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Abstract The max-flow problem entails the compu-
tation of a maximum feasible flow from a source to a

sink through a network under constraints. Its connec-
tion to total variation presents an opportunity to apply
the problem to machine learning tasks by incorporat-

ing a similarity graph-based setting. In this paper, we

integrate max-flow and duality techniques, similarity

graph-based frameworks, semi-supervised procedures,

class size information and class homogeneity terms to

derive three algorithms for machine learning tasks, such

as classification, and image segmentation. The first al-

gorithm involves similarity graph-based max-flow incor-

porating supervised constraints and class size informa-

tion. The second method involves a duality approach
and global minimization of similarity graph-based total

variation problems incorporating class size information.
The third algorithm involves graph-based convex opti-
mization via max-flow techniques for image segmenta-

tion problems involving region parameters, in the case

the latter is unknown. An important advantage of the

methods is that they require only a small set of la-

beled samples for good accuracy, in part due to the inte-

gration of graph-based and semi-supervised techniques;

this is an important advantage due to the scarcity of la-

beled data. Moreover, some of the proposed algorithms

are based on global minimization, and are also able to

incorporate class size information, which often improves

performance. In addition, the methods perform well on

both large and small data sets, the latter of which can

result in poor performances for learning methods due

to a decreased ability to learn from observed data. The
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proposed methods are validated using benchmark data

sets and are compared favorably to recent methods.

Keywords similarity graph · max-flow · classification ·
image segmentation · semi-supervised techniques

1 Introduction

The maximum flow (max-flow) problem [61], which in-
volves finding a maximum feasible flow from a source
to a sink through a flow network under certain con-

straints, has been studied in many sources, i.e. [54, 36,

37, 107, 62, 14, 24, 56, 60, 32, 42], with efficient al-

gorithms for versions of the problem outlined in, e.g.,

[51, 72, 94, 55, 53, 69, 65, 77]. Moreover, the prob-

lem has been adapted and extended to different areas

such as the stereo correspondence [104], image restora-

tion [24] and the disjoint path problem [64]. Connec-

tions to total variation have been described in works

such as [31], and the theory of the continuous maxi-

mum flow problem has been detailed in sources such as

[39, 17, 128, 126, 127, 113, 20].
Due to the connection of the max-flow problem to

total variation, its setting presents an opportunity to

link graph-based learning problems to a modified max-

imum flow framework on a similarity graph. One advan-

tage of a max-flow setting includes the possibility to de-

velop a global minimization framework through which a

global optimum can be found accurately. Thus, this pa-

per will consider reformulations of graph-based learning

problems in a similarity graph max-flow setting, with

some reformulations being able to incorporate class size

information, which often improves accuracy.

In general, machine learning tasks face several chal-

lenges. In particular, the success of many existing ap-

proaches for learning tasks, such as data classification,



2 Ekaterina Merkurjev

is dependent on a sufficient amount of labeled samples.

However, obtaining enough labeled data is difficult as

it is time-consuming and expensive, especially in do-

mains where only experts can determine labels; thus,

labeled data is scarce. Overall, one of the key limita-

tions of most existing machine learning approaches is

their reliance on large labeled sets. In addition, the per-

formance of machine learning methods can be severely
affected in case of smaller data sets or data associated
with areas of study where the size of the data sets is con-

strained by the complexity or high cost of experiments.

These cases are usually associated with an insufficient

number of labeled samples and a decreased ability for

machine learning-based models to learn from the ob-

served data, resulting in poor performance. These chal-

lenges call for innovative strategies in data science.

Recently, algorithms involving the graphical frame-

work have become some of the most competitive ap-

proaches for applications ranging from image processing

to social sciences. Such methods have been successful in

part due to the many advantages offered by a graphical

approach. For example, a similarity graph-based frame-

work provides valuable information about the extent of

similarity between data elements via a weighted similar-

ity graph and also yields information about the overall

structure of the data. Moreover, a graph setting is able

to handle nonlinear structure and it also embeds the di-

mension of the features in a graph during weight com-

putations, thus reducing the high-dimensionality of the

problem. In addition, the graphical framework is able

to incorporate diverse types of data, including images.

Inspired by the recent aforementioned successes, we

address the aforementioned challenges of machine learn-

ing by integrating maximum flow and dual-based tech-
niques, similarity graph-based settings, semi-supervised

procedures, class size information and class homogene-

ity terms, with both labeled and unlabeled data em-
bedded into a graph. In particular, in the experiments,

the overwhelming majority of the data embedded into

a graph is unlabeled data, which is often much easier

and much less costly to obtain than labeled data.

Overall, in this paper, we present three graph-based

methods involving maximum flow and dual-based tech-

niques for learning tasks, such as data classification

and image segmentation. The experiments on bench-
mark data sets indicate that the proposed algorithms
are highly competitive against other established meth-

ods, while using a small amount of labeled data.

There are many advantages of our algorithms:

– The proposed methods require only small amounts

of labeled data for accurate classification. In fact, in

most cases, a good accuracy can be obtained with

at most 1% - 2.5% of the data elements serving as

labeled data. This is a crucial advantage due to the

scarcity of labeled data for most applications, and

due to the reliance of many data classification al-

gorithms on large labeled sets. Our proposed algo-

rithms are able to perform well with a low number

of labeled elements in part due to the graph-based

setting used and the semi-supervised techniques em-

ployed in the procedures.

– In the proposed framework, the data is embedded

into a weighted similarity graph, which provides in-

formation about the extent of similarity between

data elements and the overall structure of data.

– Unlike many classification methods, the proposed

algorithms are able to incorporate class size infor-

mation, which often improves accuracy.

– Several of proposed models are based on global min-

imization, which avoid local but not global optima.
This allows one to accurately find the optimizer.

– The methods perform well for both large and small

data sets, the latter of which can result in poor per-

formances for existing learning techniques, due to

an often insufficient number of labeled samples.

– The methods are parallelizable during coding.

– Algorithm 3 simultaneously finds both the segmen-

tation result and the region parameters of the data

cost terms, when the latter is unknown.

An important machine learning task considered in
this paper involves classifying or segmenting data, where

the goal is to divide the data into a number of classes
or segments. In fact, data classification and segmenta-
tion is an integral part of many practical applications,
such as medical diagnosis, email spam detection, object

detection, video tracking, financial predictions, medical

imaging, machine vision and face recognition.

The paper is organized as follows. In Section 2, we
present the background, previous work and notation. In

Section 3, we derive the three proposed algorithms of
this paper (in Sections 3.1, 3.2 and 3.3, respectively).
The results of the experiments and a discussion are pre-
sented in Section 4. We conclude in Section 5.

2 Background and previous work

2.1 Graph-based framework

The methods developed in this paper integrate a graph-

ical framework, which consists of a graph G = (V,E),

where V and E are the vertices and edges, respectively.

The vertices of the graph are connected by edges, and

a nonnegative weight value is assigned on each edge;

this value describes the extent of similarity between
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the vertices the edge is connecting. The weight function

w : V × V → R is computed so that it assigns smaller
values for edges connecting dissimilar vertices, and big-

ger values for edges connecting similar vertices. In this

paper, we embed each data set in the graphical frame-

work by associating each element of the set with a vertex

in the graph. Naturally, the embedding of data into a

graph, as well as the performance of a graph-based algo-

rithm, depends greatly on the edge weights; this section

provides more details about graph construction in gen-

eral, but the exact manner of weight construction for

particular data sets is described in Section 6.

The use of the graphical framework offers many ad-

vantages. First, a graph-based framework provides valu-

able information about the extent of similarity between

pairs of elements of both labeled and unlabeled data

via a weighted similarity graph and also yields infor-
mation about the overall structure of the data. It also
provides a way to handle nonlinearly separable classes
and affords the flexibility to incorporate diverse types

of data. Moreover, a graph-based setting embeds the di-

mension of the features in the graph during weight com-

putations, thus reducing the high-dimensionality of the

problem. In addition, in image processing, the graphical
setting allows one to capture texture more accurately
due to the presence of non-local information.

The exact technique of computing the weight value

between two elements of data depends on the data set,
but first involves feature (attribute) vector construction

and a distance metric chosen specifically for the data

set at hand. For example, for hyperspectral data, one

may choose the feature vector to be the vector of in-

tensity values in the many bands of the image and the

distance measure to be the cosine distance. For 3D sen-

sory data, one can take the feature vector to contain

both the geometric and color information, and the Eu-

clidean distance as a distance measure; the weights can

be calculated using a Gaussian function incorporating

normal vectors, e.g., [15]. For text classification, pop-

ular feature extraction methods include bag-of-words

and term frequency-inverse document frequency, both

described in [8]. For biological data tasks, persistent

homology [28] can be used for feature construction.

In particular, for image segmentation applications,

each node in the graph represents a pixel of the im-

age. The features can be constructed in different ways;

one approach is to choose the feature vector to include

the intensity values of a neighborhood around a pixel.

Then, a chosen weight function, such as a Gaussian

weight function, can be used to numerically evaluate the

similarity of neighborhoods of two pixels. The weight on

an edge of the resulting graph thus represent the degree

of similarity between neighborhoods around the pixels

in question. One can then sparsify the graph by only

connecting two nodes representing two pixels with an

edge if their neighborhoods are sufficiently similar.

Once the attribute (feature) information of each in-

stance in the data set is obtained, the weight function w

can be computed. There are many choices, but a com-
monly used weight function is the Gaussian function:

w(xi, xj) = exp

(

−
d(xi, xj)

2

σ2

)

, (1)

where d(xi, xj) represents a distance, such as the Eu-

clidean distance or the cosine similarity measure, be-

tween attribute (feature) vectors of data elements xi
and xj , and σ > 0. One can also consider the Zelnik-
Manor and Perona weight function [95].

For some data, it is more desirable to compute the

weights directly by calculating pairwise distances; in

this case, the efficiency can be increased by using par-

allel computing or by reducing the dimension of the

data. Then, a graph is often made sparse using, e.g.,

thresholding or a l nearest neighbors technique, result-

ing in graph where most of the edge weights are zero;

thus, the number of computations is reduced. Overall, a

nearest neighbor graph can be computed very efficiently

using the kd-tree code of the VLFeat library [12].

For very large data sets, one can very efficiently con-

struct an approximation to the full graph using, for

example, sampling-based approaches, such as the fast

Nyström Extension technique [48, 49, 22].

2.2 Differential operators on graphs

Our definitions of operators on graphs are based on

[46, 23]. Consider two Hilbert spaces, V and E , which

are associated with the sets of vertices and edges of G =
(V,E), respectively, and the following inner products:

〈u, γ〉V =
∑

x∈V

u(x)γ(x),

〈ψ, φ〉E =
1

2

∑

x,y∈V

ψ(x, y)φ(x, y)w(x, y)2a−1,

where a ∈ [ 12 , 1]. From these definitions, we can define:

(∇u)w(x, y) = w(x, y)1−a(u(y)− u(x)).

