
VLN-Trans: Translator for the Vision and Language Navigation Agent

Yue Zhang
Michigan State University

zhan1624@msu.edu

Parisa Kordjamshidi
Michigan State University

kordjams@msu.edu

Abstract

Language understanding is essential for the
navigation agent to follow instructions. We ob-
serve two kinds of issues in the instructions that
can make the navigation task challenging: 1.
The mentioned landmarks are not recognizable
by the navigation agent due to the different vi-
sion abilities of the instructor and the modeled
agent. 2. The mentioned landmarks are applica-
ble to multiple targets, thus not distinctive for
selecting the target among the candidate view-
points. To deal with these issues, we design a
translator module for the navigation agent to
convert the original instructions into easy-to-
follow sub-instruction representations at each
step. The translator needs to focus on the recog-
nizable and distinctive landmarks based on the
agent’s visual abilities and the observed visual
environment. To achieve this goal, we create
a new synthetic sub-instruction dataset and de-
sign specific tasks to train the translator and the
navigation agent. We evaluate our approach
on Room2Room (R2R), Room4room (R4R),
and Room2Room Last (R2R-Last) datasets
and achieve state-of-the-art results on multiple
benchmarks.

1 Introduction

Vision-and-Language Navigation (VLN) (Ander-
son et al., 2018) task requires an agent to under-
stand and follow complex instructions to arrive at
a destination in a photo-realistic simulated environ-
ment. This cross-domain task attracts researchers
from the communities of computer vision, natural
language processing, and robotics (Gu et al., 2022;
Wu et al., 2021; Francis et al., 2022).

To solve the VLN task, one streamline of meth-
ods is to build the connections between text and
vision modalities by grounding the semantic infor-
mation dynamically (Hong et al., 2020a; Qi et al.,
2020a; An et al., 2021; Zhang and Kordjamshidi,
2022a). However, we observe two types of instruc-
tions that make the grounding in the VLN task quite

Enter the door and turn
right passing the wall.

Enter the shutters.

Reach the entrance
between the kitchen
and the living room.

Reach the entrance
between the sofa and
chairs.

(a)

(b)

Instruction Candidate Views

where

which

Figure 1: Two types of instructions that make the
grounding in the VLN task challenging: (a) unrecogniz-
able landmarks, (b) nondistinctive landmarks. In candi-
date views, the largest image shows the target view.

challenging. First, the instruction contains land-
marks that are not recognizable by the navigation
agent. For example, Figure 1(a), the agent can only
see the “sofa”, “table” and “chair” in the target
viewpoint, based on the learned vision representa-
tions (He et al., 2016; Ren et al., 2015; Dosovitskiy
et al., 2020). However, the instructor mentions land-
marks of the “living room” and “kitchen” in the
instruction, based on their prior knowledge about
the environment, such as relating “sofa” to “living
room”. Given the small size of the dataset designed
for learning navigation, it is hard to expect the agent
to gain the same prior knowledge as the instructor.
Second, the instructions contain the landmarks that
can be applied to multiple targets, which causes
ambiguity for the navigating agent. In Figure 1(b),
the instruction “enter the door” does not help dis-
tinguish the target viewpoint from other candidate
viewpoints since there are multiple doors and walls
in the visual environment. As a result, we hypoth-
esize those types of instructions cause the explicit
and fine-grained grounding to be less effective for
the VLN task, as appears in (Hong et al., 2020b;
Zhang et al., 2021) that use sub-instructions and
in (Hong et al., 2020a; Hu et al., 2019; Qi et al.,
2020a; Zhang and Kordjamshidi, 2022a) that use
object-level representations.

To address the aforementioned issues, the main



idea in our work is to introduce a translator mod-
ule in the VLN agent, named VLN-trans, which
takes the given instruction and visual environment
as inputs and then converts them to easy-to-follow
sub-instructions focusing on two aspects: 1) recog-
nizable landmarks based on the navigation agent’s
visualization ability. 2) distinctive landmarks that
help the navigation agent distinguish the targeted
viewpoint from the candidate viewpoints. Con-
sequently, by focusing on those two aspects, the
translator can enhance the connections between the
given instructions and the agent’s observed visual
environment and improve the agent’s navigation
performance.

To train the translator module, we propose a Syn-
thetic Fine-grained Sub-instruction dataset called
SyFiS. The SyFiS dataset consists of pairs of
the sub-instructions and their corresponding view-
points, and each sub-instruction contains a mo-
tion indicator and a landmark. We select a mo-
tion verb for an action based on our action defini-
tions according to the relative directions between
source and target viewpoints; To obtain the land-
marks, we first use Contrastive Language-Image
Pretraining (CLIP) (Radford et al., 2021), a vision
& language pre-trained model with powerful cross-
modal alignment ability, to detect the objects in
each candidate viewpoint as the recognizable land-
marks. Then we select the distinctive one among
recognizable landmarks that only appears in the
target viewpoint. We train the translator in a con-
trastive manner by designing positive and negative
sub-instructions based on whether a sub-instruction
contains distinctive landmarks.

We design two tasks to pre-train the translator:
Sub-instruction Generation (SG) and Distinctive
Sub-instruction Learning (DSL). The SG task en-
ables the translator to generate the correct sub-
instruction. The DSL task encourages the trans-
lator to learn effective sub-instruction representa-
tions that are close to positive sub-instructions with
distinctive landmarks and are far from the negative
sub-instructions with irrelevant and nondistinctive
landmarks. Then we equip the navigation agent
with the pre-trained translator. At each navigation
step, the translator adaptively generates easy-to-
follow sub-instruction representations for the nav-
igation agent based on given instructions and the
agent’s current visual observations. During the nav-
igation process, we further design an auxiliary task,
Sub-instruction Split (SS), to optimize the trans-

lator module to focus on the important portion of
the given instruction and generate more effective
sub-instruction representations.
In summary, our contributions are as follows:

1. We propose a translator module that helps
the navigation agent generate easy-to-follow sub-
instructions considering recognizable and distinc-
tive landmarks based on the agent’s visual ability.

2. We construct a high-quality synthetic sub-
instruction dataset and design specific tasks for
training the translator and the navigation agent.

