
Augmentations in Hypergraph Contrastive Learning:
Fabricated and Generative

Tianxin Wei1∗, Yuning You2∗, Tianlong Chen3, Yang Shen2, Jingrui He1, Zhangyang Wang3
1University of Illinois Urbana-Champaign, 2Texas A&M University, 3University of Texas at Austin

{twei10,jingrui}@illinois.edu, {yuning.you,yshen}@tamu.edu,
{tianlong.chen,atlaswang}@utexas.edu

Abstract

This paper targets at improving the generalizability of hypergraph neural networks
in the low-label regime, through applying the contrastive learning approach from
images/graphs (we refer to it as HyperGCL). We focus on the following question:
How to construct contrastive views for hypergraphs via augmentations? We pro-
vide the solutions in two folds. First, guided by domain knowledge, we fabricate
two schemes to augment hyperedges with higher-order relations encoded, and
adopt three vertex augmentation strategies from graph-structured data. Second,
in search of more effective views in a data-driven manner, we for the first time
propose a hypergraph generative model to generate augmented views, and then
an end-to-end differentiable pipeline to jointly learn hypergraph augmentations
and model parameters. Our technical innovations are reflected in designing both
fabricated and generative augmentations of hypergraphs. The experimental findings
include: (i) Among fabricated augmentations in HyperGCL, augmenting hyper-
edges provides the most numerical gains, implying that higher-order information
in structures is usually more downstream-relevant; (ii) Generative augmentations
do better in preserving higher-order information to further benefit generalizability;
(iii) HyperGCL also boosts robustness and fairness in hypergraph representation
learning. Codes are released at https://github.com/weitianxin/HyperGCL.

1 Introduction

Hypergraphs have raised a surge of interests in the research community [1, 2, 3] due to their innate
capability of capturing higher-order relations [4]. They offer a powerful tool to model complicated
topological structures in broad applications, e.g., recommender systems [5, 6], financial analyses
[7, 8], and bioinformatics [9, 8, 10]. Concomitant with the trend, hypergraph neural networks
(HyperGNNs) have recently been developed [1, 2, 3] for hypergraph representation learning.

This paper focuses on the few-shot scenarios of hypergraphs, i.e., task-specific labels are scarce,
which are ubiquitous in real-world applications of hypergraphs [5, 7, 9] and empirically restrict the
generalizability of HyperGNNs. Inspired by the emerging self-supervised learning on images/graphs
[11, 12, 13, 14, 15, 16], especially the contrastive approaches [12, 14, 17, 18, 19, 20, 21, 22, 23, 24,
25], we set out to leverage contrastive self-supervision to address the problem.

Nevertheless, one challenge stands out: How to build contrastive views for hypergraphs? The success
of contrastive learning hinges on the appropriate view construction, otherwise it would result in
“negative transfer” [12, 14]. However, it is non-trivial to build hypergraph views due to their overly
intricate topology, i.e., there are

∑N
e=1

(
N
e

)
possibilities for one hyperedge on N vertices, versus(

N
2

)
for one edge in graphs. To date, the only way of contrasting is between the representations

*Equal contribution.

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

https://github.com/weitianxin/HyperGCL

of hypergraphs and their clique-expansion graphs [26, 27], which is computationally expensive as
multiple neural networks of different modalities (hypergraphs and variants of expanded graphs) need
to be optimized. More importantly, contrasting on clique expansion has the risk of losing higher-order
information via pulling representations of hypergraphs and graphs close.

Contributions. Motivated by [12, 14] that appropriate data augmentations suffice for the effective
contrastive views, and intuitively they are more capable of preserving higher-order relations in
hypergraphs compared to clique expansion, we explore on the question in this paper, how to design
augmented views of hypergraphs in contrastive learning (HyperGCL). Our answers are in two folds.

We first assay whether fabricated augmentations guided by domain knowledge are suited for Hy-
perGCL. Since hypergraphs are composed of hyperedges and vertices, to augment hyperedges, we
propose two strategies that (i) directly perturb on hyperedges, and (ii) perturb on the “edges” between
hyperedges and vertices in the converted bipartite graph; To augment vertices, we adopt three schemes
of vertex dropping, attribute masking and subgraph from graph-structured data [14]. Our finding is
that, different from the fact that vertex augmentations benefit more on graphs, hypergraphs mostly ben-
efit from hyperedge augmentations (up to 9% improvement), revealing that higher-order information
encoded in hyperedges is usually more downstream-relevant (than information in vertices).

Furthermore, in search of even better augmented views but in a data-driven manner, we study
whether/how augmentations of hypergraphs could be learned during contrastive learning. To this
end, for the first time, we propose a novel variational hypergraph auto-encoder architecture, as a
hypergraph generative model, to parameterize a certain augmentation space of hypergraphs. In addi-
tion, we propose an end-to-end differentiable pipeline utilizing Gumbel-Softmax [28], to jointly learn
hypergraph augmentations and model parameters. Our observation is that generative augmentations
can better capture the higher-order information and achieve state-of-the-art performance on most of
the benchmark data sets (up to 20% improvement).

The aforementioned empirical evidences (for generalizability) are drawn from comprehensive experi-
ments on 13 datasets. Moreover, we introduce the robustness and fairness evaluation for hypergraphs,
and show that HyperGCL in addition boosts robustness against adversarial attacks and imposes
fairness with regard to sensitive attributes.

The rest of the paper is organized as follows. We discuss the related work in Section 2, introduce
HyperGCL in Section 3, present the experimental results in Section 4, and conclude in Section 5.

2 Related Work

Hypergraph neural networks. Hypergraphs, which are able to encode higher-order relationships,
have attracted significant attentions in recent years. In the machine learning community, hypergraph
neural networks are developed for effective hypergraph representations. HGNN [1] adopt the clique
expansion technique and designs the weighted hypergraph Laplacian for message passing. HyperGCN
[2] proposes the generalized hypergraph Laplacian and explores adding the hyperedge information
through mediators. The attention mechanism [29, 30] is also designed to learn the importance within
hypergraphs. However, the expanded graph will inevitably cause distortion and lead to unsatisfactory
performance. There is also another line of works such as UniGNN [31] and HyperSAGE [32] which
try to perform message passing directly on the hypergraph to avoid the information loss. A recent
work [3] provides an AllSet framework to unify the existing studies with high expressive power and
achieves state-of-the-art performance on comprehensive benchmarks. The work utilizes deep multiset
functions [33] to identify the propagation and aggregation rules in a data-driven manner.

Contrastive self-supervised learning. Contrastive self-supervision [12, 34, 35] has achieved un-
precedented success in computer vision. The core idea is to learn an embedding space where samples
from the same instance are pulled closer and samples from different instances are pushed apart. Re-
cent works start to cross-pollinate between contrastive learning and graph neural networks to for more
generalizable graph representations. Typically, they design some fabricated augmentations guided by
domain knowledge, such as edge perturbation, feature masking or vertex dropping, etc. Nevertheless,
contrastive learning on hypergraphs remains largely unexplored. Most existing works [6, 36, 26, 37]
design pretext tasks for hypergraphs and mainly focus on recommender systems [38, 39, 40, 41], via
contrasting between graphs and hypergraphs which might lose important higher-order information.
In this work, we explore on the structure of hypergraph itself to construct contrastive views.