We use the equation 〈∇u, φ〉E = −〈u, divw φ〉V to

define the graph-based divergence operator:

(divw φ)(x) =
1

2

∑

y∈V

w(x, y)a(φ(x, y)− φ(y, x)),

where we have exploited symmetry w(x, y) = w(y, x) of

the undirected graph in the derivation of the operator.
We use a = 1 in the derivations of the paper.
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2.3 Semi-supervised setting

Despite the tremendous accomplishments of machine
learning and deep learning, the success behind machine

learning algorithms depends on a sufficient amount of

labeled samples. However, obtaining enough labeled data

is difficult as it is time-consuming and expensive, es-

pecially in domains where only experts can accurately

determine labels. Therefore, labeled data is scarce.
However, unlabeled data is usually much easier and

less costly to obtain than labeled data. Thus, it is ad-

vantageous to use a semi-supervised setting, which uses

a large amount of unlabeled data and a small amount

of labeled data to construct the graph. In fact, the use

of unlabeled data for graph construction allows one to

obtain important structural information of the data.
A semi-supervised setting involves a collection of la-

bels {1, . . . ,m} and a small subset of labeled vertices

whose ground-truth labels are known. One seeks to cor-

rectly label the remaining unlabeled points; a solution

is a partition Σ = (Σ1, . . . , Σn) of the set of vertices V ,

where Σi is the set of points assigned to label i. This
paper uses a semi-supervised setting, where the vast

majority of data embedded into a graph is unlabeled

data, which is much easier to obtain than labeled data.

2.4 Previous work

2.4.1 Overview of graph-based learning techniques

In this section, we review recent graph-based and semi-

supervised methods, including approaches related to
convolutional neural networks, support vector machines,
neural networks, label propagation, embedding meth-

ods, multi-view and multi-modal algorithms.

Neural networks have also been extended to a graph-

ical framework for the task of semi-supervised learning.
For example, [116] describes an attention-based graph

neural network. Graph partition neural networks [84],
which are extensions of graph neural networks for han-
dling large graphs, are presented in [84]. In [99], graph

Markov neural networks are proposed.

Specifically, convolutional neural networks have been

extended to a graphical framework for semi-supervised
learning. In particular, [73] presents a scalable approach

using graph convolutional networks via a convolutional
architecture motivated by a localized first-order approx-
imation of spectral graph convolutions. The work [82]

develops deeper insights into the graph convolutional

neural network model and addresses its fundamental

limits. Moreover, a dual graph-based convolutional net-

work approach is described in [135], while a Bayesian

graph convolutional network procedure is derived in

[130]. In [13], a multi-scale graph convolution model for

semi-supervised node classification is presented. In the
work [27], generalizations of convolutional neural net-
works to signals defined on more general domains using

two constructions are described; one of them is based

on the spectrum of the graph Laplacian matrix.

Moreover, support vector machines are applied to

semi-supervised learning using a graphical framework.

In [33], graph-based support vector machine methods

which emphasize low density regions are derived. In
[89, 21], Laplacian support vector machines are formu-
lated. A novel Laplacian twin support vector machine

for semi-supervised classification is introduced in [98].

Label and measure propagation methods include [63],

which describes a transductive label propagation method

that is based on a manifold assumption. Label propaga-

tion techniques and the use of unlabeled data to aid la-

beled data in classification are investigated in [134]. Dy-

namic label propagation, performing transductive learn-

ing through propagation in a dynamic process, is de-

tailed in [117], while semi-supervised learning with mea-

sure propagation is shown in [114]. Moreover, the work
[132] presents a robust inductive semi-supervised label

prediction model for data classification, while [66] pro-

poses a new transductive label propagation algorithm,

called Adaptive Neighborhood Propagation (ANP), for

semi-supervised data classification problems.

Embedding algorithms are also often used for semi-

supervised learning. In [121], it is shown how nonlinear

embedding methods for use with shallow semi-supervised

learning techniques such as kernel methods can be ap-

plied to deep architectures. Other examples include [122].

Examples of multi-view methods and multi-modal

algorithms include [92], which proposes a framework

via the reformulation of the standard spectral learning

model that can be used for multiview clustering and

semi-supervised tasks. The work [91] proposes a multi-
view learning model which performs semi-supervised
classification and local structure learning simultaneously.
Multi-modal curriculum learning is described in [58].

Other techniques for graph-based semi-supervised

learning and data classification include efficient anchor
graph regularization [119] and a Bayesian framework for
learning hyperparameters [68]. The work [125] focuses

on graph construction for semi-supervised learning and

proposes a novel method based on random subspace di-

mensionality reduction. The work [52] presents a semi-

supervised data classification algorithm that learns from

dissimilarity and similarity information on labeled and

unlabeled data using a novel graph-based encoding of

dissimilarity that results in a convex problem. While

random graph walks are used in [85], sampling the-

ory for graph signals is utilized in [50]. The work [118]
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proposes a bivariate formulation for graph-based semi-

supervised learning. Lastly, reproducing kernel Hilbert

spaces are integrated into the algorithm in [110].

2.4.2 Maximum flow techniques

Since the methods derived in this paper involve max-

flow techniques, this section provides the background

on existing work using these techniques. Specifically,

the maximum flow problem [61] has been studied in

many sources such as [54, 107, 24, 42], as well as pa-

pers on push-relabel methods for the max-flow problem

[36], maximum flow problems in undirected graphs [37],

pseudoflow algorithms for the max-flow problem [62],

time bounds for the max-flow problem [14], parametric

max-flow [56], max-flow problem of uncertain networks

[60], and a study of pseudoflow and push-relabel algo-
rithms for the maximum flow problem [32].

Fast algorithms for versions of the max-flow prob-

lem are described in works such as [55, 77, 94], as well
as sources involving fast parametric methods for the
max-flow problem [51], successive approximation tech-
niques [53], almost-linear-time methods for undirected

graphs [69], and algorithms for max-flow in undirected
planar graphs [65]. Overall, the max-flow problem has
been adapted and extended to areas such as the stereo

correspondence problem [104], image restoration [24]

and the disjoint path problem [64]. Connections to to-

tal variation have been described in, e.g., [31]. More-

over, the theory of the continuous max-flow problem

has been detailed in sources such as [126, 113], as well

as those describing combinatorial continuous max-flow

[39], message-passing techniques for continuous max-

flow [17], max-flow procedures for binary labeling [128],

a continuous max-flow approach for the max-flow prob-

lem [127], and a fast continuous max-flow approach to

non-convex multi-labeling problems [20].

The author’s prior work in this area [15, 90] involves
modifications and adaptations of the maximum flow

problem for data classification. In particular, [90] con-

siders the binary case of two classes, while [15] involves

interesting applications to 3D point cloud segmenta-

tion. The work presented in this paper is inspired by

and greatly expands upon the material in these papers.

2.5 Notation

The following notation will be used in this paper. We

first embed the data into a similarity graph G = (V,E),

where the vertices V of the graph represent the com-

bined unlabeled and labeled data. Letm be the number

of classes and w be the weight function w : V × V →

R. Moreover, let {ui}i and u be functions such that

ui : V → [0, 1], for i = 1 : m, and u : V → R
m such

that u(x) = (u1(x), ...um(x)). In addition, let Li and
Ui be the lower and upper bounds for the size of class

i of V , respectively. When no class size information is

available, Li = 0 and Ui = |V |. The goal is to divide V

into m classes, where class i is denoted by the set Vi.

For the methods presented in the paper, techniques
are derived to solve optimization problems involving the

aforementioned variable u. Overall, the optimal ui(x)

represents the probability that x belongs to class i.

3 Proposed Work

In this section, we derive our three proposed algorithms

in Sections 3.1, 3.2 and 3.3, respectively.

3.1 Similarity graph-based max-flow algorithm

incorporating supervised constraints and class size
constraints

In this section, we derive a graph-based max-flow method,

denoted by Algorithm 1, for learning problems, such as

data classification. To derive our model, we start with

a dual formulation and then derive equivalent max-flow

problems. The notation in Section 2.5 is used.

The proposed algorithm incorporates:

– supervised constraints, i.e. class information of la-

beled elements.

– class size information, the use of which usually im-

proves prediction accuracy.

– class homogeneity terms, which describe how well

data elements fit to particular classes.

Regarding supervised information, the model in this

section incorporates the labels of labeled data using the
functions {ki} for i ∈ {1, ...,m}, where ki(x) = 1 if x is

a labeled element of class i and 0 otherwise.
Regarding class size information, there are two types

of class size constraints incorporated by this model. The

first takes the form of flexible class size constraints

Sℓ
i ≤ ||Vi|| ≤ Su

i , i ∈ {1, ...,m}, (2)

where the size of class i, denoted by ||Vi||, is constrained

to lie between a lower bound Sℓ
i and an upper bound

Su
i . To avoid imposing absolute upper and lower bounds

on the class sizes, one can instead append a piecewise

linear penalty term
∑m

i=1 Pγ(||Vi||) to the optimization

problem in question, where Pγ(||Vi|| is defined as:

Pγ(||Vi||) =







0 if Sℓ
i ≤ ||Vi|| ≤ Su

i

γ
(

||Vi|| − Su
i

)

if ||Vi|| > Su
i

γ
(

Sℓ
i − ||Vi||

)

if ||Vi|| < Sℓ
i .
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(3)

The term Pγ(||Vi||) penalizes the size of a class from

being out of the range specified by lower and upper

bounds. Overall, using class size information usually

improves prediction accuracy, and, for most data sets,

there is at least some information available about the

class sizes, whether in the form of exact values or in the

form of upper and lower bounds on the class sizes.

The class homogeneity terms, which measure how

well each data element fits with each class, are incorpo-

rated using the functions {Ci} for i ∈ {1, ...,m}, where

Ci(x) indicates the cost of assigning x to class i. One
should formulate Ci(x) so that it is small if x is likely

to belong to class i, and large otherwise. For instance,
the terms may be defined using the eigenvectors of the

correlation matrix or the graph Laplacian, or using a

fit to an expected value of a variable; in particular, the

eigenvectors of the graph Laplacian contain information

that can be used for classification. It is not necessary

to use the terms; one can set Ci(x) = 0.

To derive Algorithm 1, we will first consider an opti-

mization problem involving u = (u1, ..., um) : V → R
m

from Section 2.5. Overall, the optimal ui(x) will repre-

sent the probability that x belongs to class i. There-

fore, the optimization problem is equipped with the

constraint u(x) ∈ ∆m
+ ∀x, where

∆m
+ = {(z1, ..., zm) ∈ [0, 1]m :

m
∑

i=1

zi = 1}. (4)

Overall, the variable u will be constrained to lie in:

Ψ = {u : V → R
m such that u(x) ∈ ∆m

+ ∀x}. (5)

The optional class size constraints (2) or penalty

term (3) (to be added to the optimization problem)

can now be rewritten in terms of the variable u:

Sℓ
i ≤

∑

x∈V

ui(x) ≤ Su
i , i ∈ {1, ...,m}, (6)

Pγ(u) =



















0 if Sℓ
i ≤

∑

x∈V

ui(x) ≤ Su
i

γ
(
∑

x∈V

ui(x)− Su
i

)

if
∑

x∈V

ui(x) > Su
i

γ
(

Sℓ
i −

∑

x∈V

ui(x)
)

if
∑

x∈V

ui(x) < Sℓ
i .

(7)

One can then consider the following multiclass clas-

sification model, where the optimal ui(x) represents the
probability that x belongs to class i:

min
u∈Ψ s.t. ki(x)≤ui(x) ∀x∈V

{

E(u) =

m
∑

i=1

(1

2

∑

x,y∈V

w(x, y)|ui(y)−ui(x)|+
∑

x∈V

Ci(x)(ui(x)−ki(x))
)

}

,

(8)

under optional constraints (6) or penalty term (7).

The first term in this model is a graph-based term

resembling a convexified graph cut, which attempts to

group data elements in a way such that the elements

grouped in different classes are as dissimilar as possi-

ble; this is due to the property of the weight function

w : V → V which takes large values for similar data el-

ements and small values for dissimilar data elements.

