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TIME-LIMITED TOEPLITZ OPERATORS ON ABELIAN GROUPS:

APPLICATIONS IN INFORMATION THEORY AND SUBSPACE

APPROXIMATION

ZHIHUI ZHU AND MICHAEL B. WAKIN

Abstract. Toeplitz operators are fundamental and ubiquitous in signal processing and information
theory as models for linear, time-invariant (LTI) systems. Due to the fact that any practical
system can access only signals of finite duration, time-limited restrictions of Toeplitz operators are
naturally of interest. To provide a unifying treatment of such systems working on different signal
domains, we consider time-limited Toeplitz operators on locally compact abelian groups with the
aid of the Fourier transform on these groups. In particular, we survey existing results concerning
the relationship between the spectrum of a time-limited Toeplitz operator and the spectrum of
the corresponding non-time-limited Toeplitz operator. We also develop new results specifically
concerning the eigenvalues of time-frequency limiting operators on locally compact abelian groups.
Applications of our unifying treatment are discussed in relation to channel capacity and in relation
to representation and approximation of signals.

1. Introduction

This paper deals with generalizations of certain concepts from elementary signals and systems
analysis, which we first review.

1.1. Spectral analysis of linear, time-invariant systems. Linear, time-invariant (LTI) sys-
tems are ubiquitous in signal processing and control theory, and it is well known that the output of
a continuous-time (CT) LTI system with input signal x(t) can be computed using the convolution
integral

y(t) = (x ∗ h)(t) =
∫ ∞

τ=−∞
h(t− τ)x(τ) d τ,(1)

where h(t) ∈ L2(R) is the impulse response of the system. Such a system can equivalently be
viewed as a linear operator H : L2(R) → L∞(R), where

H(x)(t) =

∫ ∞

τ=−∞
h(t− τ)x(τ) d τ.(2)

Because this linear operator involves a kernel function h(t− τ) that depends only on the difference
t−τ , we refer to it as a Toeplitz operator.1 In this setting, the behavior of the Toeplitz operator can
be naturally understood in the frequency domain: for an input signal x(t) with continuous-time
Fourier transform (CTFT)

x̂(F ) =

∫ ∞

t=−∞
x(t)e−j2πF t d t,∀ F ∈ R,(3)

2010 Mathematics Subject Classification. 47B35, 47N70, 94A12.
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1Our notion of Toeplitz operators follows from the definition of Toeplitz operators in [24, Section 7.2].
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the CTFT of the output signal y(t) will satisfy ŷ(F ) = x̂(F )ĥ(F ), where ĥ(F ) denotes the CTFT of
the impulse response h(t) and is also known as the frequency response of the system. The spectrum

of the Toeplitz operator H also coincides with ĥ(F ) [24, Section 7.2]. Note that the spectrum of
a linear operator H, a generalization of the set of eigenvalues of a matrix, is the set of complex
numbers λ such that H− λI (where I denotes the identity operator) is not invertible.

Similar facts hold for discrete-time (DT) LTI systems, where the response to an input signal x[n]
is given by the convolution

y[n] =
∞∑

m=−∞
h[n−m]x[m],(4)

where h[n] ∈ ℓ2(Z) is the impulse response of the DT system. Such a system can equivalently be
viewed as a linear operator H : ℓ2(Z) → ℓ2(Z), which corresponds to multiplication of the input
signal x ∈ ℓ2(Z) by the bi-infinite Toeplitz matrix

H =




. . .
. . .

. . .
. . .

. . .
. . . h[0] h[−1] h[−2]

. . .
. . . h[1] h[0] h[−1]

. . .
. . . h[2] h[1] h[0]

. . .
. . .

. . .
. . .

. . .
. . .




.(5)

We note that H[m,n] = h[m − n] for all m,n ∈ Z. The behavior of this system can also be
interpreted as multiplication in the discrete-time Fourier transform (DTFT) domain where the
DTFT of the impulse response h[n] is defined as:

ĥ(f) =

∞∑

n=−∞
h[n]e−j2πfn.(6)

The spectrum of H also coincides with ĥ(f) [24].

1.2. The effects of time-limiting. Practical systems do not have access to input or output signals
of infinite duration, which motivates the study of time-limited versions of LTI systems. Consider for
example the situation where a CT system zeros out an input signal outside the interval [0, T ]. (Or
similarly, the system may pad with zeros an input signal that was originally compactly supported
on [0, T ].) The system then computes the convolution shown in (2) and finally time-limits the
output signal to the same interval [0, T ]. For such a situation we may define a new linear operator
HT : L2(R) → L2(R) (a “time-limited” version of H), where

HT (x)(t) =

{∫ T

τ=0 h(t− τ)x(τ) d τ, t ∈ [0, T ]

0, otherwise.
(7)

An analogous time-limited version of H (from (5)) may be defined for DT systems. Supposing
that the input and output signals are time-limited to the index set {0, 1, . . . , N − 1}, we define the
N ×N Toeplitz matrix2 HN as

HN [m,n] = h[m− n], ∀ 0 ≤ m,n ≤ N − 1.(8)

Such a matrix can also be viewed as a linear operator on C
N .

2Through the paper, finite-dimensional vectors and matrices are indicated by bold characters and we index such
vectors and matrices beginning at 0.
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A natural question is: What effect do the time-limiting operations have on the system behavior?
More precisely, how similar is the spectrum of HT to that of H, and in what sense do the eigenvalues

of HT converge to the frequency response ĥ(F ) as T → ∞? Here HT is compact and thus has
a discrete spectrum containing what we refer to as its eigenvalues; the number of eigenvalues is
countable by the spectral theorem for compact operators [9]. Analogously, how similar is the
spectrum of HN to that of H, and in what sense do the eigenvalues of HN converge to the

frequency response ĥ(f) as N → ∞? As we discuss, the answers to such questions provide insight
into matters such as the capacity (or effective bandwidth) of time-limited communication channels
and the number of degrees of freedom (or effective dimensionality) of certain related signal families.
Answering these questions relies on deeper insight into the spectrum of Toeplitz operators.

1.2.1. Toeplitz and time-limited Toeplitz operators. In this paper, we distinguish between Toeplitz
operators (such as H and H) and time-limited Toeplitz operators such as HT and HN .3 We focus
primarily on Toeplitz and time-limited Toeplitz operators that are Hermitian, i.e., h(−t) = h∗(t)
for H and HT and h[−n] = h∗[n] for H and HN .

We note that finite size Toeplitz matrices (such as HN ) are of considerable interest in statistical
signal processing and information theory [22, 24, 33, 49, 53]. The covariance matrix of a random
vector obtained by sampling a wide-sense stationary (WSS) random process is an example of such
a matrix. More general Toeplitz operators have been extensively studied since O. Toeplitz and
C. Carathéodory [6, 75]; see [24] for a very comprehensive review. Time-limited convolutions are
also important in machine learning and computer vision. As an example, modern convolutional
neural networks (CNNs)—which have demonstrated excellent performance in numerous computer
vision tasks [40]—contain large numbers of convolutional layers, each of which mainly involves
two-dimensional convolution (that can be written as a doubly block circulant matrix, which is
approximately Toeplitz) applied to the input.

Unfortunately, there are no simple formulas for the eigenvalues of time-limited Toeplitz operators
such as HT and HN . This stands in contrast to the operators H and H, whose spectrum was
given simply by the frequency response of the corresponding LTI system. Notably, although the
discrete Fourier transform (DFT) is the canonical tool for frequency analysis in C

N , the DFT basis

vectors (complex exponentials of the form ej2π
nk
N with k ∈ {0, 1, . . . , N − 1}) do not, in general,

constitute eigenvectors of the matrix HN , unless this matrix is circulant in addition to being
Toeplitz. Consequently, the spectrum of HN cannot in general be obtained by taking the DFT of
the time-limited impulse response {h[0], h[1], . . . , h[N − 1]}.

Fortunately, in many applications it is possible to relate the eigenvalues of a time-limited Toeplitz
operator to the eigenvalues of the original (non-time-limited) Toeplitz operator, thus guaranteeing
that certain essential behavior of the original system is preserved in its time-limited version. We
discuss these connections, as well as their applications, in more detail in the following subsections.

