting. For semi-supervised applications, one can incorpo-
rate labeled data by including the {k;} terms as in (24)
in Algorithm 1, or by setting the term R(z,g;) to be
large if = is a labeled point which is not of class i.

4 Experiments

For each data set, in the experiments, we randomly se-
lect a percentage of the data set to use as labeled data.
The labels of the unlabeled points are initialized by cre-
ating a Voronoi diagram with the labels of the labeled
points as the seed points. Every point is assigned the
label of the labeled point in its Voronoi cell.

The results for experiments are in Figure 1 and Ta-
ble 1. In Figure 1, the framework is semi-supervised,
with only a small amount of labeled data used. In Ta-
ble 1, the framework is unsupervised, with no labeled
data used. In addition, for Algorithm 1, we use n = 10,
~v = 10, and ¢ = 0.05. For Algorithm 2, s = 0.01, § =
0.05, n = 100, = 0.001 and v = 100. For Algorithm 3,
Hinitial = 10000, Cc = 0.1, A= 100, n= 50 and ¥ = 100.

Regarding the class sizes, we set the upper bounds
{U;}; and lower bounds {L;}; so that the amount of

data elements classified into a class does not deviate
more than 15% from the true class size.

Overall, for each data set, we average the accuracy
over 500 to 10000 experiments, where each experiment
involves a different set of labeled elements. Moreover,
we ensure that each data set element is included in an
experiment as a labeled point of the data set.

All experiments were run on a 2.2 GHz Intel Core i7
computer. The nearest neighbors were calculated using
the kd-tree code in the VLFeat library [12].

4.1 Data Sets

— Berkeley Segmentation Data Set. This data set
[88] is a data set of 500 images, both in color for-
mat and gray format, of different, mostly outside,
scenes. For each image that we used, we take the
intensities of a 7 x 7 neighborhood of each point to
be the feature (attribute) vector. This vector is used
to compute the weight matrix W = {w(x,y)} using
the formula in (1), 0 = 1 and 15 nearest neighbors.
We do not preprocess the images in any way.

— MNIST. This data set [76] is a data set of 70,000
grayscale 28 x 28 images of handwritten digits; the
set consists of 10 classes. The weight matrix W =
{w(x,y)} is constructed using 15 nearest neighbors,
Euclidean distance measure, the formula in (1) and
o = 1, without any preprocessing of the images.

— Fashion MINIST. This data set [3] is a dataset of
70,000 28 x 28 grayscale images of clothing items;
the set contains 10 classes. The weight matrix is
constructed using 15 nearest neighbors, Euclidean
distance measure, the formula in (1) and o = 1,
without any preprocessing of the images.

— Opt-Digits. This data set [6] is a set of grayscale
images of 5620 handwritten digits; it contains 10
classes. The dimension reduction performed on the
data produced a 64-dimensional feature vector for
each image, where each value is an integer in the
range of 0 to 16. The weight matrix is constructed
using 20 nearest neighbors, Euclidean distance mea-
sure, the formula in (1) and o = 1.

— WebKB. This data set [41] is a set of 4199 web-
pages from Cornell, Texas, Washington and Wiscon-
sin universities, and other miscellaneous pages, to be
divided into: project, course, faculty and student. It
is preprocessed as in [29], and tfidf term weight-
ing [29] is used to represent the features, which are
then normalized to unitary length. To construct the
weights, we use a pairwise document similarity mea-
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Table 1 Classification Accuracy in Percent for Algorithms 1 and 2

% of data used as

labeled elements 2.5% 5% 10% 15% 20%

% of data used as

labeled elements 2.5% 5% 10% 15% 20%

Alg. 1 | 97.39 | 97.61 | 97.70 | 97.80 | 97.90

MNIST 1 Alg 2 || 97.12 | 97.32 | 97.51 | 97.65 | 97.83

Alg. 1 | 98.49 | 98.52 | 98.63 | 98.76 | 98.86

Optdigits | o155 || 98.31 | 98.37 | 98.51 | 98.68 | 98.79

% of data used as

labeled elements 2.5% 5% 10% 15% 20%

% of data used as

labeled elements 2.5% 5% 10% 15% 20%

Alg. 1 || 82.05 | 83.17 | 84.19 | 84.66 | 85.22
Alg. 2 || 82.02 | 83.11 | 84.07 | 84.53 | 85.02

