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Abstract

Quasi-identifier-based deidentification techniques (QI-

deidentification) are widely used in practice, including

k-anonymity, `-diversity, and t-closeness. We present three

new attacks on QI-deidentification: two theoretical attacks

and one practical attack on a real dataset. In contrast to prior

work, our theoretical attacks work even if every attribute is a

quasi-identifier. Hence, they apply to k-anonymity, `-diversity,

t-closeness, and most other QI-deidentification techniques.

First, we introduce a new class of privacy attacks called

downcoding attacks, and prove that every QI-deidentification

scheme is vulnerable to downcoding attacks if it is minimal

and hierarchical. Second, we convert the downcoding attacks

into powerful predicate singling-out (PSO) attacks, which

were recently proposed as a way to demonstrate that a privacy

mechanism fails to legally anonymize under Europe’s General

Data Protection Regulation. Third, we use LinkedIn.com to

reidentify 3 students in a k-anonymized dataset published by

EdX (and show thousands are potentially vulnerable), under-

mining EdX’s claimed compliance with the Family Educa-

tional Rights and Privacy Act.

The significance of this work is both scientific and political.

Our theoretical attacks demonstrate that QI-deidentification

may offer no protection even if every attribute is treated as a

quasi-identifier. Our practical attack demonstrates that even

deidentification experts acting in accordance with strict pri-

vacy regulations fail to prevent real-world reidentification. To-

gether, they rebut a foundational tenet of QI-deidentification

and challenge the actual arguments made to justify the con-

tinued use of k-anonymity and other QI-deidentification tech-

niques.
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1 Introduction

Quasi-identifier-based deidentification (QI-deidentification)

is widely used in practice. The most well known QI-

deidentification techniques are is k-anonymity [26]. Through-

out this work we usually speak about k-anonymity specifically,

but everything applies without modification to `-diversity [18],

t-closeness [17], and many other QI-deidentification refine-

ments.

A relatively small number of data points suffice to distin-

guish individuals from the general population. For example,

in the 2010 census 44% of the population was unique based

only on census block, age, and sex [1]. Turning this insight

into a privacy notion, k-anonymity aims to capture a sort of

anonymity of a crowd.

A data release is k-anonymous if any individual row in the

release cannot be distinguished from k−1 other individuals

in the release using certain attributes called quasi-identifiers.

Quasi-identifiers are sets of attributes that are potentially avail-

able to an attacker from other sources, combinations of which

may uniquely distinguish an individual within the dataset. k-

anonymity requires that the equivalence class of every record—

the set of records with identical quasi-identifiers—is of size

at least k ≥ 2. A common choice for k is 5.1 `-diversity, t-

closeness, and many QI-deidentification techniques refine

k-anonymity in the sense that they collapse to k-anonymity

when every attribute is treated as a quasi-identifier (Sec. 2.1).

Real world reidentification attacks, including on the Net-

flix and AOL datasets [4, 20], led to a policy debate about

the QI-deidentification. Critics argued that the distinction

between quasi-identifying attributes and other attributes—

foundational to the whole approach—was untenable [21, 22].

Defenders argued that deidentification experts are good at

determining what information is externally available [5, 6].

1For example, U.S. Department of Education’s FAQ on disclosure avoid-

ance states that “statisticians consider a cell size of 3 to be the absolute

minimum although larger minimums (e.g., 5 or 10) may be used to further mit-

igate disclosure risk” (https://studentprivacy.ed.gov/resources/

frequently-asked-questions-disclosure-avoidance). Based on

this language, EdX chose k = 5.
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The debate left unspoken and unexamined the core tenet of

QI-deidentification: that if every attribute is treated as a quasi-

identifier, then k-anonymity provides meaningful protection.

Our work is the first to directly challenge that tenet.

Motivation Why bother attacking QI-deidentification? Af-

ter all, the security and privacy research communities don’t put

much stock in these techniques. For example, it is well known

that contrived mechanisms can formally satisfy k-anonymity

but provide no protection. Even so, many policymakers and

practitioners are convinced that QI-deidentification is effec-

tive in the real world.

Our goal in this paper is to rebut the actual arguments that

QI-deidentification practioners use to justify its continued

use. We rebut three arguments that—until this work—have

gone unchallenged. First, that no attacks have been shown

against datasets deidentified by experts and in accordance

with strict privacy regulations, let alone simple attacks. Sec-

ond, that k-anonymity provides meaningful protection when

every attribute is a quasi-identifier. Third, that although QI-

deidentification doesn’t meet cryptographic standards of se-

curity, it suffices to meet the obligations in data protection

regulation. We briefly elaborate these three arguments next.

Rhetorically, trust in QI-deidentification hinges on the

wholesale dismissal of existing attacks as unconvincing. Prac-

titioners dismiss many attacked datasets as “improperly de-

identified” [6]. “Proper de-identification” must be done by a

“statistical expert” and in accordance with procedures out-

lined in regulation [12], the increasing availability of QI-

deidentification software notwithstanding. This argument has

proven very effective in policy spheres. Moreover, practition-

ers dismiss attacks carried out by privacy researchers because

they are privacy researchers. That these attacks are published

in “research based articles within the highly specialized field

of computer science” is used to argue that re-identification

requires a “highly skilled ‘expert’ ” and therefore is of little

concern [5].

Technically, trust in QI-deidentification hinges on an un-

spoken, unexamined tenet:

QI-deidentification’s tenet: If every attribute is

treated as quasi-identifying, then k-anonymity pro-

vides meaningful protection.

Treating every attribute as quasi-identifying defines away

one major critique of QI-deidentification—namely, that the

ex ante categorization of attributes as quasi-identifying or

not is untenable and reckless. Moreover, when all attributes

are quasi-identifying, the distinctions among k-anonymity, `-
diversity, and t-closeness collapse (Section 2.1). Prior attacks

against k-anonymity fail in this setting.

Legally, the use of QI-deidentification hinges on the gap be-

tween the protection required by regulation and the protection

desired by the academic research community. Practitioners

claim only that QI-deidentification meets regulatory standards,

not security researchers’ stringent standards. For example,

cryptographic security definitions typically make no assump-

tions about the techniques or auxiliary knowledge available to

an adversary. However, the European Union’s General Data

Protection Regulation (GDPR) restricts the adversary’s tech-

niques by protecting only against “means reasonably likely to

be used” by an attacker.2 Likewise, the United State’s Family

Educational Rights and Privacy Act (FERPA) restricts the

adversary’s knowledge by protecting only against an attacker

lacking “personal knowledge of the relevant circumstances.”3

Contributions We present three attacks on QI-

deidentification schemes: two theoretical attacks and

one real world reidentification attack. Together, these attacks

undermine the above justifications for the continued use of

QI-deidentification.

First, we introduce a new class of privacy attack called

downcoding, which recovers large fractions of the data hid-

den by QI-deidentification without any auxiliary knowledge.

In short, downcoding undoes hierarchical generalization. A

downcoding attack takes as input a dataset generalized and

recovers some fraction of the generalized data. We call this

downcoding as it corresponds to recoding records down a

generalization hierarchy.

We prove that every QI-deidentification scheme is vul-

nerable to downcoding attacks if it is minimal and hier-

archical. QI-deidentification is hierarchical if it works by

generalizing attributes according to a fixed hierarchy (e.g.,

city→country→continent). QI-deidentification is minimal if

no record is generalized more than necessary to achieve the

privacy requirement, in a weak, local sense. Our downcod-

ing attacks are powered by a simple observation: minimality

leaks information. Figures 1 and 2 give simple examples of

downcoding and of leakage from minimality, respectively.

Second, we convert our downcoding attacks into power-

ful predicate singling-out (PSO) attacks. PSO attacks were

recently proposed as a way to demonstrate that a privacy

mechanism fails to legally anonymize under the GDPR [2, 7].

We introduce a stronger type of PSO attack called com-

pound PSO attacks and prove that minimal hierarchical QI-

deidentification enables compound PSO attacks, greatly im-

proving over the prior work.

Our downcoding and PSO attacks are the first attacks on

QI-deidentification that work even when every attribute is a

quasi-identifier. As such, they apply to QI-deidentification

beyond k-anonymity, and refute the foundational tenet of QI-

deidentification.

Third, we used LinkedIn.com to reidentify 3 students in a

k-anonymized dataset published by Harvard and MIT from

their online learning platform EdX. Despite being “prop-

erly” k-anonymized by “statistical experts” in accordance

2GDPR, Article 4
334 CFR §99.3
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with FERPA, we show that thousands more students are po-

tentially vulnerable to reidentification and disclosure.

Not only do these attacks rebut the arguments described

above, they also show that QI-deidentification fails to sat-

isfy three properties of a worthwhile measure of privacy of a

computation, even without resorting to contrived mechanisms.

Namely, we show that QI-deidentification mechanisms used

in practice aren’t robust to post-processing, do not compose,

and rely on distributional assumptions on the data for their

security.

Organization Section 2 discusses related work. Section 3

introduces notation and defines k-anonymity, along with

hierarchical and minimal k-anonymity. Section 4 defines

downcoding attacks and proves that minimal hierarchical k-

anonymous mechanisms enable them. Section 5 defines com-

pound predicate singling-out attacks and proves that minimal

hierarchical k-anonymous mechanisms enable them. Section 6

describes the EdX dataset and shows that it is vulnerable to

reidentification. Section 7 concludes that our attacks rebut the

three core arguments that support the continued use of QI-

deidentification in practice. The appendix includes additional

details and proofs.

2 Related Work

Samarati and Sweeney proposed k-anonymity for statisti-

cal disclosure limitation in 1998 [25–27]. As new attacks

were discovered, k-anonymity gave rise to more refined QI-

deidentification techniques including `-diversity, t-closeness,

and many others (below).

Samarati was the first to study minimality for k-anonymity

[25]. Our downcoding attacks build on prior work on minimal-

ity attacks [8, 28]. These works demonstrate that minimality

can be used to infer sensitive attributes and violate `-diversity,

but not k-anonymity. They introduce two defenses against

their attacks. One is yet another refinement of k-anonymity

called m-confidentiality [28]. The second claims that cer-

tain anonymization algorithms offer protection for free (i.e.,

“methods which only inspect the QI attributes to determine

the [equivalence classes]”) [8]. In contrast, we use minimality

to downcode, a new attack that violates k-anonymity itself

and that defeats both defenses from prior work.