3. We evaluate our method on R2R, R4R, and
R2R-Last, and our method achieves the SOTA re-
sults on all benchmarks.

2 Related Work

Vision-and-Language Navigation Anderson et al.
(2018) first propose the VLN task with R2R dataset,
and many LSTM-based models (Tan et al., 2019;
Ma et al., 2019a; Wang et al., 2019; Ma et al.,
2019b) show progressing performance. One line of
research on this task is to improve the grounding
ability by modeling the semantic structure of both
the text and vision modalities (Hong et al., 2020a;
Li et al., 2021; Zhang and Kordjamshidi, 2022a).
Recently, Transformers (Vaswani et al., 2017; Tan
and Bansal, 2019; Hong et al., 2021) have been
broadly used in the VLN task. VLN⟳BERT (Hong
et al., 2021) equips a Vision and Language Trans-
former with a recurrent unit that uses the history
information, and HAMT (Chen et al., 2021) has
an explicit history learning module and uses Vi-
sion Transformer (Dosovitskiy et al., 2020) to learn
vision representations. To improve learning repre-
sentation for the agent, ADAPT (Lin et al., 2022)
learns extra prompt features, and CITL (Liang et al.,
2022) proposes a contrastive instruction-trajectory
learning framework. However, previous works ig-
nore the issue of unrecognizable and nondistinctive
landmarks in the instruction, which is detrimental
to improving the navigation agent’s grounding abil-
ity. We propose a translator module that generates
easy-to-follow sub-instructions, which helps the
agent overcome the abovementioned issues and im-
proves the agent’s navigation performance.
Instruction Generation Fried et al. (2018) propose
an instruction generator (e.g., Speaker) to generate
instructions as the offline augmented data for the
navigation agent. Kurita and Cho (2020) design a
generative language-grounded policy for the VLN
agent to compute the distribution over all possible



CLIP

CLIP

CLIP

“fireplace”
“artwork”
“room”

“headboard”
“bed frame”
“room”

“hallway”
“door frame”
“room”

Direction

Turn right to
θ

hallway roombed frame

Turn
right to
hallway

Turn
right to
bed
frame

Turn
right to
room

Positive Easy
Negative

Hard
Negative

Motion
Vocab Table

v1 (target)

v2

v3

Figure 2: Illustration of constructing the SyFiS dataset.

instructions given action and transition history. Re-
cently, FOAM (Dou and Peng, 2022) uses a bi-level
learning framework to model interactions between
the navigation agent and the instruction genera-
tor. Wang et al. (2022a) propose a cycle-consistent
learning scheme that learns both instruction fol-
lowing and generation tasks. In contrast to our
work, most prior works rely on the entire trajec-
tory to generate instructions that provide a rather
weak supervision signal for each navigation action.
Moreover, the previously designed speakers gen-
erate textual tokens based on a set of images with-
out considering what instructions are easier for the
agent to follow. We address those issues with our
designed translator by generating easy-to-follow
sub-instruction representations for the navigation
agent at each navigation step based on recognizable
and distinctive landmarks.

3 Method

In our navigation problem setting, the agent
is given an instruction, denoted as W =
{w1, w2, · · · , wL}, where L is the number of to-
kens. Also, the agent observes a panoramic view
including 36 viewpoints1 at each navigation step.
There are n candidate viewpoints that the agent
can navigate to in a panoramic view, denoted as
I = {I1, I2, · · · , In}. The task is to generate a
trajectory that takes the agent close to a goal des-
tination. The navigation terminates when the nav-
igation agent selects the current viewpoint, or a
pre-defined maximum navigation step is reached.

Fig. 3 (a) provides an overall picture of our pro-
posed architecture for the navigation agent. We use
VLN⟳BERT (Hong et al., 2021) (in Sec. 3.1) as
the backbone of our navigation agent and equip it
with a novel translator module that is trained to
convert the full instruction representation into the
most relevant sub-instruction representation based

112 headings and 3 elevations with 30 degree interval.

on the current visual environment. Another key
point of our method is to create a synthetic sub-
instruction dataset and design the pre-training tasks
to encourage the translator to generate effective
sub-instruction representations. We describe the
details of our method in the following sections.

3.1 Backbone: VLN⟳BERT
We use VLN⟳BERT as the backbone of our nav-
igation agent. It is a cross-modal Transformer-
based navigation agent with a specially designed
recurrent state unit. At each navigation step, the
agent takes three inputs: text representation, vi-
sion representation, and state representation. The
text representation X for instruction W is denoted
as X = [x1, x2, · · · , xL]. The vision representa-
tion V for candidate viewpoints I is denoted as
V = [v1, v2, · · · , vn]. The recurrent state represen-
tation St stores the history information of previous
steps and is updated based on X and Vt at the cur-
rent step. The state representation St along with X
and Vt are passed to cross-modal transformer layers
and self-attention layers to learn the cross-modal
representations and select an action, as follows:

X̂, Ŝt, V̂t = Cross_Attn(X, [St;Vt]), (1)

St+1, at = Self_Attn(Ŝt, V̂t), (2)

we use X̂ , Ŝt, V̂t to represent text, recurrent state,
and visual representations after cross-modal trans-
former layers, respectively. The action is selected
based on the self-attention scores between Ŝt and
V̂t. St+1 is the updated state representations and at
contains the probability of the actions.

3.2 Synthetic Sub-instruction Dataset (SyFiS)
This section introduces our novel approach to au-
tomatically generate a synthetic fine-grained sub-
instruction dataset, SyFiS, which is used to pre-
train the translator (described in Sec. 3.3) in a
contrastive manner. To this aim, for each view-
point, we generate one positive sub-instruction and
three negative sub-instructions. The viewpoints
are taken from the R2R dataset (Anderson et al.,
2018), and the sub-instructions are generated based
on our designed template. Fig. 2 shows an example
describing our methodology for constructing the
dataset. The detailed statistics of our dataset are
included in Sec.4.

The sub-instruction template includes two com-
ponents: a motion indicator and a landmark. For
example, in the sub-instruction “turn left to the



Navigation Agent

Translator

Move forward to the hallway.
Enter the door and turn right
passing the wall.

Enter into the
bedroom. 000… 00111…

Move forward to the hallway. Enter the
door and turn right passing the wall.

Enter inside
the hallway.

LSTM

Soft-Attn

MLP

Walk pass the hallway.

Translator
⨁

Action

negative

positive

LSTM

Enter inside
the hallway.

LSTM

Soft-Attn

MLP

Translator

LSTM

Enter inside
the hallway.

DSL

Enter inside
the hallway.

Enter inside
the room.

Walk into
the hallway.anchor

SG

SG SS

sub-
instruction

(a) (b) (c)

Figure 3: The overview of the proposed method. (a) Navigation agent with VLN-Trans. (b) The translator
architecture (c) Pre-training the translator. SG:Sub-instruction Generation; DSL: Distinctive Sub-instruction
Learning; SS: Sub-instruction Split.

kitchen”, the motion indicator is “turn left”, and
the landmark is “kitchen”. The sub-instruction tem-
plate is designed based on the semantics of Spatial
Configurations explained in (Dan et al., 2020).
Motion Indicator Selection First, we generate
the motion indicator for the synthesized sub-
instructions. Following Zhang et al. (2021), we
use pos-tagging information to extract the verbs
from instructions in the R2R training dataset and
form our motion-indicators dictionary. We divide
the motion indicators to 6 categories of: “FOR-
WARD”, “LEFT”, “RIGHT”, “UP”, “DOWN”, and
“STOP”. Each category has a set of corresponding
verb phrases. We refer the Appendix A.1 for more
details about motion indicator dictionary.

Given a viewpoint, to select a motion indicator
for each sub-instruction, we calculate the differ-
ences between the elevation and headings of the
current and the target viewpoints. Based on the ori-
entation difference and a threshold, e.g. 30 degrees,
we decide the motion-indicator category. Then we
randomly pick a motion verb from the correspond-
ing category to be used in both generated positive
and negative sub-instructions.
Landmark Selection For generating the landmarks
for the sub-instructions, we use the candidate view-
points at each navigation step and select the most
recognizable and distinctive landmarks that are
easy for the navigation agent to follow.