Fashion
MNIST

Alg. 1 || 92.08 | 95.23 | 95.40 | 95.51 | 95.86

Reuters | Ajg 9 || 91.58 | 94.90 | 95.13 | 95.38 | 95.55

% of data used as
labeled elements

2.5% 5% 10% 15% 20%

% of data used as
labeled elements

5% 10% 20% 30% 40%

Alg. 1 || 97.31 | 98.39 | 98.85 | 99.01 | 99.21

Pendigits | pjg o || 97.24 | 9831 | 98.78 | 99.00 | 99.17

Alg. 1 || 81.64 | 84.47 | 86.57 | 88.33 | 89.16

WebKB | Alg 2 || 81.54 | 84.25 | 86.23 | 88.16 | 89.09

% of data used as
labeled elements

1% 2.5% 5% 10% 20%

% of data used as
labeled elements

2.5% 5% 10% 15% 20%

Alg. 1 || 85.96 | 87.43 | 88.61 | 89.82 | 90.71

Landsat | pjp o || 85.86 | 87.37 | 88.54 | 89.20 | 90.69

Alg. 1 || 73.74 | 76.65 | 80.63 | 81.72 | 83.19
Alg. 2 || 72.94 | 76.44 | 80.20 | 81.39 | 82.89

20
Newsgroups

Fig. 1 Image Segmentation Results for Algorithm 3 (Unsupervised Graph-Based Setting). Algorithm 3 simulta-
neously finds the segmentation result and the region parameters of data cost terms, when the latter is unknown.

sure [93] as a distance measure, the weight formula — 20 Newsgroups. This data set [1] is a set of ap-

(1) with ¢ = 1, and 30 nearest neighbors.

Reuters. This data set [9] is a collection of 7674
documents with 8 classes: ‘crude’, ‘earn’, ‘acq’, ‘grain’,
‘interest’, ‘money-fx’, ‘ship’ and ‘trade’. Tfidf term
weighting [29] is used to represent the features, which
are then normalized to unitary length. To construct
the weight matrix, we use a pairwise document sim-
ilarity measure [93] as a distance measure, the for-
mula in (1) with o = 1, and 30 nearest neighbors.

proximately 20,000 newsgroup documents, to be di-
vided into 20 classes. Tfidf term weighting [29] is
used to represent the feature vectors, which are then

normalized to unitary length. To construct the weights,

we use cosine similarity as a distance measure, the
formula in (1) with o = 1, and 30 nearest neighbors.

— Landsat. This data set [10] is a set of 6435 elements

containing multi-spectral values of pixels in 3 x 3
neighbourhoods in a satellite image, and the classifi-
cation is associated with the central pixel. There are
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6 classes. Each of the elements of the data contains
the pixel values in the four spectral bands of each
pixel in the 3 x 3 neighbourhood; therefore, each
feature vector consists of 36 values. The weights are
constructed using (1) with ¢ = 1, Euclidean dis-
tance, and 20 nearest neighbors.

— Pendigits. This data set [7] of 10 classes is a set of
10992 images of handwritten digits. Each image is
represented by a vector of 16 values, each between
0 and 100. The weight matrix is constructed using
(1) with ¢ = 1, and 30 nearest neighbors.

4.2 Comparison to Recent Methods

We compare our methods to many recent algorithms,
most of which are semi-supervised and from the last 5
years. The results are in Table 2 and Figure 2.

In particular, we compare the results of all data sets
to the following label propagation methods:

— weighted nonlocal Laplacian (WNLL) [108]
— centered kernel method (CKM) [87]

— sparse label propagation (SLP) [67]

— p-Laplace learning (p-Laplace) [101].

We also compare the results of all data sets to the
following graph embedding methods and popular GNN-
based models for graph semi-supervised learning tasks:

— graph neural network (GNN) [59]
— graph convolutional network (GCN) [73]
— Planetoid [123].

From Table 2 and Figure 2, we see that the results of
the proposed methods compare favorably to those of re-
cent algorithms. In particular, from Table 2, we see that
when the methods are compared to classical graph em-
bedding methods and popular GNN-based models such
as GCN [73], GNN [59] and Planetoid [123], the pro-
posed methods outperform the aforementioned models.
In particular, for MNIST, Pendigits and Opt-Digits, the
results of the proposed techniques are 6%-19% higher
in accuracy than that of the comparison methods in
Table 2. For Reuters data, the result is 5%-14% higher
than that of other methods in Table 2. For the Landsat
and 20 Newsgroups data sets, the results are 2%-14%
higher in accuracy than that of the comparison meth-
ods in Table 2. Moreover, from Figure 2, we can also see
that the results of the proposed methods compare fa-
vorably to those of recent algorithms. For example, the
results of the proposed methods on WebKB data have
an 2.1%-14% improvement from comparison methods.