2

×

Figure 1: The framework of hypergraph contrastive learning (HyperGCL). The ellipses represent the
hyperedges. Two contrastive views are generated by hypergraph augmentations A1 and A2 from the
augmentation collection A. f(·) and h(·) are shared encoder and projection head respectively. In the
figure, we show two examples of hypergraph augmentations. At the top, the dotted ellipse denotes
the deleted hyperedge. At the bottom, one vertex in the dotted hyperedge is removed.

3 Methods

3.1 Hypergraph Contrastive Learning

A hypergraph is denoted as G = {V, E} ∈ G where V = {v1, ..., v|V|} is the set of vertices and
E = {e1, ..., e|E|} is the set of hyperedges. Each hyperedge en = {v1, ..., v|en|} represents the
higher-order interaction among a set of vertices. State-of-the-art approaches to encode such complex
structures are hypergraph neural networks (HyperGNNs) [1, 2, 3], mapping the hypergraph to a
D-dimension latent space via f : G → RD with higher-order message passing.

Motivated from learning on images/graphs, we adopt contrastive learning to further improve the
generalizability of HyperGNNs in the low-label regime (HyperGCL). Main components of our Hy-
perGCL, similar to images/graphs [12, 14] include: (i) hypergraph augmentations for contrastive
views, (ii) HyperGNNs as hypergraph encoders, (iii) projection head h(·) for representations, and (iv)
contrastive loss for optimization. The overall pipeline is shown in Figure 1. Detailed descriptions and
training procedure are shown in Appendix B. The main challenge here is how to effectively augment
hypergraphs to build contrastive views.

3.2 Fabricated Augmentations for Hypergraphs

Vertex

HyperedgeTransform

Figure 2: Conversion from hypergraph to equivalent bipartite graph.

We first explore whether
manually designed augmen-
tations are suited for Hyper-
GCL. Since hyperedges and
vertices compose a hyper-
graph, augmentations are
fabricated with regards to
topology and node features,
respectively.

A1. Perturbing hyper-
edges. The most direct aug-
mentation on higher-order
interactions is to perturb on
the set of hyperedges. Since adding a hyperedge is confronted with the combinatorial challenge (see
Sec. 1 of introduction), here we focus on randomly removing the existing hyperedges following an
i.i.d. Bernoulli distribution. The underlying assumption is that the partially missing higher-order
relations do not significantly affect the semantic meaning of hypergraphs.

3

A2. Perturbing edges in equivalent bipartite graph. To augment higher-order relations in a more
fine-grained way, we first convert the hypergraph into the equivalent bipartite graph, where two
disjoint sets of vertices represent vertices and hyperedges in the hypergraph, respectively (see Figure
2). On top of the bipartite graph, we perform random removal of edges. A2 disrupts the higher-order
relations via randomly kicking out vertices from hyperedges, enforcing the semantics of hypergraph
representations to be robust to such disruption. A2 is essentially the generalized version of A1.

Moreover, we find that vertex augmentations for graph-structured data [14] are applicable to hyper-
graphs. Therefore, we adopt three additional schemes of vertex dropping (A3), attribute masking
(A4) and subgraph (A5) into our experiments, with similar prior knowledge incorporated as in [14].

3.3 Generative Models for Hypergraph Augmentations

Manually designing augmentation operators requires a wealth of domain knowledge, and might
lead to sub-optimal solutions even with extensive trial-and-errors. We next study whether/how
augmentations of hypergraphs could be learned during contrastive learning. Two questions need
to be answered here: (i) How to parameterize the augmentation space of hypergraphs? (ii) How to
incorporate the learnable augmentations into contrastive learning?

3.3.1 Hypergraph Generative Models for Augmentations

Considering an augmentation operator defined as the stochastic mapping between two hypergraph
manifolds that g : G → G, a natural thought is to adopt the generative model to parameterize the
augmentation space, which in general is composed of a deterministic encoder h1 : G → RD′

and a
stochastic decoder (or sampler) h2 : RD′ → G. In this way, g = h1 ◦ h2.

Following this thought, inspired by the well-studied generative models with variational inference
[42, 43], we propose a novel variational hypergraph auto-encoder architecture (VHGAE). To the
best of our knowledge, this is the first hypergraph generative model for generating augmentations of
hypergraphs, which will be used as A6. Notice that here it only parametrizes the augmentation space
of edge perturbation, and in the future node perturbation would be included. VHGAE consists of the
encoder and decoder neural networks. The overall framework is shown in Figure 3.

Encoder. The encoder embeds hypergraphs into latent representations. Instead of embedding a
hypergraph into a single vector, we follow VGAE [43] to embed it into a set of vertex and in additional
hyperedge representations, to facilitate the further decoding process of non-Euclidean structures. We
adopt two HyperGNNs, hµ

1 and hσ
1 , to encode the mean and the logarithmic standard deviation for

variational distributions of vertex and hyperedge representations zV ∼ qϕ(zV |G) = N (µV , σ
2
V), zE ∼

qϕ(zE |G) = N (µE , σ
2
E) as follows (please refer to Appendix B for the detailed computing pipeline):

µV , µE = hµ
1 (G), log(σV), log(σE) = hσ

1 (G), (1)

where µ ∈ RD′×|V|, log(σ) ∈ RD′×|V|. We here leverage the higher-order message passing in
HyperGNNs for a better encoding capability.

Decoder. With the learned vertex and hyperedge variational distributions, the decoder attempts to
reconstruct the higher-order relations of hypergraphs. However, modeling the space of higher-order
interactions encounters the combinatorial challenge (see Section 1). Adopting the similar strategy as
in the augmentation A2 (see Section 3.2), we designate the decoder to recover the relations on the
converted bipartite graph G̃ = {Ṽ, Ẽ} for approximation. Mathematically, we formulate decoding as:

p(G|zV , zE) ≈ p(G̃|zV , zE) =
|E|∏
e=1

|V|∏
v=1

p(Ẽv,e|zv, ze) =
|E|∏
e=1

|V|∏
v=1

Sigmoid(zTv ze), (2)

where wve = zTv ze is the learned edge logit. On the decoded topological distribution of the bipartite
graph, we perform sampling and then convert the sample back to the hypergraph (the conversion
between hypergraphs and bipartite graphs is lossless).

Generator optimization. With variational inference [42, 44, 45], we optimize the hypergraph
generator on the evidence lower bound (ELBO) as follows:

ELBO = Eqϕ(zE |G)Eqϕ(zV |G) [log pθ(G|zv, ze)]− KL[qϕ(zV | G) | p(zV)]− KL[qϕ(zE | G) | p(zE)],
(3)

4

Encoder Sample Decoder

Figure 3: Framework of the proposed variational hypergraph auto-encoder (VHGAE). The green
lines indicate these modules participated in the optimization process.

where qϕ(zE |G) and qϕ(zV |G) are their variational distribution, p(zV) and p(zE) are default Gaussian
priors with p(zV) ∼ N (0, I), p(zE) ∼ N (0, I). When generating hypergraphs, the generator would
sample the relations on the converted bipartite graph with probability p(G̃|zV , zE).