1.2.2. Time-frequency limiting operators. Shannon introduced the fundamental concept of capac-
ity in the context of communication in [64], in which we find the answers to questions such as the
capacity of a CT band-limited channel which operates substantially limited to a time interval [0, T ].
In [64], the answer was derived in a probabilistic setting, while another notation of ǫ-capacity was
introduced by Kolmogorov in [74] for approaching a similar question in the deterministic setting of
signal (or functional) approximation. The functional approximation approach was further investi-
gated by Landau, Pollak, and Slepian, who wrote a series of seminal papers exploring the degree
to which a band-limited signal can be approximately time-limited [43,44,65,67,69]. Recently, Lim

3Our usage of these terms is consistent with the terminology in [24, Section 7.2], although in that work time-limited
Toeplitz operators are referred to as finite Toeplitz operators.
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and Franceschcetti [46,47] provided a connection between Shannon’s capacity from the probabilis-
tic setting and Kolmogorov’s capacity from the deterministic setting when communication occurs
using band-limited functions.

To give a precise description, consider the case of a CT Toeplitz operator H (as in (2)) that
corresponds to an ideal low-pass filter. That is, H = BW , where BW : L2(R) → L2(R) is a
band-limiting operator that takes the CTFT of an input function on L2(R), sets it to zero outside
[−W,W ] and then computes the inverse CTFT. The impulse response of this system is given by

the sinc function h(t) = sin(2πWt)
πWt

, and the frequency response of this system ĥ(F ) is simply the
indicator function of the interval [−W,W ].

Similarly, define TT : L2(R) → L2(R) to be a time-limiting operator that sets a function to zero
outside [0, T ], and finally consider the time-limited Toeplitz operator HT = TTHTT = TTBWTT .
Observe that HT can be viewed as a composition of time- and band-limiting operators.

The eigenvalues of TTBWTT were extensively investigated in [43, 69], which discuss the “lucky
accident” that TTBWTT commutes with a certain second-order differential operator whose eigen-
functions are a special class of functions—the prolate spheroidal wave functions (PSWFs).

The eigenvalues of the corresponding composition of time- and band-limiting operators in the
discrete case, a Toeplitz matrixHN whose entries are samples of a digital sinc function, were studied
by Slepian in [67]. The eigenvectors of this matrix are time-limited versions of the discrete prolate
spheroidal sequences (DPSSs) which, as we discuss further in Section 4.4, provide a highly efficient
basis for representing sampled band-limited signals and have proved to be useful in numerous signal
processing applications.

In both the CT and DT settings, the eigenvalues of the time-limited Toeplitz operator exhibit a
particular behavior: when sorted by magnitude, there is a cluster of eigenvalues close to (but not
exceeding) 1, followed by an abrupt transition, after which the remaining eigenvalues are close to 0.
This crudely resembles the rectangular shape of the frequency response of the original band-limiting
operator. Moreover, the number of eigenvalues near 1 is approximately equal to the time-frequency
area (which equals 2TW in the CT example above). More details on these facts, including a
complete treatment of the DT case, are provided in Section 4.

1.2.3. Szegő’s theorem. For more general Toeplitz operators—beyond ideal low-pass filters—the
eigenvalues of the corresponding time-limited Toeplitz operators can be described using Szegő’s
theorem.

We describe this in the DT case. Consider a DT Hermitian Toeplitz operator H which corre-

sponds to a system with frequency response ĥ(f), as described in (5) and (6). For N ∈ N, let
HN denote the resulting time-limited Hermitian Toeplitz operator, as in (8), and let the eigenval-

ues of HN be arranged as λ0(HN ) ≥ · · · ≥ λN−1(HN ). Suppose ĥ ∈ L∞([0, 1]). Then Szegő’s
theorem [24] describes the collective asymptotic behavior (as N → ∞) of the eigenvalues of the
sequence of Hermitian Toeplitz matrices {HN} as

(9) lim
N→∞

1

N

N−1∑

l=0

ϑ(λl(HN )) =

∫ 1

0
ϑ(ĥ(f))df,

where ϑ is any function continuous on the range of ĥ. As one example, choosing ϑ(x) = x yields

lim
N→∞

1

N

N−1∑

l=0

λl(HN ) =

∫ 1

0
ĥ(f)df.

In words, this says that as N → ∞, the average eigenvalue of HN converges to the average value

of the frequency response ĥ(f) of the original Toeplitz operator H. As a second example, suppose
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ĥ(f) > 0 (and thus λl(HN ) > 0 for all l ∈ {0, 1, . . . , N − 1} and N ∈ N) and let ϑ be the log
function. Then Szegő’s theorem indicates that

lim
N→∞

1

N
log (det (HN )) =

∫ 1

0
log

(
ĥ(f)

)
df.

This relates the determinants of the Toeplitz matrices HN to the frequency response ĥ(f) of the
original Toeplitz operator H.

Szegő’s theorem has been widely used in the areas of signal processing, communications, and
information theory. A paper and review by Gray [22,23] serve as a remarkable elementary introduc-
tion in the engineering literature and offer a simplified proof of Szegő’s original theorem. The result
has also been extended in several ways. For example, the Avram-Parter theorem [3,52] relates the
collective asymptotic behavior of the singular values of a general (non-Hermitian) Toeplitz matrix

to the magnitude response |ĥ(f)|. Tyrtyshnikov [76] proved that Szegő’s theorem holds if ĥ(f) ∈ R

and ĥ(f) ∈ L2([0, 1]), and Zamarashkin and Tyrtyshnikov [83] further extended Szegő’s theorem to

the case where ĥ(f) ∈ R and ĥ(f) ∈ L1([0, 1]). Sakrison [56] extended Szegő’s theorem to higher
dimensions. Gazzah et al. [20] and Gutiérrez-Gutiérrez and Crespo [26] extended Gray’s results on
Toeplitz and circulant matrices to block Toeplitz and block circulant matrices and derived Szegő’s
theorem for block Toeplitz matrices.

Similar results also hold in the CT case, with the operators H and HT as defined in (2) and (7).

Let λℓ(HT) denote the ℓth-largest eigenvalue of HT . Suppose ĥ(F ) is a real-valued, bounded and

integrable function, i.e., ĥ(F ) ∈ R, ĥ(F ) ∈ L∞(R), and ĥ(F ) ∈ L1(R). Then Szegő’s theorem in
the continuous case [24] states that the eigenvalues of HT satisfy

lim
T→∞

#{ℓ : a < λℓ(HT ) < b}
T

=
∣∣∣{F : a < ĥ(F ) < b}

∣∣∣(10)

for any interval (a, b) such that |{F : ĥ(F ) = a}| = |{F : ĥ(F ) = b}| = 0. Here | · | denotes
the length (or Lebesgue measure) of an interval. Stated differently, this result implies that the

eigenvalues of the operator HT have asymptotically the same distribution as the values of ĥ(F )
when F is distributed with uniform density along the real axis.

We remark that although the collective behavior of the eigenvalues of the time-frequency limiting
operators discussed in Section 1.2.2 can be characterized using Szegő’s theorem, finer results on
the eigenvalues have been established for this special class of time-limited Toeplitz operators. We
discuss Szegő’s theorem for general operators in Section 3, and we discuss results for time-frequency
limiting operators in Section 4.

1.2.4. Time-limited Toeplitz operators on locally compact abelian groups. One of the important
pieces of progress in harmonic analysis made in last century is the definition of the Fourier transform
on locally compact abelian groups [55]. This framework for harmonic analysis on groups not
only unifies the CTFT, n-dimensional CTFT, DTFT, and DFT (for signal domains, or groups,
corresponding to R, Rn, Z, and ZN := {0, 1, . . . , N − 1}, respectively), but it also allows these
transforms to be generalized to other signal domains. This, in turn, makes possible the analysis of
new applications such as steerable principal component analysis (PCA) [78] where the domain is
the rotation angle on [0, 2π), an imaging system with a pupil of finite size [15], line-of-sight (LOS)
communication systems with orbital angular momentum (OAM)-based orthogonal multiplexing
techniques [80], and many other applications such as those involving rotations in three dimensions [8,
Chapter 5].
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In this paper, we consider the connections between Toeplitz and time-limited4 Toeplitz operators
on locally compact abelian groups. As we review in Section 2, one important fact carries over from
the classical setting described in Section 1.1: the eigenvalues of any Toeplitz operator on a locally
compact abelian group are given by the generalized frequency response of the system.

In light of this fact, we are once again interested in questions such as: How does the spectrum of
a time-limited Toeplitz operator relate to the spectrum of the original (non-time-limited) Toeplitz
operator? In what sense do the eigenvalues converge as the domain of time-limiting approaches
the entire group? The answers to such questions will provide new insight into the effective dimen-
sionality of certain signal families (such as the class of signals that are time-limited and essentially
band-limited) and the amount of information that can be transmitted in space or time by band-
limited functions.