Moreover, for the Optdigits data set, in addition to
the aforementioned algorithms, we also compare to the

following semi-supervised procedures: TV-based multi-
class graph partitioning (TVRF) [124] and high-dense
graph learning (HIDEGL) with four different versions
[120]. The result of TVRF is from the paper [120]. For
labeled data, we use 140 labeled points.

For the Pendigits data, in addition to the afore-
mentioned algorithms, we also compare to the follow-
ing semi-supervised methods: semi-supervised predic-
tive clustering trees (SSL-PCT) [80], semi-supervised
deep classification (SDC) [43], direct kernel mapping (1-
Kernel-LP-map) [131], kernel mapping- induced label
reconstruction (1-Kernel-LP-recons) [131], discrimina-
tive sparse flexible manifold embedding (Sparse FME)
[133], semi-supervised self-organizing map (SS-SOM)
[26]. The results for 1-Kernel-LP-recons, 1-Kernel-LP-
map and Sparse FME methods are from [131]. All meth-
ods consider 2.5% of the data set as labeled.

For MNIST, in addition to the aforementioned meth-
ods, we also compare to the following (mostly semi-
supervised) methods: label propagation adaptive reso-
nance theory (LPART) [71], Ensembles [35], batch semi-
supervised self-organizing map (Batch SS-SOM) [25],
continual learning [79], active learning [2], and succes-
sive subspace learning (Pixel Hop) [34]. The results for
Ensembles is from [35]. All methods consider 2.5% of
the data as labeled, except Batch SS-SOM and active
learning, which consider 5% of the data as labeled.

For Fashion MNIST, in addition to the aforemen-
tioned methods, we also compare to semi-supervised
deep classification (SDC) [43], batch semi-supervised
self-organizing map (Batch SS-SOM) [25], a convolu-
tional neural network (LeNet-5) [75], Wasserstein ad-
versarial active learning (WAAL) [109], and continual
learning [79]. The result for WAAL is from [109]. All
methods consider 2.5% of data as labeled, except Batch
SS-SOM, which considers 5% of data as labeled.

For Landsat, in addition to the aforementioned meth-
ods, we also compare to the following semi-supervised
methods: a modified particle competition and cooper-
ation models (MPCCM-mcCPU and MPCCM-GPU)
[112], 2 versions of active labeling (with Tri-Training
or STDP) [96], and 2 versions of a framework based on
local cores for self-labeled semi-supervised classification
(LC-SSC with Tri-Training or STDP) [81]. Most results
are from [81]. All methods use only 64 labels in total.

For Reuters, in addition to the aforementioned meth-
ods, we also compare to semi-supervised Grid-TCTN
[103], semi-supervised GE-TCTN [40], multinomial Naive
Bayes (Mult-nb) [11], linear kernel support vector ma-
chine (SVC-tfidf) [11], ExtraTrees with 200 trees (Globe-
big-tfidf) [11], and ExtraTrees with 200 trees using a
100-dimensional word2vec embedding (w2v-tfidf) [11].
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Table 2 Comparison to Semi-Supervised Graph Embedding and GNN-based Models

Data Set % Labeled | Proposed | Proposed | GCN [73] | GNN [59] | Planetoid [123]
Data (Alg 1) (Alg 2)

MNIST 0.7% 95.95 95.90 88.71 85.92 86.62
Pendigits 1% 91.49 91.17 83.28 76.36 85.82
Opt-Digits 1% 97.53 97.13 83.16 78.35 87.98

WebKB 10% 84.47 84.25 85.37 80.13 84.04

Fashion MNIST 0.7% 79.81 79.69 76.58 73.29 78.14
Landsat 1% 85.96 85.86 83.57 80.35 83.41
Reuters 2.5% 92.08 91.58 85.16 78.35 87.03

20 Newsgroups 2.5% 73.74 72.94 70.26 60.86 66.11

Table 3 Timing Results for Algorithms 1 and 2 (in seconds)

Data Set Number of classes | Number of elements | Timing in seconds | Timing in seconds
MNIST 10 70000 28.28 s 13.39 s
Pendigits 10 10992 7.23 s 4.45 s
Opt-Digits 10 5620 2.88 s 1.38 s
WebKB 4 4199 1.11s 0.59 s
Fashion MNIST 10 70000 22's 11.63 s
Landsat 6 6435 2.67 s 1.36 s
Reuters 8 7674 6.04 s 2.82s
20 Newsgroups 20 18820 33.34 s 15.28 s