3.3.2 Jointly Augmenting and Contrasting with Gumbel-Softmax

With hypergraph augmentations parametrized with generative models, the next step is to incorporate
augmentation learning into HyperGCL. The main barrier results from the discrete sampling of
hyperedges which is non-differentiable. To tackle it, we leverage the Gumbel-Softmax trick [28] for
the hyperedge distribution as:

T (G) = Gumbel-Softmax(p(G | zV , zE))
= Sigmoid((wVE + log(δ)− log(1− δ))/τ)

G̃gen = T (G) ◦ G,
(4)

where wVE denotes the learned edge logits (before Sigmoid) and δ ∼ Uniform(0, 1). When hyperpa-
rameter temperature τ → 0, the results get closer to being binary. T is the sampled one-hot vector for
each hyperedge-vertex interaction in the hypergraph G. Then the sampled vector will be applied to
perform augmentation. During the Gumbel-Softmax, we leverage the reparametrization trick [42]
to smooth the gradient and make the sample operation differentiable. Thus, this objective can be
optimized in an end-to-end manner as:

minϕLgen(ϕ)− β · Lcl(G, G̃gen | θ, ϕ), (5)

where Lgen = −ELBO is the generator loss to be minimized, β is the tradeoff factor. Due to
the computational cost of collaboratively optimizing two generative views, we train one VHGAE
to produce one generative view, with the other view G̃p is kept as fabricated. To be specific, (i)
independently optimizing two hypergraph generators is of reasonable budgets but would lead to
distribution collapse (i.e., two hypergraph generators output the same distribution) [1,2] which
results in less effective generative views, while (ii) the collaborative optimization techniques for
graph generators (e.g. REINFORCE on the rewards of generative graph structures) are not directly
applicable to HyperGCL due to the combinatorial challenge of hypergraph structures (which is
computationally expensive). The goal of this multi-task loss is to generate stronger augmentation
(maximize contrastive loss) to push HyperGNN to avoid capturing redundant information during the
representation learning, while at the same time learning the hypergraph data distribution.

4 Experiments

4.1 Setup

We examine our methods on the most comprehensive hypergraph benchmarks with 13 data sets,
with statistics shown in Table 1. Please refer to Appendix C for detailed information. We focus on
semi-supervised vertex classification in the transductive setting. Different from the existing work

5

Table 1: Data statistics: he, hv are the node homophily and hyperedge homophily in hypergraph.
Higher value indicate the hypergraph is more homogeneous. Details can be found in Appendix C.

Cora Citeseer Pubmed Cora-CA DBLP-CA Zoo 20News Mushroom NTU2012 ModelNet40 Yelp House Walmart

|V| 2708 3312 19717 2708 41302 101 16242 8124 2012 12311 50758 1290 88860
|E| 1579 1079 7963 1072 22363 43 100 298 2012 12311 679302 341 69906

feature 1433 3703 500 1433 1425 16 100 22 100 100 1862 100 100
class 7 6 3 7 6 7 4 2 67 40 9 2 11
he 0.86 0.83 0.88 0.88 0.93 0.66 0.73 0.96 0.87 0.92 0.57 0.58 0.75
hv 0.84 0.78 0.79 0.79 0.88 0.35 0.49 0.87 0.81 0.88 0.26 0.52 0.55

[3] that leverages 50% of all vertexes as the training set, we focus on the more low-label regime
of challenging and practical applications. By default, we split the data into training/validation/test
samples using (10%/10%/80%) splitting percentages. Each experiment is run for 20 different data
splits and initialization with mean and standard deviation reported. We adopt state-of-the-art SetGNN
[3] as the backbone HyperGNN architecture. For baselines, we compare two existing hypergraph
self-supervised approaches [36] and [26] in recommender systems, denoted as Self and Con. They
conduct self-supervised learning between the hypergraph and conventional graph. By default, we
adopt multi-task training to incorporate contrastive self-supervision because it performs the best as
shown in the comparison in Section 4.2. All the implementation details are listed in Appendix C.
More experiments of the hyperparameters study are given in Appendix A.

4.2 Results

Table 2: The proposed augmentation operations
for contrastive learning framework HyperGCL
and their corresponding names.

Name Operation

A0 Identity
A1 Naïve Hyperedge Perturbation
A2 Generalized Hyperedge Perturbation
A3 Vertex Dropping
A4 Attribute Masking
A5 Subgraph
A6 Generative Augmentation

Comparison among different hypergraph aug-
mentations. The augmentation operations are
summarized in Table 2. Please refer to Appendix
C.5 for detailed descriptions. We first conduct
experiments to compare different contrastive op-
erations on hypergraphs, with results shown in
Table 3. In general, generalized hyperedge aug-
mentation (A2) works the best among fabricated
augmenting operators, but not naïvely perturbing
hyperedge (A1). Specifically, among all fabricated
augmentations, A2 performs the best in 10 of 13
data sets. This indicates the nature that higher-
order information in structures is usually more
downstream-relevant.

For our generative augmentation (A6), we find it performs the best in all the data sets. In our
joint augmenting and contrasting framework, we generate stronger augmentation while keeping the
hypergraph distribution with adversarial learning. This illustrates the importance of exploring the
hypergraph structure. We also test our method on 1% label setting in Table 4. In this setting, Zoo
and NTU2012 data sets are not shown because of the extremely small data size (each case has less
than one training sample). We can find that in the 1% label setting A4 (mask) method performs the
best in Cora, Citeseer and DBLP-CA. These data sets are all originally graphs, and are constructed
as hypergraphs in different ways. So on these data sets, relatively little higher-order structural
information can be explored with hypergraph structure perturbation-based contrastive learning.

Comparison between multi-task learning and pretraining. We then compare the multi-task training
method with the pretraining method in Table 5. Pretrain_L adopts the linear evaluation protocol
where a linear classifier is trained on top of the fixed pretrained representations. Pretrain_F follows a
fully finetuning protocol that uses the weights of the learned hypergnn encoder as initialization while
finetuning all the layers. MTL denotes the multi-task learning method which trains the supervised
classification loss and contrastive loss together. For all the methods, we use A2 (generalized hyperedge
perturbation) as it performs the best among fabricated augmentations. From the table, we find MTL
achieves the best performance in nearly all data sets. Pretrain_L and Pretrain_F can only obtain
better performance on two small data sets: Zoo and House. We find on most data sets, Pretrain_L
makes the model perform worse, which shows that the linear classifier is not enough to represent the
higher-order information in the hypergraph. Pretrain_F has a much better performance compared

6

Table 3: Results on the test data sets: Mean accuracy (%) ± standard deviation. Bold values indicate
the best result. Underlined values indicate the second best. 10% of all vertices are used for training.