Predicate singling-out (PSO) attacks were recently intro-

duced in the context of data anonymization under Europe’s

General Data Protection Regulation (GDPR) [7]. They were

proposed as a mathematical test to show that a privacy mech-

anism fails to legally anonymize data under Europe’s General

Data Protection Regulation (GDPR) [2, 7]. The prior work

gives a simple but weak PSO attack against a large class of k-

anonymous mechanisms. We give much stronger PSO attacks

against a restricted class of k-anonymous mechanisms.

Prior work shows that k-anonymity does not compose: mul-

tiple k-anonymous datasets can completely violate privacy

when combined [13]. We show for the first time that compo-

sition failures can occur in real world uses of k-anonymity.

Differential privacy (DP) [11] presents one alternative to

QI-deidentification, especially DP synthetic data [16] or local

DP [10]. Switching to DP requires accepting that the resulting

data will not provide the one-to-one correspondence with un-

derlying records that makes QI-deidentification so attractive

to users and laypeople.

2.1 Syntactic de-identification beyond k-

anonymity

We reviewed the deidentification definitions included in the

most comprehensive survey we could find [14]. Our downcod-

ing attacks apply to any refinement of k-anonymity: namely,

any definition that collapses to k-anonymity when every at-

tribute is quasi-identifying. These include:

• k-anonymity and variants: km-, (α,k)-, p-sensitive-,

(k, p,q,r)-, and (ε,m)-anonymity

• `-diversity and variants: entropy-, recursive-, disclosure-

recursive, multi-attribute-, `+-, and (c, `)-diversity

• t-closeness and variant (n, t)-closeness

• m-invariance, m-confidentiality

Our downcoding attacks don’t apply to Anatomy (which

doesn’t generalize quasi-identifiers at all) or differential pri-

vacy (which eschews the quasi-identifier framework all to-

gether). We have not determined whether the following defi-

nitions – which bound some posterior probability given the

deidentified dataset – refine k-anonymity in the relevant sense:

δ-presence, ε-privacy, skyline privacy, (ρ1,ρ2)-privacy, (c,k)-
safety, and ρ-uncertainty.

We leave testing our downcoding attacks on actual dei-

dentification software packages for future work. Free to use

software packages include ARX Anonymization, µ-Argus,

sdcMicro, University of Texas Toolkit, Amnesia, Anonima-

tron, Python Mondrian. All but Python Mondrian implement

hierarchical algorithms. ARX Anonymization, sdcMicro, and

Amenesia offer some version of local recoding (footnote 5).

To the best of our knowledge, none guarantee minimality.

3 Preliminaries

3.1 Notation

Generally, fixed parameters are denoted by capital letters (e.g.,

number of dimensions D) and indices use the corresponding

lowercase letter (e.g., d = 1, . . . ,D). For a,b ∈ N, let [a,b] =
{a,a+1, . . . ,b} and [b] = [1,b].

U
D is a D-dimensional data universe, where U is the at-

tribute domain. For simplicity we take all attribute domains
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X =

ZIP Income COVID

91010 $125k Yes

91011 $105k No

91012 $80k No

20037 $50k No

20037 $20k No

20037 $25k Yes

Y =

ZIP Income COVID

9101? $75–150k ?
9101? $75–150k ?
9101? $75–150k ?
20037 $0–75k ?
20037 $0–75k ?
20037 $0–75k ?

Z =

ZIP Income COVID

91010 $125–150k ?
9101? $100–125k ?
9101? $75–150k ?
20037 $0–75k No

20037 $0–75k ?
20037 $25k Yes

Figure 1: An example of downcoding. Y is a minimal hierarchical 3-anonymized version of X (treating every attribute as part

of the quasi-identifier and leaving the generalization hierarchy implicit). Z is a downcoding of Y: it generalizes X and strictly

refines Y.

Old Rich

1 1

0 0

1 0

0 0

Old Rich

F1 F5

F2 F6

F3 0

F4 0

Old Rich

1 F7

0 0

1 F8

0 0

Figure 2: An example of minimality and inferences from

minimality. Attributes are binary and F= {0,1}. The middle

and right datasets are both minimal hierarchical 2-anonymous

versions of the left dataset with respect to Q = {Old, Rich}.

The right dataset is also globally optimal: it generalizes as

few attributes as possible. Minimality implies that every pair

of redacted entries in the same column in matching rows

must contain both a 0 and 1. Hence, {F1,F2}= {F3,F4}=
{F5,F6}= {F7,F8}= {0,1}, allowing downcoding. Only

one bit of information does not follow directly from minimal-

ity of the middle table: whether or not F1 =F5.

to be identical, though in reality they are usually distinct (e.g.,

the EdX dataset).

A record x = (x1, . . . ,xD) is an element of the data uni-

verse. A generalized record y, denoted (y1, . . . ,yD), is a sub-

set of the data universe specified by the Cartesian product

y1 × ·· · × yD, where yd ⊆ U for every d ∈ [D]. Note that

a record x naturally corresponds to the generalized record

({x1}, . . . ,{xD}), a singleton. We say y generalizes x if x ∈ y

(i.e., ∀d, xd ∈ yd). For example, y = (Female,1970–1975)
generalizes x = (Female,1972). For generalized records

z⊆ y, we say that y generalizes z and z refines y. If z ( y, the

generalization/refinement is strict.

A dataset X is an N-tuple of records (x1, . . . ,xN). X can

be viewed as a matrix with Xn,d the dth coordinate of xn. A

generalized dataset Y is an N-tuple of generalized records

(y1, . . . ,yN). For (generalized) datasets Y,Z, we write Z� Y

if zn ⊆ yn for all n. We extend the meaning of generalization

and refinement accordingly. We write Z≺Y when at least one

containment is strict. We call yn the record in Y corresponding

to zn, and vice-versa. Note that� is a partial order on datasets

of N records from a given data universe.4

4More generally, we could consider datasets whose rows are permuted rel-

3.2 k-anonymity

Formally, Y is k-anonymous if any individual row in the

release cannot be distinguished from k− 1 other individu-

als [26]. This requirement is typically parameterized by a

subset Q of the attribute domains Q ⊆ {Ud}d∈[D] called a

quasi-identifier. We denote by y(Q) the restriction of y to Q.

For Y = (y1, . . . ,yN), we denote by I(Y,y,Q), {n : yn(Q) =
y(Q)} the indices of records in Y that match y on Q (includ-

ing y itself). Let EA(Y,y,Q) = |I(Y,y,Q)|. This is called the

effective anonymity of y in Y with respect to Q.

Definition 3.1 (k-anonymity). For k ≥ 2, Y is k-anonymous

with respect to Q if for all y ∈ Y, EA(Y,y,Q)≥ k. An algo-

rithm M : X 7→ Y is k-anonymizer if for every X, Y←M(X)
is k-anonymous (anonymity) and generalizes X (correctness).

We omit Q when Q = U
D is the whole data universe.

A few remarks are in order. First, beyond correctness and

anonymity, k-anonymity places no restriction on the output

Y. Second, the term quasi-identifier is inconsistently defined

in the literature. Our definition of a quasi-identifier as the

collection of multiple attributes is from Sweeney [27]. Quasi-

identifier is commonly used to refer to one of the constituent

attributes—including by the authors of the EdX dataset [19].

So each [27]-quasi-identifier consists of multiple [19]-quasi-

identifers. We adopt the quasi-identifier-as-a-set definition

because it simplifies the discussion of the EdX dataset in

Section 6. The distinction disappears in Sections 4 and 5: our

downcoding and PSO attacks work even when every attribute

is part of the quasi-identifier (i.e., Q = U
D).

3.2.1 Hierarchical k-anonymity

It is easy to contrive k-anonymizers that reveal X completely.

Directing our attention to more natural and widespread mech-

anisms, we focus on hierarchical k-anonymizers.

ative to one another. Define Z�Y if there exists a permutation π : [N]→ [N]
such that zn ⊆ yπ(n) for all n, choosing some canonical π arbitrarily if more

than one exists. Then � is a partial order over equivalence classes of datasets

induced by Y∼Y′ ⇐⇒ ∃π ∀n yn = y′π(n). We omit this additional complex-

ity for clarity. We believe all our results would hold, mutatis mutandis.
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A common way of k-anonymizing data is to generalize

an attribute domain U according to a data-independent gen-

eralization hierarchy H which specifies how a given at-

tribute may be recoded.5 Many natural ways of general-

izing data fits this mold: using nesting geographies (e.g.,

city→state→country); dropping digits of postal codes (e.g.,

91011→ 9101?→ 910??); grouping ages into ranges of 5,

10, 25, or 50 years; suppressing attributes or whole records

altogether; and the techniques used to create the EdX dataset.

Formally, a generalization hierarchy H defines a structured

collection of permissible subsets y of an attribute domain U

(Figure 5). H is a rooted tree labelled by subsets of U, where

the subsets on any level of H form a partition of U and the

partition on every level is a strict refinement of the partition

above. The label of the root is U itself, and the leaves are

all labelled with singletons {x}. Identifying H with the set

of all its labels, we write y ∈ H if there is some node in H

labelled by y. We extend the hierarchy H to the data universe

U
D coordinate-wise, writing y ∈HD if yd ∈H for all d ∈ [D].

Definition 3.2 (Hierarchical k-anonymity). Y respects H if

y ∈ HD for all y ∈ Y. An algorithm M : (X,H) 7→ Y is a

hierarchical k-anonymizer if for all X and all hierarchies H,

MH : X 7→ M(X,H) is a k-anonymizer and its output Y =
M(X,H) respects H.

Observe that one can always implement hierarchical k-

anonymity by simply outputting N copies of U
D. But a pri-

vacy technique that completely destroys the data is not useful,

which leads us to consider data quality.