1.3. Contribution and paper organization. This paper focuses on the spectra of time-limited
Toeplitz operators and the resulting implications in signal processing and information theory, con-
taining part survey and part novel work. In particular, as new results, we study the spectra of
time-frequency limiting operators on locally compact abelian groups and analyze applications in
representation and approximation of band-limited signals, generalizing the existing results in Sec-
tion 1.2.2.

The remainder of paper is organized as follows. Section 2 reviews harmonic analysis on locally
compact abelian groups and draws a connection between time-limited Toeplitz operators and the
effective dimensionality of certain related signal families. Next, Section 3 reviews Szegő’s theorem
and its (existing) generalization to locally compact abelian groups. Applications are discussed in
channel capacity, signal representation, and numerical analysis. Finally, Section 4 reviews existing
results on the eigenvalues of time-frequency limiting operators and generalizes these results to locally
compact abelian groups. New applications of this unifying treatment are discussed in relation to
channel capacity and in relation to representation and approximation of signals. This work also
opens up new questions concerning applications and research directions, which we discuss at the
ends of Section 3 and Section 4.

2. Preliminaries

We briefly introduce some notation used throughout the paper. Sets (of variables, functions,
etc.) are denoted in blackboard font as A,B, . . .. Operators are denoted in calligraphic font as
A,B, . . ..
2.1. Harmonic analysis on locally compact abelian groups.

2.1.1. Groups and dual groups. Let G (with a binary operation ◦) denote a locally compact abelian
group, which can be either discrete or continuous, and either compact or non-compact. A character
χξ : G → T of G is a continuous group homomorphism from G with values in the circle group
T := {z ∈ C : |z| = 1} satisfying

|χξ(g)| = 1, χ∗
ξ(g) = χξ(g

−1), χξ(h ◦ g) = χξ(h)χξ(g),

for any g, h ∈ G. Here χ∗
ξ(g) is the complex conjugate of χξ(g). The set of all characters on G

introduces a locally compact abelian group, called the dual group of G and denoted by Ĝ if we

pair (g, ξ) → χξ(g) for all ξ ∈ Ĝ and g ∈ G. In most references the character is denoted simply
by χ rather than by χξ. However, we use here the notation χξ in order to emphasize that the

character can be viewed as a function of two elements g ∈ G and ξ ∈ Ĝ, and for any ξ ∈ Ĝ, χξ is a
function of g. In this sense, χξ(g) can be regarded as the value of the character χξ evaluated at the

4Here we use “time” to be consistent with the preceding discussion, but this concept broadly applies to other
domains such as the spatial domain.
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group element g. Table 1 lists several examples of groups G, along with the corresponding binary

operation ◦ and dual group Ĝ, that have relevance in signal processing and information theory.
Here mod(a, b) = a

b
− ⌊a

b
⌋, where ⌊c⌋ is the largest integer that is not greater than c.

Table 1. Examples of groups G, along with their dual groups Ĝ and Fourier trans-
forms (FT). Below, CT denotes continuous time, DT denotes discrete time, FS
denotes Fourier series, and DFT denotes the discrete Fourier transform.

group G dual group Ĝ g binary operation g1 ◦ g2 ξ χξ(g) FT

R R t t1 + t2 F ej2πFt CTFT

Rn Rn t t1 + t2 F ej2π〈F ,t〉 CTFT in Rn

unit circle [0, 1) Z t mod(t1 + t2, 1) k ej2πtk CTFS

Z unit circle n n1 + n2 f ej2πfn DTFT

ZN = N roots of unity ZN = N roots of unity n mod(n1 + n2, N) k ej2π
nk

N DFT

2.1.2. Fourier transforms. The characters {χξ}ξ∈Ĝ play an important role in defining the Fourier

transform for functions in L2(G). In particular, the Pontryagin duality theorem [55], named after
Lev Semennovich Pontryagin who laid the foundation for the theory of locally compact abelian
groups, generalizes the conventional CTFT on L2(R) and CT Fourier series for periodic functions
to functions defined on locally compact abelian groups.

Theorem 1 (Pontryagin duality theorem [55]). Let G be a locally compact abelian group and µ
be a Haar measure on G. Let x(g) ∈ L1(G). Then the Fourier transform x̂(ξ) is defined by
x̂(ξ) =

∫
G
x(g)χ∗

ξ(g) d µ(g). For each Haar measure µ on G there is a unique Haar measure ν on

Ĝ such that the following inverse Fourier transform holds x(g) =
∫
Ĝ
x̂(ξ)χξ(g) d ν(ξ). The Fourier

transform satisfies Parseval’s theorem:
∫
G
|x(g)|2 dµ(g) =

∫
Ĝ
|x̂(ξ)|2 d ν(ξ).

With certain technical tricks, the same Fourier transform and Parseval’s theorem in Theorem 1
can be extended to L2(G); see [72, Theorem 59], [55, 1.6.1] and the references therein for details.
Only Haar measures and integrals are considered throughout this paper. We note that the unique

Haar measure ν on Ĝ depends on the choice of Haar measure µ (which is unique except for positive
scaling factors) on G. We illustrate this point with the conventional DFT as an example where

g = n ∈ G = ZN , ξ = k ∈ Ĝ = ZN , and χξ(g) = ej2π
nk
N . If we choose the counting measure (where

each element of G receives a value of 1) on G, then we must use the normalized counting measure

(where each element of Ĝ receives a value of 1
N
) on Ĝ. The DFT and inverse DFT become

x̂[k] =

N−1∑

n=0

x[n]e−j2π nk
N ; x[n] =

1

N

N−1∑

k=0

x̂[k]ej2π
nk
N .

One can also choose the semi-normalized counting measure (where each element receives a value of
1√
N
) on both groups G and Ĝ. This gives the normalized DFT and inverse DFT:

x̂[k] =
1√
N

N−1∑

n=0

x[n]e−j2π nk
N ; x[n] =

1√
N

N−1∑

k=0

x̂[k]ej2π
nk
N .

For convenience, we rewrite the Fourier transform and inverse Fourier transform as follows when
the Haar measures are clear from context:

x̂(ξ) =

∫

G

x(g)χ∗
ξ(g) d g; x(g) =

∫

Ĝ

x̂(ξ)χξ(g) d ξ.

7



We also use F : L2(G) → L2(Ĝ) and F−1 : L2(Ĝ) → L2(G) to denote the operators corresponding
to the Fourier transform and inverse Fourier transform, respectively.

For each group G and dual group Ĝ listed in Table 1, the table also includes the corresponding
Fourier transform.

2.1.3. Convolutions. For any x(g), y(g) ∈ L2(G), we define the convolution between them by

(x ⋆ y)(g) :=

∫

G

y(h)x(h−1 ◦ g) d h.(11)

Similar to what holds in the standard CT and DT signal processing contexts, it is not difficult to
show that the Fourier transform on G also takes convolution to multiplication. That is,

F(x ⋆ y)(ξ) =

∫

G

∫

G

y(h)x(h−1 ◦ g) d h χ∗
ξ(g) d g

=

∫

G

∫

G

x(h−1 ◦ g)χ∗
ξ(h

−1 ◦ g) d g χ∗
ξ(h)y(h) d h = (Fx)(ξ)(Fy)(ξ)

since
∫
G
x(h−1 ◦ g) d g =

∫
G
x(g) d g for any h ∈ G.

Similar to the fact that Toeplitz operators (2) and Toeplitz matrices (5) are closely related to the
convolutions in Section 1.1, the convolution (11) can be viewed as a linear operator X : L2(G) →
L∞(G) that computes the convolution between the input function y(g) and x(g):

(Xy)(g) =

∫

G

x(h−1 ◦ g)y(h) d h.

We refer to X as a Toeplitz operator since this linear operator involves a kernel function x(h−1 ◦ g)
that depends only on the difference h−1 ◦g. We call x̂(ξ), the Fourier transform of x(g), the symbol
corresponding to the Toeplitz operator X .