Cora Citeseer Pubmed Cora-CA DBLP-CA Zoo 20Newsgroups Mushroom

SetGNN 67.93 ± 1.27 63.53 ± 1.32 84.33 ± 0.36 72.21 ± 1.51 89.51 ± 0.18 65.06 ± 12.82 79.37 ± 0.35 99.75 ± 0.11
Self 68.24 ± 1.12 62.49 ± 1.48 84.38 ± 0.38 72.74 ± 1.53 89.51 ± 0.23 57.35 ± 18.32 79.45 ± 0.32 95.83 ± 0.23
Con 68.89 ± 1.80 62.82 ± 1.21 84.56 ± 0.34 73.22 ± 1.65 89.59 ± 0.13 61.05 ± 14.54 79.49 ± 0.45 95.85 ± 0.31
A0 68.59 ± 1.33 62.25 ± 2.15 84.54 ± 0.42 71.85 ± 1.62 89.62 ± 0.24 62.57 ± 13.84 79.07 ± 0.46 99.77 ± 0.17
A1 72.39 ± 1.34 66.28 ± 1.27 85.17 ± 0.37 75.45 ± 1.54 89.83 ± 0.21 65.80 ± 13.31 79.47 ± 0.32 99.80 ± 0.14
A2 72.58 ± 1.09 66.40 ± 1.35 85.16 ± 0.38 75.62 ± 1.42 90.22 ± 0.23 66.35 ± 13.26 79.56 ± 0.42 99.80 ± 0.17
A3 72.33 ± 1.23 65.79 ± 1.18 85.24 ± 0.28 75.34 ± 1.40 89.85 ± 0.16 65.79 ± 14.05 79.47 ± 0.34 99.81 ± 0.10
A4 72.95 ± 1.19 66.22 ± 0.95 84.88 ± 0.38 75.29 ± 1.56 90.10 ± 0.18 62.59 ± 12.77 79.45 ± 0.48 99.80 ± 0.14
A5 67.96 ± 0.99 63.21 ± 1.25 84.48 ± 0.40 72.61 ± 1.86 89.75 ± 0.24 62.47 ± 12.39 79.42 ± 0.52 99.79 ± 0.10
A6 73.12 ± 1.48 66.94 ± 1.00 85.72 ± 0.38 76.21 ± 1.26 90.28 ± 0.19 66.89 ± 12.44 79.78 ± 0.40 99.86 ± 0.10

NTU2012 ModelNet40 Yelp House (0.6) House (1.0) Walmart (0.6) Walmart (1.0) Avg. Rank

SetGNN 73.86 ± 1.62 95.85 ± 0.38 28.78 ± 1.51 68.54 ± 1.89 58.34 ± 2.25 74.97 ± 0.22 59.13 ± 0.20 7.71
Self 73.41 ± 1.65 95.83 ± 0.23 23.49 ± 4.15 67.75 ± 3.29 58.54 ± 2.16 74.76 ± 0.20 58.83 ± 0.21 8.64
Con 73.27 ± 1.53 95.85 ± 0.31 26.14 ± 1.86 68.50 ± 2.52 58.56 ± 2.42 75.17 ± 0.21 59.39 ± 0.20 7.07
A0 73.54 ± 1.93 95.92 ± 0.18 29.43 ± 1.42 67.48 ± 3.21 57.39 ± 2.37 73.14 ± 0.21 56.49 ± 0.60 8.21
A1 74.71 ± 1.81 95.87 ± 0.27 27.18 ± 0.71 68.64 ± 2.99 58.10 ± 3.22 75.42 ± 0.13 60.09 ± 0.25 4.50
A2 74.88 ± 1.66 96.56 ± 0.34 31.39 ± 2.45 69.73 ± 2.60 58.90 ± 1.97 75.50 ± 0.18 60.19 ± 0.20 2.29
A3 74.68 ± 1.74 96.48 ± 0.29 27.57 ± 1.00 67.88 ± 2.90 58.51 ± 2.22 75.29 ± 0.23 60.19 ± 0.20 4.71
A4 74.83 ± 1.75 95.86 ± 0.28 29.64 ± 1.93 69.56 ± 2.89 58.91 ± 2.69 75.43 ± 0.18 59.90 ± 0.24 4.14
A5 74.41 ± 1.86 96.46 ± 0.33 29.24 ± 1.42 68.14 ± 2.97 57.70 ± 2.98 75.26 ± 0.18 59.81 ± 0.22 6.71
A6 75.34 ± 1.91 96.93 ± 0.33 34.64 ± 0.39 70.96 ± 2.27 59.93 ± 1.99 75.62 ± 0.16 60.46 ± 0.20 1.00

Table 4: Results on the test data sets: Mean accuracy (%) ± standard deviation. Bold values indicate
the best result. 1% of all vertexes are used for training.

Cora Citeseer Pubmed Cora-CA DBLP-CA 20Newsgroups Mushroom

SetGNN 46.48 ± 3.62 47.01 ± 4.31 76.13 ± 1.19 52.29 ± 4.18 85.52 ± 0.54 73.83 ± 1.40 97.73 ± 1.18
Self 45.79 ± 5.34 44.22 ± 4.43 76.71 ± 0.90 51.64 ± 5.37 84.42 ± 0.37 73.91 ± 0.90 92.25 ± 0.89
Con 49.20 ± 4.38 48.56 ± 4.88 77.51 ± 1.08 52.37 ± 4.41 86.47 ± 0.35 74.39 ± 1.23 92.43 ± 0.87
A0 48.50 ± 4.77 46.43 ± 4.24 78.83 ± 1.79 49.87 ± 5.08 87.34 ± 0.73 74.43 ± 1.11 97.32 ± 1.33
A1 56.42 ± 5.02 55.63 ± 3.96 80.13 ± 1.44 60.86 ± 5.91 87.53 ± 0.30 74.68 ± 1.31 97.95 ± 1.15
A2 56.81 ± 4.49 56.10 ± 2.86 80.22 ± 1.24 60.96 ± 6.31 88.10 ± 0.35 74.72 ± 1.16 98.05 ± 1.18
A3 55.94 ± 3.67 55.82 ± 3.40 80.13 ± 1.02 60.51 ± 4.55 87.47 ± 0.36 74.63 ± 1.00 98.04 ± 0.98
A4 58.55 ± 5.14 57.16 ± 4.62 80.11 ± 1.02 60.91 ± 5.15 88.91 ± 0.29 74.67 ± 1.39 97.72 ± 1.12
A5 46.23 ± 3.44 45.07 ± 4.89 75.95 ± 1.32 53.26 ± 4.86 87.12 ± 0.43 74.81 ± 1.04 97.72 ± 1.25
A6 57.45 ± 5.00 56.23 ± 3.27 81.10 ± 0.80 61.76 ± 4.94 88.55 ± 0.41 75.52 ± 0.93 98.28 ± 1.03