The second term in this model incorporates the class

homogeneity terms and labeled data, while the class

size information is incorporated by the optional class

size constraints (6) or the penalty term (7).

Note that (8) is a convexified version of a problem

with the same terms, but where u is only allowed to
take values in {0, 1} as in a graph cut formulation; that

problem is non-convex due to the binary constraints.

It turns out that the convex relaxation indeed closely

approximates the non-convex problem, where u takes

only binary values. For more information on how the

non-convex problem is well approximated by the convex

relaxation, please refer to the sources [90, 15].

At the end, the data elements assigned to class i can

be obtained using the optimal u∗ via:

Vi = {x s.t. argmax
j

u∗j (x) = i}.

Overall, it turns out that the dual problem (8) can

be equivalently formulated as a ‘max-flow’ problem:

Theorem 1 The following max-flow problem can be

reformulated as the dual problem (8) with optional class

size constraints (6) or penalty term (7):

sup
ps,p,q,ρ1,ρ2

∑

x∈V

ps(x)−
∑

x∈V

m
∑

i=1

ki(x)pi(x)+

m
∑

i=1

(

ρ1iS
ℓ
i−ρ

2
iS

u
i

)

(9)

subject to, for all i ∈ {1, ...,m},

|qi(x, y)| ≤ 1, ∀(x, y) ∈ E, (10)

pi(x) ≤ Ci(x), ∀x ∈ V, (11)
(

divw qi − ps + pi
)

(x) = ρ1i − ρ2i , ∀x ∈ V, (12)

0 ≤ ρ1i , ρ
2
i ≤ γ. (13)

No class size information is incorporated by γ = 0. The

size penalty term (7) is incorporated by 0 < γ < ∞.

Size constraints (6) are incorporated by γ = ∞.
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Proof By adding an unconstrained Lagrange multiplier

for the flow conservation constraint (12) to optimization
problem (9), one obtains the following formulation:

min
u

sup
ps,p,q,ρ1,ρ2

{

E(u, ps, p, q, ρ
1, ρ2) =

=
∑

x∈V

ps(x)−
∑

x∈V

m
∑

i=1

ki(x)pi(x) +
m
∑

i=1

(

ρ1iS
ℓ
i − ρ2iS

u
i

)

+

m
∑

i=1

∑

x∈V

ui(x)
(

divw qi − ps + pi + ρ2i − ρ1i
)

(x)
}

subject to (10), (11) and (13). (14)

We then regroup like terms to obtain:

min
u

sup
ps,p,q,ρ1,ρ2

{

E(u, ps, p, q, ρ
1, ρ2) =

∑

x∈V

m
∑

i=1

ui(x) divw qi(x) +
∑

x∈V

(

(1−

m
∑

i=1

ui(x))ps(x)
)

+
∑

x∈V

m
∑

i=1

(ui(x)− ki(x))pi(x) +
m
∑

i=1

ρ1i
(

Sℓ
i −

∑

x∈V

ui(x)
)

+

m
∑

i=1

ρ2i
(

∑

x∈V

ui(x)− Su
i

)

}

subject to (10), (11) and (13). (15)

The optimization problems (14) and (15) satisfy the

conditions of the mini-max theorem, described in sources

such as Chapter 6, Proposition 2.4 of [45]. In fact, the

constraint sets for q, ρ1, ρ2 and u are compact and con-

vex, and the energy is convex lower semi-continuous for

fixed q and concave upper semi-continuous for fixed u,
indicating the existence of at least one primal-dual so-

lution, i.e., saddle point, of finite energy value.

An important distinction between (8) and (9) is the

fact that u is unconstrained in (9) and the simplex con-

straint on u is handled implicitly. This allows one to

formulate an algorithm without projections of u, which

can restrict step sizes and reduce accuracy.
Now, for a given variable u, one can rewrite the first

term of (15) in the following manner:

sup
q

{

∑

x∈V

ui(x) divw φ(x), where φ : V×V, ‖φ‖∞ ≤ 1
}

=
1

2

∑

x,y∈V

w(x, y)|ui(y)− ui(x)|. (16)

In addition, the maximization with respect to ps of

(15) at the point x can be viewed as

sup
ps(x)

((1−

n
∑

i=1

ui)ps)(x) =

{

0 if
∑n

i=1 ui(x) = 1

∞ if
∑n

i=1 ui(x) 6= 1.

(17)

Now, if u does not satisfy the sum to one constraint at

x in (8), then the primal-dual energy in (15) would be
infinite, contradicting boundedness from above.

In a similar manner, the optimization with respect
to pi in (15) can be expressed as

sup
pi(x)≤Ci(x)

(ui(x)− ki(x))pi(x) =

{

(ui(x)− ki(x))Ci(x) if ui(x) ≥ ki(x)

∞ if ui(x) < ki(x),
(18)

which would make the energy in (15) infinite if u does

not satisfy the constraints ui(x) ≥ ki(x) of (8).

It will now be shown that the flexible class size con-

straints (6) or the penalty term (7) can be implicitly

incorporated via the two variables ρ1 and ρ2. In partic-

ular, for a given u, the terms of (15) involving ρ1 and

ρ2 correspond to the following optimization problems:

sup
0≤ρ1

i≤γ

ρ1i
(

Sℓ
i −

∑

x∈V

ui(x)) =

{

0 if
∑

x∈V ui(x) ≥ Sℓ
i

γ
(

Sℓ
i −

∑

x∈V ui(x)
)

if
∑

x∈V ui(x) < Sℓ
i .

(19)

sup
0≤ρ2

i≤γ

ρ2i
(

∑

x∈V

ui(x)− Su
i ) =

{

0 if
∑

x∈V ui(x) ≤ Su
i

γ
(
∑

x∈V ui(x)− Su
i

)

if
∑

x∈V ui(x) > Su
i .

(20)

If γ = 0, the class sizes do not contribute to the en-
ergy; thus, the case of no class size information can be

incorporated with γ = 0. When 0 < γ < ∞, the terms

(19) and (20) summed together is exactly equal to the

size penalty term (7). When γ = ∞, the constraint set

on ρ1, ρ2 is no longer compact, but we can apply Sion’s

generalization of the mini-max theorem [111], which al-

lows either the primal or dual constraint set to be non-

compact. It follows that if the size constraints (6) are

not satisfied, the energy in (15) would be infinite, con-
tradicting existence of a primal-dual solution.

Combining (16)-(20), one can see that (9) subject to

(10)-(13) can be reformulated as (8) with optional class
size constraints (6) or the penalty term (7). �

The optimization problem (9) with constraints (10)-

(13) has structural similarities to a max-flow problem
overm copies of the graph G = (V1, E1)×...×(Vm, Em),

where (Vi, Ei) = G for i ∈ {1, ...,m}. Overall, the aim

of a maximum flow problem is to maximize the flow
from a source vertex to a sink vertex under certain con-

straints. Moreover, ps(x) can be viewed as the flow on
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the edges from the source to the vertex x in each of

the subgraphs (V1, E1), ..., (Vn, En), all of which have
unbounded capacities. In addition, the variables pi(x)

and Ci(x) can be viewed as the flow and capacity on the

edge from vertex x in the subgraph (Vi, Ei) to the sink.

The constraint (12) is the flow conservation condition.
In case of class size constraints, instead of the flow be-

ing conserved, there is a constant excess flow of ρ1i − ρ
2
i

for each node in the subgraph (Vi, Ei). The energy in

(9) is the total amount of flow in the graph.

We now formulate a method to solve (9) with con-

straints (10)-(13) using augmented Lagrangian theory;
the technique is efficient, accurate and tolerates a wide
range of step sizes since it does not involve any pro-

jections of u. Moreover, the convergence of augmented

Lagrangian techniques is often guaranteed by theories,

such as the ones in [47, 57]. To derive the method, we

consider the augmented Lagrangian functional:

L =
∑

x∈V

ps −
∑

x∈V

m
∑

i=1

ki(x)pi(x) +

n
∑

i=1

(ρ1iS
ℓ
i − ρ2iS

u
i )
)

−
c

2

n
∑

i=1

∥

∥divw qi − ps + pi + ρ2i − ρ1i
∥

∥

2

2

+
∑

x∈V

ui(x)
(

divw qi − ps + pi + ρ2i − ρ1i
)

(x). (21)

One can then formulate a procedure to minimize
(21), where one alternatively maximizes (21) for the

variables q, p, ps, ρ1 and ρ2 and then updates the La-

grange multiplier u. In particular, our algorithm in-

volves the following steps, where ‖f‖
2
2 =

∑

x f(x)
2:

pk+1
s = argmax

ps

∑

x∈V

ps −
c

2

∥

∥ps −Ak
i

∥

∥

2

2
,

where Ak
i = pi

k + divw q
k
i −

uki
c

+ ρ2i
k
− ρ1i

k
. (22)

qk+1
i = argmax

|q(e)|≤1 ∀e∈E

−
c

2

∥

∥divw q −Bk
i

∥

∥

2

2
, ∀i,

where Bk
i = ps

k+1 − pi
k +

uki
c

− ρ2i
k
+ ρ1i

k
. (23)

pk+1
i = argmax

pi(x)≤ Ci(x) ∀x

−
∑

x∈V

kipi −
c

2

∥

∥pi −Dk
i

∥

∥

2

2
, ∀i,

where Dk
i = ps

k+1−divw q
k+1
i +

uki
c
−ρ2i

k
+ρ1i

k
−ki.

(24)

ρ1i
k+1

= argmax
0≤ρ1

i≤γ

∑

x∈V

ρ1iS
ℓ
i −

c

2

∥

∥ρ1i − Ek
i

∥

∥

2

2
, ∀i,

where Ek
i = pk+1

i + divwq
k+1
i −

uki
c

− pk+1
s + ρ2

k
i .

(25)

ρ2i
k+1

= argmax
0≤ρ2

i≤γ

∑

x∈V

−ρ2iS
u
i −

c

2

∥

∥ρ2i − F k
i

∥

∥

2

2
, ∀i,

where F k
i = −pk+1

i −divwq
k+1
i +

uki
c
+pk+1

s +ρ1i
k+1

.

(26)

uk+1
i = uki−c (divw q

k+1
i −pk+1

s +pk+1
i +ρ2i

k+1
−ρ1i

k+1
).

(27)

Optimization problems (22) and (24) can be solved
easily; the closed form solutions are:

pk+1
s =

∑

i

(Ak
i +

1

c
)/m, (28)

pk+1
i (x) = min{(Dk

i (x)−
ki(x)

c
, Ci(x)} ∀x, (29)

where Ak
i and Dk

i are denoted in (22) and (24).

The optimization problem (23) can be solved by a
few steps of the projected gradient method:

qk+1
i = Projectionη(q

k
i + c∇w(divwq

k
i −Bk

i )),

where Bk
i = ps

k+1 − pi
k +

uki
c

− ρ2i
k
+ ρ1i

k
. (30)

In (23), Projectionη is a projection operator which
is defined as

Projectionη(s(x, y)) =

{

s(x, y) if |s(x, y)| ≤ η,

sgn(s(x, y)) · η if |s(x, y)| > η,

(31)

where sgn is the sign function.

There are extended convergence theories for the aug-

mented Lagrangian method in the case when one of the

subproblems is solved inexactly, see e.g. [47, 57]. In our

experience, one gradient ascent iteration is enough.