In our approach, the most recognizable land-
marks are the objects that can be detected by CLIP.
Using CLIP (Radford et al., 2021), given a view-
point image, we predict a label token with the

prompt “a photo of label” from an object label
vocabulary. The probability that the image with
representation b contains a label c is calculated as
follows,

p(c) =
exp(sim(b, wc)/τ1)∑M

i=1(exp(sim(b, wi))/τ1)
, (3)

where τ1 is the temperature parameter, sim is the
cosine similarity between image representation and
phrase representation wc which are generated by
CLIP (Radford et al., 2021), M is the vocabulary
size. The top-k objects that have the maximum
similarity with the image are selected to form the
set of recognizable landmarks for each viewpoint.

We filter out the distinctive landmarks from the
recognizable landmarks. The distinctive landmarks
are the ones that appear in the target viewpoint and
not in any other candidate viewpoints. For instance,
in the example of Fig. 2, “hallway” is a distinctive
landmark because it only appears in the v1 (target
viewpoint).
Forming Sub-instructions We use the motion
verbs and landmarks to construct sub-instructions
based on our template. To form contrastive learn-
ing examples, we create positive and negative sub-
instructions for each viewpoint. A positive sub-
instruction is a sub-instruction that includes a dis-
tinctive landmark. The negative sub-instructions
include easy negatives and hard negatives. An easy
negative sub-instruction contains irrelevant land-
marks that appear in any candidate viewpoint ex-
cept the target viewpoint, e.g., in Fig. 2, “bed frame”
appears in v3 and is not observed in the target view-



point. A hard negative sub-instruction includes the
nondistinctive landmarks that appear in both the
target viewpoint and other candidate viewpoints.
For example, in Fig. 2, “room” can be observed
in all candidate viewpoints; therefore, it is diffi-
cult to distinguish the target from other candidate
viewpoints based on this landmark.

3.3 Translator Module

The translator takes a set of candidate viewpoints
and the corresponding sub-instruction as the inputs
and generates new sub-instructions. The architec-
ture of our translator is shown in Fig. 3(b). This
architecture is similar to the LSTM-based Speaker
in the previous works (Tan et al., 2019; Fried et al.,
2018). However, they generate full instructions
from the whole trajectories and use them as of-
fline augmented data for training the navigation
agent, while our translator adaptively generates
sub-instruction during the agent’s navigation pro-
cess based on its observations at each step.

Formally, we feed text representations of sub-
instruction X and the visual representations of can-
didate viewpoints V into the corresponding LSTM
to obtain deeper representation X̃ and Ṽ . Then, we
apply the soft attention between them to obtain the
visually attended text representation X̃ ′, as:

X̃ ′ = SoftAttn(X̃; Ṽ ; Ṽ ) = softmax(X̃TWṼ )Ṽ , (4)

where W is the learned weights. Lastly, we use an
MLP layer to generate sub-instruction X ′ from the
hidden representation X̃ ′, as follows,

X ′ = softmax(MLP (X̃ ′)) (5)

We use the SyFiS dataset to pre-train this trans-
lator. We also design two pre-training tasks:
Sub-instruction Generation and Distinctive sub-
instruction Learning.
Sub-instruction Generation (SG) We first train
the translator to generate a sub-instruction, given
the positive instructions paired with the viewpoints
in the SyfiS dataset as the ground-truth. We apply
a cross-entropy loss between the generated sub-
instruction X ′ and the positive sub-instruction Xp.
The loss function for the SG task is as follows,

LSG = − 1

L

∑
L

XplogP (X ′) (6)

Distinctive Sub-instruction Learning (DSL) To
encourage the translator to learn sub-instruction

representations that are close to the positive
sub-instructions with recognizable and distinctive
landmarks, and are far from the negative sub-
instructions with irrelevant and nondistinctive land-
marks, we use triplet loss to train the translator
in a contrastive way. To this aim, we first design
triplets of sub-instructions in the form of <anchor,
positive, negative>. For each viewpoint, we select
one positive and three negative sub-instructions
forming three triplets per viewpoint. We obtain
the anchor sub-instruction by replacing the motion
indicator in the positive sub-instruction with a dif-
ferent motion verb in the same motion indicator
category. We denote the text representation of an-
chor sub-instruction as Xa, positive sub-instruction
as Xp, and negative sub-instruction as Xn. Then
we feed them to the translator to obtain the corre-
sponding hidden representations X̃ ′

a, X̃ ′
p, and X̃ ′

n

using Eq. 4. The triplet loss function for the DSL
task is computed as follows,

LDSL = max(D(X̃ ′
a, X̃

′
p)−D(X ′, X̃ ′

n)+m, 0),
(7)

where m is a margin value to keep negative sam-
ples far apart, D is the pair-wise distance between
representations. In summary, the total objective to
pre-train the translator is:

Lpre−train = α1LSG + α2LDSL (8)

where α1 and α2 are hyper-parameters for balanc-
ing the importance of the two losses.

3.4 Navigation Agent

We place the pre-trained translator module on top
of the backbone navigation agent to perform the
navigation task. Fig.3(a) shows the architecture of
our navigation agent.

3.4.1 VLN-Trans: VLN with Translator
At each navigation step, the translator takes the
given instruction and the current candidate view-
points as input and generates new sub-instruction
representations, which are then used as an addi-
tional input to the navigation agent.

Since the given instructions describe the full tra-
jectory, we enable the translator module to focus
on the part of the instruction that is in effect at
each step. To this aim, we design another MLP
layer in the translator to map the hidden states to
a scalar attention representation. Then we do the
element-wise multiplication between the attention



representation and the instruction representation to
obtain the attended instruction representation.

In summary, we first input the text representa-
tion of given instruction X and visual representa-
tion of candidate viewpoints V to the translator to
obtain the translated sub-instruction representation
X̃ ′ using Eq. 4. Then we input X̃ ′ to another MLP
layer to obtain the attention representation X ′

m,
X ′

m = MLP (X̃ ′). Then we obtain the attended
sub-instruction representation as X ′′ = X ′

m ⊙X ,
where ⊙ is the element-wise multiplication.

Lastly, we input text representation X along with
translated sub-instruction representation X̃ ′ and
the attended instruction representation X ′′ into the
navigation agent. In such a case, we update the text
representation X of VLN⟳BERT as [X; X̃ ′;X ′′],
where ; is the concatenation operation.

3.4.2 Training and Inference
We follow (Tan et al., 2019) to train our navigation
agent with a mixture of Imitation Learning (IL) and
Reinforcement Learning (RL). The IL is to min-
imize the cross-entropy loss of the predicted and
the ground-truth actions. RL is to sample an action
from the action probability to learn the rewards.
The navigation objective is denoted as:

Lnav = −
∑
t

−ast log(p
a
t )−λ

∑
t

a∗t log(p
a
t ) (9)

where ast is the sampled action for RL, a∗t is the
teacher action, and λ is the coefficient.