ModelNet40 Yelp House (0.6) House (1.0) Walmart (0.6) Walmart (1.0) Avg. Rank (↓)

SetGNN 88.34 ± 2.69 27.64 ± 1.10 53.69 ± 2.20 51.85 ± 1.64 65.48 ± 0.45 51.15 ± 0.52 7.62
Self 86.85 ± 3.03 20.77 ± 5.15 53.42 ± 2.25 51.14 ± 1.75 65.23 ± 0.43 51.00 ± 0.41 9.69
Con 87.00 ± 2.99 24.23 ± 0.43 53.58 ± 3.04 51.96 ± 1.87 65.47 ± 0.44 51.13 ± 0.46 7.31
A0 88.75 ± 2.78 27.43 ± 0.60 53.60 ± 2.73 51.70 ± 2.13 65.41 ± 0.47 51.10 ± 0.49 7.46
A1 89.34 ± 2.66 26.18 ± 0.51 54.12 ± 3.29 52.23 ± 2.46 65.96 ± 0.36 51.22 ± 0.35 4.08
A2 89.37 ± 2.69 27.67 ± 0.91 54.42 ± 2.83 52.31 ± 1.44 66.01 ± 0.41 51.32 ± 0.30 2.69
A3 89.31 ± 2.62 26.98 ± 0.66 53.71 ± 2.71 52.11 ± 2.24 65.88 ± 0.50 51.35 ± 0.53 4.38
A4 89.03 ± 2.66 27.45 ± 0.81 53.64 ± 2.61 51.77 ± 2.20 65.55 ± 0.51 51.04 ± 0.47 4.54
A5 89.43 ± 2.68 28.09 ± 0.96 54.07 ± 3.09 51.94 ± 1.84 65.52 ± 0.39 50.97 ± 0.47 6.00
A6 90.22 ± 2.72 29.61 ± 0.71 56.27 ± 4.18 52.55 ± 2.18 66.42 ± 0.40 51.82 ± 0.39 1.23

with Pretrain_L, which indicates the effects of using contrastive learning. However, the method
switches the objective during finetuning, which would lead to the memorization problem and the loss
of pre-trained knowledge. Therefore, all our other experiments adopt MTL setting to incorporate
contrastive self-supervision.

Comparison to the converted graph. Next we investigate on which graph should we contrast
on. We first convert the original hypergraph into a conventional graph using the clique expansion
technique, and we choose the representative HGNN[1] as the backbone network for learning on the
converted graph. We compare it with two representative augmentations: A2 (Here, edge perturbation
on the conventional graph) and A4 (feature masking). In Table 6, we find that HGNN performs
poorly compared with SetGNN. Apparently contrastive self-supervision on converted graphs does
not bring much benefit. The reason is that part of structural information, important to hypergraph
representation learning, is lost when hypergraphs are converted to graphs. These results indicate the
importance of designing HyperGNN and contrastive strategies directly on hypergraphs.

7

Table 5: Results of different self-supervised mechanisms: Mean accuracy (%) ± standard deviation.
Bold values indicate the best result. 10% of all vertexes are used for training.

Cora Citeseer Pubmed Cora-CA DBLP-CA Zoo 20Newsgroups

SetGNN 67.93 ± 1.27 63.53 ± 1.32 84.33 ± 0.36 72.21 ± 1.51 89.51 ± 0.18 65.06 ± 12.82 79.37 ± 0.35
Pretrain_L 52.59 ± 2.33 53.29 ± 2.01 69.90 ± 0.41 48.00 ± 4.79 87.59 ± 0.43 66.82 ± 13.48 71.93 ± 2.99
Pretrain_F 68.39 ± 1.20 63.83 ± 1.68 84.47 ± 0.40 73.12 ± 1.37 89.75 ± 0.23 65.43 ± 13.38 79.44 ± 0.39

MTL 72.58 ± 1.10 66.40 ± 1.35 85.16 ± 0.38 75.82 ± 1.42 90.22 ± 0.23 66.35 ± 13.26 79.56 ± 0.42

Mushroom NTU2012 ModelNet40 Yelp House (0.6) House (1.0) Walmart (0.6) Walmart (1.0)

99.75 ± 0.11 73.86 ± 1.62 95.85 ± 0.38 28.78 ± 1.51 68.54 ± 1.89 58.34 ± 2.25 74.97 ± 0.22 59.13 ± 0.20
93.77 ± 2.20 70.06 ± 2.42 96.23 ± 0.31 26.68 ± 0.30 61.22 ± 3.09 54.81 ± 2.39 40.35 ± 4.30 33.30 ± 2.72
99.77 ± 0.15 74.03 ± 1.86 95.88 ± 0.34 28.19 ± 1.42 69.02 ± 4.02 59.20 ± 2.54 75.01 ± 0.27 59.87 ± 0.28
99.80 ± 0.17 74.88 ± 1.66 96.56 ± 0.34 31.39 ± 2.45 69.73 ± 2.60 58.90 ± 1.97 75.50 ± 0.18 60.19 ± 0.20

Table 6: Results on converted conventional graphs: Mean accuracy (%) ± standard deviation. Bold
values indicate the best result. 10% of all vertices are used for training.

Cora Citeseer Pubmed Cora-CA DBLP-CA Zoo 20Newsgroups

HGNN 67.37 ± 1.45 62.76 ± 1.42 82.16 ± 0.38 66.80 ± 1.79 85.28 ± 0.29 47.84 ± 6.87 70.27 ± 0.73
A2 67.18 ± 1.42 63.52 ± 2.35 82.37 ± 0.34 67.14 ± 1.79 85.22 ± 0.26 46.85 ± 10.15 70.46 ± 1.21
A4 67.24 ± 1.51 63.37 ± 2.56 82.25 ± 0.43 66.88 ± 2.07 85.16 ± 0.25 46.85 ± 9.93 69.35 ± 1.24

Mushroom NTU2012 ModelNet40 Yelp House (0.6) House (1.0) Walmart (0.6) Walmart (1.0)

97.15 ± 0.47 70.26 ± 1.70 87.60 ± 0.36 26.91 ± 0.37 58.01 ± 2.47 57.65 ± 2.69 59.48 ± 0.19 53.97 ± 0.29
97.29 ± 0.45 69.91 ± 1.59 87.75 ± 0.33 26.72 ± 0.36 58.08 ± 3.28 57.53 ± 2.80 59.49 ± 0.22 54.04 ± 0.24
97.15 ± 0.55 69.94 ± 1.54 87.65 ± 0.36 26.66 ± 0.45 58.47 ± 2.99 57.73 ± 2.84 59.53 ± 0.22 53.98 ± 0.26

Analysis of generative augmentation. Here we analyze our proposed generative hypergraph
augmentation (A6). We select ModelNet40 and Yelp as the representatives of high-homophily and
low-homophily data sets, respectively.