For problems (25) and (26), in case no constraints

are given on ρ1 and ρ2, the maximizers over the sum
of the concave quadratic terms can be computed as the

average of the maximizers to each individual term as

mean
(

Ek
i +

Sℓ
i

c ||V ||

)

, mean
(

F k
i −

Su
i

c ||V ||

)

, (32)

respectively for ρ1 and ρ2. Since the objective function

is concave and the maximization variable is just a con-

stant, an exact solution to the constrained maximiza-

tion problems (25) and (26) can now be obtained by a
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Algorithm 1

Require: m, V , w : V × V → R, {Ci}mi=1, ki : V → {0, 1} ∀i ∈ {1, ...,m}, {Sℓ
i }mi=1, {Su

i }mi=1, c, η and γ, where m is
the number of classes, V is the set of data elements, w is the weight function, {Ci} are class homogeneity terms, ki is a
function where ki(x) = 1 if x is a labeled element of class i and 0 otherwise, Sℓ

i is the lower bound for class i, Su
i is the

upper bound for class i, c > 0, η > 0 and γ ≥ 0. No class size information is incorporated by γ = 0. The class size penalty
term (7) is incorporated by 0 < γ <∞. Class size constraints (6) are incorporated by γ =∞.

Ensure: out = u, where ui(x) is the probability of data element x belonging to class i.

Initialize k = 0, u = 0, ρ1i = ρ2i = qi = 0 ∀i ∈ {1, ...,m}, ps = Cm and pi = ps ∀i ∈ {1, ...,m}.
Let divw q(x) =

∑

y w(x, y)q(x, y).

while Stop criterion not satisfied do

Let k ← k + 1, and set pk+1
s =

∑

i(pi
k + divw qki −

uk
i

c
+ ρ2i

k − ρ1i
k + 1

c
)/m.

for i = 1→ m do

qk+1
i = Projectionη(q

k
i + c∇w(divwqki −Bk

i )), where Bk
i = psk+1 − pik +

uk
i

c
− ρ2i

k + ρ1i
k.

pk+1
i (x) = min{(Dk

i (x)−
ki(x)

c
, Ci(x)}, ∀x, where Dk

i (x) = psk+1 − divw qk+1
i +

uk
i

c
− ρ2i

k + ρ1i
k.

ρ1i
k+1 = min

(

max
(

mean(Ek
i +

Sℓ
i

c ||V ||
), 0

)

, γ
)

, where Ek
i = pk+1

i + divwqk+1
i − uk

i

c
− pk+1

s + ρ2k
i .

ρ2i
k+1 = min

(

max
(

mean(Fk
i −

Su
i

c ||V ||
), 0

)

, γ
)

, where Fk
i = −pk+1

i − divwqk+1
i +

uk
i

c
+ pk+1

s + ρ1i
k+1.

uk+1
i = uk

i − c (divw qk+1
i − pk+1

s + pk+1
i + ρ2i

k+1 − ρ1i
k+1).

end for

end while

projection onto that constraint as follows:

ρ1i
k+1

= min
(

max
(

mean(Ek
i +

Sℓ
i

c ||V ||
), 0

)

, γ
)

,

where Ek
i = pk+1

i + divwq
k+1
i −

uki
c

− pk+1
s + ρ2

k
i .

ρ2i
k+1

= min
(

max
(

mean(F k
i −

Su
i

c ||V ||
), 0

)

, γ
)

,

where F k
i = −pk+1

i −divwq
k+1
i +

uki
c
+pk+1

s +ρ1i
k+1

.

(33)

Algorithm 1 is parallelizable on GPU. This is due to

the fact that the subproblems at each substep can be

solved pointwise independently of each other. Moreover,

the update formula (30) only necessitates access to the

values of neighboring nodes at the previous iteration.

3.2 Global minimization of similarity graph-based

problems incorporating class size constraints via a

duality approach

In this section, we derive Algorithm 2, which considers
a duality approach to solving certain graph-based prob-

lems for learning tasks, such as data classification. The
notation of Section 2.5 is used. In particular, we first

consider the following optimization problem, which is
similar to the one studied in the previous section:

min
u∈Ψ

{

E(u) =

m
∑

i=1

(1

2

∑

x,y∈V

w(x, y)|ui(y)− ui(x)|+

+
∑

x∈V

Ci(x)ui(x)
)

}

,

under optional constraints (6) or penalty term (7). (34)

The first term in this model is a graph-based term

resembling a convexified graph cut, which attempts to

group data elements in a way such that the elements
grouped in different classes are as dissimilar as possible.

The second term incorporates the class homogeneity

terms and labeled data, while the class size informa-

tion is incorporated by optional class size constraints

(6) or penalty term (7). Note that (34) is a convexified

version of a problem with the same terms but where

u is allowed to only take values in {0, 1}; the latter

problem is non-convex due to the binary constraints. It

turns out that the convex relaxation indeed closely ap-

proximates the non-convex problem, where u takes only

binary values; please refer to [90] for more information.

At the end, the data elements assigned to class i can

be obtained using the optimal u∗ via:
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Vi = {x s.t. argmax
j

u∗j (x) = i}.

It turns out that (34) has an interesting equivalent

formulation, as shown in the next theorem.

Theorem 2 The following problem is equivalent to the

convex relaxed problem (34) under optional class size

constraints (6) or penalty term (7):

sup
ρ1,ρ2∈[0,γ],|q|∞≤1

{

E(ρ1, ρ2, q) =
∑

i

(

ρ1iS
ℓ
i − ρ2iS

u
i

)

+

+
∑

x∈V

min
i

(

Ci(x) + (divw qi)(x) + ρ2i − ρ1i

)}

. (35)

No size information is incorporated by γ = 0. The size

penalty term (7) is incorporated by 0 < γ < ∞. Size

constraints (6) are incorporated by γ = ∞.

Proof First, note that, for any arbitrary vector g =

(g1, ..., gm) ∈ R
m,

min
(z1,...,zm)∈∆m

+

m
∑

i=1

zigi = min
i
(g1, ..., gm). (36)

Applying (36) to (35), one obtains

sup
ρ1,ρ2∈[0,γ],|q|∞≤1

{

E(ρ1, ρ2, q) =
∑

i

(

ρ1iS
ℓ
i − ρ2iS

u
i

)

+
∑

x∈V

(

min
Σ

m
∑

i=1

ui(x)
(

Ci(x)+(divw qi)(x)+ρ
2
i−ρ

1
i

))

}

,

(37)

where Σ = {(u1(x), ..., um(x)) ∈ ∆m
+}, where ∆m

+ is

defined in (4). One can then rewrite (37) as

sup
ρ1,ρ2∈[0,γ],|q|∞≤1

min
u∈Ψ

{

E(ρ1, ρ2, q, u) =

∑

x∈V

m
∑

i=1

ui(x)
(

Ci(x) + (divw qi)(x) + ρ2i − ρ1i

)

+

+
∑

i

(

ρ1iS
ℓ
i − ρ2iS

u
i

)

}

. (38)

The above problem satisfies the conditions of the mini-

max theorem, described in, e.g., Chapter 6, Proposition

2.4 of [45]. In fact, the constraint sets for q, ρ1, ρ2 and
u are compact and convex, and the energy is convex

lower semi-continuous for fixed q and concave upper

semi-continuous for fixed u, indicating the existence of

at least one primal-dual solution of finite energy.

Using the mini-max theorem, one can interchange

the operators in (38), resulting in:

min
u∈Ψ

sup
ρ1,ρ2∈[0,γ],|q|∞≤1

{

E(ρ1, ρ2, q, u) =

∑

x∈V

m
∑

i=1

ui(x)
(

Ci(x) + (divw qi)(x) + ρ2i − ρ1i

)

+

+
∑

i

(

ρ1iS
ℓ
i − ρ2iS

u
i

)

}

. (39)

Rearranging the terms of (39), one obtains

min
u∈Ψ

sup
ρ1,ρ2∈[0,γ],|q|∞≤1

{

E(ρ1, ρ2, q, u) =

∑

x∈V

m
∑

i=1

ui(x) divw qi)(x) +
∑

x∈V

m
∑

i=1

ui(x)Ci(x)+

m
∑

i=1

ρ1i
(

Sℓ
i −

∑

x∈V

ui(x)) +

m
∑

i=1

ρ2i
(

∑

x∈V

ui(x)− Su
i )
}

.

(40)

One can then derive the following formulations:

sup
0≤ρ1

i≤γ

ρ1i
(

Sℓ
i −

∑

x∈V

ui(x)) =

{

0 if
∑

x∈V ui(x) ≥ Sℓ
i

γ
(

Sℓ
i −

∑

x∈V ui(x)
)

if
∑

x∈V ui(x) < Sℓ
i .

(41)

sup
0≤ρ2

i≤γ

ρ2i
(

∑

x∈V

ui(x)− Su
i ) =

{

0 if
∑

x∈V ui(x) ≤ Su
i

γ
(
∑

x∈V ui(x)− Su
i

)

if
∑

x∈V ui(x) > Su
i .

(42)

If γ = 0, the class sizes do not contribute to the en-
ergy; thus, the case of no class size information can

be incorporated with γ = 0. When 0 < γ < ∞, the

terms (41) and (42) summed together is equal to the

size penalty term (7). When γ = ∞, the constraint

set on ρ1, ρ2 is no longer compact, but one can apply

the Sion’s generalization of the mini-max theorem [111],

which allows either the primal or dual constraint set to

be non-compact. Therefore, if the class size constraints

(6) are not satisfied, the energy in (40) would be infi-

nite, contradicting existence of a primal-dual solution.

Combining (40) - (42) with (16), one can see that

(35) can be reformulated as (34) under optional class

size constraints (6) or penalty term (7). �

A drawback to (35) is the non-smoothness of its

objective function. In order to derive an alternate and
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Algorithm 2

Require: m, V , w : V × V → R, {Ci}mi=1, {Sℓ
i }mi=1, {Su

i }mi=1, s, α, δ, η and γ, where m is the # of classes, V is the set of
data elements, w is the weight function, {Ci} are class homogeneity terms, Sℓ

i is the lower bound for class i, Su
i is the

upper bound for class i, s < 0, α > 0, δ > 0, η > 0 and γ ≥ 0. No class size information is incorporated by γ = 0. The
class size penalty term (7) is incorporated by 0 < γ <∞. Class size constraints (6) are incorporated by γ =∞.

Ensure: out = u, where ui(x) is the probability of data element x belonging to class i.

Initialize k = 0, ρ1i = ρ2i = qi = 0 ∀i ∈ {1, ...,m}.
Let divw q(x) =

∑

y w(x, y)aq(x, y), ∇wTi(x, y) = w(x, y)1−a(Ti(y)− Ti(x)), where a ∈ [1
2
, 1]. We usually set a = 1.

while Stop criterion not satisfied do

Let k ← k + 1.

for i = 1→ m do

Tk+1
i =

(

e(−Ci−divw qk
i
−ρ2

i

k
+ρ1

i

k
)/s

)

/
(

∑m
i=1 e

(−Ci−divw qk
i
−ρ2

i

k
+ρ1

i

k
)/s

)

.

qk+1
i = Projectionη(q

k
i − α∇wTk+1

i ), where Projectionη is a projection operator defined in (31).

ρ1i
k+1 = min

(

max
(

ρ1i
k − δ(

∑

x Tk+1
i (x)− Sℓ

i ), 0
)

, γ
)

.