We consider minimal mechanisms [25]. A mechanism is

minimal if no record is generalized more than necessary to

achieve the privacy requirement (in a local way). For example,

suppose a k-anonymous Y contains a location attribute. If

there is a subset of records whose location “USA” can be

changed to “California” without violating k-anonymity, then

the mechanism that produced Y would not be minimal. Anoter

example is given in Figure 2. We call this property minimality

because it is equivalent to requiring minimality with respect

to the partial ordering�. Unlike global optimality, minimality

is computationally tractable.

Definition 3.3 (Hierarchical minimality). M : (X,H) 7→ Y is

minimal if Y is always minimal in the set of all H-respecting,

k-anonymous Y that generalize X, partially ordered by �.

That is, for all strict refinements Z ≺ Y, either: (a) Z is not

k-anonymous, (b) Z does not respect H, or (c) Z does not

generalize X.

5 Hierarchical algorithms differ on whether they use local recoding or

global recoding. Using local recoding, attributes in different records can be

generalized to different levels of the hierarchy. Using global recoding, all

records must use the same level in the hierarchy for any given attribute. We

consider local recoding which produces higher quality datasets in general.

4 Downcoding attacks on syntactic privacy

techniques

We study a new class of attacks on hierarchical k-anonymity

called downcoding attacks and prove that all minimal hi-

erarchical k-anonymizers are vulnerable to downcoding at-

tacks. Our downcoding attacks are powerful yet computation-

ally straightforward. The attacks apply as is to `-diversity,

t-closeness, and the many QI-deidentification techniques in

Section 2.1. They demonstrate that even when every attribute

is treated as a quasi-identifier, any privacy offered by QI-

deidentification depends on unstated distributional assump-

tions about the dataset.

4.1 Overview

In short, downcoding undoes hierarchical generalization. A

downcoding attack takes as input a dataset generalized and

recovers some fraction of the generalized data. We call this

downcoding as it corresponds to recoding records down a

generalization hierarchy. Our downcoding attacks are pow-

ered by a simple observation: minimality leaks information.

Figures 1 and 2 give simple examples of downcoding and of

leakage from minimality, respectively.

We prove that there exist data distributions and hierarchies

such that every minimal hierarchical k-anonymizer is vulner-

able to downcoding attacks. Hence any privacy provided by

QI-deidentification is subject to distributional assumptions.

The downcoding attack adversary A gets as input a QI-

deidentified dataset Y which is the output of an unknown

mechanism M on an unknown dataset X. A also knows any-

thing published with Y, namely N, k, and the hierarchy H.

(Without H data users would be unable to interpret Y.) Finally

we also allow the adversary to depend on the data distribution

U . One interpretation is that the security that a mechanism

affords against downcoding attacks depends on limiting the

attacker’s knowledge, which is not good security practice.

Moreover, in many settings U can be efficiently learned from

an independent sample X′.
Formally, we construct a distribution U over ω(logn) at-

tributes and a generalization hierarchy H such that every min-

imal hierarchical algorithm enables downcoding attacks on

datasets drawn i.i.d. from U . Our first attack uses a natural

data distribution (i.e., clustered heteroskedastic data in Sec-

tion 4.4) and a tree-based hierarchy, and allows an attacker

to completely recover a constant fraction of the deidentified

records with high probability. Our second attack uses a less

natural data distribution and hierarchy, and allows an attacker

to recover 3/8ths of every record with 99% probability.

Even with the assumptions on M and the knowledge of A,

our attacks are far more general that typical attacks against

QI-deidentification. For example, the attacks that motivated

t-closeness as a refinement of `-diversity don’t even apply to

a single well-defined mechanism [17]. They show only that it
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is possible for a mechanism to produce `-diverse outputs that

are vulnerable. In contrast, we show attacks on a large and

well-defined class of mechanisms. Moreover, our attacks work

against all QI-deidentification definitions simultaneously, not

any one alone.

4.2 Definition

Let Y be a k-anonymous version of a dataset X with respect

to generalization hierarchy H. A downcoding attack takes Y

as input and outputs a strict refinement Z of Y that simultane-

ously respects H and generalizes X.

Definition 4.1 (Downcoding attack). Let Y be a hierarchical

k-anonymous generalization of a (secret) dataset X with re-

spect to some hierarchy H. Z is a downcoding of Y if X� Z,

Z≺ Y, and Z ∈ H.

Observation 4.1. If Y is minimal and Z is a downcoding of

Y, then Z violates k-anonymity.

We consider three measures of an attack’s strength: How

many records are refined? How much are records refined?

How often records refined? Recall that if Z≺Y, then zn ⊆ yn

for all n and zn ( yn for at least one n.

∆N : How many records are refined? For ∆N ∈ N, we write

Z ≺∆N
Y if there exist at least ∆N distinct n for which

zn ( yn. That is, Z strictly refines at least ∆N records in

Y. An attacker prefers larger ∆N .

∆D: How much are the records refined? For ∆D ∈ N, we

write z (∆D
y if there exist at least ∆D distinct d for which

zd ( yd . We write Z ≺∆D
Y if zn ( yn =⇒ zn (∆D

yn.
That is, either zn = yn or it zn strictly refines yn along at

least ∆D dimensions. An attacker prefers larger ∆D.

k:6 How often are records refined? Consider the probability

experiment X∼UN , Y←M(X,H), and Z←A(Y) where

U is a distribution over data records, M is a k-anonymizer,

and A is a downcoding adversary. k(∆N ,∆D) ∈ [0,1] is

the probability that Z downcodes with parameters at least

∆N and ∆D. For any fixed ∆N and ∆D, an attacker prefers

larger k.

4.3 Minimal k-anonymizers enable downcod-

ing attacks

Downcoding may seem impossible: How can one strictly

refine Y using only the information contained in Y itself?

Our attacks leverage minimality. The mere fact that Y is a

minimal hierarchical generalization of X reveals more infor-

mation about X that we use for strong downcoding attacks.

See Figure 2 for a simple example.

A general-purpose hierarchical k-anonymizer M works for

every generalization hierarchy H. Our theorems state that

6k is pronounced “dah-let” and is the fourth letter of the Hebrew alphabet.

there exist data distributions U and corresponding hierarchies

H such that every minimal hierarchical k-anonymizer M is

vulnerable to downcoding. By Observation 4.1, these attacks

defeat the k-anonymity of M.

Theorem 4.2. For all k ≥ 2, D = ω(logN), there exists

a distribution U over RD, and a generalization hierarchy

H such that all minimal hierarchical k-anonymizers M en-

able downcoding attacks with ∆N = Ω(N), ∆D = 3D/8, and

k(Ω(N),3D/8)> 1−negl(N).

Theorem 4.3. For all constants k ≥ 2, α > 0, D = ω(logN),
and T = dN2/αe, there exists a distribution U over U

D =
[0,T ]D, and a generalization hierarchy H such that all min-

imal hierarchical k-anonymizers M enable downcoding at-

tacks with ∆N = N, ∆D = D, and k(N,D)> 1−α. The attack

also works for k = N and D = ω(N logN).

Each of the theorems has some advantages over the other.

The attacker in Theorem 4.3 manages to recover every at-

tribute of every record x ∈ X except with probability α. How-

ever the parameters of the construction depend polynomially

on 1/α. Theorem 4.2 removes this dependency, at the expense

of attacking only a constant fraction of records and attributes—

still a serious failure of k-anonymity. The more significant

advantage of Theorem 4.2 is that the data distribution and

generalization hierarchy are both very natural (Example B.2).

In contrast, the distribution and hierarchy in the proof of The-

orem 4.3 are more contrived.

Full proofs of both Theorems 4.2 and 4.3 are in Ap-

pendix B. Both proofs follow the same structure at a very high

level. We prove a structural result on minimal, hierarchical

k-anonymous mechanisms for a specially constructed hierar-

chy H (Claims B.1 and B.3). This structural result states that

if X satisfies certain conditions then Y must take a restricted

form which allows the downcoding adversary to construct

Z. To prove the theorem, we construct a data distribution U

such that random X ∼UN will satisfy the conditions of the

structural result with probability close to 1.

4.4 Example: Clustered Gaussians

The proof of Theorem 4.2 shows that distributions satisfy-

ing certain properties are vulnerable to downcoding attacks.

Example B.2 describes a family of clustered Gaussian distri-

butions that satisfy those properties. Here we give an instanti-

ation of this family of distributions for k = 10 and describe

the corresponding hierarchy and downcoding adversary.

We sample N = 100 records x i.i.d. as follows. Pick

size = big with probability 1/10, and size = sml otherwise.

Pick a cluster t ∈ {1, . . . ,10} uniformly at random. Sample

each attribute of x i.i.d. from the cluster centered at ct = 130t

depending on size: If size= sml sample from N(ct ,1) distri-

bution. If size= big sample from the N(ct ,100).
The hierarchy H consists of the interval [A1,A11) subdi-

vided into intervals [At ,At+1). As depicted in Figure 3, each
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[At ,At+1) is further subdivided into [Bt ,Dt) and its comple-

ment [At ,Bt)∪ [Dt ,At+1). The key property is that half of the

mass of N(0,100) lies in the corresponding interval [Bt ,Dt).
For the above parameters: At = ct − 65, Bt = ct − 6.6, and

Dt = ct +6.6.

The adversary A is described in Algorithm 1. It takes as

input Y, k, and a description of H. It looks at each group of

generalized records Ŷt of the output. If the number of records

in Ŷt is not k, then the whole group of records is copied to the

output Z unchanged (i.e., no downcoding on these records). If

Ŷt has exactly k records, then by k-anonymity these records

are all identical copies of some yt . Some of yt ’s entries may be

aggregated to [At ,At+1). If it’s many more or many less than

half the entries, then the whole group of records is copied

to the output Z unchanged (i.e., no downcoding on these

records). Otherwise, the k records in Ŷt all get downcoded as

described in the algorithm.

It follows from Example B.2 that for k= 10, the distribution

described above, and Y produced by any minimal hierarchical

k-anonymizer, A will downcode a constant fraction of the

records in Y (with constant probability).

Algorithm 1: Adversary A for the example in Sec-

tion 4.4 (see also Fig. 3).