First, we examine the training dynamics of keep ratio and find that they are highly related to the data
set homophily (Figure 4 (a)). For ModelNet40, the generator keeps only 20% relations in the early
training stage. This is because the homophily of the data set is very high (0.92/0.88) and deleting a
lot of edges relatively randomly at the beginning would not have a large impact on the model but
rather can help model learn structural information. Then at a later stage, the generator begins to
keep more than 80% relations, which means that the model has learned higher-order information and
only removes the unnecessary relations. For Yelp, a similar conclusion holds. Specifically, as its
homophily is pretty low (0.57/0.26), the generator keeps most of the relations at the early stage for
training and then just keeps a very low ratio of related relations at the later training stage.

Next, we investigate what our generator has learned. We visualize the hyperedges in the Yelp data
set in Figure 4 (b). Yelp is a restaurant-rating data set and the restaurants visited by the same user
are connected by a hyperedge. We find that some vertices with different labels are removed, which
could remove extraneous information and improve the hypergraph homophily. This indicates that our
generator does grasp the higher-order information in the hypergraph.

Adversarial robustness. Besides generalizability, we here show hypergraph contrastive learning also
boosts robustness. Since there is no existing work developing adversarial attack algorithms designated
for hypergraphs, we adapt two state-of-the-art attackers from the graph domain. We presume the
graph attackers are applicable to hypergraphs to a certain extent, both of which are non-Euclidean
data structures with sharing properties. The experiments are performed on five real-world data sets:
Cora, Citeseer, ModelNet40, NTU2012 and House. We regard each hypergraph as a bipartite graph
and leverage those algorithms to conduct attacks to the vertices and hyperedges. The methods include
an untargeted attack method, minmax attack [46] which poisons the graph structures by adding and
removing relations to reduce the overall performance; and a targeted attack method, nettack [47]
which leads the HyperGNN to mis-classify target vertices. Beyond these, we also include a random
hypergraph perturbation baseline which will randomly drop numerous relations in the hypergraph.
These three methods are denoted as Net, Minmax and Random. Following previous works, for each
attack, we perturb 10% of vertices/relations. The results in Table 7 show that Random and Minmax
attacks can decrease the performance of the original model a little on all the data sets, while net
attack can decrease the performance on most data sets and surprisingly increase the performance on

8

4
…

6
5

2
4

4 5
4

5

6 6

6

4

…
6

5
2

4
4 5
4

5

6 6

6

Generative
Augmentation

(a) (b)

Figure 4: (a) Training dynamics of the relation keep ratio. (b) Illustration of our proposed generative
augmentation on the Yelp data set. Each icon represents a restaurant in the data set, and the number
near the icon is the label of this restaurant. The ellipse denotes the hyperedge.

Table 7: Results on the test data sets with regard to robustness. Bold values indicate the best result.
10% of all vertexes are used for training.

Cora Citeseer ModelNet40
Random Net Minmax Random Net Minmax Random Net Minmax

SetGNN 66.87 ± 1.33 66.26 ± 1.54 66.58 ± 1.02 62.89 ± 1.57 62.81 ± 1.32 62.21 ± 1.64 95.74 ± 0.22 95.41 ± 0.28 93.33 ± 0.26
A2 71.90 ± 1.63 71.16 ± 0.92 70.86 ± 1.22 66.41 ± 1.08 65.38 ± 1.47 64.69 ± 0.98 96.09 ± 0.17 95.52 ± 0.24 93.64 ± 0.26
A4 72.11 ± 1.60 70.49 ± 1.29 70.52 ± 1.39 65.94 ± 1.24 65.15 ± 1.70 64.12 ± 1.19 95.79 ± 0.27 95.44 ± 0.25 93.35 ± 0.24
A6 72.15 ± 1.70 71.94 ± 1.48 71.98 ± 1.36 66.60 ± 1.61 65.68 ± 1.09 65.51 ± 1.13 96.58 ± 0.24 96.23 ± 0.23 94.82 ± 0.33

NTU2012 House (0.6) House (1.0)
Random Net Minmax Random Net Minmax Random Net Minmax

SetGNN 73.84 ± 2.18 73.38 ± 1.36 70.71 ± 1.89 67.16 ± 2.55 68.88 ± 2.68 64.78 ± 2.20 56.86 ± 1.93 59.95 ± 1.92 56.52 ± 2.52
A2 74.50 ± 2.03 73.86 ± 1.84 71.40 ± 1.64 67.71 ± 2.94 69.59 ± 2.32 65.23 ± 2.89 57.74 ± 2.70 60.73 ± 2.30 57.00 ± 1.94
A4 73.73 ± 1.59 73.72 ± 1.59 71.06 ± 1.53 67.55 ± 2.41 68.85 ± 1.38 64.97 ± 3.35 57.47 ± 2.72 60.10 ± 1.74 56.65 ± 2.26
A6 75.06 ± 1.97 74.37 ± 1.99 72.09 ± 1.98 69.88 ± 3.27 73.14 ± 2.71 68.84 ± 2.71 60.06 ± 2.07 62.41 ± 1.77 58.76 ± 2.24

the House data set. This performance gain indicates HyperGNN is more robust to structure attack
compared with GNN as it leverages higher-order information. Based on these, HyperGCL with
generalized hyperedge augmentation (A2) performs better than feature perturbation (A4), and our
proposed generative augmentation (A6) can surpass these fabricated baselines on all the data sets
and thus is the best to defend attacks. We believe this’ll be a beneficial complement to our main
experiments and we hope for more works on hypergraph attacks.

Fairness. Furthermore, we claim that hypergraph contrastive self-supervision also benefits fairness.
There was no related data set before. So we introduce three newly curated hypergraph data sets:
German [48], Recidivism [49] and Credit [50]. The hypergraph construction follows the setting in [1].
The top 5 similar objects in each data set are built as a hyperedge. For the accuracy metrics, we use
F1-score and AUROC value for the binary classification task. For measuring fairness, we adopt the
statistical parity ∆SP and equalized odds ∆EO. Please refer to Appendix C for detailed information
about the data sets and metrics. The experimental results in Table 8 show that our generative method
still achieves better or comparable performances while imposing more fairness.

5 Conclusion

In the paper, we study the problem of how to construct contrastive views of hypergraphs via augmen-
tations. We provide the solutions by first studying domain knowledge-guided fabrication schemes.
Then, in search of more effective views in a data-driven manner, we are the first to propose hypergraph
generative models to generate augmented views, as well as an end-to-end differentiable pipeline to
jointly perform hypergraph augmentation and contrastive learning. We find that generative augmenta-
tions perform better at preserving higher-order information to further benefit generalizability. The
proposed framework also boosts robustness and fairness of hypergraph representation learning. In
the future, we plan to design more powerful hypergraph generator and HyperGNN while addressing
more real-world hypergraph data challenges and more hypergraph learning models.