During the navigation process, we design two
auxiliary tasks specific to the translator. The first
task is still the SG task in pre-training to generate
the correct sub-instructions; the second task is Sub-
instruction Split (SS), which generates the correct
attended sub-instruction. Specifically, for the SS
task, at each step, we obtain the ground-truth at-
tention representation by labeling the tokens of the
sub-instruction in the full instruction as 1 and other
tokens as 0. We denote ground-truth attended sub-
instruction representation as Xm. Then, we apply
Binary Cross Entropy loss between Xm and the
generated attention representation X ′

m as follows,

LSS = − 1

L

∑
L

Xmlog(X ′
m) (10)

The overall training objective of the navigation
agent including the translator’s auxiliary tasks is:

Lobj = β1Lnav + β2LSG + β3LSS , (11)

where β1, β1, and β3 are the coefficients. During
inference, we use the greedy search to select an
action with the highest probability at each step to
finally generate a trajectory.

4 Experiments

4.1 Dataset and Evaluation Metrics

Dataset We evaluate our approach on three
datasets: R2R (Anderson et al., 2018), R4R (Jain
et al., 2019), and R2R-Last (Chen et al., 2021).
R2R includes 21, 567 instructions and 7, 198 paths.
The entire dataset is partitioned into training, seen
validation and unseen validation, and unseen test
sets. R4R extends R2R with longer instructions by
concatenating two adjacent tail-to-head trajectories
in R2R. R2R-Last uses the last sentence in the orig-
inal R2R to describe the final destination instead
of step-by-step instructions.
Evaluation Metrics Three metrics are used for
navigation (Anderson et al., 2018):(1) Navigation
Error (NE): the mean of the shortest path distance
between the agent’s final position and the goal desti-
nation. (2) Success Rate (SR): the percentage of the
predicted final position being within 3 meters from
the goal destination. (3) Success rate weighted
Path Length (SPL) that normalizes the success rate
with trajectory length. The R4R dataset uses two
more metrics to measure the fidelity between the
predicted and the ground-truth path: (4) Coverage
Weighted by Length Score (CLS) (Jain et al., 2019).
(5) Normalized Dynamic Time Warping weighted
by Success Rate (sDTW) (Ilharco et al., 2019). We
provide a more detailed description of the dataset
and metrics in the Appendix A.3.

4.2 Implementation Details

We use ResNet-152 (He et al., 2016) pre-trained on
Places365 (Zhou et al., 2017) as the visual feature
and the pre-trained BERT (Vaswani et al., 2017)
representation as the initialized text feature. We
first pre-train the translator and navigation agent
offline. Then we include the translator in the nav-
igation agent to train together. To pre-train the
translator, we use one NVIDIA RTX GPU. The
batch size and learning rate are 16 and 1e− 5, re-
spectively. Both α1 and α2 in Eq. 8 are 1. To
pre-train the navigation agent, we follow the meth-
ods in Zhang and Kordjamshidi (2022b) and use
extra pre-training datasets to improve the baseline.
We use 4 GeForce RTX 2080 GPUs(~2 days), and
the batch size on each GPU is 28.The learning rate



Val seen Val Unseen Test Unseen
Method NE ↓ SR ↑ SPL↑ NE ↓ SR ↑ SPL↑ NE ↓ SR ↑ SPL ↑

1 Env-Drop (Tan et al., 2019) 3.99 0.62 0.59 5.22 0.47 0.43 5.23 0.51 0.47
2 RelGraph (Hong et al., 2020a) 3.47 0.67 0.65 4.73 0.57 0.53 4.75 0.55 0.52
3 NvEM (An et al., 2021) 3.44 0.69 0.65 4.27 0.60 0.55 4.37 0.58 0.54
4 PREVALENT (Hao et al., 2020) 3.67 0.69 0.65 4.71 0.58 0.53 5.30 0.54 0.51
5 HAMT (ResNet) (Chen et al., 2021) − 0.69 0.65 − 0.64 0.58 − − −
6 HAMT (ViT) (Chen et al., 2021) 2.51 0.76 0.72 − 0.66 0.61 3.93 0.65 0.60
7 CITL (Liang et al., 2022) 2.65 0.75 0.70 3.87 0.63 0.58 3.94 0.64 0.59
8 ADAPT (Lin et al., 2022) 2.70 0.74 0.69 3.66 0.66 0.59 4.11 0.63 0.57
9 LOViS (Zhang and Kordjamshidi, 2022b) 2.40 0.77 0.72 3.71 0.65 0.59 4.07 0.63 0.58
10 VLN⟳BERT (Hong et al., 2021) 2.90 0.72 0.68 3.93 0.63 0.57 4.09 0.63 0.57
11 VLN⟳BERT+(ours) 2.72 0.75 0.70 3.65 0.65 0.60 4.09 0.63 0.57
12 VLN⟳BERT++ (ours) 2.51 0.77 0.72 3.40 0.67 0.61 4.02 0.63 0.58
13 VLN-Trans-R2R (ours) 2.40 0.78 0.73 3.37 0.67 0.63 3.94 0.65 0.59
14 VLN-Trans-FG-R2R (ours) 2.45 0.77 0.72 3.34 0.69 0.63 3.94 0.66 0.60

Table 1: Experimental results on R2R Benchmarks in a single-run setting. The best results are in bold font. + means we add
RXR (Ku et al., 2020) and Marky-mT5 dataset (Wang et al., 2022b) as the extra data to pre-train the navigation agent. ++ means
we further add SyFiS dataset to pre-train the navigation agent. ViT means Vision Transformer representations.

Val Seen Val Unseen
Method NE↑ SR↑ SPL↑ CLS↑ sDTW↑ NE↓ SR↑ SPL↑ CLS↑ sDTW↑

1 OAAM (Qi et al., 2020a) - 0.56 0.49 0.54 - 0.32 0.29 0.18 0.34 0.11
2 RelGraph (Hong et al., 2020a) 5.14 0.55 0.50 0.51 0.35 7.55 0.35 0.25 0.37 0.18
3 NvEM (An et al., 2021) 5.38 0.54 0.47 0.51 0.35 6.80 0.38 0.28 0.41 0.20
4 VLN⟳BERT* (Hong et al., 2021) 4.82 0.56 0.46 0.56 0.38 6.48 0.43 0.32 0.42 0.21
5 CITL (Liang et al., 2022) 3.48 0.67 0.57 0.56 0.43 6.42 0.44 0.35 0.39 0.23
6 LOViS (Zhang and Kordjamshidi, 2022b) 4.16 0.67 0.58 0.58 0.43 6.07 0.45 0.35 0.45 0.23
7 VLN-Trans 3.79 0.67 0.59 0.57 0.43 5.87 0.46 0.36 0.45 0.25

Table 2: Experimental results on R4R dataset in a single-run setting. * denotes our reproduced R4R results.

Val Seen Val Unseen
Method SR↑ SPL↑ SR↑ SPL↑

EnvDrop (Tan et al., 2019) 0.43 0.38 0.34 0.28
VLN⟳BERT (Hong et al., 2020a) 0.50 0.46 0.42 0.37

HAMT (Chen et al., 2021) 0.53 0.50 0.45 0.41
VLN-Trans 0.58 0.53 0.50 0.45

Table 3: Experimental results on the R2R-Last dataset.

is 5e− 5.
We further train the navigation agent with a

translator for 300K iterations using an NVIDIA
RTX GPU (~1 day). The batch size is 16, and
the learning rate is 1e − 5. The optimizer is
AdamW (Loshchilov and Hutter, 2017). We can
get the best results when we set λ as 0.2 in Eq. 9
, and β1, β2, and β3 as 1, 1 and 0.1 in Eq. 11, re-
spectively. The best model is selected according to
performance on val unseen split. Please check our
code 2 for the implementation.

