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ABSTRACT
A basic assumption of traditional reinforcement learning is that
the value of a reward does not change once it is received by an
agent. The present work forgoes this assumption and considers
the situation where the value of a reward decays proportionally to
the time elapsed since it was obtained. Emphasizing the in�ection
point occurring at the time of payment, we use the term asset to
refer to a reward that is currently in the possession of an agent.
Adopting this language, we initiate the study of depreciating assets
within the framework of in�nite-horizon quantitative optimization.
In particular, we propose a notion of asset depreciation, inspired
by classical exponential discounting, where the value of an asset is
scaled by a �xed discount factor at each time step after it is obtained
by the agent. We formulate an equational characterization of opti-
mality in this context, establish that optimal values and policies can
be computed e�ciently, and develop a model-free reinforcement
learning approach to obtain optimal policies.
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1 INTRODUCTION
Time preference [10, 13] refers to the tendency of rational agents
to value potential desirable outcomes in proportion to the expected
time before such an outcome is realized. In other words, agents
prefer to get a future reward sooner rather than later, all else being
equal, and similarly, agents prefer to experience negative outcomes
later rather than sooner. This phenomenon is typically codi�ed in
mathematical models in terms of discounting [17] and has been ap-
plied to a diverse array of disciplines concerned with optimization
such as economics [11, 14], game theory [9], control theory [15],
and reinforcement learning [19]. These models focus on the situa-
tion in which an agent moves through a stochastic environment in
discrete time by selecting an action to perform at each time step
and receiving an immediate reward based on the selected action
and environmental state. In particular, we consider exponential
discounting, as introduced by Shapley [17], in which the agent car-
ries this process on ad in�nitum to generate an in�nite sequence
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of rewards hA=i1==1 with the goal of maximizing, with respect to a
discount factor _ 2 (0, 1), the discounted sumÕ1

==1 _
=�1A= . The dis-

count factor is selected as a parameter and quanti�es the magnitude
of the agent’s time preference.

A notable characteristic of the aforementioned discounted op-
timization framework is an implicit assumption that the utility of
a reward remains constant once it is obtained by a learning agent.
While this seemingly innocuous supposition simpli�es the model
and helps to make it amenable to analysis, there are a number of
scenarios where such an assumption is not appropriate. Consider,
for instance, the most basic and ubiquitous of rewards used to in-
centivize human behaviors: money. The value of money tends to
decay with time according to the rate of in�ation, and the con-
sequences of this decay are a topic of wide spread interest and
intense study [2, 5, 8, 12]. Recognizing the fundamental role such de-
cay has in in�uencing the dynamics of economic systems throughout
the world, we consider its implications with respect to optimization
and reinforcement learning in Markov decision processes.

2 ASSET DEPRECIATION
When discussing a situation with decaying reward values, it is
useful to distinguish between potential future rewards and actual
rewards that have been obtained. As such, we introduce the term
asset to refer to a reward that has been obtained by an agent at
a previous moment in time. Using this terminology, the present
work may be described as an inquiry into optimization and learning
under the assumption that assets depreciate. Depreciation, a term
borrowed from the �eld of �nance and accounting [4, 21], describes
exactly the phenomenon where the value of a commodity or asset
decays with time.

We propose a notion of depreciation that is inspired by traditional
discounting and is based on applying the same basic principle of
time preference to an agent’s history in addition to its future. More
precisely, we consider the situation in which an agent’s behavior
is evaluated with respect to an in�nite sequence of cumulative
accrued assets, each of which is discounted in proportion to how
long ago it was obtained. That is, we propose evaluating the agent
in terms of functions on the sequence of assets

DÕ=
:=1 A:W

=�:
E1
==1

,
where W 2 (0, 1) is a discount factor, rather than on the sequence of
rewards hA=i1==1. To motivate the study of depreciation and argue
its naturalness, we examine the following hypothetical case-study.

Example 2.1 (Used Car Dealership). Consider a used car deal-
ership with a business model involving purchasing used cars in
locations with favorable regional markets, driving them back to
their shop, and selling them for pro�t in their local market. Sup-
pose that our optimizing agent is an employee of this dealership,
tasked with managing capital acquisition. More speci�cally, this
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employee’s job is to decide the destination from which the next car
should be purchased, whenever such a choice arises. The objective
of the agent is to maximize the sum of the values of all vehicles in
stock at the dealership over a discounted time-horizon for some
discount factor _ 2 (0, 1). Note that the discounted time-horizon
problem is equivalent to the problem of maximizing expected ter-
minal payo� of the process given a constant probability (1 � _) of
terminating operations at any point.

It has long been known [1, 22] that cars tend to continually de-
preciate in value after being sold as new, and so any reasonable
model for the value of all vehicles in the inventory should incor-
porate some notion of asset depreciation. Suppose that another
discount factor W 2 (0, 1) captures the rate at which automobiles
lose value per unit of time. Considering W-depreciated rewards and
_-discounted horizon, the goal of our agent can be de�ned as a
discounted depreciating optimization problem. Alternatively, one
may seek to optimize the long run average (mean payo�) [15] of
W-depreciated rewards.