Table 4 Timing Results for Algorithm 3 (in seconds)
Data set Number of pixels Construction of Timing in seconds

in the image

nearest neighbor graph

for Algorithm 3

Berkeley Segmentation data (one image)

154401 ~ 90 s

~ 35s

Table 5 Comparison of Timing to that of Other Algorithms

MNIST Fashion MNIST Other data sets
from Section 6.1
Pre-algorithm computations ~ 1.5 min ~ 1.5 min 0.03 min-1 min
(construction of graph weights) (except for the 20 Newsgroups data)
for Algorithms 1 and 2 (proposed)
Pre-algorithm computations (training) ~ 25 min ~ 25 min not included in paper
for LeNet-5 [4]
Pre-algorithm computations (training) ~ 15 min ~ 15 min not included in paper
for for PixelHop [34]
Pre-algorithm computations (training) ~ 15 min ~ 15 min not included in paper
for LIBSVM [5]

Table 6  Friedman’s Test and Ranking for Table 2
Statistic p-value Result Algorithm 1 | Algorithm 2 | GCN | Planetoid | GNN
42.77778 | <0.00001 | HO is rejected 1.125 2.125 3.25 3.50 5.00
(a) Friedman’s Test (b) Ranking
Table 7 Friedman’s Test and Ranking for Figure 2
Statistic p-value Result Algorithm 1 | Algorithm 2 | WNLL | pLaplace | SLP | CKM
61.69737 | <0.00001 | HO is rejected 1.00 2.00 3.57 3.71 4.86 5.86

(a) Friedman’s Test

(b) Ranking
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95.4
95.13

Proposed (Alg 1)
Proposed (Alg 2)
w2v-tfidf

WNLL

p-Laplace

SLP

SVC-tfidf
Mult-nb

CKM

Grid-TCTN
GE-TCTN
Glove-big-tfidf

(a) Reuters (= 10% labeled data)

Proposed (Alg 1)
Proposed (Alg 2)
MPCCM-mcCPU
MPCCM-GPU

p-Laplace

WNLL

Active Labeling w/ Tri-Training
Active Labeling w/ STDP
LC-SSC w/ STDP

SLP

LC-SSC w/ Tri-Training
CKM

85.86

84.37

(c) Landsat (= 1% labeled data)

80.63
80.2

Proposed (Alg 1)
Proposed (Alg 2)
p-Laplace
WNLL

SDEC

SVC-tfidf

SLP

CKM

Grid-TCTN
SCDMLGE
GE-TCTN
Mult-nb

(e) 20 Newsgroups (= 10% labeled data)

Proposed (Alg 1) 97.31

Proposed (Alg 2) 97.24
p-Laplace 96.95
WNLL 96.69
SLP 96.41
CKM 94.83

SSL-PCT
1-Kernel-LP-map
SDC
1-Kernel-LP-recons
Sparse FME
SS-SOM

(g) Pendigits (= 2.5% labeled data)

Proposed (Alg 1)
Proposed (Alg 2)

85.96 Proposed (Alg 1)
Proposed (Alg 2)

Continual Learning

84.47
84.25
82.11
82.03

WNLL
SLP

RF
p-Laplace
CKM
HSN

BS

GBC
MMC
MBC

81.78

(b) WebKB (&~ 10% labeled data)

82.05

82.02
81.7

81.65

SDC
WNLL
p-Laplace

CKM

SLP

LeNet-5

Batch SS-SOM
WAAL

(d) Fashion MNIST (= 2.5% labeled data)

98.49
98.31

Proposed (Alg 1)
Proposed (Alg 2)
WNLL

TVRF

SLP

HiDeGL (L-approx)
HiDeGL (L-aaccurate)
p-Laplace

HiDeGL (A-approx)
HiDeGL (A-accurate)
CKM

(f) Optdigits (= 2.5% labeled data)

Proposed (Alg 1) 97.39
Proposed (Alg 2)
p-Laplace

WNLL

Ensembles
Continual Learning
CKM

SLP

Pixel Hop

Active Learning
Batch SS-SOM
LPART

(h) MNIST (= 2.5% labeled data)

Fig. 2 Comparison to Other Recent Methods (Accuracy in Percent)
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The result of Grid-TCTN and GE-TCTN is from [40].
All methods consider 10% of the data as labeled.