4.3 Experimental Results

Table 1 shows the model performance on the R2R
benchmarks. Row #4 to row #9 are Transformer-
based navigation agents with pre-trained cross-
modality representations, and such representations
greatly improve performance of LSTM-based VLN
models (row #1 to row #3). It is impressive that our
VLN-Trans model’s performance (row #13 and row

2https://github.com/HLR/VLN-trans

#14) on both validation seen and unseen performs
2%-3% better than HAMT (Chen et al., 2021)
when it even uses more advanced ViT (Dosovit-
skiy et al., 2020) visual representations compared
with ResNet. Our performance on both SR and
SPL are still 3%-4% better than the VLN agent us-
ing contrastive learning: CITL (Liang et al., 2022)
(row #7) and ADAPT (Lin et al., 2022) (row #8).
LOViS (Zhang and Kordjamshidi, 2022b) (row #9)
is another very recent SOTA improving the pre-
training representations of the navigation agent,
but we can significantly surpass their performance.
Lastly, compared to the baseline (row #10), we first
significantly improve the performance (row #11) by
using extra augmented data, Room-across-Room
dataset (RXR) (Ku et al., 2020) and the Marky-
mT5 (Wang et al., 2022b), in the pre-training of
navigation agent. The performance continues to
improve when we further include the SyFiS dataset
in the pre-training, as shown in row #12, prov-
ing the effectiveness of our synthetic data. Row
#13 and row #14 are the experimental results after
incorporating our pre-trained translator into the
navigation model. First, for a fair comparison
with other models, we follow the baseline (Hong
et al., 2021) to train the navigation agent using
the R2R (Anderson et al., 2018) dataset and the
augmented data from PREVALENT (Hao et al.,

https://github.com/HLR/VLN-trans


2020). Since those datasets only contain the pairs
of full instructions and the trajectories without inter-
mediate alignments between sub-instructions and
the corresponding viewpoints, we do not optimize
the translator (β2 = 0, β3 = 0 in Eq.11) during
training the navigation agent, which is denoted as
VLN-Trans-R2R. As shown in row #13, our trans-
lator helps the navigation agent obtain the best re-
sults on the seen environment and improves SPL
by 2% on the unseen validation environment, prov-
ing that the generated sub-instruction representa-
tion enhances the model’s generalizability. How-
ever, FG-R2R (Hong et al., 2020b) provides human-
annotated alignments between sub-instructions and
viewpoints for the R2R dataset, and our SyFiS
dataset also provides synthetic sub-instructions for
each viewpoint. Then we conduct another experi-
ment using FG-R2R and SyFiS datasets to train the
navigation agent. Simultaneously, we optimize the
translator using the alignment information with our
designed SG and SS losses during the navigation
process. As shown in row #13, we further improve
the SR and SPL on the unseen validation environ-
ment. This result indicates our designed losses can
better utilize the alignment information.

Table 2 shows results on the R4R benchmark.
Row #1 to Row #3 are the LSTM-based navigation
agent. Row #4 reports our re-implemented results
of VLN⟳BERT, and both CITL and LOViS are
the SOTA models. Our method (row #7) improves
the performance on almost all evaluation metrics,
especially in the unseen environment. The high
sDTW means that our method helps navigation
agents reach the destination with a higher success-
ful rate and better follow the instruction.

Table 3 shows the performance on the R2R-
Last benchmark. When only the last sub-sentence
is available, our translator can generate a sub-
instruction representation that assists the agent in
approaching the destination. As shown in Table 3,
we improve the SOTA (Row #3) by almost 5%
on the SR in the unseen validation dataset. We
obtain the best results on R2R-Last without the
Sub-instruction Split task. More details are in the
ablation study (see Sec. 4.4).

4.4 Ablation Study

In Table 4, we show the performance after ablat-
ing different tasks in the baseline model on the
R2R and R2R-Last datasets. We compared with
VLN⟳BERT++, which is our improved baseline

Dataset Method Tasks Val Seen Val Unseen
SG DSL SS SR↑ SPL↑ SR↑ SPL↑

R2R

Baseline 0.767 0.722 0.672 0.611
1 ✔ 0.764 0.721 0.673 0.623
2 ✔ ✔ 0.780 0.728 0.674 0.627
3 ✔ ✔ ✔ 0.772 0.720 0.690 0.633

R2R-Last

Baseline 0.552 0.501 0.473 0.422
1 ✔ 0.573 0.521 0.494 0.434
2 ✔ ✔ 0.582 0.534 0.503 0.453
3 ✔ ✔ ✔ 0.571 0.511 0.484 0.433

Table 4: Ablation study, where Baseline is VLN⟳BERT++.

after adding extra pre-training data to the naviga-
tion agent. First, we pre-train our translator with
SG and DSL tasks and incorporate the translator
into the navigation agent without further training.
For both the R2R dataset and R2R-Last, SG and
DSL pre-training tasks can incrementally improve
the unseen performance (as shown in method 1 and
method 2 for R2R and R2R-Last). Then we evalu-
ate the effectiveness of the SS task when we use it
to train the translator together with the navigation
agent. For the R2R dataset, the model obtains the
best result on the unseen environment after using
the SS task. However, the SS task causes the per-
formance drop for the R2R-Last dataset. This is
because the R2R-Last dataset merely has the last
single sub-instruction in each example and there
is no other sub-instructions our model can identify
and learn from.

4.5 Qualitative Study

Statistic of the SyFiS dataset We construct
SyFiS dataset using 1, 076, 818 trajectories, where
7198 trajectories are from the R2R dataset, and
1, 069, 620 trajectories are from the augmented
data (Hao et al., 2020). Then we pair those trajec-
tories with our synthetic instructions to construct
the SyFiS dataset based on our pre-defined motion
verb vocabulary and CLIP-generated landmarks (in
Sec3.2). When we pre-train the translator, we use
the sub-instruction of each viewpoint in a trajectory.
There are usually 5 to 7 viewpoints in a trajectory;
each viewpoint is with one positive sub-instruction
and three negative sub-instructions.
Quality of SyFiS dataset. We randomly select 50
instructions from the SyFiS dataset and manually
check if humans can easily follow those instruc-
tions. As a result, we achieve 58% success rate.
It is reported (Wang et al., 2022b) that success
rate of the generated instruction are 38% and 48%
in Speaker-Follower (Fried et al., 2018) and Env-
dropout (Tan et al., 2019), respectively. The 10%
higher success rate of our instructions indicates



we have synthesized a better quality dataset for
pre-training and fine-tuning.
Translator Analysis Our translator can relate the
mentioned landmarks in the instruction to the visi-
ble and distinctive landmarks in the visual environ-
ment. In Fig. 4 (a), “tables” and “chairs” are not
visible in three candidate viewpoints (v1-v3). How-
ever, our navigation agent can correctly recognize
the target viewpoint using the implicit instruction
representations generated by the translator. We
assume the most recognizable and distinctive land-
mark, that is, the "patio" here in the viewpoint v3
has a higher chance to be connected to a “table”
and a “chair” based on our pre-training, compared
to the landmarks in the other viewpoints. In Fig. 4
(b), both candidate viewpoints v2 and v3 contain
kitchen (green bounding boxes); hence it is hard
to distinguish the target between them. However,
for the translator, the most distinctive landmark in
v3 is the “cupboard” which is more likely to be
related to the “kitchen”. Fig. 4(c) shows a failure
case, in which the most distinctive landmark in
candidate viewpoint v1 is “oven”. It is more likely
for the translator relates “oven” to the “kitchen”
compared to “countertop”, and the agent selects
the wrong viewpoints. In fact, we observe that
the R2R validation unseen dataset has around 300
instructions containing “kitchen”. For correspond-
ing viewpoints paired with such instructions, our
SyFiS dataset generates 23 and 5 sub-instructions
containing “oven” and “countertop”, respectively,
indicating the trained translator more likely relates
“oven” to “kitchen”. More examples are shown in
Appendix. A.4.