Finally, let A ∈ G be a subset of G. As explained in Section 1.2, we are also interested in the
time-limited Toeplitz operator5 XA : L2(G) → L2(G), where

(XAy)(g) =

{∫
A
x(h−1 ◦ g)y(h) d h, g ∈ A,

0, otherwise.
(12)

Recall that the spectrum of a linear operator X is the set of complex numbers λ such that X − λI
(where I denotes the identity operator) is not invertible. Here the time-limited Toeplitz operator
XA is compact and thus has a discrete spectrum containing what refer to as its eigenvalues. There
is no simple formula for exactly expressing the eigenvalues of XA. Instead, we are interested in
questions such as: How does the spectrum of the time-limited Toeplitz operator XA relate to the
spectrum of the original (non-time-limited) Toeplitz operator X ? In what sense do the eigenvalues
converge as the domain A of time-limiting approaches the entire group G? We discuss answers to
these questions in Section 3 and Section 4.

2.2. The effective dimensionality of a signal family. One of the useful applications of charac-
terizing the spectrum of time-limited Toeplitz operators is in computing the effective dimensionality
(or the number of degrees of freedom) of certain related signal families. In this section, we formalize
this notion of effective dimensionality for a set of functions defined on a group G.

5
XA is also referred to as a Toeplitz operator in [24, 27, 39, 48]. Again, we note that here “time” refers to the

domain in G.
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2.2.1. Definitions. We begin by defining general sets of time-limited functions that we are inter-
ested in; in later sections we discuss these functions in the context of communications and signal

processing. Specifically, suppose A is a subset of G and let W(A, φ̂(ξ)) ⊂ L2(A) denote the set of

functions controlled by a symbol φ̂(ξ):

W(A, φ̂(ξ)) :=

{
x ∈ L2(A) : x(g) =

∫

Ĝ

α(ξ)φ̂(ξ)χξ(g) d ξ,

∫
|α(ξ)|2 d ξ ≤ 1, g ∈ A

}
,(13)

which is a subset of L2(A). We note that in (13), the symbol φ̂(ξ) is fixed and we discuss its role
soon.

Also let Mn ⊂ L2(G) denote an n-dimensional subspace of L2(G). The distance between a point
x ∈ L2(G) and the subspace Mn is defined as

d(x,Mn) := inf
y∈Mn

∫
(x(g) − y(g))2 d g =

∫
(x(g)− ( PMnx)(g))

2 d g = sup
z∈L2(G),z⊥Mn

∣∣∣〈x, z〉L2(G)

∣∣∣
‖z‖L2(G)

,

(14)

where PMn : L2(G) → L2(G) represents the orthogonal projection onto the subspaceMn. We define

the width d(W(A, φ̂(ξ)),Mn) of the set W(A, φ̂(ξ)) with respect to the subspace Mn as follows:

d(W(A, φ̂(ξ)),Mn) := sup
x∈W(A,φ̂(ξ))

d(x,Mn) = sup
x∈W(A,φ̂(ξ))

inf
y∈Mn

∫
(x(g) − y(g))2 d g,

which also represents the largest distance from the elements in W(A, φ̂(ξ)) to the n-dimensional

subspace Mn. The Kolmogorov n-width [38], dn(W(A, φ̂(ξ))) of W(A, φ̂(ξ)) in L2(G) is defined as

the smallest width d(W(A, φ̂(ξ)),Mn) over all n-dimensional subspaces of L2(G); that is

dn(W(A, φ̂(ξ))) := inf
Mn

d(W(A, φ̂(ξ)),Mn).(15)

In summary, the n-width dn(W(A, φ̂(ξ))) characterizes how well the set W(A, φ̂(ξ)) can be ap-

proximated by an n-dimensional subspace of L2(G). By its definition, dn(W(A, φ̂(ξ))) is non-
increasing in terms of the dimensionality n. For any fixed ǫ > 0, we define the effective dimension-

ality, or number of degrees of freedom, of the set W(A, φ̂(ξ)) at level ǫ as [19]

N (W(A, φ̂(ξ)), ǫ) = min
{
n : dn(W(A, φ̂(ξ))) < ǫ

}
.(16)

In words, the above definition ensures that there exists a subspaceMn of dimension n = N (W(A, φ̂(ξ)), ǫ)

such that for every function x ∈ W(A, φ̂(ξ)), one can find at least one function y ∈ Mn so that the
distance between x and y is at most ǫ.

We note that the reason we impose an energy constraint on the elements x of W(A, φ̂(ξ)) in (13)
is that we use the absolute distance to quantify the proximity of x to the subspace Mn in (14).

2.2.2. Connection to operators. In order to compute N (W(A, φ̂(ξ)), ǫ), we may define an operator

A : L2(Ĝ) → L2(A) as

(Aα)(g) =

∫

Ĝ

α(ξ)φ̂(ξ)χξ(g) d ξ, g ∈ A.

9



The adjoint A∗ : L2(A) → L2(Ĝ) is given by (A∗x)(ξ) =
∫
A
x(g)φ̂∗(ξ)χ∗

ξ(g) d g. The composition of

A and A∗ gives a self-adjoint operator AA∗ : L2(A) → L2(A) as follows:

(AA∗x)(g) =
∫

Ĝ

φ̂(ξ)χξ(g)

∫

A

x(h)φ̂∗(ξ)χ∗
ξ(h) d hd ξ

=

∫

A

x(h)

∫

Ĝ

∣∣∣φ̂(ξ)
∣∣∣
2
χξ(h

−1 ◦ g) d ξ dh =

∫

A

x(h)(φ ⋆ φ∗)(h−1 ◦ g) dh,
(17)

where φ(g) =
∫
Ĝ
φ̂(ξ)χξ(g) d ξ is the inverse Fourier transform of φ̂. In words, compared with (12),

the self-adjoint operator AA∗ can be viewed as a time-limited Toeplitz operator with the kernel
φ ⋆ φ∗.

The following result will help in computing dn(W(A, φ̂(ξ))) and the effective dimensionality of

W(A, φ̂(ξ)) as well as choosing the optimal basis for representing the elements of W(A, φ̂(ξ)).

Proposition 1. [54] Let the eigenvalues of AA∗ be denoted and arranged as λ1 ≥ λ2 ≥ · · · . Then

the n-width of W(A, φ̂(ξ)) can be computed as

dn(W(A, φ̂(ξ))) =
√

λn,

and the optimal n-dimensional subspace to represent W(A, φ̂(ξ)) is the subspace spanned by the first
n eigenvectors of AA∗.

The proof of Proposition 1 is given in Appendix A.

3. General Toeplitz Operators on Locally Abelian Groups

Let x(g) ∈ L2(G), whose Fourier transform is given by x̂(ξ). Now we are well equipped to consider
the eigenvalue distribution of a general time-limited Toeplitz operator XA (which is formally defined
in (12)) on a locally abelian group; in particular we are interested in the relationship between the
spectrum of of the time-limited Toeplitz operator XA and x̂(ξ). The operator XA is completely
continuous and its eigenvalues are denoted by λℓ(XA). Before presenting the main results, we

introduce new notation for subsets of G (or Ĝ) which are asymptotically increasing to cover the
whole group. This is similar to how we discussed the cases where T → ∞ andN → ∞ in Section 1.2.
To that end, let Aτ , τ ∈ (0,∞) be a system of Borel subsets of G with boundaries of measure zero
such that 0 < µ(Aτ ) < ∞. The subscript τ is sometimes dropped when it is clear from the context.
We can view Aτ as a set of subsets that depend on the parameter τ . One can also define a system
of subsets with multiple parameters.

3.1. Generalized Szegő’s theorem. Abundant effort [24, 27, 39, 48] has been devoted to ex-
tending the conventional Szegő’s theorem for a general time-limited Toeplitz operator XA. Let
N (XA; (a, b)) =: # {ℓ : a < λℓ(XA) < b} denote the number of eigenvalues of XA that are between
a and b. We summarize the following generalized Szegő’s theorem concerning the collective be-
havior of the eigenvalues of XA and relating them to x̂(ξ) (the spectrum of the corresponding
non-time-limited operator X ).

Theorem 2 (Generalized Szegő’s theorem [24,27,39,48]). Let x(g) ∈ L2(G) and XAτ be the time-
limited Toeplitz operator defined in (12). Suppose the following holds almost everywhere:

lim
τ→∞

Aτ = G.