3 DISCOUNTED DEPRECIATING PAYOFF
Consider a sequence G = h3, 4, 5, 3, 4, 5, . . .i of (absolute) rewards
accumulated by the agent. In the presence of depreciation, the cu-
mulative asset values at various points in time follow the sequence

3, (3W+4), (3W2+4W+5), (3W3+4W2+5W+3), (3W4+4W3+5W2+3W+4), . . .
The _-discounted value of this sequence can be computed as follows:

3 + _(3W+4) + _2 (3W2+4W+5) + _3 (3W3+4W2+5W+3)+
_4 (3W4+4W3+5W2+3W + 4) + . . .

= (3+3_W+3W2_2+ · · · ) + (4_+4_2W+4_3W2+ · · · )+
(5_2+5_3W+_5W2+ · · · ) + (3_3+3_W4+3W2_5+ · · · ) + · · ·

= 3(1+_W+W2_2+ · · · ) + 4_(1+_W+_2W2+ · · · )+
5_2 (1+_W+_2W2+ · · · ) + 3_3 (1+_W+W2_2+ · · · ) + . . .

=
3 + 4_ + 5_2 + 3_3 + · · ·

(1 � _W) =
3 + 4_ + 5_2

(1 � _W) (1 � _3) .

Notice that this W-depreciated sum is equal to the _-discounted sum
when immediate rewards are scaled by a factor 1

1�_W . We show that
this is not a mere coincidence, and prove that this equality holds
also in the context of general MDPs.

T������ 3.1. Over any �nite MDP with _-discounted value +_
and _-discounted W-depreciating value +W

_
, it holds that +W

_
= +_

1�W_ .

The proof1 of Theorem 3.1 decomposes the de�ning in�nite se-
ries for+W

_
into a Cauchy product and then uses Mertens’ Theorem

(c.f. Theorem 3.50 of Rudin [16]) from the �eld of real analysis to
establish convergence and characterize the limit. The following
corollary states some direct consequences of Theorem 3.1 when
combined with classic results from the literature [7, 9, 15, 18, 20].
C�������� 3.1. For any discounted depreciating payo� with

value +W
_
over a �nite MDP" the following hold.

(1) There exists a stationary deterministic optimal policy for +W
_
.

1See [6] for the full version, including precise theorem statements and complete proofs,
of the present extended abstract.

(2) Value +W
_
and optimal policies are computable in polynomial time.

(3) If each state-action pair in " is encountered in�nitely often and
learning rates satisfy the Robbins-Monroe convergence criteria, then
Q-learning converges asymptotically to an optimal policy for +W

_
.

Thus, the reduction of discounted depreciating payo�s to stan-
dard discounted payo�s achieved by Theorem 3.1 provides the
keystone for (i) proving the existence of simple optimal policies,
(ii) establishing tractability of computing optimal values and poli-
cies, and (iii) obtaining a convergent reinforcement learningmethod
with respect to discounted depreciating optimization.

4 AVERAGE DEPRECIATING PAYOFF
Next, consider the long-run average of the depreciating asset values
as the limit inferior of the sequence

3,
3W+4
2

,
3W2+4W+5

3
,
3W3+4W2+5W+3

4
,
3W4+4W3+5W2+3W+4

5
, . . .

Based on classical Tauberian results of Bewley and Kohlberg [3],
it is tempting to conjecture that the _-discounted, W-depreciating
value converges to this mean as _ ! 1 from below, i.e.

lim
_!1

(1 � _) 3 + 4_ + 5_2

(1 � _W) (1 � _3) = lim
_!1

3 + 4_ + 5_2

(1 � _W) (1 + _ + _2)

=
3 + 4 + 5
3(1 � W) .

Indeed, we prove that this conjecture holds for general MDPs.

T������ 4.1. Over any �nite MDP with long-run average W-
depreciating value +W and _-discounted W-depreciating value +W

_
,

it holds that +W = lim_!1 (1 � _)+W
_
, where _ ! 1 from below.

Since Mertens’ Theorem fails to apply in this situation, the above
result is obtained from a longer argument using only basic prin-
ciples [6]. The next corollary collects and states a number of con-
sequences of Theorem 4.1 (in combination with Theorem 3.1 and
results from the aforementioned literature [7, 9, 15, 18]).
C�������� 4.1. For any long-run average depreciating payo�

with value +W over a �nite MDP" the following hold.

(1) There exists a stationary deterministic optimal policy for +W .
(2) Value +W and optimal policies are computable in polynomial time.
(3) If + is the long-run average value of" , then +W = +

1�W .
(4) There exists a discount factor _0 such that, for any _ 2 [_0, 1), any

policy optimal for +W
_
is also optimal for +W .

Hence, Theorem 4.1 allows us to lift the guarantees of items (1)
and (2) of Corollary 3.1 from the setting of discounted depreciating
optimization to that of long-run average depreciating optimization.
Moreover, our result enables obtaining a remarkably simple char-
acterization of the long-run average depreciating value in terms of
the traditional long-run average value (item (3) of Corollary 4.1),
mirroring the statement of Theorem 3.1. Lastly, the existence of
Blackwell optimal policies (item (4) of Corollary 4.1) for long-run
average depreciating optimization implies that Q-learning for dis-
counted depreciating payo�s with su�ciently large discount factor
_ also converges asymptotically to optimal policies for the long-run
average depreciating payo�.
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