5 Conclusion

In the VLN task, instructions given to the agent
often include landmarks that are not recognizable
to the agent or are not distinctive enough to specify
the target. Our novel idea to solve these issues is
to include a translator module in the navigation
agent that converts the given instruction representa-
tions into effective sub-instruction representations
at each navigation step. To train the translator,
we construct a synthetic dataset and design pre-
training tasks to encourage the translator to gener-
ate the sub-instruction with the most recognizable
and distinctive landmarks. Our method achieves
the SOTA results on multiple navigation datasets.
We also provide a comprehensive analysis to show
the effectiveness of our method. It is worth noting
that while we focus on R2R, the novel components

living
room

cupboard

(b) Walk towards the kitchen area. Keep walking along the kitchen
area towards the doorway.

(a) Walk left past the table and chairs and through the doorway.

wallpaper

snow

kitchen kitchen

patio
columns

v1 v2 v3

v3v2v1

v1 v2 v3

(c) Walk through the kitchen and go into the hallway with a marble floor.

countertopoven
kitchen kitchenarches

Figure 4: Qualitative examples to show how the transla-
tor helps the navigation agent. The red boxes and green
boxes show the distinctive and the nondistinctive land-
marks; the green arrow and red arrow show the target
and the predicted viewpoints.

of our technique for generating synthetic data and
pre-training the translator are easily applicable to
other simulation environments.

6 Limitations

We mainly summarize three limitations of our
work. First, the translator only generates a rep-
resentation, not an actual instruction, making the
model less interpretable. Second, we do not in-
clude more advanced vision representations such
as ViT and CLIP to train the navigation agent. Al-
though only using ResNet, we already surpass prior
methods using those visual representations (e.g.,
HAMT (Chen et al., 2021)), it would be interesting
to experiment with those different visual represen-
tations. Third, this navigation agent is trained in a
simulated environment, and a more realistic setting
will be more challenging.

7 Acknowledgement

This project is supported by National Science Foun-
dation (NSF) CAREER award 2028626 and par-
tially supported by the Office of Naval Research
(ONR) grant N00014-20-1-2005. Any opinions,
findings, and conclusions or recommendations ex-
pressed in this material are those of the authors and
do not necessarily reflect the views of the National
Science Foundation nor the Office of Naval Re-
search. We thank all reviewers for their thoughtful
comments and suggestions.



References
Dong An, Yuankai Qi, Yan Huang, Qi Wu, Liang Wang,

and Tieniu Tan. 2021. Neighbor-view enhanced
model for vision and language navigation. In Pro-
ceedings of the 29th ACM International Conference
on Multimedia, pages 5101–5109.

Peter Anderson, Qi Wu, Damien Teney, Jake Bruce,
Mark Johnson, Niko Sünderhauf, Ian Reid, Stephen
Gould, and Anton Van Den Hengel. 2018. Vision-
and-language navigation: Interpreting visually-
grounded navigation instructions in real environ-
ments. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 3674–
3683.

Angel Chang, Angela Dai, Thomas Funkhouser, Maciej
Halber, Matthias Niessner, Manolis Savva, Shuran
Song, Andy Zeng, and Yinda Zhang. 2017. Matter-
port3d: Learning from rgb-d data in indoor environ-
ments. arXiv preprint arXiv:1709.06158.

Shizhe Chen, Pierre-Louis Guhur, Cordelia Schmid,
and Ivan Laptev. 2021. History aware multimodal
transformer for vision-and-language navigation. Ad-
vances in Neural Information Processing Systems,
34:5834–5847.

Soham Dan, Parisa Kordjamshidi, Julia Bonn, Archna
Bhatia, Zheng Cai, Martha Palmer, and Dan Roth.
2020. From spatial relations to spatial configurations.
In Proceedings of the 12th Language Resources and
Evaluation Conference, pages 5855–5864.

Alexey Dosovitskiy, Lucas Beyer, Alexander
Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias
Minderer, Georg Heigold, Sylvain Gelly, et al. 2020.
An image is worth 16x16 words: Transformers
for image recognition at scale. arXiv preprint
arXiv:2010.11929.

Zi-Yi Dou and Nanyun Peng. 2022. Foam: A follower-
aware speaker model for vision-and-language navi-
gation. arXiv preprint arXiv:2206.04294.

Jonathan Francis, Nariaki Kitamura, Felix Labelle, Xi-
aopeng Lu, Ingrid Navarro, and Jean Oh. 2022. Core
challenges in embodied vision-language planning.
Journal of Artificial Intelligence Research, 74:459–
515.

Daniel Fried, Ronghang Hu, Volkan Cirik, Anna
Rohrbach, Jacob Andreas, Louis-Philippe Morency,
Taylor Berg-Kirkpatrick, Kate Saenko, Dan Klein,
and Trevor Darrell. 2018. Speaker-follower mod-
els for vision-and-language navigation. Advances in
Neural Information Processing Systems, 31.

Jing Gu, Eliana Stefani, Qi Wu, Jesse Thomason, and
Xin Eric Wang. 2022. Vision-and-language naviga-
tion: A survey of tasks, methods, and future direc-
tions. arXiv preprint arXiv:2203.12667.

Weituo Hao, Chunyuan Li, Xiujun Li, Lawrence Carin,
and Jianfeng Gao. 2020. Towards learning a generic
agent for vision-and-language navigation via pre-
training. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition,
pages 13137–13146.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. 2016. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 770–
778.

Yicong Hong, Cristian Rodriguez, Yuankai Qi, Qi Wu,
and Stephen Gould. 2020a. Language and visual
entity relationship graph for agent navigation. Ad-
vances in Neural Information Processing Systems,
33:7685–7696.

Yicong Hong, Cristian Rodriguez, Qi Wu, and Stephen
Gould. 2020b. Sub-instruction aware vision-and-
language navigation. In Proceedings of the 2020
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 3360–3376.

Yicong Hong, Qi Wu, Yuankai Qi, Cristian Rodriguez-
Opazo, and Stephen Gould. 2021. Vln bert: A recur-
rent vision-and-language bert for navigation. In Pro-
ceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 1643–1653.