ρ2i
k+1 = min

(

max
(

ρ2i
k − δ(Su

i −
∑

x Tk+1
i (x)), 0

)

, γ
)

.

end for

end while

The final variable u is computed via the converged values q∗i , ρ
1∗

i , ρ2
∗

i :

ui(x) =







1 if i = argmin
j=1,...,m

(Cj + divw q∗j + ρ2
∗

j − ρ1
∗

j )

0 otherwise

slightly simpler scheme to a max-flow technique of Sec-

tion 3, we propose to use a smoothing technique, leading

to a smoothed primal-dual version of (35).

In particular, to derive the aforementioned tech-
nique, we consider the asymptotic functions as defined

in [115, 102]. Specifically, the asymptotic function h∞
of a proper convex function h(u) can be defined as:

h∞(u) = lim
s→0+

sh(
u

s
). (43)

If h(u) = log
∑k

j=1 e
uj , then using (43), one obtains

h∞(u) = lim
s→0+

sh(us ) = max
1≤j≤k

uj = − min
1≤j≤k

−uj , where

u is a vector in R
m written as u = (u1, ..., um).

By applying the asymptotic approximation to the

min operator of (35) using a small s value, we get:

sup
ρ1,ρ2∈[0,γ],|q|∞≤1

{

E(ρ1, ρ2, q) =
∑

i

(

ρ1iS
ℓ
i − ρ2iS

u
i

)

− s
∑

x∈V

(

log
∑

i

e(−Ci(x)−divw qki (x)−ρ2
i
k
+ρ1

i
k
)/s

)

}

.

(44)

Now, using [102], for any h ∈ R
m,

log

m
∑

i=1

ehi = max
u∈∆m

+

{

〈u, h〉 −

m
∑

i=1

uilogui

}

.

(45)

Using (45), one can formulate the following smoothed

model from (44):

sup
ρ1,ρ2∈[0,γ],|q|∞≤1

min
u∈∆m

+

{

E(ρ1, ρ2, q, u) =

∑

x∈V

(

∑

i

ui(x)(Ci(x) + divw qi(x) + ρ2i − ρ1i )

+ s
∑

i

ui(x)log(ui(x))
)

+
∑

i

(

ρ1iS
ℓ
i − ρ2iS

u
i

)

}

. (46)

As s → 0, (46) approaches (39), which according to

the proof of Theorem 2, can be reformulated as (34)

under optional class size constraints (6) or penalty term

(7). Similar techniques but for non-graphical settings,

without class size incorporation, were proposed in [18].

The smoothed formulation in (46) allows one to for-

mulate an efficient and simple algorithm. We propose a
projected gradient algorithm, which is detailed as Al-

gorithm 2 and contains similar steps as the techniques
proposed by [74, 30]. The projected gradient algorithm
is constructed from (44); this method can be viewed as

a forward-backward splitting algorithm. Convergence

proofs for such methods have been shown in, e.g., [38].
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For this algorithm, the labeled points are not explic-

itly implicitly incorporated as they are for Algorithm 1.
However, they can be incorporated by setting Ci(x) to

be large if x is a labeled point which is not of class i.

3.3 Graph-based convex optimization in image

segmentation involving region parameters

In this section, we derive Algorithm 3 which is useful for

image segmentation problems, where the goal is to seg-

ment an image into regions. In particular, we consider

a model based on a Potts regularity formulation [97],

which favors region boundaries of minimal length and

contains data cost functions, often depending on pa-

rameters. While the number of regions is often known

in advance, the region parameters are usually unknown.
We will formulate a model which simultaneously finds
these parameters and the segmentation regions.

In more detail, we start by briefly considering a con-

tinuous setting. Let the goal be to divide an image into

m regions, let ui represent the characteristic function

of region i, let νi represent an unknown parameter of a
data cost term for region i, let X be the set of feasible

parameter values, and let R(x, νi) represent the data
cost term for region i. As an example, R(x, νi) can take

the form of |Ω0(x) − νi|
κ, where κ > 0 and Ω0 is the

original image. In a continuous setting, if Ω is an image,

one can consider the following Potts model (see [97])

written in terms of the characteristic functions {ui}i,
to be later transferred to a graphical setting:

min
{ui}m

i=1∈T
min

{νi}m
i=1∈X

m
∑

i=1

∫

Ω

|∇ui|dx+

m
∑

i=1

∫

Ω

R(x, νi)ui(x)dx,

(47)

subject to
∑

i

ui(x) = 1 ∀x ∈ Ω, (48)

where T = {u ∈ BV (Ω) such that u ∈ {0, 1}}, and BV

indicates functions of bounded variation. One can then

transfer (47)-(48) to a graphical setting by using graphi-

cal operators, and incorporate class size constraints (6)

or penalty term (7); in particular, the total variation

term can be written in a graphical setting (see (16)):

min
{ui}m

i=1∈{0,1}
min

{νi}m
i=1∈X

{

E({ui}
m
i=1, {νi}

m
i=1) =

=
m
∑

i=1

∑

x,y∈V

w(x, y)|ui(y)−ui(x)|+
m
∑

i=1

∑

x∈V

R(x, νi)ui(x)
}

.

(49)

subject to
∑

i

ui(x) = 1 ∀x ∈ V, and optional class size

constraints (6) or penalty term (7).

(50)

The first term in this model is a graph-based term

resembling a graph cut, which attempts to group data

elements in a way such that the elements grouped in dif-

ferent classes are as dissimilar as possible. The second

term incorporates the data cost terms.

We now assume that the set of feasible data cost

term parameters is finite; specifically, the set of values

νi is restricted to X = {g1, ..., gM}. This often occurs

in image segmentation problems when X may be the
set of quantized gray values. In this case, in order to

optimize over a single variable, one may formulate an
equivalent extended model, where instead of minimiz-

ing over m characteristic functions, one minimizes over

M characteristic functions, where each function corre-

sponds to a feasible value in X, and M > m:

min
u

{

Eextended(u) =
M
∑

i=1

∑

x,y∈V

w(x, y)|ui(y)− ui(x)|

+

M
∑

i=1

∑

x∈V

R(x, gi)ui(x)
}

, (51)

subject to
∑

i

ui(x) = 1 ∀x ∈ V,

M
∑

i=1

sup
x∈V

ui(x) ≤ m,

ui(x) ∈ {0, 1} ∀x ∈ V, ∀i and optional class size

.constraints (6) or penalty term (7).

(52)

One can show that (51) subject to (52) is equivalent to
original model (49) subject to (50) if the feasible values

of {νi}i are restricted to a finite set X.

Theorem 3 Let u∗ be an optimal value of (51)-(52),

m∗ be the # of indices i for which u∗i 6= 0. If {ij}
m∗

j=1 ⊂

{1, ...,M} such that u∗ij 6= 0, then ({u∗ij}
m∗

j=1, {gij}
m∗

j=1)

is a global optimum to (49)-(50) with X = {g1, ..., gM}.

Proof First, m∗ ≤ m, since otherwise (52) would be

violated. Then, let ({ũj}
m
j=1, {gĩj}

m
j=1) be any other so-

lution to (49)-(50), and define the following function:

ûj = 0, for j ∈ {1, ...,M} \ {̃i1, ..., ĩm}, (53)

ûĩj = ũj for j = 1, ...,m. (54)



Title Suppressed Due to Excessive Length 13

Therefore, û belongs to the feasible set of (51).

Then Eextended(û) =

=
M
∑

i=1

∑

x,y∈V

w(x, y)|ûi(y)− ûi(x)|+
M
∑

i=1

∑

x∈V

R(x, gi)ûi(x)

=

m
∑

j=1

∑

x,y∈V

w(x, y)|ûĩj (y)−ûĩj (x)|+

m
∑

j=1

∑

x∈V

R(x, gĩj )ûĩj (x)

=

m
∑

j=1

∑

x,y∈V

w(x, y)|ũj(y)−ũj(x)|+

m
∑

j=1

∑

x∈V

R(x, gĩj )ũj(x)

= E({ũj}
m
j=1, {gĩj}

m
j=1). (55)

Since u∗ is a global minimizer of Eextended,

Eextended(u∗) ≤ Eextended(û) = E({ũj}
m
j=1, {gĩj}

m
j=1).

(56)

Now, Eextended(u∗) =

=

M
∑

i=1

∑

x,y∈V

w(x, y)|u∗i (y)−u
∗
i (x)|+

M
∑

i=1

∑

x∈V

R(x, gi)u
∗
i (x)

=

m∗
∑

j=1

∑

x,y∈V

w(x, y)|u∗ij (y)−u
∗
ij (x)|+

m∗
∑

j=1

∑

x∈V

R(x, gij )u
∗
ij (x)

= E({u∗ij}
m∗

j=1, {gij}
m∗

j=1). (57)

Using (56) and (57),

E({u∗ij}
m∗

j=1, {gij}
m∗

j=1) ≤ E({ũj}
m
j=1, {gĩj}

m
j=1).

Thus, ({u∗ij}
m∗

j=1, {gij}
m∗

j=1) is a solution to (49)-(50). �

Due to the equivalence of the models, we will focus

on solving the extended model (51)-(52) which finds the

unknown parameters and the optimal regions simulta-

neously. However, it is nonconvex due to the binary

constraints on u. In this case, one can perform a con-

vex relaxation procedure, similarly to [78, 16, 129], by

allowing u(x) to take any values in ∆m
+ in (4).

We thus consider the model (51), but allow u to take

any value in [0, 1]. Let µ be a Lagrange multiplier for

the second constraint in (52). This results in:

max
µ≥0

min
u

{

L(u, µ) =

M
∑

i=1

∑

x,y∈V

w(x, y)|ui(x)− ui(y)|

+

M
∑

i=1

∑

x∈V

R(x, gi)ui(x) + µ
(

M
∑

i=1

max
x∈V

ui(x)−m
)

}

,

(58)

subject to
∑

i

ui(x) = 1 ∀x ∈ V, ui(x) ≥ 0 ∀x ∈ V, ∀i,

under optional class size constraints (6) or

penalty term (7), (59)

where R(x, gi) is a data cost function for a potential

class i at x which can be formulated as a class homo-
geneity term, m is the desired number of classes, and

M > m is the number of terms in the discrete parame-

ter set X = {g1, ..., gM}. The third term of (58) instills

a penalty on the number of classes. Overall, for some

fixed i, the optimal ui(x) might take a small or zero

value for all x so that no data element would be clas-

sified into that potential class i. By using many more
classes than necessary (i.e. M > m), a method which

minimizes (58) subject to (59) would simultaneously se-

lect the optimal region parameters and optimal u. Sim-

ilar techniques but for non-graphical settings, without

class size incorporation, were proposed in [19].

To solve the problem (58), one can apply an aug-

mented Lagrangian technique, the convergence of which

is often guaranteed by theories, such as the ones in

[47, 57]. The technique is also accurate and tolerates

a wide range of step sizes. One can apply this proce-

dure to solve (58) by alternating between the following

two steps until convergence, where L is defined in (58):

1) un+1 = argmin
u

L(u, µn)

s.t.
∑

i

ui(x) = 1, ui(x) ≥ 0 ∀x ∈ V ∀i.

under optional class size constraints (6) or

penalty term (7), (60)

2) µn+1 = max
(

0, µn + λ(
[

∑

i

max
x∈V

un+1
i (x)

]

−m)
)

.