For the WebKB data set, we also compare our algo-
rithms to a merged multi-class classifier (MMC) [106],
graph-based classification (GBC) [105], merged binary
classifier (MBC) [106], hybrid support vector machine
and Naive Bayes classifier (HSC) [105], boosting (BS)
[70] and random forests (RF) [70]. The proposed meth-
ods and the last two methods use around 420 labeled
points, while others use 560 labeled points.

For 20 Newsgroups, we also compare to the follow-
ing (mostly semi-supervised) methods: semi-supervised
Grid-TCTN [103], GE-TCTN [40], semi-supervised deep
embedded clustering (SDEC) [100], semi-supervised clus-
tering with deep metric learning and graph embedding
(SCDMLGE) [83], multinomial Naive Bayes (Mult-nb)
[11], and linear kernel support vector machine (SVC-
tfidf) [11]. All methods consider 10% of data as labeled.

4.3 Timing

The timing for Algorithms 1, 2 and 3 is included in
Tables 2-3. The proposed algorithms are very fast; all
experiments were performed on a 2.2 GHz Intel Core i7
computer. Overall, Table 2 involves Algorithms 1 and
2 and includes the timing needed for everything but
the construction of the weight matrix. For all but 20
Newsgroups, the time to construct the weight matrix is
only 0.03 - 1 minutes; for 20 Newsgroups, 6 minutes are
needed. Table 3 includes the timing for Algorithm 3.
Table 4 compares the timing of the proposed methods
to that of several recent algorithms.

4.4 Analysis and Influence of the Parameters

As is the case for the vast majority of classification al-
gorithms, the values of the parameters in the proposed
techniques influence their accuracy. In particular, some
parameters should be kept large or small, otherwise the
accuracy can be suboptimal. For example, the param-
eter ¢ in Algorithms 1 and 3 must be kept small but
not too small (otherwise, converge will be slower) as
it is a projected gradient descent step; usually, it is in
the range of 0.01-0.1. The parameters § and « in Al-
gorithm 2 should also be kept small- we usually choose
them to be 0.05 or smaller. In addition, the parameter
s in Algorithm 2 is a smoothing parameter and must
be kept small, usually 0.05 or smaller, otherwise the
asymptotic approximation of the technique would not
be valid. However, the parameters n and + must not
be small, as they involve projections onto [—n,n] and
[0, ], respectively; usually, they should be at least 10,

otherwise a lot of information is lost. Moreover, for Al-
gorithm 3, we choose pinitial to be a large parameter, so
that (close to) the desired number of segments in the
image is attained in the result. Since pinitia1 is a large
parameter, A should not be small, otherwise very lit-
tle change in p will be made during the computations.
Lastly, Njter in Algorithm 3 should be a small integer,
such as 5, as that is enough to obtain accurate results.

4.5 Statistical Tests

We performed statistical tests on experiments in Table
2 and Figure 2; the results are in Table 6 and Table 7.
The null hypothesis HO, which states that the means of
the results of the algorithms are the same, is rejected
due to a very low p-value. Overall, we see that the pro-
posed methods are consistently ranked the best.

5 Conclusion

This paper derives three algorithms for machine learn-
ing learning problems, such as data classification and
image segmentation, using maximum flow and duality
techniques, similarity graph-based frameworks, semi-
supervised procedures, class size information and class
homogeneity terms. The third method in particular is
tailored for image segmentation problems involving re-
gion parameters, in the case the latter is unknown. The
new algorithms offer several advantages, including re-
quiring only small amounts of labeled data for good
accuracy, in part due to an integration of graph-based
and semi-supervised techniques; this feat is important
due to the scarcity of labeled data. The proposed al-
gorithms are also based on global minimization frame-
works, which allows one to avoid local but not global
minima. The methods are also able to incorporate class
size information which often improves performance. In
addition, the new methods can be used successfully on
both large and small data sets, the latter of which can
result in poor performances for machine learning meth-
ods due a decreased ability for machine learning-based
models to learn from the observed data. Moreover, the
algorithms are parallelizable during coding. Overall, the
three methods form powerful approaches to some of the
most important problems of machine learning, and ad-
dress some of its challenges.

In the future, it would be interesting to investigate
a variety of class homogeneity terms for data classifi-
cation and applications such as 3D point clouds and
hyperspectral imaging. Using class homogeneity terms
is likely to improve the classification accuracy com-
pared to that of models based primarily on boundary
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terms and help avoid trivial global minimizers. For in-
stance, class homogeneity may be defined in terms of
the eigendecomposition of the covariance matrix or the
graph Laplacian matrix. Moreover, we plan to imple-
ment OpenMP directive-based parallelism in our algo-
rithms and optimize the OpenMP implementations.
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