Ronghang Hu, Daniel Fried, Anna Rohrbach, Dan Klein,
Trevor Darrell, and Kate Saenko. 2019. Are you
looking? grounding to multiple modalities in vision-
and-language navigation. In Proceedings of the 57th
Annual Meeting of the Association for Computational
Linguistics, pages 6551–6557.

Gabriel Ilharco, Vihan Jain, Alexander Ku, Eugene Ie,
and Jason Baldridge. 2019. General evaluation for in-
struction conditioned navigation using dynamic time
warping. arXiv preprint arXiv:1907.05446.

Vihan Jain, Gabriel Magalhaes, Alexander Ku, Ashish
Vaswani, Eugene Ie, and Jason Baldridge. 2019.
Stay on the path: Instruction fidelity in vision-and-
language navigation. In Proceedings of the 57th An-
nual Meeting of the Association for Computational
Linguistics, pages 1862–1872.

Alexander Ku, Peter Anderson, Roma Patel, Eugene
Ie, and Jason Baldridge. 2020. Room-across-room:
Multilingual vision-and-language navigation with
dense spatiotemporal grounding. arXiv preprint
arXiv:2010.07954.

Shuhei Kurita and Kyunghyun Cho. 2020. Gen-
erative language-grounded policy in vision-and-
language navigation with bayes’ rule. arXiv preprint
arXiv:2009.07783.

Jialu Li, Hao Tan, and Mohit Bansal. 2021. Improv-
ing cross-modal alignment in vision language nav-
igation via syntactic information. arXiv preprint
arXiv:2104.09580.



Xiwen Liang, Fengda Zhu, Yi Zhu, Bingqian Lin,
Bing Wang, and Xiaodan Liang. 2022. Contrastive
instruction-trajectory learning for vision-language
navigation. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 36, pages 1592–
1600.

Bingqian Lin, Yi Zhu, Zicong Chen, Xiwen Liang,
Jianzhuang Liu, and Xiaodan Liang. 2022. Adapt:
Vision-language navigation with modality-aligned
action prompts. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recog-
nition, pages 15396–15406.

Ilya Loshchilov and Frank Hutter. 2017. Decou-
pled weight decay regularization. arXiv preprint
arXiv:1711.05101.

Chih-Yao Ma, Jiasen Lu, Zuxuan Wu, Ghassan Al-
Regib, Zsolt Kira, Richard Socher, and Caiming
Xiong. 2019a. Self-monitoring navigation agent
via auxiliary progress estimation. arXiv preprint
arXiv:1901.03035.

Chih-Yao Ma, Zuxuan Wu, Ghassan AlRegib, Caiming
Xiong, and Zsolt Kira. 2019b. The regretful agent:
Heuristic-aided navigation through progress estima-
tion. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages
6732–6740.

Yuankai Qi, Zizheng Pan, Shengping Zhang, Anton
van den Hengel, and Qi Wu. 2020a. Object-and-
action aware model for visual language navigation.
In European Conference on Computer Vision, pages
303–317. Springer.

Yuankai Qi, Qi Wu, Peter Anderson, Xin Wang,
William Yang Wang, Chunhua Shen, and Anton
van den Hengel. 2020b. Reverie: Remote embod-
ied visual referring expression in real indoor environ-
ments. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages
9982–9991.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sas-
try, Amanda Askell, Pamela Mishkin, Jack Clark,
et al. 2021. Learning transferable visual models
from natural language supervision. In International
Conference on Machine Learning, pages 8748–8763.
PMLR.

Shaoqing Ren, Kaiming He, Ross Girshick, and Jian
Sun. 2015. Faster r-cnn: Towards real-time object
detection with region proposal networks. Advances
in neural information processing systems, 28.

Hao Tan and Mohit Bansal. 2019. Lxmert: Learning
cross-modality encoder representations from trans-
formers. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
5100–5111.

Hao Tan, Licheng Yu, and Mohit Bansal. 2019. Learn-
ing to navigate unseen environments: Back transla-
tion with environmental dropout. In Proceedings of
NAACL-HLT, pages 2610–2621.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing
systems, 30.

Hanqing Wang, Wei Liang, Jianbing Shen, Luc
Van Gool, and Wenguan Wang. 2022a. Counterfac-
tual cycle-consistent learning for instruction follow-
ing and generation in vision-language navigation. In
Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pages 15471–
15481.

Su Wang, Ceslee Montgomery, Jordi Orbay, Vighnesh
Birodkar, Aleksandra Faust, Izzeddin Gur, Natasha
Jaques, Austin Waters, Jason Baldridge, and Pe-
ter Anderson. 2022b. Less is more: Generating
grounded navigation instructions from landmarks. In
Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pages 15428–
15438.

Xin Wang, Qiuyuan Huang, Asli Celikyilmaz, Jianfeng
Gao, Dinghan Shen, Yuan-Fang Wang, William Yang
Wang, and Lei Zhang. 2019. Reinforced cross-modal
matching and self-supervised imitation learning for
vision-language navigation. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pages 6629–6638.

Wansen Wu, Tao Chang, and Xinmeng Li. 2021. Vision-
language navigation: A survey and taxonomy. arXiv
preprint arXiv:2108.11544.

Yue Zhang, Quan Guo, and Parisa Kordjamshidi. 2021.
Towards navigation by reasoning over spatial config-
urations. SpLU-RoboNLP 2021, page 42.

Yue Zhang and Parisa Kordjamshidi. 2022a. Explicit
object relation alignment for vision and language
navigation. In Proceedings of the 60th Annual Meet-
ing of the Association for Computational Linguistics:
Student Research Workshop, pages 322–331.

Yue Zhang and Parisa Kordjamshidi. 2022b. Lovis:
Learning orientation and visual signals for vision
and language navigation. In Proceedings of the 29th
International Conference on Computational Linguis-
tics, pages 5745–5754.

Bolei Zhou, Agata Lapedriza, Aditya Khosla, Aude
Oliva, and Antonio Torralba. 2017. Places: A 10
million image database for scene recognition. IEEE
transactions on pattern analysis and machine intelli-
gence, 40(6):1452–1464.



Motions Vocab
FORWARD go forward to; go forward past; pass; walk pass, walk forward, etc.
DOWN go down; walk straight down; walk down; move forward down, etc.
UP go up; walk up; climb; leading upwards; travel up, etc.
RIGHT turn right to; make a right turn to, go right to, veer right to, etc.
LEFT walk left to, turn left to, go left to, make a left turn to, make a left to, etc.

STOP stay at, stand by, stop by, wait by, stop at, wait on, etc.

Figure 5: Motion Indicator Vocabulary

A Appendix

A.1 Motion Indicator Dictionary

We extract the motion verb phrases in the R2R
training instructions to build a motion indicator dic-
tionary, as shown in Fig. 5. We first use spaCy 3

to extract motion verbs based on pos-tagging infor-
mation , and then manually collect the prepositions
after the motion verbs, such as “stop at”, ” stop
by” and ” stop behind of”. In summary, there are
131 verb phrases for the action of “FORWARD”,
11 verb phrases for the action of “DOWN”, 11 verb
phrases for the action of“UP”, 28 verb phrases for
the action of“LEFT”, 23 for the action of ”RIGHT”,
and 26 for the action of ”STOP”.