(61)

We now show that the first subproblem (60) can be
rewritten as a primal-dual problem with a max-flow set-

ting. In particular, we show the connection between the

label cost constraint in (51) and adding an additional

flexible flow constraint in the max-flow setting. Before

going into detail in Theorem 4, we define:

Θµ
i = {ri : V → R such that

∑

x∈V

|ri(x)| ≤ µ}. (62)

Theorem 4 The following primal-dual problem with

a max-flow setting can be written as the optimization

problem in (60) :

min
u

sup
ps,p,q,r,ρ1,ρ2

{

∑

x∈V

ps(x) +

m
∑

i=1

(

ρ1iS
ℓ
i − ρ2iS

u
i

)

+

m
∑

i=1

∑

x∈V

ui(x)
(

divw qi − ps + pi − ri + ρ2i − ρ1i
)

(x)
}

(63)
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subject to, for all i ∈ {1, ...,m},

|qi(x, y)| ≤ 1, ∀(x, y) ∈ E, (64)

pi(x) ≤ R(x, gi), ∀x ∈ V, (65)
∑

x∈V

|ri(x)| ≤ µn, (66)

0 ≤ ρ1i , ρ
2
i ≤ γ. (67)

Proof By regrouping like terms, one obtains:

min
u

sup
ps,p,q,r,ρ1,ρ2

{

E(ps, p, q, r, ρ
1, ρ2, u) =

∑

x∈V

m
∑

i=1

ui(x) divw qi(x) +
∑

x∈V

((1−

m
∑

i=1

ui(x))ps(x))

+
∑

x∈V

m
∑

i=1

ui(x)pi(x)−
∑

x∈V

ui(x)ri(x)

+

m
∑

i=1

ρ1i
(

Sℓ
i −

∑

x∈V

ui(x)) +

m
∑

i=1

ρ2i
(

∑

x∈V

ui(x)− Su
i )
}

subject to (64)-(67) (68)

For a given variable u, the maximization of the term

involving r can be written as:

sup
ri(x)∈Θµn

i

−
∑

x∈V

ui(x)ri(x) = µn max
x∈V

ui(x). (69)

For a given variable u, the maximization of the term

involving pi can be written as:

sup
pi(x)≤R(x,gi)

ui(x)pi(x) =

{

ui(x)R(x, gi) if ui(x) ≥ 0

∞ if ui(x) < 0.

(70)

An important distinction between (60) and (63) is the

fact that u is unconstrained in (63) and the simplex

constraint on u is handled implicitly. This allows one to

formulate an algorithm without projections of u, which

can restrict step sizes and reduce accuracy.

The rest of the proof follows similarly to that of The-

orem 1. In particular, we use the mini-max theorem,

described in sources such as Chapter 6, Proposition 2.4

of [45], and Sion’s generalization of the mini-max theo-

rem [111], as done in the proof of Theorem 1. In addi-

tion, keeping the u variable constant, the optimization

of the qi, ps, ρ
1 and ρ2 terms can be written as (16),

(17), (19) and (20), respectively. Overall, the simplex

and non-negativity constraint on u in (60) and the op-
tional class size constraints (6) or penalty term (7) are

implicitly incorporated into the primal-dual formula-

tion (63) in the manner shown in the proof of Theorem

1. Specifically, the positivity constraint on u can be ob-

tained from (70), the simplex constraint on u can be

obtained from (17), and the class size constraints are

implicitly incorporated by (19) and (20).

Therefore, (63) subject to (64)-(67) can be rewritten

as the first subproblem in (60). �

As stated previously, the first subproblem (60) of

the scheme (60) - (61) can be approached via the aug-

mented Lagrangian technique, as in Section 3. The tech-

nique is efficient, accurate and tolerates a wide range

of step sizes since it does not involve any projections of

u. Moreover, the convergence of augmented Lagrangian

techniques is often guaranteed by theories, such as the

ones in [47, 57]. To derive the method, we consider the

augmented Lagrangian functional:

L =
∑

x∈V

ps +

n
∑

i=1

(ρ1iS
ℓ
i − ρ2iS

u
i )
)

−
c

2

n
∑

i=1

∥

∥divw qi − ps + pi − ri + ρ2i − ρ1i
∥

∥

2

2

+
∑

x∈V

ui(x)
(

divw qi − ps + pi − ri + ρ2i − ρ1i
)

(x).

(71)

One can then formulate a procedure to minimize

(71), where one alternatively maximizes (71) for each

of the variables q, p, ps, r, ρ1 and ρ2 separately, and

then updates the Lagrange multiplier u.

In practice, the alternating scheme for the first sub-

problem (60) becomes the following, where we perform
these steps for Niter iterations, where Niter is a small

number (we use 5), and ‖f‖
2
2 =

∑

x f(x)
2:

pk+1
s = argmax

ps(x)

∑

x∈V

ps −
c

2

∑

i

∥

∥ps −Ak
i

∥

∥

2

2
,

where Ak
i = pi

k + divw q
k
i − rki −

uki
c

+ ρ2i
k
− ρ1i

k
.

(72)

qk+1
i = argmax

|q(e)|≤1 ∀e∈E

−
c

2

∥

∥divw q −Bk
i

∥

∥

2

2
, ∀i,

where Bk
i = ps

k+1 − pi
k + rki +

uki
c

− ρ2i
k
+ ρ1i

k
.

(73)

pk+1
i = argmax

pi(x)≤ Ci(x) ∀x

−
c

2

∥

∥pi −Dk
i

∥

∥

2

2
, ∀i,

where Dk
i = ps

k+1+rki −divw q
k+1
i +

uki
c
−ρ2i

k
+ρ1i

k
.

(74)

ρ1i
k+1

= argmax
0≤ρ1

i≤γ

∑

x∈V

ρ1iS
ℓ
i −

c

2

∥

∥ρ1i − Ek
i

∥

∥

2

2
, ∀i,

where Ek
i = pk+1

i +divwq
k+1
i −

uki
c
−rki −p

k+1
s +ρ2

k
i .

(75)
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Algorithm 3

Require: m, V , w : V × V → R, {R(x, gi)}mi=1, ki : V → {0, 1} ∀i ∈ {1, ...,m}, {Sℓ
i }mi=1, {Su

i }mi=1, µinitial, c, λ, η, γ, Niter,
where m is the # of classes, V is the set of data elements, w is the weight function, {R(x, gi)}mi=1 are the data cost terms,
ki(x) = 1 if x is a labeled element of class i and 0 otherwise, Sℓ

i and Su
i are lower and upper bounds for class i, µinitial > 0,

c > 0, λ > 0, η > 0, γ ≥ 0 and Niter is a small number (we choose 5). No class size information is incorporated by γ = 0.
The class size penalty term (7) is incorporated by 0 < γ <∞. Class size constraints (6) are incorporated by γ =∞.

Ensure: out = u, where ui(x) is the probability of data element x belonging to class i.

Initialize n = 1, µ1 = µinitial and let divw q(x) =
∑

y w(x, y)q(x, y).

while Stop criterion not satisfied do

Initialize u = ρ1i = ρ2i = qi = ri = 0 ∀i ∈ {1, ...,m}, ps = R(x, gm), pi = ps ∀i ∈ {1, ...,m}.
for k = 1→ Niter do

Set pk+1
s =

∑

i(pi
k + divw qki − rki −

uk
i

c
+ ρ2i

k − ρ1i
k + 1

c
)/m.

for i = 1→ m do

qk+1
i = Projectionη(q

k
i + c∇w(divwqki −Bk

i )), where Bk
i = psk+1 − pik + rki +

uk
i

c
− ρ2i

k + ρ1i
k.

pk+1
i (x) = min{(Dk

i (x), R(x, gi)}, ∀x, where Dk
i (x) = psk+1 + rki − divw qk+1

i +
uk

i

c
− ρ2i

k + ρ1i
k.

ρ1i
k+1 = min

(

max
(

mean(Ek
i +

Sℓ
i

c ||V ||
), 0

)

, γ
)

, where Ek
i = pk+1

i + divwqk+1
i − uk

i

c
− rki − pk+1

s + ρ2k
i .

ρ2i
k+1 = min

(

max
(

mean(Fk
i −

Su
i

c ||V ||
), 0

)

, γ
)

, where Fk
i = −pk+1

i − divwqk+1
i + rki +

uk
i

c
+ pk+1

s + ρ1i
k+1.

rk+1
i = argmax

ri(x)∈Θµn

i

− c
2

∥

∥ri −Gk
i

∥

∥

2

2
, where Gk

i = divw qk+1
i − pk+1

s + pk+1
i − uk

i

c
+ ρ2i

k+1 − ρ1i
k+1.

uk+1
i = uk

i − c (divw qk+1
i − pk+1

s + pk+1
i + ρ2i

k+1 − ρ1i
k+1 − rk+1

i ).

end for

end for

Set un+1 = uNiter and µn+1 = max
(

0, µn + λ(
[

∑

i max
x∈V

un+1
i (x)

]

−m)
)

.

end while

ρ2i
k+1

= argmax
0≤ρ2

i≤γ

∑

x∈V

−ρ2iS
u
i −

c

2

∥

∥ρ2i − F k
i

∥

∥

2

2
, ∀i,

where F k
i = −pk+1

i −divwq
k+1
i +rki +

uki
c
+pk+1

s +ρ1i
k+1

.

(76)

rk+1
i = argmax

ri(x)∈Θµn

i

−
c

2

∥

∥ri −Gk
i

∥

∥

2

2
, ∀i,

where Gk
i = divw q

k+1
i −pk+1

s +pk+1
i −

uki
c
+ρ2i

k+1
−ρ1i

k+1

(77)

uk+1
i = uki −Hk

i , where

Hk
i = c (divw q

k+1
i −pk+1

s +pk+1
i +ρ2i

k+1
−ρ1i

k+1
−rk+1

i ),

(78)

AfterNiter iterations of the above, we set u
n+1 = uNiter .

For (72) and (74), the closed form solutions are:

pk+1
s =

∑

i

(Ak
i +

1

c
)/m, (79)

pk+1
i (x) = min{(Dk

i (x), R(x, gi)}, ∀x,

(80)

where Ak
i and Dk

i are denoted in (72) and (74).

The optimization problem (73) can be solved by a

few steps of the projected gradient method:

qk+1
i = Projectionη(q

k
i + c∇w(divwq

k
i −Bk

i )),

where Bk
i = ps

k+1 − pi
k + rki +

uki
c

− ρ2i
k
+ ρ1i

k
.

(81)

where Projectionη is a projection operator in (31).

There are extended convergence theories for the aug-

mented Lagrangian method in the case when one of the

subproblems is solved inexactly, see e.g. [47, 57]. In our
experience, one gradient ascent iteration is enough.

Consider now (75) and (76). In case no constraints

are given on ρ1 and ρ2, the maximizers over the sum
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of the concave quadratic terms can be computed as the

average of the maximizers to each individual term as

ρ1i
k+1

= mean
(

Ek
i +

Sℓ
i

c ||V ||

)

, (82)

ρ2i
k+1

= mean
(

F k
i −

Su
i

c ||V ||

)

. (83)

with Ek
i and F k

i defined in (75) and (76), respectively.
Since the objective function is concave and the maxi-

mization variable is just a constant, an exact solution
to the constrained maximization problem can now be
obtained by a projection onto that constraint as follows:

ρ1i
k+1

= min
(

max
(

mean(Ek
i +

Sℓ
i

c ||V ||
), 0

)

, γ
)

, (84)

ρ2i
k+1

= min
(

max
(

mean(F k
i −

Su
i

c ||V ||
), 0

)

, γ
)

. (85)

Here, Ek
i and F k

i are defined in (75) and (76).

The optimization problem (77) involving ri can be
addressed by the projection of Gk to the L1−ball Θµ

i

defined in (62) using a fast projection algorithm [44, 86].
Just like Algorithm 1, Algorithm 3 has the desired

property of being parallelizable on GPU. This is due to

the fact that the subproblems (72)- (77) can be solved

pointwise independently of each other. Moreover, the

update formula (81) for q only necessitates access to
the values of neighboring nodes at the previous iterate.