9

Table 8: Results on the test data sets with regard to fairness. 10% of all vertexes are used for training.
For fairness metrics ∆SP and ∆EO, lower values indicate better performance.

data set Method AUROC F1 ∆SP (↓) ∆EO(↓)

German Credit

SetGNN 59.16 ± 2.51 81.84 ± 0.93 2.65 ± 5.62 4.06 ± 6.76
A2 59.81 ± 3.00 82.26 ± 0.13 0.55 ± 0.95 0.78 ± 0.70
A4 59.66 ± 3.83 80.54 ± 3.52 3.03 ± 6.54 5.07 ± 7.81
A6 59.88 ± 3.04 82.36 ± 0.38 0.95 ± 0.92 0.47 ± 0.56

Recidivism

SetGNN 96.51 ± 0.48 89.84 ± 0.97 8.63 ± 0.50 4.16 ± 0.51
A2 96.34 ± 0.39 90.09 ± 0.53 8.53 ± 0.52 3.92 ± 0.68
A4 96.45 ± 0.35 89.75 ± 0.68 8.49 ± 0.27 3.49 ± 0.66
A6 96.55 ± 0.54 89.22 ± 0.55 8.51 ± 0.25 3.13 ± 0.64

Credit defaulter

SetGNN 73.46 ± 0.17 87.91 ± 0.27 2.79 ± 0.99 0.98 ± 0.69
A2 73.43 ± 0.27 87.82 ± 0.24 2.64 ± 1.32 0.93 ± 0.87
A4 73.58 ± 0.19 87.92 ± 0.25 2.84 ± 1.14 1.38 ± 0.32
A6 73.78 ± 0.16 88.03 ± 0.14 2.58 ± 0.91 0.81 ± 0.37

Acknowledgments and Disclosure of Funding

This work is supported by National Science Foundation under Award No. IIS-1947203, IIS-2117902,
IIS-2137468, CCF-1943008; US Army Research Office Young Investigator Award W911NF2010240;
National Institute of General Medical Sciences under grant R35GM124952; and Agriculture and
Food Research Initiative grant no. 2020-67021-32799/project accession no.1024178 from the USDA
National Institute of Food and Agriculture. The views and conclusions are those of the authors and
should not be interpreted as representing the official policies of the government agencies.

References
[1] Yifan Feng, Haoxuan You, Zizhao Zhang, Rongrong Ji, and Yue Gao. Hypergraph neural

networks. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 33, pages
3558–3565, 2019.

[2] Naganand Yadati, Madhav Nimishakavi, Prateek Yadav, Vikram Nitin, Anand Louis, and Partha
Talukdar. Hypergcn: A new method for training graph convolutional networks on hypergraphs.
Advances in neural information processing systems, 32, 2019.

[3] Eli Chien, Chao Pan, Jianhao Peng, and Olgica Milenkovic. You are allset: A multiset function
framework for hypergraph neural networks. ICLR, 2022.

[4] Alain Bretto. Hypergraph theory. An introduction. Mathematical Engineering. Cham: Springer,
2013.

[5] Shuyi Ji, Yifan Feng, Rongrong Ji, Xibin Zhao, Wanwan Tang, and Yue Gao. Dual channel
hypergraph collaborative filtering. In Proceedings of the 26th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, pages 2020–2029, 2020.

[6] Junliang Yu, Hongzhi Yin, Jundong Li, Qinyong Wang, Nguyen Quoc Viet Hung, and Xi-
angliang Zhang. Self-supervised multi-channel hypergraph convolutional network for social
recommendation. In Proceedings of the Web Conference 2021, pages 413–424, 2021.

[7] Ramit Sawhney, Shivam Agarwal, Arnav Wadhwa, and Rajiv Ratn Shah. Spatiotemporal
hypergraph convolution network for stock movement forecasting. In 2020 IEEE International
Conference on Data Mining (ICDM), pages 482–491. IEEE, 2020.

[8] Yuning You and Yang Shen. Cross-modality and self-supervised protein embedding for
compound-protein affinity and contact prediction. bioRxiv, 2022.

[9] Ruochi Zhang, Tianming Zhou, and Jian Ma. Multiscale and integrative single-cell hi-c analysis
with higashi. Nature biotechnology, 40(2):254–261, 2022.

[10] Meng Liu, Youzhi Luo, Kanji Uchino, Koji Maruhashi, and Shuiwang Ji. Generating 3d
molecules for target protein binding. arXiv preprint arXiv:2204.09410, 2022.

10

[11] Priya Goyal, Dhruv Mahajan, Abhinav Gupta, and Ishan Misra. Scaling and benchmarking
self-supervised visual representation learning. In Proceedings of the ieee/cvf International
Conference on computer vision, pages 6391–6400, 2019.

[12] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework
for contrastive learning of visual representations. In International conference on machine
learning, pages 1597–1607. PMLR, 2020.

[13] Weihua Hu, Bowen Liu, Joseph Gomes, Marinka Zitnik, Percy Liang, Vijay Pande, and Jure
Leskovec. Strategies for pre-training graph neural networks. arXiv preprint arXiv:1905.12265,
2019.

[14] Yuning You, Tianlong Chen, Yongduo Sui, Ting Chen, Zhangyang Wang, and Yang Shen.
Graph contrastive learning with augmentations. Advances in Neural Information Processing
Systems, 33:5812–5823, 2020.

[15] Yuning You, Tianlong Chen, Zhangyang Wang, and Yang Shen. When does self-supervision
help graph convolutional networks? arXiv preprint arXiv:2006.09136, 2020.

[16] Wei Jin, Tyler Derr, Haochen Liu, Yiqi Wang, Suhang Wang, Zitao Liu, and Jiliang Tang.
Self-supervised learning on graphs: Deep insights and new direction. arXiv preprint
arXiv:2006.10141, 2020.

[17] Yaochen Xie, Zhao Xu, Jingtun Zhang, Zhengyang Wang, and Shuiwang Ji. Self-supervised
learning of graph neural networks: A unified review. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 2022.

[18] Petar Velickovic, William Fedus, William L Hamilton, Pietro Liò, Yoshua Bengio, and R Devon
Hjelm. Deep graph infomax. ICLR (Poster), 2(3):4, 2019.

[19] Yuning You, Tianlong Chen, Yang Shen, and Zhangyang Wang. Graph contrastive learning
automated. In International Conference on Machine Learning, pages 12121–12132. PMLR,
2021.

[20] Yuning You, Tianlong Chen, Zhangyang Wang, and Yang Shen. Bringing your own view: Graph
contrastive learning without prefabricated data augmentations. arXiv preprint arXiv:2201.01702,
2022.

[21] Yanqiao Zhu, Yichen Xu, Feng Yu, Qiang Liu, Shu Wu, and Liang Wang. Deep graph contrastive
representation learning. arXiv preprint arXiv:2006.04131, 2020.

[22] Puja Trivedi, Ekdeep Singh Lubana, Yujun Yan, Yaoqing Yang, and Danai Koutra. Augmenta-
tions in graph contrastive learning: Current methodological flaws & towards better practices. In
Proceedings of the ACM Web Conference 2022, pages 1538–1549, 2022.

[23] Haonan Wang, Jieyu Zhang, Qi Zhu, and Wei Huang. Augmentation-free graph contrastive
learning. arXiv preprint arXiv:2204.04874, 2022.