Then for all intervals (a, b) such that ν ({ξ : x̂(ξ) = a}) = ν ({ξ : x̂(ξ) = b}) = 0, we have

lim
τ→∞

N (XAτ ; (a, b))

µ(Aτ )
= ν ({ξ : a < x̂(ξ) < b}) .(18)

10



In a nutshell, Theorem 2 implies that the eigenvalues of the time-limited Toeplitz operator XAτ

are closely related to x̂(ξ), the spectrum of the corresponding non-time-limited Toeplitz operator
X . Some work instead presents (18) as

lim
τ→∞

N (XAτ ; [a, b])

µ(Aτ )
= ν ({ξ : a ≤ x̂(ξ) ≤ b}) .(19)

One can understand the equivalence between (18) and (19) as the boundary of the interval makes
no difference since ν ({ξ : x̂(ξ) = a}) = 0 and ν ({ξ : x̂(ξ) = b}) = 0.

In words, Theorem 2 implies that the eigenvalue distribution of the operator XAτ asymptotically
converges to the distribution of the Fourier transform of x(g). We now compare Theorem 2 with
the conventional Szegő’s theorems in Section 1.2.3 that have widely appeared in information theory
and signal processing. We note that (18) has exactly the same form as (10) for the time-limited
operator HT in (7).

For the Toeplitz matrix HN defined in (8), at first glance, (9) is slightly different than what is
expressed in (18) which implies

lim
N→∞

N (HN ; (a, b))

N
=

∣∣∣
{
f : f ∈ [0, 1), a < ĥ(f) < b

}∣∣∣(20)

for all intervals (a, b) such that
∣∣∣
{
f : ĥ(f) = a

}∣∣∣ = 0 and
∣∣∣
{
f : ĥ(f) = b

}∣∣∣ = 0. In fact, (9) and (20)

are equivalent if we view ĥ : [0, 1) → R as a random variable and define λHN
: {0, 1, . . . , N − 1} → R

to be a discrete random variable by λHN
[ℓ] = λℓ(HN ). In probabilistic language, set

F
ĥ
(a) :=

∣∣∣
{
f : f ∈ [0, 1), ĥ(f) ≤ a

}∣∣∣

to be the cumulative distribution function (CDF) associated to ĥ. Also denote the CDF associated
to λHN

by

FλHN
(a) :=

N (HN ; (−∞, a])

N
=

# {ℓ : λℓ(HN ) ≤ a}
N

.

The following result, known as the Portmanteau lemma, gives two equivalent descriptions of weak
convergence in terms of the CDF and the means of the random variables.

Lemma 1. [77, Portmanteau lemma] The following are equivalent:

(1) limN→∞ 1
N

∑N−1
ℓ=0 ϑ(λℓ(HN )) =

∫ 1
0 ϑ(ĥ(f))df for all bounded, continuous functions ϑ;

(2) limN→∞ FλHN
(a) = F

ĥ
(a) for every point a at which F

ĥ
is continuous.

Note that if F
ĥ
is continuous at a, then

∣∣∣
{
f : ĥ(f) = a

}∣∣∣ = 0. Thus the equivalence between

(9) and (20) follows from the Portmanteau lemma. In words, (20) implies that certain collective

behaviors of the eigenvalues of each Toeplitz matrix are reflected by the symbol ĥ(f).
We note that (9) is one of the descriptions of weak convergence of a sequence of random variables

in the Portmanteau lemma [77] (also see Lemma 1). Thus, throughout the paper, we also refer to
the collective behavior (like that characterized by (9)) of the eigenvalues as the distribution of the
eigenvalues.

In the following subsections, we discuss applications of the generalized Szegő’s theorem.

3.2. Application: Subspace approximations.
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3.2.1. Convolutions with a pulse. We first consider the set of functions obtained by time-limiting
the convolution between α(g) and a fixed function φ(g):

W(A, φ(g)) :=

{
x ∈ L2(A) : x(g) =

∫

G

α(h)φ(h−1 ◦ g) d h,
∫

G

|α(g)|2 d g ≤ 1, g ∈ A

}
.(21)

We note that W(A, φ(g)) is equivalent to W(A, φ̂(ξ)) defined in (13) by rewriting x(g) in (21):

x(g) =

∫

G

α(h)φ(h−1 ◦ g) d h =

∫

Ĝ

α̂(ξ)φ̂(ξ)χξ(g) d ξ,

which is exactly the same form of x(g) in (13). This model (21) arises in radar signal processing,
channel sensing, and super-resolution of pulses through an unknown channel. Proposition 1 implies
that the n-width of W(A, φ(g)) is given by

dn(W(A, φ(g))) =
√

λn(AA∗),

where AA∗ defined in (17) is time-limited Toeplitz operator with the kernel φ⋆φ∗. Now Theorem 2
along with (16) reveals the effective dimensionality, or number of degrees of freedom, of the set
W(A, φ(g)) at level ǫ as follows.

Corollary 1. Suppose limτ→∞Aτ = G holds almost everywhere. Then for any ǫ > 0 such that

ν
({

ξ : φ̂(ξ) = ǫ
})

= 0, we have

lim
τ→∞

N (W(Aτ , φ(g)), ǫ)

µ(Aτ )
= ν

({
ξ :

∣∣∣φ̂(ξ)
∣∣∣ > ǫ

})
.

Proof. By (16), we have N (W(Aτ , φ(g)), ǫ) = min
{
n :

√
λn < ǫ

}
= #

{
n :

√
λn ≥ ǫ

}
. Note that

the Fourier transform of φ ⋆ φ∗ is
∣∣∣φ̂(ξ)

∣∣∣
2
. Then Corollary 1 then follows directly by applying

Theorem 2 to AA∗ (which is a time-limited Toeplitz operator with the kernel φ ⋆ φ∗). �

3.2.2. Shifts of a signal. We now consider a slightly different model where the function of interest
is a linear combination of continuous shifts of a given signal φ(g) ∈ L2(G):

S(A, φ(g)) :=

{
x ∈ L2(A) : x(g) =

∫

A

α(h)φ(h−1 ◦ g) d h,
∫

A

|α(g)|2 d g ≤ 1

}
.(22)

Define TA : L2(G) → L2(G) as a time-limiting operator that makes a function zero outside A. We
can also rewrite x(g) =

∫
G
(TAα)(h)φ(h−1 ◦ g) dh = (TAα) ⋆ φ for g ∈ A, the convolution between

the time-limited function (TAα)(g) and φ(g). By zero-padding the signal x outside A, we may also
rewrite it simply as x = TA((TAα) ⋆ φ). Analogously, we could express the function x(g) in (21) as
x = TA(α ⋆ φ). Now it is clear the model for W(A, φ(g)) and the one for S(A, φ(g)) differs in the
location of the time-limiting operator TA.

To investigate the effective dimension or the number of degrees of freedom for S(A, φ(g)), we
define the operator S : L2(A) → L2(G) as:

(Sα)(g) =
∫

A

α(h)φ(h−1 ◦ g) d h, g ∈ G.

Its adjoint S∗ : L2(G) → L2(A) is given by

(S∗x)(g) =
∫

G

φ∗(g−1 ◦ h)x(h) d h, g ∈ A.

12



We then have the self-adjoint operator S∗S : L2(A) → L2(A)

(S∗Sα)(g) =
∫

G

φ∗(g−1 ◦ h)
∫

A

α(η)φ(η−1 ◦ h) d η dh

=

∫

A

∫

G

φ∗(g−1 ◦ h)φ(η−1 ◦ h) dhα(η) d η =

∫

A

r(η−1 ◦ g)α(η) d η,

where r(g) :=
∫
G
φ(h)φ(g−1 ◦ h) d h is the autocorrelation function of the function φ. Thus, S∗S is

a Toeplitz operator of the form (12). Similar to Proposition 1, we can study the effective dimension
of the set of shifted signals in (22) by looking at the eigenvalue distribution of the self-adjoint
operator SS∗. Note that in this case SS∗ is not a Toeplitz operator, but it has the same nonzero
eigenvalues as S∗S. Thus, we can exploit the eigenvalue distribution of S∗S to infer the number of
degrees of freedom for the set S(A, φ(g)). This is formally established in the following result.

Proposition 2. Let the eigenvalues of S∗S be denoted and arranged as λ1 ≥ λ2 ≥ · · · . Then the
n-width of S(A, φ(g)) can be computed as dn(S(A, φ(g))) =

√
λn, and the optimal n-dimensional

subspace to represent S(A, φ(g)) is the subspace spanned by the first n eigenvectors of SS∗.

Finally, Theorem 2 implies that the eigenvalue distribution of the Toeplitz operator S∗S is
asymptotically equivalent to r̂(ξ) =

∫
G
r(g)χξ(g) d g, the power spectrum of φ if we view r as the

autocorrelation of φ.