Data: Y, k

Result: Z

for cluster t = 1, . . . ,T do

Let Ŷt be the records with an entry in [At ,At+1);

if |Ŷt | 6= k then

Copy every y ∈ Ŷt into Z;

continue;

/* Ŷt is k exact copies of some yt */

bigt ←{d : yt
d = [At ,At+1]};

bt ← |bigt |;
if |bt −D/2|> D/8 then

Write k copies of yt to Z;

else

Write k−1 copies of [Bt ,Dt ] to Z;

Write zt to Z, where

zt
d =

{
[Bt ,Dt) d 6∈ bigt

[At ,Bt)∪ [Di,Ai+1) d ∈ bigt

5 Predicate singling-out attacks on syntactic

privacy techniques

Our downcoding attacks yield powerful predicate singling-

out (PSO) attacks against minimal hierarchical k-anonymous

mechanisms. PSO attacks were recently proposed as a

way to demonstrate that a privacy mechanism fails to

legally anonymize under Europe’s General Data Protection

Regulation [2, 7]. Our new attacks undermine the use k-

anonymity and other QI-deidentification techniques for GDPR

compliance, challenging prevailing European guidance on

anonymization [23].

In this section, we recall the prior work on PSO attacks

and define a generalization called compound PSO attacks.

We prove that minimal hierarchical k-anonymizers enable

compound PSO attacks.

5.1 Background on PSO attacks

Predicate singling-out attacks were recently introduced by

Cohen and Nissim in the context of data anonymization under

Europe’s General Data Protection Regulation (GDPR) [7].

They were proposed as a mathematical test to show that a

privacy mechanism fails to legally anonymize data under

GDPR [2, 7]. A mechanism M legally anonymizes under

GDPR if it suffices to transform regulated personal data into

unregulated anonymous data. That is, if M(X) is free from

GDPR regulation regardless of what X is. If a mechanism

enables PSO attacks, then it does not legally anonymize under

GDPR [2].

Informally, M enables PSO attacks if given M(X), an ad-

versary is able to learn an extremely specific description ψ
of a single record in X. Because ψ is so specific, it not only

distinguishes the victim in the dataset X, but likely also in

the greater population. Hence PSO attacks can be a stepping

stone to more blatant attacks.

Formally, we consider a dataset X = (x1, . . . ,xn) sampled

i.i.d. from distribution U over universe U
D. The PSO ad-

versary A is a non-uniform probabilistic Turing machine

which takes as input M(X) and produces as output a pred-

icate ψ : U
D → {0,1}. ψ isolates a record in a dataset X

if there exists a unique x ∈ X such that ψ(x) = 1. Equiva-

lently, if ψ(X) = ∑x∈X ψ(x)/n = 1/n. The strength of a PSO

attack is related to the weight of the predicate ψ output by

A: ψ(U) , E(ψ(x)) for x ∼U . We simplify the definitions

from [7] to their strongest setting: where ψ(U)< negl(n).

To perform a PSO attack, A outputs a single negligible-

weight predicate ψ that isolates a record x ∈ X with non-

negligible probability.

Definition 5.1 (Predicate singling-out attacks (simplified)

[7]). M enables predicate singling-out (PSO) attacks if there

exists U , A, and β(n) non-negligible such that

Pr
X←Un

ψ←A(M(X))

[ψ(X) = 1/n∧ψ(U)< negl(n)]≥ β(n).

Cohen and Nissim give a simple PSO attack against a

large class of k-anonymizers which they call bounded. A k-

anonymizer is bounded if there is some maximum kmax such

that for all X, the effective anonymity of every row of Y is at
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Algorithm 2: Compound-PSO adversary for the ex-

ample in Section 4.4 (compare with Alg. 1).

Data: Y, k

Result: Ψ
for cluster t = 1, . . . ,T do

Let Ŷt be the records with an entry in [At ,At+1);

if |Ŷt | 6= k then

continue;

bigt ←{d : yt
d = [At ,At+1]};

bt ← |bigt |;
if |bt −D/2|> D/8 then

continue;

else

Ψ←Ψ∪{matches(zt)}, where

zt
d =

{
[Bt ,Dt) d 6∈ bigt

[At ,Bt)∪ [Di,Ai+1) d ∈ bigt

to make the data public to enable outside research but con-

sidered it protected by the Family Educational Rights and

Privacy Act (FERPA), a data privacy law restricting the dis-

closure of certain educational records [19]. “To meet these

privacy specifications, the HarvardX and MITx research team

(guided by the general counsel, for the two institutions) opted

for a k-anonymization framework” [3]. A value of k = 5 “was

chosen to allow legal sharing of the data” in accordance with

FERPA. Ultimately, EdX published the 5-anonymized dataset

with 476,532 students’ records.

We show that thousands of these students are potentially

vulnerable to reidentification. As a proof of concept, we rei-

dentified 3 students out of 135 students for whom we searched

for matching users on LinkedIn. Each of the reidentified users

failed to complete at least one course in which they were

enrolled, a private fact disclosed by the reidentification attack.

The limiting factor of this attack was not the privacy pro-

tection offered by k-anonymity itself, but the fact that many

records in the raw dataset were missing demographic vari-

ables altogether. In order to boost the confidence of our attack,

we restricted our attention to unambiguously unique records.

To demonstrate the possibility of attribute disclosure, we fur-

ther restricted our attention to students that had enrolled in,

but failed to complete, a course on EdX.

6.1 The Harvard-MIT EdX Dataset

Xed has 476,532 rows, one per student.7 Each row contains

the student’s basic demographic information, and information

7The dataset as published was such that each row represented a student-

course pair, with a separate row for each course in which a student enrolled.

Records corresponding to the same student shared a common UID. Xed as

described above is the result of aggregating the information by UID. See the

appendix for additional background on the EdX dataset.

about the student’s activities and outcomes in each of 16 of

the 17 EdX courses.

The demographics included self-reported level of educa-

tion, gender, and year of birth, along with a country inferred

from the student’s IP address. Many students chose not to

report level of education, gender, and year of birth at all, so

these columns are missing many entries. For each course, Xed

indicates whether the student enrolled in the course, their final

grade, and whether they earned a certificate of completion.

Xed also includes information about students’ activities in

courses including how many forum posts they made.

Xed was 5-anonymized with respect to 17 overlapping

quasi-identifiers separately: Q1, . . . ,Q16, and Q∗ defined next.

Recall that each quasi-identifier is a subset of attributes, not a

single attribute (Def. 3.1).

• Qi = {gender, year of birth, country, enrolled in course i,

number of forum posts in course i}

• Q∗ = {enrolled in course 1, . . . , enrolled in course 16}.

Anonymization was done hierarchically. First, locations were

globally coarsened to countries or continents. Then other

attributes or whole records were suppressed as needed.

6.2 Uniques in the EdX dataset

Table 1 summarizes the results of all analyses described in

this section. Let Qall = Q∗ ∪Q1 ∪ ·· · ∪Q16. Xed is very far

from 5-anonymous with respect to Qall. We find that 7.1% of

students (33,925 students) in Xed are unique with respect to

Qall and 15.3% have effective anonymity less than 5.

Despite EdX’s goals, Xed was not even 5-anonymous with

respect to Q∗: 245 students were unique and 753 had effective

anonymity less than 5! We suspect this blunder is due to k-

anonymity’s fragility with respect to post-processing. The raw

data was first 5-anonymized with respect to Q∗ and afterwards

with respect to Q1, . . . ,Q16. Some rows in the dataset were

deleted in the latter stage, ruining 5-anonymity for Q∗.
We emphasize that the creators of the EdX dataset never in-

tended or claimed to provide 5-anonymity with respect to Qall.

But they admit that each of the attributes in Qall is potentially

public. In our view, the union of quasi-identifiers should also

be considered a quasi-identifier and any exception should be

justified. No justification is given.

6.2.1 Unambiguous uniques in the EdX dataset

A naive interpretation of the 7.1% unique students is that an

attacker who knows Qall would be able to definitively learn

the grades of 7.1% of the students. But there is a major source

of ambiguity: missing information. Gender, year of birth, and

level of education were voluntarily self-reported by students.

Many students chose not to provide this information: 14.9%

of students records are missing at least one of these attributes.

It is missing in the raw data, not just the published data. Thus,
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EA EAamb

Aux info = 1 < 5 = 1 < 5

Q∗ 245 753 245 753

Qall 33,925 73,136 9,125 22,491

Qposts 120 216 120 216

(1.7%) (3.0%) (1.7%) (3.0%)

Qacq 31,797 69,543 7,108 19,203

Qacq+ 41,666 98,201 7,512 20,402

Qresume 5,542 10,939 732 2,310

(34.2%) (67.4%) (4.5%) (14.2%)

Table 1: Number of students by effective anonymity (EA)

or ambiguous effective anonymity (EAamb) with respect to

various choices of attacker auxiliary information (Q∗, Qall,

etc.), as described in this section. Numbers in parentheses

are the value as a percentage of the relevant subset of the

full dataset: for Qposts, the 7,251 students with at least one

forum post; for Qresume, the 16,224 students with at least one

certificate. EA= EAamb for Q∗, Qposts.

a female Italian born in 1986 might appear in the dataset with

any or all three attributes missing.

This makes the 7.1% result difficult to interpret. From an

inferential standpoint, the relevant question is not how many

students have unique quasi-identifiers, but how many are un-

ambiguously unique. We compute the ambiguous effective

anonymity EAamb (defined in App. A.1) of each record by

treating any missing attribute values as the set of all possible

values for that attribute. This number may be much lower than

7.1%. We stress that this ambiguity comes from missing data,

not from k-anonymity.

We find that 1.9% of students (9,125 students) are unam-

biguously unique with respect to Qall and 4.7% have ambigu-

ous effective anonymity less than 5. Over 9,000 students are

unambiguously identifiable in the dataset to anybody who

knows all the quasi-identifiers, without knowing whether the

students chose to self-report their gender, year of birth, or

level of education. This allows an attacker to draw meaning-

ful inferences about them.

6.2.2 Limiting the attacker’s knowledge

Students in the EdX dataset are vulnerable to reidentification

by adversaries who have much less auxiliary information than

Qall. We consider the (ambiguous) effective anonymity for

three attackers who could plausibly reidentify students in the

EdX dataset: a prospective employer, a casual acquaintance,

and an EdX classmate. The results are summarized in Table 1.

