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ABSTRACT

The successes of reinforcement learning in recent years are un-
derpinned by the characterization of suitable reward functions.
However, in settings where such rewards are non-intuitive, difficult
to define, or otherwise error-prone in their definition, it is useful to
instead learn the reward signal from expert demonstrations. This
is the crux of inverse reinforcement learning (IRL). While eliciting
learning requirements in the form of scalar reward signals has
been shown to be effective, such representations lack explainability
and lead to opaque learning. We aim to mitigate this situation by
presenting a novel IRL method for eliciting declarative learning re-
quirements in the form of a popular formal logic—Linear Temporal
Logic (LTL)—from a set of traces given by the expert policy.
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1 INTRODUCTION

Learning from demonstrations has become a viable approach to
learning in environments where domain experts or performant
agents can provide traces of (un)desirable behavior. One important
embodiment of this form of learning is known as inverse reinforce-
ment learning [14] (IRL), whereby an apprentice agent learns the
reward function being optimized by a given expert policy or beha-
vior. Please refer to our full paper [1] for more detail.

Linear Temporal Logic (LTL). We focus on (a subset of) LTL [13]
as the specification language due to its succinctness [2, 9] and
relevance in the Al [5, 7], formal methods [2, 10], control theory [3,
15], and machine learning [6] communities. Recently, it has gained
popularity [4, 6, 11] in expressing learning objectives in model-
free reinforcement learning (RL). The key computational problem
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for the LTL-based IRL is the following: given a pair S = (P, N)
of samples consisting of positive traces P and negative traces N
(both are sets of finite words), produce the highest-ranking LTL
specification consistent with the sample where rank is informed by
some user-tunable notion of simplicity over the LTL specifications.

2 QUANTIFYING EXPRESSIVE PARSIMONY

An alphabet ¥ is a non-empty, finite set of symbols. A finite word w
over X is a finite sequence ajay...an of symbols from X.

Given an LTL formula ¢ and a finite word w, we design a valu-
ation function V (¢, w) that quantifies the parsimony of ¢ in ex-
plaining w. We use the valuation function to rank the formulae.
Intuitively, a pair scores high if all of the subformulae of the formula
¢ contribute in accepting w in L(¢). However, we do so in a nu-
anced fashion by geometrically attenuating the effect of parsimony
with the length of the word. For example, G(p V g) should score
well along with word ({p}{q})? but should not do well with word
({p})®, since the subformula ¢ did not contribute to the acceptance.
Similarly, G(p V g) should score better along with word ({p}{q})>
than ({p})*{q}.

Let us present a valuation function first. Let ¥ represent the set
of NNF GF-fragment formulae over . We interpret LTL formulae
over finite words and define the quantitative semantics in terms of
a valuation mapping V : F x =* — R* U {0}, where 3 = 2° . The
valuation mapping is defined over a word w € 2* inductively:

1 ifpew(D)
Viw) = {0 otherwise
)1 ifpew(1)
Vipw) = {0 otherwise
V(pAp,w) = B-V(p,w) - V(i w)
Vipvpow) = - LeW VW) w>+V(¢ w)
V(Gp,w) = Z @ V(W,Wz) if V(=¢p, w;)=0, Vt
otherwise
V(Fp,w) = {ﬁa V(p,w) t=min{j | V(p,w;)>0}
0 if V(p, wt) =0, Vt


http://crossmark.crossref.org/dialog/?doi=10.5555%2F3545946.3599102&domain=pdf&date_stamp=2023-05-30

Poster Session 111

Here, w; is a shorthand for w[j :]. If w | ¢, then V (¢, w) is non-
zero. This scheme is parameterized by two discount factors: the
temporal discount factor a and the nesting discount factor f.

3 LEARNING ALGORITHMS

As our main contribution, we propose learning algorithms to solve
the following problem. Given a sample S=(P,N) over finite words,
compute an LTL formula ¢ in the GF-fragment that best describes S
and is consistent with S. That is, ¢ has the highest score, based on
the valuation described above, among all formulae such that for all
w € P, w = ¢ and forallw’ € N, w’ ¥ ¢.

To achieve the goal of ranking formulae based on a quantitat-
ive notion of satisfiability, we propose the techniques of constraint
system optimization, optimized pattern matching (Section 5.2 [1]),
and hybrid pattern matching. In the first one, we get a sample and
a depth d as input. We encode the syntax tree of this unknown
formula of depth d along with constraints to compute the score
of each node in the tree. The second one makes use of a formula
template pattern provided by the user, but has unknown proposi-
tional variables. We encode constraints which allow mapping these
variables to unique variables occurring in the sample. The third one
is a “hybrid” approach, a middle ground incorporating both of the
above techniques. We use an optimizing SMT solver to solve the
constraints to find the best formula for the sample with the highest
score according to the valuation function.