3.3. Application: Eigenvalue estimation. In many applications such as spectrum sensing algo-
rithm for cognitive radio [86], it is desirable to understand the individual asymptotic behavior of the
eigenvalues of time-limited Toeplitz operators rather than the collective behavior of the eigenvalues
provided by Szegő’s theorem (Theorem 2). As a special case, efficiently estimating the spectral
norm (i.e., the largest singular value) of Toeplitz matrices is crucial in certain applications. For ex-
ample, the Lipschitz constant of a CNN has wide implications in understanding the key properties
of the neural network such as its generalization and robustness. Unfortunately, computing the exact
Lipschitz constant of a neural network is known to be NP-hard [58]. Recent work [2, 82] proposed
methods for computing upper bounds of the Lipschitz constant for each layer (and hence for the
entire network) by efficiently estimating the spectral norm of the corresponding (block) Toeplitz
matrices. We will review related recent progress on characterizing the individual behavior of the
eigenvalues for Toeplitz matrices. To our knowledge, the individual behavior of the eigenvalues has
only recently been investigated for Toeplitz matrices.

Bogoya et al. [4] studied the individual asymptotic behavior of the eigenvalues of Toeplitz matrices
by interpreting Szegő’s theorem in (9) in probabilistic language and related the eigenvalues to the

values obtained by sampling ĥ(f) uniformly in frequency on [0, 1):

lim
N→∞

max
0≤ℓ≤N−1

∣∣∣∣λℓ(HN )− ĥ(
ρ(ℓ)

N
)

∣∣∣∣ = 0(23)

if the range of ĥ(f) is connected. Here ĥ(ρ(ℓ)
N

) is the permuted form of ĥ( ℓ
N
) such that ĥ(ρ(0)

N
) ≥

ĥ(ρ(1)
N

) ≥ · · · ≥ ĥ(ρ(ℓ)
N

). Thus, if the symbol ĥ(f) is known, we can sample it uniformly to get
reasonable estimates for the eigenvalues of the Toeplitz matrix.

Despite the power of Szegő’s theorem, in many scenarios (such as certain coding and filtering

applications [22,53]), one may only have access to HN and not ĥ. In such cases, it is still desirable
to have practical and efficiently computable estimates of the individual eigenvalues of HN . We
recently showed [93] that we can construct a certain sequence of N×N circulant matrices such that
the eigenvalues of the circulant matrices asymptotically converge to those of the Toeplitz matrices.
Transforming the Toeplitz matrix into a circulant matrix can be performed extremely efficiently
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using closed form expressions; the eigenvalues of the circulant matrix can then be computed very
efficiently (in O(N logN) using the fast Fourier transform (FFT)).

When the sequence h[n] is not symmetric about the origin, the Avram-Parter theorem [3,52], a
generalization of Szegő’s theorem, relates the collective asymptotic behavior of the singular values

of a general (non-Hermitian) Toeplitz matrix to the absolute value of its symbol, i.e., |ĥ(f)|. Bogoya
et al. [4] also showed that the singular values of HN asymptotically converge to the uniform samples

of |ĥ(f)| provided the range of the symbol |ĥ(f)| is connected.

3.4. Questions. Inspired by the applications listed above, we raise two questions concerning the
generalized Szegő’s theorem (Theorem 2). The first question concerns the individual behavior of
the eigenvalues.

Question 1. Is it possible to extend the result (23) concerning the individual behavior of the
eigenvalues for Toeplitz matrices to general Toeplitz operators?

We note that both the conventional Szegő’s theorem listed in Section 1.2.3 and the generalized
Szegő’s theorem (Theorem 2) characterize asymptotic behavior of the eigenvalues.

Question 2. Is it possible to establish a non-asymptotic result concerning the eigenvalue behavior
(either collective or individual) for the general Toeplitz operators XAτ ?

4. Time-Frequency Limiting Operators on Locally Compact Abelian Groups

In this section, we consider a special case of time-limited Toeplitz operators: time-frequency lim-
iting operators on locally compact abelian groups, to be formally defined soon. As we have briefly
explained in Section 1.2, time-frequency limiting operators in the context of the classical groups
where G are the real-line, Z, and ZN play important roles in signal processing and communication.
By considering time-frequency limiting operators on locally compact abelian groups, we aim to
(i) provide a unified treatment of the previous results on the eigenvalues of the operators resulting
in PSWFs, DPSSs, and periodic DPSSs (PDPSSs) [25, 32]; and (ii) extend these results to other
signal domains such as rotations in a plane and three dimensions [8, Chapter 5]. In particular,
we will investigate the eigenvalues of time-frequency limiting operators on locally compact abelian
groups and show that they exhibit similar behavior to both the conventional CT and DT settings:
when sorted by magnitude, there is a cluster of eigenvalues close to (but not exceeding) 1, followed
by a relatively sharp transition, after which the remaining eigenvalues are close to 0. This behavior
also resembles the rectangular shape of the frequency response of the original band-limiting oper-
ator. Although this collective behavior can be characterized using Szegő’s theorem, finer results
(particularly non-asymptotic results) on the eigenvalues have been established in special cases,
which we will review in detail. We will also discuss the applications of this unifying treatment in
relation to channel capacity and to representation and approximation of signals.

To introduce the time-frequency limiting operators, consider two subsets A ∈ G and B ∈ Ĝ.
Recall that TA : L2(G) → L2(G) is a time-limiting operator that makes a function zero outside A.
Also define BB = F−1TBF : L2(G) → L2(G) as a band-limiting operator that takes the Fourier
transform of an input function on L2(G), sets it to zero outside B, and then computes the inverse
Fourier transform. The operator BB acts on L2(G) as a convolutional integral operator:

(BBx)(g) =

∫

B

x̂(ξ)χξ(g) d ξ =

∫

B

(∫

G

x(h)χ∗
ξ(h) dh

)
χξ(g) d ξ =

∫

G

KB(h
−1 ◦ g)x(h) d h,

where

KB(h
−1 ◦ g) =

∫

B

χ∗
ξ(h)χξ(g) d ξ =

∫

B

χξ(h
−1 ◦ g) d ξ.(24)
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It is of interest to study the eigenvalues of the following operators which we refer to as time-frequency
limiting operators

OA,B = TABBTA, and BBTABB.(25)

Utilizing the expression for BB, the operator TABBTA acts on any x ∈ L2(G) as follows

(TABBTAx) (g) =
{∫

A
KB(h

−1 ◦ g)x(h) d h, g ∈ A

0, otherwise.

The operator OA,B is symmetric and completely continuous and we denote its eigenvalues by
λℓ(OA,B). Due to the time- and band-limiting characteristics of the operator OA,B, the eigenvalues
of OA,B are between 0 and 1. To see this, let x(g) ∈ L2(A):

〈(OA,Bx)(g), x(g)〉 =
〈∫

A

∫

B

χξ(h
−1 ◦ g) d ξx(h) d h, x(g)

〉

=

∫

B

(∫

A

∫

A

χξ(h
−1 ◦ g)x(h)x∗(g) d hd g

)
d ξ =

∫

B

|x̂(ξ)|2 d ξ ≥ 0.

On the other hand, we have
∫
B
|x̂(ξ)|2 d ξ ≤

∫
Ĝ
|x̂(ξ)|2 d ξ =

∫
G
|x(g)|2 d g.

4.1. Eigenvalue distribution of time-frequency limiting operators. To investigate the eigen-
values of the operator OA,B = TABBTA, we first note that without the time-limiting operator TA,
the eigenvalues of BB are simply given by the Fourier transform of KB(g), and thus they are either 1
or 0. Our main question is how the spectrum of the time-frequency limiting operator relates to the
spectrum of the band-limited operator. Based on the binary spectrum of BB and the intuition from
Szegő’s theorem in Theorem 2, we expect that the eigenvalues of OA,B to have a particular behavior:
when sorted by magnitude, there should be a cluster of eigenvalues close to (but not exceeding)
1, followed by an abrupt transition, after which the remaining eigenvalues should be close to 0.
Moreover, the number of effective (i.e., relatively large) eigenvalues should be essentially equal to
the time-frequency area |A||B|. These results are confirmed below and reveal the dimensionality
(or the number of degrees of freedom) of classes of band-limited signals observed over a finite time,
which is fundamental to characterizing the performance limits of communication systems.