In Section 6.3, we carry out the prospective employer attack

using LinkedIn. This demonstrates that some students in the

EdX dataset can be reidentified by anybody.

Prospective employer Consider a prospective employer

who is interested in discovering whether a job applicant failed

an EdX course. An applicant is likely to list EdX certificates

on their resume. The employer very likely knows Qresume =
{gender, year of birth, location, level of education, certificates

earned in courses 1–16}. Qresume only includes those certifi-

cates actually earned, but omits courses in which a student

enrolled but did not earn a certificate.

5,546 students in Xed have effective anonymity 1 with

respect to Qresume, and 10,942 have effective anonymity less

than 5. These numbers may seem small, but they constitute

34.2% and 67.4% of the 16,224 students in the dataset that

earned any certificates whatsoever. Moreover, 732 students

are unambiguously unique—333 of whom failed at least one

course, and 38 of whom failed three or more courses. Thus,

2.1% of students (333 students) who earned certificates of

completion failed at least one course and have unambiguous

effective anonymity 1 with respect to Qresume.

Casual acquaintance Casual acquaintances might, in the

course of normal conversation, discuss their experiences on

EdX. They would likely discuss which courses they took,

and would naturally know each other’s ages, genders, and

locations. So acquaintances know Qacq ={gender, year of

birth, location, enrollment in courses 1–16} ⊆ Qall. 6.7% of

students in Xed have effective anonymity 1 with respect to

Qacq, and 14.6% have effective anonymity less than 5.

Moreover, acquaintances typically know each other’s level

of education too, even though this is not included in Qall.

If we augment the acquaintance’s knowledge with level of

education Qacq+ = Qacq∪{education}, then things become

even worse. 8.7% students in Xed have effective anonymity 1

with respect to Qacq+, and 20.6% have effective anonymity

less than 5.

EdX classmate Each EdX course had an online forum for

student discussions. Because these posts were public to all

students enrolled in a given course, the number of forum posts

made by any user was deemed publicly available information.

But ignoring composition, EdX did not consider the combina-

tion of forum post counts made by a user across courses.

Consider an attacker who knows Qposts ={number of fo-

rum posts in courses 1–16} ⊆ Qall. 120 students in Xed are

unambiguously unique with respect to Qposts, and 216 have

ambiguous effective anonymity less than 5. These numbers

may seem minute, but they constitute 1.7% and 3.0% of the

7251 students in the dataset that made any forum posts whatso-

ever. Effective anonymity and ambiguous effective anonymity

are always the same for this attacker because Qposts excludes

the demographic columns that are missing many entries.

Who knows Qposts? 20 students in the dataset itself en-

rolled in all 16 courses and could have compiled forum post

counts across all courses for all other EdX students. To any

one of these 20 students the 120 students with distinguishing
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forum posts are uniquely identifiable. Such an attacker can

then learn these 120 students ages, genders, level of educa-

tions, locations, and their grades in the class.

In fact, each of the 120 vulnerable students can be unam-

biguously uniquely distinguished by 23–70 classmates; 60

students by 40–49 classmates each. This enables more class-

mates to act as attackers than just the 20 who took all courses.

This is because distinguishing a student using forum posts

doesn’t require being enrolled in all 16 courses. For each of

the 120 vulnerable students, we find which subsets of their fo-

rum posts suffices to distinguish them. This analysis amounts

to checking whether these students remain unambiguously

unique if some subset of their forum post counts are redacted.

6.3 Reidentifying EdX students on LinkedIn

On LinkedIn.com, people show off the courses they com-

pleted. They may be unwittingly revealing which courses

they gave up on. 2.1% of students who earned certificates of

completion (333 students) failed at least one course and have

unambiguous effective anonymity 1 with respect to Qresume.

We reidentified three of these 333 students, with a rough

confidence estimate of 90–95%.

6.3.1 Method

People routinely post Qresume on LinkedIn where it is easily

searchable and accessible for a small fee. We paid $119.95 for

a 1 month Recruiter Lite subscription to LinkedIn. Recruiter

Lite provides access to limited search tools along with the

ability to view profiles in one’s “extended network”: 3rd de-

gree connections to the account holder on the LinkedIn social

network. It is also possible to view public profiles outside

one’s extended network with a direct link, for example from a

Google search. A real attacker could build a larger extended

network or pay for a more powerful Recruiter account.

We performed the attack as follows. We restricted our atten-

tion to 135 students in Xed who were unambiguously unique

using only certificates earned plus at most one of gender, year

of birth, and location, and who also had no missing demo-

graphic attributes. We manually searched for LinkedIn users

that listed matching course certificates on their profile by

searching for course numbers (e.g., "HarvardX/CS50x/2012").

We attempted to access the profiles for the resulting users,

whether they were in our extended network or by searching

on Google. If successful, we checked whether the LinkedIn

user lists exactly the same certificates as the EdX student,

and whether the demographic information on LinkedIn was

consistent with the EdX student. If everything matched, we

consider this a reidentification.

6.3.2 Results

We reidentified 3 of the attempted 135 EdX students, each of

whom registered for but failed to complete an EdX course.

Two were unambiguously unique using only certificates of

completion. In each case, the EdX student’s gender matched

the LinkedIn user’s presenting gender based on profile picture

and name. In each case, the LinkedIn user’s highest completed

degree in 2013 matched the EdX student’s listed level of

education.

1. Student 1’s EdX record lists location `1 and year of birth as

y1. The matching LinkedIn user began a bachelors degree

in year y1 +20 and was employed in country `1 in 2013.

2. Student 2’s EdX record lists location `2 and year of birth as

y2. The matching LinkedIn user began a bachelors degree

in year y1 +18 and was in country `2 for at part of 2013.

3. Student 3’s EdX record lists location `3 and year of birth

as y3. The matching LinkedIn user graduated high school

in year y3 +19, attended high school and currently works

in country `3. In 2013 the LinkedIn user was employed by

an international firm with offices in `3 and other countries.

6.3.3 Confidence

We cannot know for sure whether our purported reidentifica-

tions on LinkedIn are correct because were instructed by our

IRB not to contact the reidentified EdX students.

In this section, we estimate that our reidentifications are

correct with 90–95% confidence. Moreover, an error is most

likely a result of our imperfect ability to corroborate location

and year of birth on LinkedIn, not a result of the protection

afforded by k-anonymity. Our analysis is necessarily very

rough. A precise error analysis is impossible. We omit details

to avoid imparting any other impression.

We consider two main sources of uncertainty. First is the

limited information available on LinkedIn profiles, especially

age and location. We inferred a range of possible ages by ex-

trapolating from educational milestones. We inferred a set of

possible locations based on listed activities around 2013. Both

methods are imperfect. The locations in EdX were inferred

from IP address and are likely imperfect. LinkedIn users or

EdX students can report their attributes inconsistently. Note

that they cannot lie about earning EdX certificates: this data

comes from EdX itself and the LinkedIn certificates are dig-

itally signed and cryptographically verifiable.8 We estimate

the probability of error on at least one attribute inferred from

LinkedIn is on the order of 5–10%.

The second source of error is suppressed student records.

Of the 597,692 students enrolled in EdX courses over the

relevant period, only 476,532 appear in the published dataset.

121,160 students (20.3%) are completely suppressed. We

matched students xedx in EdX with users on LinkedIn xli using

Qresume = {gender, year of birth, location, level of education,

certificates earned in courses 1–16} as well as we could. An

8An example certificate is available here: https://verify.edx.

org/cert/26121b8dec124bc094d324f51b70e506. Instructions for

verifying the signature are here: https://verify.edx.org/cert/

26121b8dec124bc094d324f51b70e506/verify.html
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error will occur if a suppressed student x′edx is the true match

for the LinkedIn user. For this to happen, x′edx and xedx must

agree on Qall. If xedx is unique in the complete dataset, no

error occurs.

We do a back of the envelope calculation of the chance

of error from record suppression under two simplifying as-

sumptions. First, that random student records are suppressed.9

Second, that the number of certificates of completion that a

user earns is statistically independent of their other attributes

(assuming they registered for enough courses). We compute

99.5%-confidence upper bounds for two parameters: the prob-

ability p that a random EdX student matches our reidentified

EdX student; the probability q that a random EdX student

earns the same number of certificates as our reidentified EdX

student. 121,160·pq is a very coarse estimate of the proba-

bility that a supressed student record causes an error. For the

three students we reidentified, this comes out to 0.1–1%.

A much less likely source of error is suppression of individ-

ual courses from a student’s record. Such an error will occur

if some courses for the purported match xedx were suppressed,

and there is some other EdX student x′edx that is the true match

for the LinkedIn user xli. This requires course suppression in

xedx and also x′edx (because xedx was unambiguously unique

on Qresume in the published EdX data). All in all, we consider

course suppression to be a much less likely source of error

than student suppression or imperfect attribute inference on

LinkedIn.

6.4 EdX was “properly” deidentified

El Emam, et al., criticize prior reidentification studies as using

data that were “improperly deidentified” because they did not

“follow[] existing standards” [12]. They thus conclude that

there is no convincing evidence of real-world failure of QI-

deidentification techniques in a regulated context.

In contrast, the EdX dataset incontrovertibly followed ex-

isting standards. FERPA is the relevant regulation. It requires

the published information to not enable identification of any

student with reasonable certainty. The EdX dataset was specif-

ically created to comply with FERPA, following Department

of Education guidance and overseen by general council for

Harvard and MIT [3].

Moreover, the EdX dataset arguably followed the HIPAA

Expert Determination–the standard used by El Emam, et al.