[24] Shengyu Feng, Baoyu Jing, Yada Zhu, and Hanghang Tong. Adversarial graph contrastive
learning with information regularization. In Proceedings of the ACM Web Conference 2022,
pages 1362–1371, 2022.

[25] Xinyi Xu, Cheng Deng, Yaochen Xie, and Shuiwang Ji. Group contrastive self-supervised
learning on graphs. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022.

[26] Lianghao Xia, Chao Huang, Yong Xu, Jiashu Zhao, Dawei Yin, and Jimmy Xiangji Huang.
Hypergraph contrastive collaborative filtering. arXiv preprint arXiv:2204.12200, 2022.

[27] Derun Cai, Chenxi Sun, Moxian Song, Baofeng Zhang, Shenda Hong, and Hongyan Li. Hy-
pergraph contrastive learning for electronic health records. In Proceedings of the 2022 SIAM
International Conference on Data Mining (SDM), pages 127–135. SIAM, 2022.

[28] Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with gumbel-softmax.
arXiv preprint arXiv:1611.01144, 2016.

11

[29] Ruochi Zhang, Yuesong Zou, and Jian Ma. Hyper-sagnn: a self-attention based graph neural
network for hypergraphs. arXiv preprint arXiv:1911.02613, 2019.

[30] Song Bai, Feihu Zhang, and Philip HS Torr. Hypergraph convolution and hypergraph attention.
Pattern Recognition, 110:107637, 2021.

[31] Jing Huang and Jie Yang. Unignn: a unified framework for graph and hypergraph neural
networks. arXiv preprint arXiv:2105.00956, 2021.

[32] Devanshu Arya, Deepak K Gupta, Stevan Rudinac, and Marcel Worring. Hypersage: Gener-
alizing inductive representation learning on hypergraphs. arXiv preprint arXiv:2010.04558,
2020.

[33] Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Russ R Salakhutdinov,
and Alexander J Smola. Deep sets. Advances in neural information processing systems, 30,
2017.

[34] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum contrast for
unsupervised visual representation learning. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pages 9729–9738, 2020.

[35] Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre Richemond, Elena
Buchatskaya, Carl Doersch, Bernardo Avila Pires, Zhaohan Guo, Mohammad Gheshlaghi Azar,
et al. Bootstrap your own latent-a new approach to self-supervised learning. Advances in Neural
Information Processing Systems, 33:21271–21284, 2020.

[36] Xin Xia, Hongzhi Yin, Junliang Yu, Qinyong Wang, Lizhen Cui, and Xiangliang Zhang.
Self-supervised hypergraph convolutional networks for session-based recommendation. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 35, pages 4503–4511,
2021.

[37] Boxin Du, Changhe Yuan, Robert Barton, Tal Neiman, and Hanghang Tong. Hypergraph
pre-training with graph neural networks. arXiv preprint arXiv:2105.10862, 2021.

[38] Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and Tat-Seng Chua. Neural
collaborative filtering. In Proceedings of the 26th international conference on world wide web,
pages 173–182, 2017.

[39] Tianxin Wei, Fuli Feng, Jiawei Chen, Ziwei Wu, Jinfeng Yi, and Xiangnan He. Model-agnostic
counterfactual reasoning for eliminating popularity bias in recommender system. In Proceedings
of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pages 1791–
1800, 2021.

[40] Tianxin Wei and Jingrui He. Comprehensive fair meta-learned recommender system. In
Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining,
pages 1989–1999, 2022.

[41] Yang Zhang, Fuli Feng, Xiangnan He, Tianxin Wei, Chonggang Song, Guohui Ling, and
Yongdong Zhang. Causal intervention for leveraging popularity bias in recommendation. In
Proceedings of the 44th International ACM SIGIR Conference on Research and Development in
Information Retrieval, pages 11–20, 2021.

[42] Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

[43] Thomas N Kipf and Max Welling. Variational graph auto-encoders. arXiv preprint
arXiv:1611.07308, 2016.

[44] Diederik P Kingma, Max Welling, et al. An introduction to variational autoencoders. Founda-
tions and Trends® in Machine Learning, 12(4):307–392, 2019.

[45] Yuning You, Yue Cao, Tianlong Chen, Zhangyang Wang, and Yang Shen. Bayesian modeling
and uncertainty quantification for learning to optimize: What, why, and how. In International
Conference on Learning Representations, 2021.

12

[46] Daniel Zügner and Stephan Günnemann. Adversarial attacks on graph neural networks via meta
learning. arXiv preprint arXiv:1902.08412, 2019.

[47] Daniel Zügner, Amir Akbarnejad, and Stephan Günnemann. Adversarial attacks on neural
networks for graph data. In Proceedings of the 24th ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining, pages 2847–2856, 2018.

[48] Arthur Asuncion and David Newman. Uci machine learning repository, 2007.

[49] Kareem L Jordan and Tina L Freiburger. The effect of race/ethnicity on sentencing: Examining
sentence type, jail length, and prison length. Journal of Ethnicity in Criminal Justice, 13(3):179–
196, 2015.

[50] I-Cheng Yeh and Che-hui Lien. The comparisons of data mining techniques for the predictive
accuracy of probability of default of credit card clients. Expert systems with applications,
36(2):2473–2480, 2009.

Checklist

The checklist follows the references. Please read the checklist guidelines carefully for information on
how to answer these questions. For each question, change the default [TODO] to [Yes] , [No] , or
[N/A] . You are strongly encouraged to include a justification to your answer, either by referencing
the appropriate section of your paper or providing a brief inline description. For example:

• Did you include the license to the code and datasets? [Yes] See Section.
• Did you include the license to the code and datasets? [No] The code and the data are

proprietary.
• Did you include the license to the code and datasets? [N/A]

Please do not modify the questions and only use the provided macros for your answers. Note that the
Checklist section does not count towards the page limit. In your paper, please delete this instructions
block and only keep the Checklist section heading above along with the questions/answers below.

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes] Please check Apendix B.
(c) Did you discuss any potential negative societal impacts of your work? [N/A] We are

not aware of any potential ethical issues regarding our work. More discussions can be
found in Appendix B.

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes]

2. If you are including theoretical results...
(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [Yes] We add them in
the supplementary materials.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] We write the implementation details in Appendix C.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes] We report the standard deviation of 20 runs with different
splits.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] We specify the computing resouce
in Appendix C.

13

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [Yes] We discuss it in Appendix C.
(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]

We submit the code in the supplementary materials.
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [Yes] We discuss it in Appendix C.
(e) Did you discuss whether the data you are using/curating contains personally identifi-

able information or offensive content? [Yes] The data sets we use don’t contain any
personally identifiable information.

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A] We don’t conduct research with human subjects.
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]

14

	Introduction
	Related Work
	Methods
	Hypergraph Contrastive Learning
	Fabricated Augmentations for Hypergraphs
	Generative Models for Hypergraph Augmentations
	Hypergraph Generative Models for Augmentations
	Jointly Augmenting and Contrasting with Gumbel-Softmax

	Experiments
	Setup
	Results

	Conclusion