In addition, we note that Algorithm 3 can be applied
in an unsupervised setting and in a semi-supervised set-

ting. For semi-supervised applications, one can incorpo-

rate labeled data by including the {ki} terms as in (24)

in Algorithm 1, or by setting the term R(x, gi) to be

large if x is a labeled point which is not of class i.

4 Experiments

For each data set, in the experiments, we randomly se-

lect a percentage of the data set to use as labeled data.

The labels of the unlabeled points are initialized by cre-

ating a Voronoi diagram with the labels of the labeled

points as the seed points. Every point is assigned the

label of the labeled point in its Voronoi cell.

The results for experiments are in Figure 1 and Ta-

ble 1. In Figure 1, the framework is semi-supervised,

with only a small amount of labeled data used. In Ta-

ble 1, the framework is unsupervised, with no labeled

data used. In addition, for Algorithm 1, we use η = 10,

γ = 10, and c = 0.05. For Algorithm 2, s = 0.01, δ =

0.05, η = 100, α = 0.001 and γ = 100. For Algorithm 3,

µinitial = 10000, c = 0.1, λ = 100, η = 50 and γ = 100.

Regarding the class sizes, we set the upper bounds

{Ui}i and lower bounds {Li}i so that the amount of

data elements classified into a class does not deviate

more than 15% from the true class size.

Overall, for each data set, we average the accuracy

over 500 to 10000 experiments, where each experiment

involves a different set of labeled elements. Moreover,

we ensure that each data set element is included in an

experiment as a labeled point of the data set.

All experiments were run on a 2.2 GHz Intel Core i7

computer. The nearest neighbors were calculated using

the kd-tree code in the VLFeat library [12].

4.1 Data Sets

– Berkeley Segmentation Data Set. This data set
[88] is a data set of 500 images, both in color for-

mat and gray format, of different, mostly outside,
scenes. For each image that we used, we take the
intensities of a 7× 7 neighborhood of each point to

be the feature (attribute) vector. This vector is used
to compute the weight matrix W = {w(x, y)} using

the formula in (1), σ = 1 and 15 nearest neighbors.
We do not preprocess the images in any way.

– MNIST. This data set [76] is a data set of 70,000

grayscale 28× 28 images of handwritten digits; the

set consists of 10 classes. The weight matrix W =

{w(x, y)} is constructed using 15 nearest neighbors,

Euclidean distance measure, the formula in (1) and
σ = 1, without any preprocessing of the images.

– Fashion MNIST. This data set [3] is a dataset of
70,000 28 × 28 grayscale images of clothing items;

the set contains 10 classes. The weight matrix is
constructed using 15 nearest neighbors, Euclidean
distance measure, the formula in (1) and σ = 1,

without any preprocessing of the images.

– Opt-Digits. This data set [6] is a set of grayscale

images of 5620 handwritten digits; it contains 10
classes. The dimension reduction performed on the

data produced a 64-dimensional feature vector for

each image, where each value is an integer in the

range of 0 to 16. The weight matrix is constructed

using 20 nearest neighbors, Euclidean distance mea-

sure, the formula in (1) and σ = 1.

– WebKB. This data set [41] is a set of 4199 web-
pages from Cornell, Texas, Washington and Wiscon-

sin universities, and other miscellaneous pages, to be

divided into: project, course, faculty and student. It

is preprocessed as in [29], and tfidf term weight-

ing [29] is used to represent the features, which are

then normalized to unitary length. To construct the

weights, we use a pairwise document similarity mea-
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Table 1 Classification Accuracy in Percent for Algorithms 1 and 2

% of data used as
2.5% 5% 10% 15% 20%

labeled elements

MNIST
Alg. 1 97.39 97.61 97.70 97.80 97.90

Alg. 2 97.12 97.32 97.51 97.65 97.83

% of data used as
2.5% 5% 10% 15% 20%

labeled elements

Alg. 1 82.05 83.17 84.19 84.66 85.22
Fashion
MNIST Alg. 2 82.02 83.11 84.07 84.53 85.02

% of data used as
2.5% 5% 10% 15% 20%

labeled elements

Pendigits
Alg. 1 97.31 98.39 98.85 99.01 99.21

Alg. 2 97.24 98.31 98.78 99.00 99.17

% of data used as
1% 2.5% 5% 10% 20%

labeled elements

Landsat
Alg. 1 85.96 87.43 88.61 89.82 90.71

Alg. 2 85.86 87.37 88.54 89.20 90.69

% of data used as
2.5% 5% 10% 15% 20%

labeled elements

Optdigits
Alg. 1 98.49 98.52 98.63 98.76 98.86

Alg. 2 98.31 98.37 98.51 98.68 98.79

% of data used as
2.5% 5% 10% 15% 20%

labeled elements

Reuters
Alg. 1 92.08 95.23 95.40 95.51 95.86

Alg. 2 91.58 94.90 95.13 95.38 95.55

% of data used as
5% 10% 20% 30% 40%

labeled elements

WebKB
Alg. 1 81.64 84.47 86.57 88.33 89.16

Alg. 2 81.54 84.25 86.23 88.16 89.09

% of data used as
2.5% 5% 10% 15% 20%

labeled elements

Alg. 1 73.74 76.65 80.63 81.72 83.19
20

Newsgroups Alg. 2 72.94 76.44 80.20 81.39 82.89

Fig. 1 Image Segmentation Results for Algorithm 3 (Unsupervised Graph-Based Setting). Algorithm 3 simulta-

neously finds the segmentation result and the region parameters of data cost terms, when the latter is unknown.

sure [93] as a distance measure, the weight formula

(1) with σ = 1, and 30 nearest neighbors.

– Reuters. This data set [9] is a collection of 7674

documents with 8 classes: ‘crude’, ‘earn’, ‘acq’, ‘grain’,

‘interest’, ‘money-fx’, ‘ship’ and ‘trade’. Tfidf term

weighting [29] is used to represent the features, which

are then normalized to unitary length. To construct

the weight matrix, we use a pairwise document sim-

ilarity measure [93] as a distance measure, the for-

mula in (1) with σ = 1, and 30 nearest neighbors.

– 20 Newsgroups. This data set [1] is a set of ap-

proximately 20,000 newsgroup documents, to be di-

vided into 20 classes. Tfidf term weighting [29] is

used to represent the feature vectors, which are then
normalized to unitary length. To construct the weights,
we use cosine similarity as a distance measure, the

formula in (1) with σ = 1, and 30 nearest neighbors.

– Landsat. This data set [10] is a set of 6435 elements

containing multi-spectral values of pixels in 3 × 3

neighbourhoods in a satellite image, and the classifi-

cation is associated with the central pixel. There are
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6 classes. Each of the elements of the data contains

the pixel values in the four spectral bands of each

pixel in the 3 × 3 neighbourhood; therefore, each

feature vector consists of 36 values. The weights are

constructed using (1) with σ = 1, Euclidean dis-

tance, and 20 nearest neighbors.

– Pendigits. This data set [7] of 10 classes is a set of
10992 images of handwritten digits. Each image is

represented by a vector of 16 values, each between

0 and 100. The weight matrix is constructed using

(1) with σ = 1, and 30 nearest neighbors.

4.2 Comparison to Recent Methods

We compare our methods to many recent algorithms,

most of which are semi-supervised and from the last 5

years. The results are in Table 2 and Figure 2.

In particular, we compare the results of all data sets

to the following label propagation methods:

– weighted nonlocal Laplacian (WNLL) [108]

– centered kernel method (CKM) [87]

– sparse label propagation (SLP) [67]

– p-Laplace learning (p-Laplace) [101].

We also compare the results of all data sets to the

following graph embedding methods and popular GNN-

based models for graph semi-supervised learning tasks:

– graph neural network (GNN) [59]

– graph convolutional network (GCN) [73]

– Planetoid [123].

From Table 2 and Figure 2, we see that the results of

the proposed methods compare favorably to those of re-

cent algorithms. In particular, from Table 2, we see that

when the methods are compared to classical graph em-

bedding methods and popular GNN-based models such

as GCN [73], GNN [59] and Planetoid [123], the pro-

posed methods outperform the aforementioned models.

In particular, for MNIST, Pendigits and Opt-Digits, the

results of the proposed techniques are 6%-19% higher

in accuracy than that of the comparison methods in

Table 2. For Reuters data, the result is 5%-14% higher

than that of other methods in Table 2. For the Landsat

and 20 Newsgroups data sets, the results are 2%-14%

higher in accuracy than that of the comparison meth-

ods in Table 2. Moreover, from Figure 2, we can also see

that the results of the proposed methods compare fa-

vorably to those of recent algorithms. For example, the

results of the proposed methods on WebKB data have

an 2.1%-14% improvement from comparison methods.

Moreover, for the Optdigits data set, in addition to

the aforementioned algorithms, we also compare to the

following semi-supervised procedures: TV-based multi-

class graph partitioning (TVRF) [124] and high-dense

graph learning (HiDEGL) with four different versions

[120]. The result of TVRF is from the paper [120]. For

labeled data, we use 140 labeled points.

For the Pendigits data, in addition to the afore-

mentioned algorithms, we also compare to the follow-

ing semi-supervised methods: semi-supervised predic-

tive clustering trees (SSL-PCT) [80], semi-supervised

deep classification (SDC) [43], direct kernel mapping (1-

Kernel-LP-map) [131], kernel mapping- induced label

reconstruction (1-Kernel-LP-recons) [131], discrimina-

tive sparse flexible manifold embedding (Sparse FME)

[133], semi-supervised self-organizing map (SS-SOM)

[26]. The results for 1-Kernel-LP-recons, 1-Kernel-LP-

map and Sparse FMEmethods are from [131]. All meth-

ods consider 2.5% of the data set as labeled.

For MNIST, in addition to the aforementioned meth-
ods, we also compare to the following (mostly semi-

supervised) methods: label propagation adaptive reso-

nance theory (LPART) [71], Ensembles [35], batch semi-

supervised self-organizing map (Batch SS-SOM) [25],

continual learning [79], active learning [2], and succes-

sive subspace learning (Pixel Hop) [34]. The results for

Ensembles is from [35]. All methods consider 2.5% of

the data as labeled, except Batch SS-SOM and active

learning, which consider 5% of the data as labeled.

For Fashion MNIST, in addition to the aforemen-

tioned methods, we also compare to semi-supervised
deep classification (SDC) [43], batch semi-supervised
self-organizing map (Batch SS-SOM) [25], a convolu-
tional neural network (LeNet-5) [75], Wasserstein ad-

versarial active learning (WAAL) [109], and continual

learning [79]. The result for WAAL is from [109]. All

methods consider 2.5% of data as labeled, except Batch

SS-SOM, which considers 5% of data as labeled.

For Landsat, in addition to the aforementioned meth-

ods, we also compare to the following semi-supervised

methods: a modified particle competition and cooper-

ation models (MPCCM-mcCPU and MPCCM-GPU)

[112], 2 versions of active labeling (with Tri-Training

or STDP) [96], and 2 versions of a framework based on

local cores for self-labeled semi-supervised classification

(LC-SSC with Tri-Training or STDP) [81]. Most results

are from [81]. All methods use only 64 labels in total.