The Expert Determination standard requires three things:10

(1) Deidentification be performed by “a person with appropri-

ate knowledge . . . and experience”. (2) The person determines

9There are more sophisticated techniques for estimating the probability

of error under this assumption [24]. But in EdX omitted records are “outliers

and highly active users because these users are more likely to be

unique and therefore easy to re-identify” [19]. As such, using the more

sophisticated techniques would not give more meaning to our very coarse

estimates.
10https://www.hhs.gov/hipaa/for-professionals/privacy/

special-topics/de-identification/index.html

that the risk of reidentification is “very small”. (3) The person

“documents the methods and results of the analysis that justify

such determination.” The creation of the EdX data was over-

seen by Harvard professors in computer science and statistics

with specific expertise in privacy and inference. They find

a “low probability that the dataset will be re-identified” and

their methods and analysis are well-documented [19]. The

main deviation from the Expert Determination standard is the

difference between “very small” and “low” reidentification

risk.

7 Conclusions

In short, we show that k-anonymity – and QI-deidentification

generally – fails on its own terms. Our attacks rebut three pri-

mary arguments that QI-deidentification’s practioners make

to justify its continued use. First, we reidentify individuals

in EdX dataset; it was “properly de-identified” by a “statis-

tical experts” and in accordance with procedures outlined in

regulation, meeting the high bar set by El Emam, et al. [12].

Second, our downcoding attacks demonstrate that even if ev-

ery attribute is treated as quasi-identifying, k-anonymity and

its refinements may provide no protection. Ours are the first

attacks in either of these two settings. Third, our attacks also

undermine the claim that QI-deidentification meets regula-

tory standards for deidentification. The compound PSO and

reidentification attacks challenge k-anonymity’s status under

GDPR and FERPA respectively.

Moreover, our attacks show that QI-deidentification vio-

lates three properties of a worthwhile privacy notion, even in

practice. Namely, avoiding distributional assumptions, robust-

ness against post-processing, and smooth degradation under

composition. We expand on these next.

Downcoding attacks prove that whatever privacy is pro-

vided by QI-deidentification crucially depends on unstated

assumptions on the data distribution. One possible pushback

is that our downcoding attacks use specially constructed dis-

tributions and hierarchies, not naturally occurring ones. But

even a contrived counterexample proves that there is some

unnoticed distributional assumption that is critical for security.

Moreover, the distributions and hierarchies in Theorem 4.2

are not so unnatural when considering that data are made,

not found (to quote danah boyd). Say an analyst wants to k-

anonymize a high dimensional dataset. One natural approach

is to find a low-dimensional projection with clusters of about

k rows each, and then construct the generalization hierarchy

over this representation. The result could easily satisfy condi-

tions that enable our downcoding attack or a direct extension.

Robustness against post-processing requires that further

processing of the output, without access to the data, should not

diminish privacy. Downcoding proves that QI-deidentification

is not robust to post-processing. Our attacks recover specific

secret information about a large fraction of a dataset’s entries

with probability close to 1. Also, the EdX dataset also proves
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that k-anonymity is not robust to post-processing for purely

syntactic reasons. The result of removing rows from a k-

anonymous dataset may not satisfy k-anonymity as defined.

We see this in the EdX data: it is not in fact 5-anonymous

with respect to quasi-identifier Q∗ (courses), despite claims

otherwise. This fragility to post-processing is not so much a

privacy failure as a syntactic weakness of the definition itself.

Smooth degradation under composition requires that a com-

bination of two or more private applications mechanisms

should also be private, albeit with worse parameters. The EdX

dataset proves that QI-deidentification is not robust to compo-

sition, even when done by experts in accordance with strict

privacy regulations. Ganta et al. present theoretical composi-

tion attacks, showing that if the same dataset is k-anonymized

with different quasi-identifiers the original data can be recov-

ered [13]. With the EdX dataset the possibility became reality.

To the best of our knowledge, this is the first example of such

a failure in practice.

The most important open question raised by this work is to

characterize the power of downcoding attacks. What proper-

ties of a data distribution and generalization hierarchy enable

downcoding? Is vulnerability to downcoding testable? In what

settings is downcoding provably impossible? Can one demon-

strated downcoding in the wild? We leave these questions for

future work.

Responsible disclosure and data availability After rei-

dentifying one EdX student, we reported the vulnerability to

Harvard and MIT who promptly replaced the dataset with

a heavily redacted one. Our IRB determined that this re-

search was not human subjects research and did not need

IRB approval. However, we were instructed by the IRB not

to contact the reidentified LinkedIn users. The code used

in our analysis of the EdX dataset is at https://github.

com/a785236/EdX-LinkedIn-Reidentification, but we

do not distribute the dataset itself to protect the students’ pri-

vacy.
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A Additional background on the EdX dataset

We summarize the EdX dataset—the chosen quasi-identifiers,

the implementation of k-anonymization, and the resulting

published dataset Xed,raw based on documentation included

with the dataset [19] and in two articles describing the creation

of the dataset itself [3, 9].

The raw dataset consisted of 841,687 rows for 597,692

students. Each row corresponded to the registration of a sin-

gle student in a single course and included the information

described above. IP addresses were used to infer a student’s

location even when a student chose not to self-report their

location. EdX considered username and IP address to be

identifying. Each username was replaced by a unique 7-digit

identification number (UID). A username appearing in multi-

ple rows was replaced by the same UID in each. IP addresses

were redacted.

The dataset, with a row corresponding to a student-course

pair, was k-anonymized according to two different quasi-

identifiers Q and Q∗ (each a subset of the attributes). Q =
{gender, year of birth, country, course, number of forum posts}.

“The last one was chosen as a quasi-identifier because

the EdX forums are somewhat publicly accessible and

someone wishing to re-identify the dataset could, with

some effort, compile the count of posts to the forum

by username” [19]. Separately, the set of courses that each

student enrolled in were considered to form a quasi-identifier:

Q′ = {enrolled in course 1, . . . , enrolled in course 16}. The

data was k-anonymized first according to Q∗ and then accord-

ing to Q. Additionally, `-diversity was enforced for the final

course grade, with `= 2.

After aggregating the rows by UID, Xed can be seen as k-

anonymized with respect to 17 overlapping quasi-identifiers:

Q∗ as before and Q1, . . . ,Q16, where Qi = {gender, year of

birth, country, enrolled in course i, number of forum posts in

course i}.

The final published result Xed,raw includes 641,138 course

registrations by 476,532 students across 16 courses.

As published, the EdX dataset had 641,138 rows, each

representing to a single course registration for one of 476,532

distinct students. But the object of our privacy concerns is a

student, not a student-course pair. We aggregated the rows

corresponding to the same UID. We call the result Xed.

The creators of the EdX dataset failed to identify which

attributes are publicly available—the very thing that experts

are supposed to be good at. Specifically, level of education

and certificates of course completion are not included in any

of the quasi-identifiers despite both being readily available

on LinkedIn. The exclusion of certificates is particularly in-

defensible: at the same time as the EdX dataset was being

created, EdX and LinkedIn collaborated to allows LinkedIn

users to include cryptographically unforgeable certificates of

completion on their profiles.

10Different rows of the same student often listed different countries. Al-
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A.1 Ambiguous effective anonymity

We consider a relaxation of the notion of effective

anonymity which we call ambiguous effective anonymity.

Let Iamb(Y,y,Q) , {n : yn(Q) ∩ y(Q) 6= /0}. The ambigu-

ous effective anonymity of y in Y with respect to Q

is EAamb(Y,y,Q) = |Iamb(Y,y,Q)|. Ambiguous effective

anonymity helps us reason about what an attacker can infer

from the dataset.

Definition A.1 (Unambiguous uniqueness). We say y ∈ Y is

unique with respect to Q if EA(Y,y,Q) = 1, and unambigu-

ously unique if EAamb(Y,y,Q) = 1.

EAamb is never less than EA, and is very often greater

in EdX. The presence of unambiguously unique records in

a supposedly-anonymized dataset indicates a clear failure

of syntactic anonymity. Considering ambiguous effective

anonymity makes critiquing k-anonymity much harder. We

are giving k-anonymity the benefit of all the additional am-

biguity that comes from missing data rather than from the

anonymizer itself.

B Deferred Proofs

B.1 Proof of Theorem 4.2

H = U

H1

H1,sml H1,big

. . . Ht

Ht,sml Ht,big

. . . HT

HT,sml HT,big

Figure 4: The generalization hierarchy used in the proof of

Theorem 4.2. The attribute domain is an interval in R, as are

each Ht and Ht,sml. Each set Ht,big = Ht \Ht,sml is the union

of two intervals

Claim B.1. Let H be a hierarchy with T nodes at the second

level: H1, . . . ,Ht (as in Figure 4). Let X∈U
D be a dataset, M

be a minimal hierarchical k-anonymizer, and Y←M(X,H).
For t ∈ [1,T ], let Xt = X∩HD

t and let Yt be the records in Y

corresponding to the records in Xt . If X = ∪tXt , then for all

but at most one t ∈ {t : |Xt |= k}, y⊆ HD
t for all y ∈ Yt .

Note that as defined, the generalized records in Yt are not

necessarily contained in HD
t . The claim says that if X consists

of data in the T clusters X1, . . . ,XT , then the records in Yt

will be contained in HD
t for almost all clusters of size exactly

k.

most always there were only two different values, one of which was “Un-

known/Other.” In this case, we used the other value for the student’s unified

record. In all other cases, we used “Unknown/Other.”

Proof of Claim B.1. First, we show that for any y = (y1, . . . ,
yD), a single coordinate of y is generalized to H = U if and

only if every coordinate in y is generalized to H. Namely, if

yd = H for some d, then y = HD.

Suppose for contradiction that there exists y = (y1, . . . ,yD)
corresponding to x∈X such that y1 = H but y2 ⊆Ht for some

t. By the assumption on X, there exists t ′ such that y ∈ Yt ′ .

Because y2 ⊆ Ht , t ′ = t and hence y ∈ Yt . By k-anonymity,

there are at least k− 1 additional records y′ ∈ Y such that

y′ = y. Repeating the previous argument, y′ ∈ Yt .

Let y∗ = (Ht ,y2, . . . ,yD) ( y. Construct Y∗ by replacing

all copies of y in Y with y∗. It is immediate that Y∗ is k-

anonymous and respects the hierarchy. By the assumption that

y1 = H, Y∗ strictly refines Y. Additionally, Y∗ generalizes

X, because all altered rows were in Yt . This contradicts the

minimality of the k-anonymizer M. Therefore we have proved

that if yd = H for some d, then yd = H for all d.