Furthermore, we also developed an alternative greedy search,
called compositional ranking, which bypasses constraint solving
and optimizations, by pruning the search space of formulae. We
begin by enumerating all formulae of depth zero, i.e., all literals
in our system as obtained after parsing input traces. We consider
all compositions of these literals with the operators present. After
enumerating the literals, we perform an “F-check” : for any ¢, the
F-check tests whether, in any input sample, Fg holds. If a formula
passes an F-check, it is retained to produce formulae of higher
depth, else it is removed.

4 EXPERIMENTS

We have implemented the preceding algorithms in a tool called ANON.

In this section, we present the results of ANON on a set of traces
sampled from a grid-world environment running under OpenAl
Gym. ANoN is implemented in C++. For the optimization, it takes
a set of positive traces, a (possibly empty) set of negative traces,
and a formula template (which can simply be ¢(d), a search depth
of d with no specification) or a combination, while the compos-
itional ranking takes as input the traces along with a maximum
search depth. Our implementation uses SMT solver Z3 [8] for the
optimizations. All our queries to Z3 are quantifier-free. For optim-
ization, ANON returns a formula with maximal score according to
our scheme, while for compositional ranking, it returns a list of all
satisfying formulae in the search space, sorted by score. In our ex-
periments, we used a discount factor @ = e~! and also used 8 = 0.8
to decay each time we build deeper formulae in order to bias the
ranking towards simpler formulae. We evaluated the performance
of ANON on a 64-bit Linux system with an AMD Renoir Ryzen 5
(4500U) laptop CPU. We set 1000 seconds as timeout. We compare
with Texada[16] and the SAT based tool Traces2LTL [12].
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Constraint Comp. | Traces2LTL
‘ Optimization | Ranking ‘
Mean ILE 0.031 0.037 0.112
Input size ‘ 10 ‘ 2x10° ‘ 103

Non-Markovian IRL. We apply learning techniques to generate
a reward function over an MDP defined as a grid world to ob-
tain a non-markovian reward decision processes(NMRDP). After
generating a randomized 10 X 10 grid environment labeled with
propositional variables, we uniformly sample the grid taking ac-
tions compatible with an input automaton. This ensures that the
generated traces satisfy a given formula. We use the same LTL
properties as the previous case. We allow the MDP to randomly
simulate for at least 100 steps, after which we wait for it to reach
an accepting state. Through this method, we generated traces of
length varying between 100 and 150, with 1000 positive and 1000
negative traces for each formula, amounting to a total trace length
of at least 10° across all positive and negative inputs. However,
for constraint system optimization and Traces2LTL [12], due to
timeouts, a smaller subset was randomly selected from the traces.
For our experiments, given an NMRDP M in the form of a grid-
world, we can compute the optimal policy for three different De-
terministic Rabin Automaton (DRA), objectives by computing three
product MDPs (Section 6.3 [1]). The first DRA objective is what we
are trying to learn. We will denote the optimal policy here as 7},
computed on M X Atrye, Where Atrye is the DRA representation of
the LTL objective we are trying to learn. Then, we have the policy
ﬁéL computed on M X AgQL, where Ag is the DRA learnt using
Anon. Finally, we have the policy 7}, computed on M X ATar,
where ATy, is the DRA learnt using Traces2LTL [12]. We will take
these three policies to generate our results in the form of the in-
verse learning error (ILE). We compute these value functions using
uniformly random sampling of trajectories from every state in
the NMRDP. We can then take a simple ratio (MeanILE in Table
above) of the number of trajectories satisfied by Atrye, and divide it
with the total number of trajectories, and report an average over
multiple runs and inputs. In particular, we will compute two ILE
values, comparing HV”flue - VﬂéLHg and ||V7rt*rue - Vﬂ;‘ZL ||2. Our ex-
periments demonstrate that the former is smaller than the latter,
thereby providing evidence that our approach generalizes better
for non-Markovian IRL than a competing one adapted to the IRL.

5 CONCLUSION

In this paper, we presented a novel scheme to quantitatively evalu-
ate LTL formulae. Our evaluation schema is designed such that the
score received by a word is proportional to how well it represents
the formula. Thus, words which are “good representatives” score
higher than words which merely satisfy the formula (and hence
qualify to be “poor representatives”). One of our contributions is to
use this schema to mine LTL formulae from the traces of reactive
systems. Our approach presents a viable solution to non-Markovian
inverse reinforcement learning (IRL) in settings where the reward
signal can be captured as LTL formulae.