We note that similar to how we discussed the cases where T → ∞ and N → ∞ in Section 1.2,
we will use Aτ , τ ∈ (0,∞) to define the subsets of G that depend on τ . The subscript τ is often
dropped when it is clear from the context. We now present one of our main results concerning the
asymptotic behavior for the eigenvalues of the time-frequency limiting operators OAτ ,B when Aτ

approaches G.

Theorem 3. Suppose B is a fixed subset of Ĝ and let ǫ ∈ (0, 12). Let

N (OAτ ,B; (a, b)) := # {ℓ : a < λℓ(OAτ ,B) < b}
denote the number of eigenvalues of TAτBBTAτ that are between a and b. Then if

lim
τ→∞

Aτ = G(26)

holds almost everywhere, we have
∑

ℓ

λℓ(OAτ ,B) = |Aτ ||B|,
∑

ℓ

λ2
ℓ (OAτ ,B) = |Aτ ||B| − o(|Aτ ||B|),(27)

and

lim
τ→∞

N (OAτ ,B; [1− ǫ, 1])

|Aτ |
= |B|, N (OAτ ,B; (ǫ, 1 − ǫ)) = o

( |Aτ ||B|
ǫ(1− ǫ)

)
.(28)

Here | · | denotes the Haar measure.
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The proof of Theorem 3 is given in Appendix B. The limit in (26) is in the sense of convergence
in measure on each compact set of G. There are no specific shape constraints in Aτ except that
their boundaries are measure zero, though we note that in many cases of interest Aτ is a closed set
as in bandlimited signals [41], a union of closed sets as in multiband signals [92], or a scaling of a
fixed set as in [19] where QτA = {Qτg : g ∈ A} where G is Rn, A is a fixed set of Rn with boundary
of measure zero, and Qτ ∈ R

n×n depends on τ such that limτ→∞QτA = R
n. Theorem 3 formally

confirms that the spectra of the time-frequency limiting operators resemble the rectangular shape
of the spectrum of the band-limiting operator. As guaranteed by (28), the number of effective
eigenvalues of the time-frequency limiting operator is asymptotically equal to the time-frequency
area |Aτ ||B|. Similar results for time-frequency limiting operators in the context of classical groups
where G is Rn are given in [19,41]. We discuss the applications of Theorem 3 in channel capacity
and representation and approximation of signals in more detail in the following subsections.

As mentioned before, the time-frequency limiting operators in the context of the classical groups
where G are the real-line, Z, and ZN were first studied by Landau, Pollak, and Slepian who wrote a
series of papers regarding the dimensionality of time-limited signals that are approximately band-
limited (or vice versa) [43,44,65,67,69] (see also [66,68] for concise overviews of this body of work).
After that, a set of results concerning the number of eigenvalues within the transition region (0, 1)
have been established in [17, 30, 37, 45, 51, 87]. which will be reviewed in detail in the following
remarks.

Remark 1. Using the explicit expressions for the character function χξ(g) and the kernel KB(g) and
applying integration by parts for (39), one can improve the second term in (27) to O(log(|Aτ ||B|))
for many common one-dimensional cases:

• Suppose G = R and Ĝ = R. Let AT = [−T
2 ,

T
2 ] (where τ = T in (26)) and B = [−1

2 ,
1
2 ] without

loss of generality. Then the kernel KB(t) turns out to be KB(t) =
∫ 1

2

− 1

2

ej2πF t dF = 2 sin(πt)
πt

.

Plugging in this form into (39) gives [28]
∑

ℓ(λℓ(OAT ,B))
2 = T − O(log(T )). In this case, the

operator OAT,B is equivalent to the time-limited Topelitz operator HT in Section 1.2.2 and the
corresponding eigenfunctions are known as PSWFs.

• As an another example, suppose G = Z, Ĝ = [−1
2 ,

1
2 ] and let AN = {0, 1 . . . , N − 1} (where

τ = N in (26)), B = [−W,W ] with W ∈ (0, 12). In this case, the kernel KB(n) becomes

KB[n] =
∫W

−W
ej2πfn d f = sin(2πWn)

πWn
. Then plugging in this form into (39) gives [92, Theorem

3.2]
∑

ℓ(λℓ(OAN ,B))
2 = 2NW −O(log(2NW )). We note that in this case, the operator OAN ,B is

equivalent to the N ×N prolate matrix BN,W with entries

BN,W [m,n] :=
sin (2πW (m− n))

π(m− n)
(29)

for all m,n ∈ {0, 1, . . . , N−1}. The eigenvalues and eigenvectors of the matrix BN,W are referred
to as the DPSS eigenvalues and DPSS vectors, respectively.

• As a final example, we consider G = ZN , Ĝ = ZN and the Fourier transform is the conventional
DFT. Suppose M,K ≤ N . Let τ = M in (26) and

AM = {0, 1, . . . ,M − 1} , B = {0, 1, . . . ,K − 1} ,(30)

In this case, χk[n] = ej2π
nk
N and the kernel KB[n] is KB[n] =

∑K−1
k=0 ej2π

nk
N = ejπn

K−1

N
sin(π nK

N
)

sin(π n
N
) .

Then plugging in this form into (39) gives [17,87]
∑

ℓ(λℓ(OAM ,B))
2 = MK

N
−O(log(MK

N
)).

Through the above examples, one may wonder whether we can in general replace the second term
in (27) by O(log(|Aτ ||B|)) with a finer analysis of

∑
ℓ(λℓ(OAτ ,B))

2. We utilize a two-dimensional

example to answer this question in the negative: Suppose G = Z
2, Ĝ = [−1

2 ,
1
2 ]×[−1

2 ,
1
2 ] and let
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A = {0, 1 . . . , N − 1}×{0, 1 . . . , N − 1},B = [−W,W ]× [−W,W ] with W ∈ (0, 12). In this case, the
kernel KB[n1, n2] is

KB[n1, n2] =

∫ W

−W

∫ W

−W

ej2πf1n1ej2πf2n2 d f1 d f2 =
sin(2πWn1)

πWn1

sin(2πWn2)

πWn2
.

The eigenvectors of the corresponding operator OA,B are known as the two-dimensional DPSSs.
For this case, we have

∑
ℓ(λℓ(OAτ ,B))

2 = 4N2W 2−O(NW log(NW )). In other words, in this case,
we can only improve the second term in (27) to O(NW log(NW )) rather than O(log(4N2W 2)).

Remark 2. We note that the transition region in (28) depends on ǫ in the form of 1
ǫ(1−ǫ) . A better

understanding of the transition region requires further complicated analysis. In the literature, finer
results on the transition region are known for several common cases:

• The results for the eigenvalue distribution of the continuous time-frequency localization operator

(where G = R, Ĝ = R, AT = [−T
2 ,

T
2 ] and B = [−1

2 ,
1
2 ]) has a rich history. As one example, for any

ǫ ∈ (0, 1), Landau andWidom [45] provided the following asymptotic resultN (OAT ,B; [ǫ, 1]) = T+(
1
π2 log

1−ǫ
ǫ

)
log πT

2 + o
(
log πT

2

)
. This asymptotic result ensures the O(log(1

ǫ
) log(T )) dependence

on ǫ and time-frequency area T . Recently, Osipov [51] proved that N (OAT ,B; [ǫ, 1]) ≤ T +
C log(T )2 log(1/ǫ), where C is a constant. Israel [30] provided a non-asymptotic bound on the
number of eigenvalues in the transition region. Fix η ∈ (0, 1/2]. Given ǫ ∈ (0, 1/2) and T ≥ 2,
then [30]

N (OAT ,B; (ǫ, 1 − ǫ)) ≤ 2Cη

(
log

(
log T

ǫ

))1+η

log

(
T

ǫ

)
,(31)

where Cη is a constant dependent on η ∈ (0, 12 ].
• The earliest result on the eigenvalue distribution of the discrete time-frequency localization op-

erator (where G = Z, Ĝ = [−1
2 ,

1
2 ), AN = {0, 1, . . . , N − 1} and B = [−W,W ] with W ∈ (0, 12))

comes from Slepian [67], who showed that for any b ∈ R, asymptotically the DPSS eigenvalue
λℓ(O(AN ,B)) → 1

1+eπb as N → ∞ if ℓ = ⌊2NW + b
π
logN⌋. This implies the asymptotic result:

N (OAN ,B; (ǫ, 1 − ǫ)) ∼ 2
π2 logN log

(
1
ǫ
− 1

)
. Recently, by examining the difference between the

operator OAN ,B and the one formed by a partial DFT matrix, we have shown [36,37] the following

nonasymptotic result characterizing the O(logN log 1
ǫ
) dependence:

N (OAN ,B; (ǫ, 1 − ǫ)) ≤
(

8

π2
log(8N) + 12

)
log

(
15

ǫ

)
.(32)

The right hand side is further improved to 2
π2 log(4N)

(
4

ǫ(1−ǫ)

)
in [34].