Next, we show that for all but at most one t ∈ {t : |Xt |= k},
there exists y ∈ Yt such that y⊆ HD

t . By the preceding argu-

ment, it suffices to show that y 6= HD. Suppose for contradic-

tion there exists t 6= t ′ such that for all y ∈ Yt ∪Yt ′ , y = HD.

Construct Y′ by replacing each y∈Yt ′ with HD
t ′ ( y. It is easy

to see that Y′ respects the hierarchy, satisfies k-anonymity,

generalizes X, and strictly refines Y. This contradicts the

minimality of the k-anonymizer M.

To complete the proof, let t ∈ {t : |Xt | = k} and suppose

there exists y ∈ Yt such that y⊆ HD
t . By k-anonymity, there

must be at least k− 1 distinct y′ = y ⊆ HD
t . By assumption

on X, each such y′ must be an element of Yt . Because |Yt |=
|Xt |= k, every element of Yt is equal to y⊆ HD

t .

Proof of Theorem 4.2. Data distribution Records x ∼ U

are noisy versions of one of T = N/k cluster centers ct ∈ RD.

Each coordinate xd of x is ct,d masked with i.i.d. noise with

variance σ2. The variance is usually small, but is large with

probability 1/k (variances σ2
sml� σ2

big). The generalization

hierarchy H is shown in Figure 4. H divides the attribute

domain U into T components Ht , each of which is further

divided into small values Ht,sml and large values Ht,big.

We set the parameters so that w.h.p. all of the follow-

ing hold. First, the data is clustered: Prx[∃t, x ∈ HD
t ] >

1− negl(N). Second, every coordinate xd of a small-noise

(variance σ2
sml) record is small: xd ∈ Ht,sml. Third, the coordi-

nates of large-noise (variance σ2
big) records are large or small

(xd ∈ Ht,big or xd ∈ Ht,sml, respectively) with probability 1/2

independent of all other coordinates . In particular, if x is gen-

erated using large noise then x 6∈ HD
t,sml with high probability.

An example of a distribution U and hierarchy H satisfying the

above is given in Example B.2. In that example, the cluster

centers ct are masked with i.i.d. Gaussian noise.

The adversary The adversary A takes as input Y and pro-

duces the output Z as follows. For t ∈ [T ], let Ŷt = Y∩HD
t .

If |Ŷt | 6= k, copy every y ∈ Ŷt into the output Z. Otherwise
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|Ŷt |= k. By k-anonymity Ŷt consists of k copies of a single

generalized record yt . Let bigt = {d : yt
d = Ht} be the large

coordinates of yt , and let Bt = |bigt | be the number of large

coordinates. If |Bt −D/2| > D/8, then A writes k copies of

yt to the output Z. Otherwise A writes k−1 copies of HD
t,sml

and one copy of zt = (zt
1, . . . ,z

t
D) to the output, where

zt
d =

{
Ht,big d ∈ bigt

Ht,sml d 6∈ bigt

(1)

Analysis It is immediate from the construction that Z� Y.

Moreover, it is easy to arrange the records in Z so that zn ⊆ yn

for all n∈ [N]. By construction, zn ( yn implies that zn differs

from zn differs from yn on at at least Bt ≥ 3D/8 coordinates.

To prove the theorem, it remains to show that w.h.p. X� Z

and Z ≺Ω(N) Y. Let Xbig = X \
(⋃

t HD
t,sml

)
consist of all

the records x that have at least one large coordinate (i.e.,

xd ∈ Ht,big for some t,d).

For all t ∈ [T ], let Xt = X∩HD
t and let X̂t ⊆ Xt be the

records x ∈ X that correspond to the records in Ŷt . (Whereas

Xt consists of all records that are in cluster t, X̂t consists

of only those records that correspond to generalized records

y ∈ Ŷt that can be easily inferred to be in cluster t based on

Y.) A cluster t is X-good if |Xt | = k and |Xt ∩Xbig| = 1. A

cluster t is Ŷ-good if Ŷt = k and |Bt −D/2| ≤ D/8.

It suffices to show that:

• Ω(N) clusters t are X-good.

• All but at most one X-good clusters are Ŷ-good.

• For all Ŷ-good clusters t, X̂t ∩Xbig = {xt} and xt ⊆ zt .

Note that if t is both X-good and Ŷ-good, then X̂t = Xt . But

there may be t that are Ŷ-good but not X-good.

Many clusters are X-good We lower bound Pr[t X-good]
by a constant and then apply McDiarmid’s Inequality.

Pr[t X-good] = Pr[|Xt |= k] ·Pr
[
|Xt ∩Xbig|= 1

∣∣ |Xt |= k
]
.

|Xt | is distributed according to Bin(N,k/N), which ap-

proaches Pois(k) as N grows. Using the fact that k! ≤
(k/e)ke

√
k we get: Pr[|Xt | = k] ≈ (kke−k)/k! ≥ 1/(e

√
k) =

Ω(1). Pr[x ∈ Xbig] =
1
k
± negl(N). The events x ∈ Xt and

x ∈ Xbig are independent. Therefore

Pr
[
|Xt∩Xbig|= 1

∣∣ |Xt |= k
]
=(1−1/k)k−1±negl(N)> 1/e.

Combining the above, Pr[t X-good] = Ω(1). Quantitatively,

for k ≤ 15, Pr[tX-good]& 1/(e2
√

k)> 1/30.

Let g(X) be the number of X-good values of t. By the

above, E[g(X)] = Ω(N). Changing a single record x can

change the value of g by at most 2. Applying McDiarmid’s

Inequality,

Pr

[
g(X)<

E(g(X))

2

]
≤ exp


−

2
(
E(g(X))

2

)2

4N


< negl(N).

Thus there are Ω(N) X-good values of t with high probability.

Most X-good clusters are Ŷ-good Cluster t is Ŷ-good if

Ŷt = k and |Bt −D/2| ≤ D/8. First we show that for all but

one X-good t, |Ŷt | = k. Let Yt ⊇ Ŷt be the records in Y

corresponding to the records in Xt . (Whereas Yt consists of

all records that correspond to Xt , Ŷt consists of only those

records whose membership in Yt can be easily inferred from

Y.) Observe that |Xt |= |Yt | ≥ |Ŷt |. By construction, for all

x ∈ X there exists t such that x ∈ Xt with high probability

(i.e., X =∪tXt ). By Claim B.1, for all but at most one X-good

t and every y ∈ Yt , y⊆ HD
t . Thus |Ŷt |= Yt = k.

Finally we show that for all X-good t as guaranteed by

Claim B.1, Bt ∈ (3D/8,5D/8) with high probability. Ŷt con-

sists of k copies of the same generalized record (y1, . . . ,yd).
Since M is hierarchical, yd ∈ {Ht ,Ht,sml,Ht,big}. By the X-

goodness of t, Xt contains 1 large-noise record xbig and k−1

small-noise records x′ By correctness of the k-anonymizer M,

xbig,d ∈ Ht,big =⇒ yd ⊇ Ht,big. Minimality implies the con-

verse: yd ⊇ Ht,big =⇒ xbig,d ∈ Ht,big. With high probability,

x′d ∈ Ht,sml =⇒ yd ⊇ Ht,sml. Putting it all together,

xbig,t ∈ Ht,big ⇐⇒ yd = Ht ⇐⇒ d ∈ bigt .

By construction of the data distribution U , Pr[d ∈ bigt ] = 1/2

independently for each d ∈ [D]. Applying Chernoff again,

Pr[|Bt −D/2| ≥ D/8]< 2e−Ω(D) < negl(N).

Analyzing Ŷ-good clusters By construction, bigt = {d :

∃x ∈ X̂t ∩ Xbig st xd ∈ Ht,big}. Because |bigt | > 0, |X̂t ∩
Xbig| > 1. A simple Chernoff-then-union-bound argument

shows that the probability that there exist distinct records

x,x′ ∈Xbig such that |bigt |= |{d : xd ∈Ht,big∨x′d ∈Ht,big}|<
5D/8 is negligible. Hence X̂t ∩Xbig is a singleton {xt} with

high probability. xt ⊆ zt follows immediately from the con-

struction.

Example B.2. The following distribution U and hierarchy

H suffice for the proof of Theorem 4.2. The distribution U is

defined by T = N/k cluster centers c1, . . . ,cT ∈ R and stan-

dard deviations σsml,σbig ∈R. A record x∈RD is sampled as

follows. Sample a cluster center t ← [T ] uniformly at ran-

dom. Sample size ← {sml,big} with Pr[size = big] = 1/k.

Sample noise e ← N(0,σ2
sizeI). Output x = ct + e, where

ct = (ct , . . . ,ct) ∈ RD.

The hierarchy H consists of intervals Ht = [ct −∆,ct +∆]
centered at the cluster centers ct , for some ∆. The hierarchy

further subdivides each Ht into a smaller interval Ht,sml =
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[0,3]

[0,2]

[0,1]

{0} {1}

{2}

{2}

{3}

{3}

{3}

] [0,T +1]

HT

{T +1}

...

Figure 5: The generalization hierarchy used in the proof of

Theorem 4.3. On the left is the hierarchy H3 for the domain

U = [03]. On the right is a recursive construction of HT+1 for

domain U = [0,T +1] from the hierarchy HT .

[ct − τ,ct + τ), for some τ < ∆, and the complement Ht,big =
Ht \Ht,sml.

To suffice for our proof, we require that with high proba-

bility over x ∼U there exists t ∈ [T ] such that: (a) x ∈ HD
t ;

(b) if size= sml, then x ∈ HD
t,sml; (c) if size= big, then each

coordinate xd is in Ht,big with probability 1/2 independent of

all other coordinates xd′ . Many instantiations of the parame-

ters would work, such as: σsml = 1, τ = logN, σbig = ζ logN,

∆ = ζ log2 N, and ct = 2t∆, where ζ = 1√
2·erf−1(1/2)

≈ 1.48

and erf is the Gaussian error function.