Poster Session 111

REFERENCES

[1] Mohammad Afzal, Sankalp Gambhir, Ashutosh Gupta, Krishna S, Ashutosh

[2

[3

[

]

Trivedi, and Alvaro Velasquez. 2023. LTL-Based Non-Markovian Inverse Rein-
forcement Learning. https://doi.org/10.48550/ARXIV.2110.13616

Christel Baier and Joost-Pieter Katoen. 2008. Principles of Model Checking (Rep-
resentation and Mind Series). The MIT Press.

A. K. Bozkurt, Y. Wang, M. M. Zavlanos, and M. Pajic. 2020. Control Synthesis
from Linear Temporal Logic Specifications using Model-Free Reinforcement
Learning. In ICRA. IEEE, 10349-10355.

Alper Kamil Bozkurt, Yu Wang, Michael M Zavlanos, and Miroslav Pajic. 2020.
Control synthesis from linear temporal logic specifications using model-free
reinforcement learning. In 2020 IEEE International Conference on Robotics and
Automation (ICRA). IEEE, 10349-10355.

Ronen I Brafman and Giuseppe De Giacomo. 2019. Planning for LTL{/LDLf
Goals in Non-Markovian Fully Observable Nondeterministic Domains.. In IJCAL
1602-1608.

Alberto Camacho, Rodrigo Toro Icarte, Toryn Q Klassen, Richard Anthony Valen-
zano, and Sheila A Mcllraith. 2019. LTL and Beyond: Formal Languages for
Reward Function Specification in Reinforcement Learning.. In I[JCAIL Vol. 19.
6065-6073.

Giuseppe De Giacomo and Moshe Y Vardi. 2013. Linear temporal logic and
linear dynamic logic on finite traces. In IJCAI'13 Proceedings of the Twenty-Third

2859

[10

[11

[12
[13
(14

[15

[16

]

]

AAMAS 2023, May 29-June 2, 2023, London, United Kingdom

international joint conference on Artificial Intelligence. Association for Computing
Machinery, 854-860.

Leonardo de Moura and Nikolaj Bjorner. 2008. Z3: An Efficient SMT Solver. In
TACAS. LNCS, Vol. 4963. Springer Berlin Heidelberg, 337-340. http://dx.doi.org/
10.1007/978-3-540-78800-3_24

Paul Gastin and Denis Oddoux. 2001. Fast LTL to Biichi automata translation. In
International Conference on Computer Aided Verification. Springer, 53-65.

E. M. Hahn, M. Perez, S. Schewe, F. Somenzi, A. Trivedi, and D. Wojtczak. 2019.
Omega-Regular Objectives in Model-Free Reinforcement Learning. In TACAS
2019, Proceedings, Part I (LNCS, Vol. 11427). Springer, 395-412.

Ernst Moritz Hahn, Mateo Perez, Sven Schewe, Fabio Somenzi, Ashutosh Trivedi,
and Dominik Wojtczak. 2021. Mungojerrie: Reinforcement Learning of Linear-
Time Objectives. arXiv preprint arXiv:2106.09161 (2021).

D. Neider and I. Gavran. 2018. Learning Linear Temporal Properties. In 2018
Formal Methods in Computer Aided Design (FMCAD). 1-10.

Amir Pnueli. 1977. The temporal logic of programs. In 18th Annual Symposium
on Foundations of Computer Science (sfcs 1977). IEEE, 46-57.

Stuart Russell. 1998. Learning agents for uncertain environments. In Proceedings
of the eleventh annual conference on Computational learning theory. 101-103.

D. Sadigh, E. S. Kim, S. Coogan, S. S. Sastry, and S. A. Seshia. 2014. A learning
based approach to control synthesis of Markov decision processes for linear
temporal logic specifications. In CDC. 1091-1096.

Texada 2015. TEXADA. https://github.com/Modellnference/texada.


https://doi.org/10.48550/ARXIV.2110.13616
http://dx.doi.org/10.1007/978-3-540-78800-3_24
http://dx.doi.org/10.1007/978-3-540-78800-3_24
https://github.com/ModelInference/texada

	Abstract
	1 Introduction
	2 Quantifying Expressive Parsimony
	3 Learning Algorithms
	4 Experiments
	5 CONCLUSION
	References