A.2 Comparison among different datasets

One of the contributions of our method is the pro-
posed SyFiS dataset, which forms sub-instruction
for each viewpoint considering recognizable and
distinguishable landmarks. In this section, we com-
pare different datasets to show the main improve-
ments of the SyFiS compared to other datasets. As
shown in Fig. 6, in the R2R dataset (Anderson
et al., 2018), instructions describe the entire trajec-
tory, which is challenging for the navigation agent
to follow in every single step. Based on it, FG-
R2R (Hong et al., 2020b) provides a manual anno-
tation to align the sub-instruction to the correspond-
ing viewpoints. Although providing fine-grained
annotation, the sub-instructions in FG-R2R are still
not step-by-step. ADAPT (Lin et al., 2022) gener-
ates the sub-instruction for every single viewpoint.
However, they only consider the viewpoints in tra-
jectory and select the most obvious landmarks for
each target viewpoint. Those selected landmarks
are quite general, and hard to distinguish the target
viewpoint from other candidate viewpoints, such as
the “living room”, “hallway” and “bedroom”. Nev-
ertheless, both FG-R2R and ADAPT still suffer
from the issue of nondistinctive landmarks, such
as the “living room”, “hallway” and “bedroom”,
which hurts the navigation performance, as stated

3https://spacy.io/

R2R:
Turn right and head past the kitchen down the long hallway ahead. Go past the 
bathroom and stop just inside the bedroom. 

Turn right and head past the kitchen down the long 
hallway ahead.

v2 v3 v4 v5

FG-R2R:

Go past the bathroom.
Stop just inside the bedroom.

ADAPT: SyFiS:

Walk out of the living room.
Go into the hallway.
Go into the hallway.
Go to the bedroom.
Stop at the bedroom.

v1

v1

v3
v4
v5

v1
v2 v3 v4 v5

v1 v2 v3

v4
v5

v2

v1
v2

v3 v4 v5

Turn right to the entertainment center.
Move towards the picture.
Walk towards the hallway.
Go all the way towards the window.
Stand in the bedroom.

v3
v4
v5

v2
v1

v1 v2 v3 v4 v5

Figure 6: Comparisons among Different Datasets.

previously. We construct a dataset with the most
recognizable and distinguishable landmark, which
is obtained by comparing the target viewpoint with
other candidate viewpoints at each navigation step.
Based on our experimental results, our generated
sub-instruction dataset can largely help the naviga-
tion performance.

A.3 Evaluation Datasets and Metrics

Our method is evaluated on R2R (Anderson et al.,
2018), R4R (Jain et al., 2019), and R2R-Last (Chen
et al., 2021). All these three dataset are built upon
the Matterport3D (Chang et al., 2017) indoor scene
dataset.
R2R provides long instructions paired with the
corresponding trajectory. The dataset contains 61
houses from training, 56 houses for validation in
seen environment, 11 and 18 houses for unseen
environment validation and test, respectively. The
seen set shares the same visual environment with
training dataset, while unseen sets contain different
environments.
R4R extends R2R by concatenating two trajec-
tories and their corresponding instructions. In
R4R, trajectories are less biased compared to R2R,
because they are not necessarily the shortest path
from the source viewpoint to the target viewpoint.
R2R-Last proposes a VLN setup that is similar to
that of REVERIE (Qi et al., 2020b), which only
claims the destination position. More formally,
R2R-Last only leverages the the last sentence in
the original R2R instructions to describe the final
destination.

Evaluation Metrics VLN task mainly evalu-
ates navigation agent’s generalizability in unseen

https://spacy.io/


airport
glass door living room

Instruction: Walk towards fireplace.

v1 v2 v3

(a) The landmark of the “fireplace” in the given instruction can not be observed
in all three candidate viewpoints. The target viewpoint v3 contains a distinctive
landmark “living room”, and the translator can relate it to “fireplace”, which
helps the agent select the correct target viewpoint.

apartment apartment

cupboard cupboard

skylight

light fixture

office

Instruction: Walk though the kitchen. Stop on the balcony.

v1 v2 v3

(b) The target viewpoint v1 contains landmarks of “apartment”, “cupboard”
and “skylight”. Among them, “apartment” and “cupboard” are nondistinctive
because they appear in both target and other candidate viewpoints. Our agent can
select the correct targe viewpoint because our translator can relate “skylight“ to
“balcony“. According to our observations, in the R2R training data, among the
trajectories paired with the instructions containing “balcony”, our SyFiS dataset
generates 14% sub-instructions containing "skylight" for the corresponding
viewpoints.

Instruction: Go down the hallway and enter into the bathroom.

vanity

painting
hallway hallway hallway

stairs

doorway

v1 v2 v3 v4

(c) The landmarks of the “bathroom” in the instruction can not be observed in
all viewpoints. The target viewpoint v1 contains landmarks of “hallway” and
“vanity”, where “hallway” is nondistinctive since it also can be observed in other
candidate viewpoints. Our translator relates “vanity” to “bathroom”, which helps
the agent select the correct viewpoint.

Instruction: Turn right and go down the hall.
church church pillar court

v1 v2 v3 v4

(d) In this case, all candidate viewpoints include “hall”. According to our
observation, in the R2R training data, among the trajectories paired with the
instructions containing “hall”, our SyFiS dataset generates 3% sub-instructions
containing "pillar”, 1% containing “court”, and almost 0% containing “church”.In
such a case, our translator has a higher chance of relating “hall” to “pillar” and
selecting the wrong viewpoint.

Instruction: Exit the kitchen, and walk down the hall.

oven
cabinets

v1 v2

kitchen kitchen

(e) Both viewpoints contain “kitchen” and “hall”, but our trans-
lator highly relates “kitchen” to ”cabinets” compared to “oven”.
In the R2R training data, among the trajectories paired with the
instructions containing “kitchen”, our SyFiS dataset generates
9% sub-instructions containing "cabinet” while 6% containing
“oven”. In such a case, our translator is more likely to relate
“kitchen” to “cabinets” and select the wrong viewpoint.

Figure 7: Qualitative Examples. (a)(b)(c) are correct
examples, and (d)(e) are wrong examples. The red boxes
and green boxes show the distinctive and nondistinctive
landmarks based on the target viewpoint; The green
arrow and red arrow show the target and the predicted
viewpoint from model.

environment using validation unseen and test un-
seen datasets. Success Rate (SR) and Success Rate
weighted Path length (SPL) are two main metrics
for all three datasets, where a predicted path is
success if the agent stop within 3 meters of the des-
tination. The metrics of SR and SPL can evaluate
the accuracy and efficiency of navigation.

A.4 Qualitative Examples for Translator
Analysis

We provide more qualitative examples in Fig. 7 to
show our translator can relate the mentioned land-
marks in the instruction to the recognizable and
distinctive landmarks in the visual environment.
Fig. 7(a)(b)(c) shows successful cases in that our
translator helps the navigation agent make correct
decisions. However, there are chances our transla-
tor relates to wrong landmarks in the visual envi-
ronment because of biased data. This may lead to
the wrong decisions of the navigation agent, and
we provide failure cases in Fig. 7(e)(f).