B.2 Proof of Theorem 4.3

A k-anonymizer M : X 7→ Y groups records x ∈ X into equiv-

alence classes such that if x and x′ are in the same class, then

Y(x) = Y(x′). In general, M may have a lot of freedom to

group the x’s the equivalence classes and also to choose the

y’s that generalize each equivalence class.

Claim B.3 states that if M is minimal and generalizes using

hierarchy like in Figure 5, then it has much less freedom.

Namely, Y is fully determined by the choice of equivalence

classes (with probability at least 1−α over the dataset X). M

can group the x’s together, but then has no control over the

resulting y’s.

Claim B.3 and its proof are meant to be read in the context

of the proof of Theorem 4.3 and freely uses its notation.

Proof of Theorem 4.3. Let T = dN2/αe and U = [0,T ] be

the attribute domain. Records x ∈ U
D are sampled accord-

ing to the distribution U as follows. First sample t(x)← [T ]
uniformly at random. Then sample each coordinate xd of x

i.i.d. with Pr[xd = t(x)] = 1/2k and xd = 0 otherwise. In other

words, x∈ {0, t(x)}D consists of D independent samples from

t(x) ·Bern(1/2k).
All the t(x) will be distinct except with probability at most(

N
2

)
1
T
< α/2. If all t(x) are distinct, we say X is collision-free.

The remainder of the proof shows that the adversary succeeds

with high probability conditioned on X collision-free.

Figure 5 defines the generalization hierarchy. It consists of

intervals [0, t] and singletons {t} for t ∈ [T ].
Claim B.3 states that the output Y←M(X,H) of a minimal

hierarchical k-anonymizer must take a restricted form. For

y ∈ Y, let Xy = {x ∈ X : Y(x) = y} be the records in X that

correspond to a copy of y ∈ Y. The claim states that

Pr

[
max

y
|Xy|< 2k

∣∣∣ X collision-free

]
> 1−negl(N).

Moreover, if X is collision-free then for all y ∈Y and d ∈ [D]:

yd = [0,max
x∈Xy

xd ]. (2)

Let A be deterministic adversary that on input Y does the

following. For t, pick yt = (yt
1, . . . ,y

t
D)∈Y such that ∃d ∈ [D],

yt
d = [0, t]. Let yt = ⊥ if no such d exists. By the (2), all y

satisfying the above are identical. If yt 6= ⊥, we define the

following subsets of [D]:

Dt(Y) = {d : yt
d = [0, t]}

D>t(Y) = {d : yt
d = [0, t ′] for t ′ > t}

D<t(Y) = {d : yt
d = [0, t ′] for t ′ < t}.

If yt 6=⊥, A writes zt = (zt
1, . . . ,z

t
D) to the output Z, where

zt
d =





0 d ∈ D<t(Y)

t d ∈ Dt(Y)

[0, t] d ∈ D>t(Y)

(3)

Let TX = {t : yt 6= ⊥}. |Z| = |TX|, and it is easy to see

that Pr[|TX| = N | X collision-free] > 1− negl(N). Hence if

X is collision-free, then Z≺N Y by construction. In this case,

we assume without loss of generality that the rows in Z are

ordered in a way that zn ⊆ yn. It follows immediately from

the construction that zn (D yn.

If X is collision-free, then for every t ∈ TX there is a unique

xt = (xt
1, . . . ,x

t
D) ∈ X such that t(xt) = t. By (2) and the fact

that xt ∈ {0, t}D, xt ⊆ zt . Hence if X is collision-free, then

X� Z with high probability, proving the first part of the theo-

rem.

The following claims is meant to be read in the context of

the proof of Theorem 5.2 and freely uses notation therefrom.

Claim B.3. For y ∈ Y, let Xy = {x ∈ X : Y(x) = y} be the

records in X that correspond to a copy of y ∈ Y. If X is

collision-free, then for all y ∈ Y and d ∈ [D]:

yd = [0,max
x∈Xy

xd ].

Moreover, Pr[maxy |Xy| < 2k | X collision-free] > 1 −
negl(N).

Proof. Both parts of the claim rely on the minimality of M.

Recall that x ∈ {0, t(x)}D. Let T ∗d (Xy) = {xd : x ∈ Xy} ⊆
∪x∈Xy{0, t(x)} be the set of all values in the dth column

of Xy. X collision-free implies that either 0 ∈ T ∗d (Xy) or

|T ∗d (Xy)| ≥ 2 (probably both). Because M is correct and hi-

erarchical, T ∗d (Xy) ⊆ yd ∈ H. Hence, by construction of H,
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yd = [0, td ] for some td ∈ [0,T ]. Let t∗d = maxx∈Xy xd . Correct-

ness requires [0, t∗d ]⊆ [0, td ]. Moreover, replacing y = [0, td ]
with [0, t∗d ] would yield a k-anonymous, hierarchy-respecting

refinement of Y. By minimality of M, [0, td ]⊆ [0, t∗d ]. Hence,

yd = [0, t∗d ].
It remains to prove the bound on maxy |Xy|. Let X0 and X1

be an arbitrary partition of Xy. For b ∈ {0,1}, define y′b ⊆ y

as:

y′b = (y′b,1, . . . ,y
′
b,D) = ([0,max

x∈Xb

x1], . . . , [0,max
x∈Xb

xD])

Pr[∃b, y′b ( y | X collision-free] > 1− negl(N). To see

why, observe that y′0 = y = y′1 implies that for every coor-

dinate d, maxx∈X0
(xd) = maxx∈Xy(xd) = maxx∈X1

(xd). If X

is collision-free, this implies that for all d, maxx∈Xy(xd) = 0.

This occurs with probability 1− 2−D = 1− negl(N) (even

conditioned on collision-free).

Consider Y′ constructed by replacing every instance of y

in Y with y′0 or y′1, using |X0| and |X1| copies respectively.

By construction, Y′ correctly generalizes X and respects the

hierarchy H. By the preceding argument, Y′ strictly refines Y

with high probability. Thus, by minimality of M, Y′ cannot

be k-anonymous. This means that for every partition X0,X1,

one of |Xb| ≤ k−1. Therefore, |Xy|< 2k.

The following claim is used to prove Theorem 5.2. It is

meant to be read in the context of Theorem 4.3 and freely

uses notation therefrom.

Claim B.4. Let k≥ 2, D = ω(logN), U, X, Y, and Dt(Y) as

defined in the proof of Theorem 4.3. Let T ′ = {t : zt ∈ Z}.

Pr

[
∀t ∈ T ′ : |Dt(Y)| ≥ D

4ke

∣∣∣ X coll-free

]
> 1−negl(N)

(4)

Equation (4) also holds for k = N, D = ω(N logN).

Proof of Claim B.4. The proof is an application of Chernoff

and union bounds. We rewrite Dt(Y) as {d : ∃n, Yn,d = [0, t]}.
For y ∈ Y, let Xy contain the records x that correspond to

a copy of y. Consider x∗ ∈ Xy, and let t∗ = t(x∗). We call

d SUPER if (x∗d 6= 0) and (x′d = 0 for all x′ ∈ Xy \{x∗}). By

Claim B.3, if d is SUPER then d ∈ Dt(Y). We will lower

bound the number of SUPER d.

For an index set I ⊆ [N], let XI = {xn}n∈I . By Claim B.3,

Pr[∃I st (|I|< 2k)∧(Xy = XI) | X coll-free]> 1−negl(N).

Observe that if Xy = XI , then x∗ ∈ XI and |I| ≥ k (by k-

anonymity).

We call d GOOD with respect to XI if there is a unique x ∈
XI such that xd 6= 0. Let DI = {d GOOD wrt XI}. Observe

that if Xy = XI and d is SUPER, then d is GOOD with respect

to XI . Therefore

|Dt | ≥ min
I:k≤|I|<2k,x∗∈I

|DI |

except with at most negligible probability (conditioned on X

collision-free).

For fixed I,E[|DI |] =D(1/2k)(1−1/2k)|I|>D/2ke where

the last inequality follows from |I|< 2k. By a Chernoff bound:

Pr[|DI | ≤ D/4ke]≤ e−D/32ke. By the union bound:

Pr

[
min

I:k≤|I|<2k,x∗∈I
|DI | ≤ D/4ke

]
≤ e−D/32ke

2k−2

∑
|I|=k

(
N

|I|

)

For k = O(1), ∑
2k−2
|I|=k

(
N
|I|
)
< N2k−2. Putting it all together with

a final union bound:

Pr

[
∃t, |Dt | ≤ D/4ke

∣∣∣ X collision-free

]
< N2k−1e−D/32ke.

For D = ω(logN), this probability is negligible. For k = N

and D = ω(N logN), the set {I : k ≤ |I|< 2k} is a singleton,

doing away with the need for a union bound. In this case the

upper bound is Ne−D/32Ne < negl(N).

B.3 Theorems 5.1 and 5.2

Proof outline. Proofs for both compound PSO attacks follow

the same general structure, using the corresponding down-

coding attacks in non-black-box ways. The compound PSO

adversary A gets as input Y← MH(X). It emulates the ap-

propriate downcoding adversary, which produces an output Z

such that X� Z≺ Y.

Z contains special generalized records zt indexed by some

t ∈ [T ] (equations (1) and (3)), and may also contain other

records. A outputs Ψ = {ψt} where ψt : x 7→ I(x⊆ zt).
To complete the proof, one must show that the following

hold with probability at least 1−α(N):

• ψ(X) = 1/N

• (ψ∧ψ′)(U) = 0

• ψ(U)< negl(N)
• |Ψ| ≥ L

The first three are implied by the following:

• ∀t, there exists a unique xt ∈ X such that xt ⊆ zt .

• ∀t 6= t ′, zt ∩ zt ′ = /0.

• ∀t, x∼U
D, Prx[x⊆ zt ]< negl(N).

For the downcoding attack from Theorem 4.2, these prop-

erties are immediate. For the downcoding attack from The-

orem 4.3, the first two are immediate and the third follows

from Claim B.4.

The requirements on L and α follow from the parameters

of the corresponding downcoding attacks. The downcoding

attack for Theorem 4.2 yields Ω(N) records zt with proba-

bility 1−negl(N). The downcoding attack for Theorem 4.3

yields N records zt with probability 1−α(N).
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