For Reuters, in addition to the aforementioned meth-

ods, we also compare to semi-supervised Grid-TCTN

[103], semi-supervised GE-TCTN [40], multinomial Naive

Bayes (Mult-nb) [11], linear kernel support vector ma-

chine (SVC-tfidf) [11], ExtraTrees with 200 trees (Globe-

big-tfidf) [11], and ExtraTrees with 200 trees using a

100-dimensional word2vec embedding (w2v-tfidf) [11].
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Table 2 Comparison to Semi-Supervised Graph Embedding and GNN-based Models

Data Set % Labeled Proposed Proposed GCN [73] GNN [59] Planetoid [123]
Data (Alg 1) (Alg 2)

MNIST 0.7% 95.95 95.90 88.71 85.92 86.62
Pendigits 1% 91.49 91.17 83.28 76.36 85.82
Opt-Digits 1% 97.53 97.13 83.16 78.35 87.98
WebKB 10% 84.47 84.25 85.37 80.13 84.04

Fashion MNIST 0.7% 79.81 79.69 76.58 73.29 78.14
Landsat 1% 85.96 85.86 83.57 80.35 83.41
Reuters 2.5% 92.08 91.58 85.16 78.35 87.03

20 Newsgroups 2.5% 73.74 72.94 70.26 60.86 66.11

Table 3 Timing Results for Algorithms 1 and 2 (in seconds)

Data Set Number of classes Number of elements Timing in seconds Timing in seconds
MNIST 10 70000 28.28 s 13.39 s
Pendigits 10 10992 7.23 s 4.45 s
Opt-Digits 10 5620 2.88 s 1.38 s
WebKB 4 4199 1.11 s 0.59 s

Fashion MNIST 10 70000 22 s 11.63 s
Landsat 6 6435 2.67 s 1.36 s
Reuters 8 7674 6.04 s 2.82 s

20 Newsgroups 20 18820 33.34 s 15.28 s

Table 4 Timing Results for Algorithm 3 (in seconds)

Data set Number of pixels Construction of Timing in seconds
in the image nearest neighbor graph for Algorithm 3

Berkeley Segmentation data (one image) 154401 ∼ 90 s ∼ 35 s

Table 5 Comparison of Timing to that of Other Algorithms

MNIST Fashion MNIST Other data sets
from Section 6.1

Pre-algorithm computations ∼ 1.5 min ∼ 1.5 min 0.03 min-1 min
(construction of graph weights) (except for the 20 Newsgroups data)

for Algorithms 1 and 2 (proposed)
Pre-algorithm computations (training) ∼ 25 min ∼ 25 min not included in paper

for LeNet-5 [4]
Pre-algorithm computations (training) ∼ 15 min ∼ 15 min not included in paper

for for PixelHop [34]
Pre-algorithm computations (training) ∼ 15 min ∼ 15 min not included in paper

for LIBSVM [5]

Table 6 Friedman’s Test and Ranking for Table 2

Statistic p-value Result
42.77778 <0.00001 H0 is rejected

(a) Friedman’s Test

Algorithm 1 Algorithm 2 GCN Planetoid GNN
1.125 2.125 3.25 3.50 5.00

(b) Ranking

Table 7 Friedman’s Test and Ranking for Figure 2

Statistic p-value Result
61.69737 <0.00001 H0 is rejected

(a) Friedman’s Test

Algorithm 1 Algorithm 2 WNLL pLaplace SLP CKM
1.00 2.00 3.57 3.71 4.86 5.86

(b) Ranking
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Glove-big-tfidf

GE-TCTN

Grid-TCTN

CKM

Mult-nb

SVC-tfidf

SLP

p-Laplace

WNLL

w2v-tfidf

Proposed (Alg 2)

Proposed (Alg 1)

89.1

90.23

91.14

92.51

93

93.5

93.69

93.72

93.89

94

95.13

95.4

(a) Reuters (≈ 10% labeled data)

MBC

MMC

GBC

BS

HSN

CKM

p-Laplace

RF

SLP

WNLL

Proposed (Alg 2)

Proposed (Alg 1)

69.5

70

77

80

80.5

81.29

81.78

82

82.03

82.11

84.25

84.47

(b) WebKB (≈ 10% labeled data)

CKM

LC-SSC w/ Tri-Training

SLP

LC-SSC w/ STDP

Active Labeling w/ STDP

Active Labeling w/ Tri-Training

WNLL

p-Laplace

MPCCM-GPU

MPCCM-mcCPU

Proposed (Alg 2)

Proposed (Alg 1)

80.12

80.2

80.47

80.6

82.07

82.13

82.62

82.91

83.25

84.37

85.86

85.96

(c) Landsat (≈ 1% labeled data)

WAAL

Batch SS-SOM

LeNet-5

SLP

CKM

Continual Learning

p-Laplace

WNLL

SDC

Proposed (Alg 2)

Proposed (Alg 1)

79

79.7

81

81.22

81.47

81.5

81.6

81.65

81.7

82.02

82.05

(d) Fashion MNIST (≈ 2.5% labeled data)

Mult-nb

GE-TCTN

SCDMLGE

Grid-TCTN

CKM

SLP

SVC-tfidf

SDEC

WNLL

p-Laplace

Proposed (Alg 2)

Proposed (Alg 1)

72

73.13

73.7

74.38

77.01

77.91

78

78.1

78.87

79.05

80.2

80.63

(e) 20 Newsgroups (≈ 10% labeled data)

CKM

HiDeGL (A-accurate)

HiDeGL (A-approx)

p-Laplace

HiDeGL (L-aaccurate)

HiDeGL (L-approx)

SLP

TVRF

WNLL

Proposed (Alg 2)

Proposed (Alg 1)

96.93

97.29

97.29

97.8

97.89

97.9

97.95

97.98

98.01

98.31

98.49

(f) Optdigits (≈ 2.5% labeled data)

SS-SOM

Sparse FME

1-Kernel-LP-recons

SDC

1-Kernel-LP-map

SSL-PCT

CKM

SLP

WNLL

p-Laplace

Proposed (Alg 2)

Proposed (Alg 1)

83

86.5

89

93

94

94.5

94.83

96.41

96.69

96.95

97.24

97.31

(g) Pendigits (≈ 2.5% labeled data)

LPART

Batch SS-SOM

Active Learning

Pixel Hop

SLP

CKM

Continual Learning

Ensembles

WNLL

p-Laplace

Proposed (Alg 2)

Proposed (Alg 1)

96.2

96.43

96.5

96.8

96.93

96.98

97

97

97.02

97.1

97.12

97.39

(h) MNIST (≈ 2.5% labeled data)

Fig. 2 Comparison to Other Recent Methods (Accuracy in Percent)
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The result of Grid-TCTN and GE-TCTN is from [40].

All methods consider 10% of the data as labeled.

For the WebKB data set, we also compare our algo-

rithms to a merged multi-class classifier (MMC) [106],

graph-based classification (GBC) [105], merged binary

classifier (MBC) [106], hybrid support vector machine
and Näıve Bayes classifier (HSC) [105], boosting (BS)
[70] and random forests (RF) [70]. The proposed meth-

ods and the last two methods use around 420 labeled

points, while others use 560 labeled points.

For 20 Newsgroups, we also compare to the follow-

ing (mostly semi-supervised) methods: semi-supervised

Grid-TCTN [103], GE-TCTN [40], semi-supervised deep

embedded clustering (SDEC) [100], semi-supervised clus-

tering with deep metric learning and graph embedding

(SCDMLGE) [83], multinomial Näıve Bayes (Mult-nb)

[11], and linear kernel support vector machine (SVC-

tfidf) [11]. All methods consider 10% of data as labeled.

4.3 Timing

The timing for Algorithms 1, 2 and 3 is included in

Tables 2-3. The proposed algorithms are very fast; all

experiments were performed on a 2.2 GHz Intel Core i7

computer. Overall, Table 2 involves Algorithms 1 and

2 and includes the timing needed for everything but

the construction of the weight matrix. For all but 20

Newsgroups, the time to construct the weight matrix is
only 0.03 - 1 minutes; for 20 Newsgroups, 6 minutes are

needed. Table 3 includes the timing for Algorithm 3.

Table 4 compares the timing of the proposed methods

to that of several recent algorithms.

4.4 Analysis and Influence of the Parameters

As is the case for the vast majority of classification al-

gorithms, the values of the parameters in the proposed

techniques influence their accuracy. In particular, some

parameters should be kept large or small, otherwise the

accuracy can be suboptimal. For example, the param-

eter c in Algorithms 1 and 3 must be kept small but

not too small (otherwise, converge will be slower) as

it is a projected gradient descent step; usually, it is in

the range of 0.01-0.1. The parameters δ and α in Al-

gorithm 2 should also be kept small- we usually choose

them to be 0.05 or smaller. In addition, the parameter

s in Algorithm 2 is a smoothing parameter and must

be kept small, usually 0.05 or smaller, otherwise the

asymptotic approximation of the technique would not

be valid. However, the parameters η and γ must not

be small, as they involve projections onto [−η, η] and

[0, γ], respectively; usually, they should be at least 10,

otherwise a lot of information is lost. Moreover, for Al-

gorithm 3, we choose µinitial to be a large parameter, so

that (close to) the desired number of segments in the

image is attained in the result. Since µinitial is a large

parameter, λ should not be small, otherwise very lit-

tle change in µ will be made during the computations.

Lastly, Niter in Algorithm 3 should be a small integer,

such as 5, as that is enough to obtain accurate results.

4.5 Statistical Tests

We performed statistical tests on experiments in Table

2 and Figure 2; the results are in Table 6 and Table 7.

The null hypothesis H0, which states that the means of

the results of the algorithms are the same, is rejected

due to a very low p-value. Overall, we see that the pro-

posed methods are consistently ranked the best.

5 Conclusion

This paper derives three algorithms for machine learn-

ing learning problems, such as data classification and
image segmentation, using maximum flow and duality

techniques, similarity graph-based frameworks, semi-

supervised procedures, class size information and class

homogeneity terms. The third method in particular is

tailored for image segmentation problems involving re-

gion parameters, in the case the latter is unknown. The

new algorithms offer several advantages, including re-

quiring only small amounts of labeled data for good

accuracy, in part due to an integration of graph-based

and semi-supervised techniques; this feat is important

due to the scarcity of labeled data. The proposed al-

gorithms are also based on global minimization frame-

works, which allows one to avoid local but not global

minima. The methods are also able to incorporate class

size information which often improves performance. In
addition, the new methods can be used successfully on

both large and small data sets, the latter of which can

result in poor performances for machine learning meth-

ods due a decreased ability for machine learning-based

models to learn from the observed data. Moreover, the

algorithms are parallelizable during coding. Overall, the

three methods form powerful approaches to some of the

most important problems of machine learning, and ad-

dress some of its challenges.

In the future, it would be interesting to investigate

a variety of class homogeneity terms for data classifi-

cation and applications such as 3D point clouds and

hyperspectral imaging. Using class homogeneity terms

is likely to improve the classification accuracy com-

pared to that of models based primarily on boundary
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terms and help avoid trivial global minimizers. For in-

stance, class homogeneity may be defined in terms of

the eigendecomposition of the covariance matrix or the

graph Laplacian matrix. Moreover, we plan to imple-

ment OpenMP directive-based parallelism in our algo-

rithms and optimize the OpenMP implementations.
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C. Schnörr. Convex multi-class image labeling by
simplex-constrained total variation. In Scale Space and

Variational Methods in Computer Vision, volume 5567
of LNCS, pages 150–162. Springer, 2009.

79. T. Lesort, H. Caselles-Dupré, M. Garcia-Ortiz,
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