• We [87] have also provided similar results for the eigenvalue distribution of discrete periodic
time-frequency localization operator with sets AM and B defined in (30):

N (OAM ,B; (ǫ, 1− ǫ)) ≤
(

8

π2
log(8N) + 12

)
log

(
15

ǫ

)
+ 4max

(− log
(

π
32

((
M
N

)2 − 1
)
ǫ
)

log
(
M
N

) , 0
)
.

(33)

Remark 3. It is also of particular interest to have a finer result on the number of eigenvalues that
is greater than 1

2 since this together with the size of the transition region gives us a complete
understanding of the eigenvalue distribution.

• Landau [42] establishes the number of PSWF eigenvalues that are greater than 1
2 as follows

λ(⌊T ⌋−1)(OAT ,B) ≥
1

2
≥ λ(⌈T ⌉)(OAT ,B).(34)

17



• We [92] provided a similar result for the DPSS eigenvalues.

In the following two subsections, we review some applications of Theorem 3.

4.2. Application: Communications. In [19], Franceschetti extended Landau’s theorem [41] for
simple time and frequency intervals to other time and frequency sets of complicated shapes. Lim
and Franceschetti [47] related the number of degrees of freedom of the space of band-limited signals
to the deterministic notions of capacity and entropy. Now we apply Theorem 3 to the effective
dimensionality of the “band-limited signals” observed over a finite set A by utilizing the result in

Section 2.2. To that end, we plug φ̂(ξ) = 1B(ξ) =

{
1, ξ ∈ B

0, ξ /∈ B
, the indicator function on B, into

(13) and get the following set of band-limited functions observed only over A:

W(A, 1B(ξ)) :=

{
x ∈ L2(A) : x(g) =

∫

B

α(ξ)χξ(g) d ξ,

∫
|α(ξ)|2 ≤ 1, g ∈ A

}
.

When A ⊂ R
2 represents a subset of time and space, the number of degrees of freedom in the

set W(A, 1B(ξ)) determines the total amount of information that can be transmitted in time and
space by multiple-scattered electromagnetic waves [19]. Now we turn to compute the effective

dimensionality of the general set W(A, 1B(ξ)). In this case, |φ̂(ξ)|2 = 1B(ξ) and the corresponding
operator AA∗ defined in (17) is equivalent to the time-frequency limiting operator OA,B in (25).

Now Proposition 1 implies that the effective dimensionality N (W(A, φ̂(ξ)), ǫ) is equal to the number
of eigenvalues of OA,B that are greater than ǫ, which is given by Theorem 3. In words, the effective
dimensionality of the set W(A, 1B(ξ)) is essentially |A||B|, and is insensitive to the level ǫ (as
illustrated in (31)-(33), in many cases, this dimensionality only has log(1

ǫ
) dependence on ǫ).

4.3. Application: Signal representation. In addition to the eigenvalues of the time-frequency
limiting operator TABBTA, the eigenfunctions of TABBTA are also of significant importance, owing
to their concentration in the time and frequency domains. To see this, let uℓ(g) be the ℓ-th
eigenfunction of TABBTA, corresponding to the ℓ-th eigenvalue λℓ(TABBTA). Denoting the Fourier
transform of uℓ(g) by ûℓ(ξ), we have

∫

B

|ûℓ(ξ)|2 d ξ = 〈TBFuℓ,TBFuℓ〉 =
〈
F−1TBFuℓ, uℓ

〉
=

〈
F−1TBFTAuℓ,TAuℓ

〉

=
〈
TAF−1TBFTAuℓ,TAuℓ

〉
= λℓ(TABBTA)‖TAuℓ‖2,

(35)

where the third equality follows because uℓ(g) is a time-limited signal (i.e., TA(uℓ) = uℓ), and the
last equality utilizes TAF−1TBFTAuℓ = TABBTAuℓ = λℓ(TABBTA)uℓ. In words, (35) states that
the eigenfunctions uℓ have a proportion λℓ(TABBAA) of energy within the band B, implying that
even though the eigenfunctions are not exactly band-limited, their Fourier transform is mostly
concentrated in the band B when λℓ(TABBAA) is close to 1. Thus, the first ≈ |A||B| eigenfunctions
can be utilized as window functions for spectral estimation, and as a highly efficient basis for
representing band-limited signals that are observed over a finite set A.

Recall that W(A, 1B(ξ)) (defined in (13)) consists of band-limited signals observed over a finite
set A. Applying Proposition 1, we compute the n-width of the set W(A, 1B(ξ)) as follows:

dn(W(A, 1B(ξ))) =
√

λn(AA∗) =
√

λn(OA,B).

By the definition of (15), we know for any x(g) ∈ W(A, 1B(ξ)),
∫

A

|x(g) − ( PUnx)(g)|2 d g ≤
√
λn(OA,B),
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where Un is the subspace spanned by the first n eigenvectors of OAτ ,B, i.e.,

Un := span{u0(g), u1(g), . . . , un−1(g)}.(36)

Now we utilize Theorem 3 to conclude that the representation residual
√

λn(OA,B) is very small
when n is chosen slightly larger than |A||B|.

We now investigate the basis Un for representing time-limited version of characters χξ(g) and
band-limited signals.

4.3.1. Approximation quality for time-limited characters χξ(g). We first restrict our focus to the
simplest possible “band-limited signals” that are observed over a finite period: pure characters
χξ(g) when g is limited to A. Without knowing the exact frequency ξ in advance, we attempt to
find an efficient low-dimensional basis for capturing the energy in any signal χξ(g). To that end,
we let Mn⊂L2(A) denote an n-dimensional subspace of L2(A). We would like to minimize

∫

B

‖χξ − PMnχξ‖2L2(A)
d ξ.(37)

The following result establishes the degree of approximation accuracy in a mean-squared error
(MSE) sense provided by the subspace Un for representing the “time-limited” version of characters
χξ(g) (where g is limited to Aτ ).

Theorem 4. For any n ∈ Z
+, the optimal n-dimensional subspace which minimizes (37) is Un.

Furthermore, with this choice of subspace, we have

1

|B|

∫

B

‖χξ − PUnχξ‖2L2(A)

‖χξ‖2L2(A)

d ξ = 1−
∑n−1

ℓ=0 λℓ(OA,B)

|A||B| ,

where | · | denotes the Haar measure.

The proof of Theorem 4 is given in Appendix C. Combined with Theorem 3, Theorem 4 implies
that by choosing n ≈ |A||B|, on average the subspace spanned by the first n eigenfunctions of
TABBTA is expected to accurately represent time-limited characters within the band of interest. We
note that the representation guarantee for time-limited characters {TAχξ, ξ ∈ B} can also be used
for most band-limited signals that are observed over a finite set A. To see this, suppose x(g) is a
band-limited function which can be represented as

x(g) =

∫

B

x̂(ξ)χξ(g) d ξ.

An immediate consequence of the above equation is that one can view {TAχξ, ξ ∈ B} as the atoms
for building TAx:

TAx =

∫

B

x̂(ξ)TAχξ d ξ.

4.3.2. Approximation quality for random band-limited signals. We can also approach the represen-
tation ability of the subspace Un (defined in (36)) from a probabilistic perspective by generaliz-
ing [12, Theorem 4.1].

Theorem 5. Let x(g) = χξ(g), g ∈ Aτ be a random function where ξ is a random variable with
uniform distribution on B. Then we have

E
[
‖x− PUnx‖2L2(A)

]

E
[
‖x‖2

L2(A)

] = 1−
∑n−1

ℓ=0 λℓ(OA,B)

|A||B| .
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The proof of Theorem 5 is given in Appendix D. With this result, we show that in a certain
sense, most band-limited signals, when time-limited, are well-approximated by a signal within the
subspace Un. In particular, the following result which generalizes [12, Theorem 4.1] establishes that
band-limited random processes, when time-limited, are in expectation well-approximated.

Corollary 2. Let x(g), g ∈ G be a zero-mean wide sense stationary random process over the group
G with power spectrum

Px(ξ) =

{ 1
|B| , ξ ∈ B,

0, otherwise.

Suppose we only observe x over the set Aτ . Then we have

E
[
‖x− PUnx‖2L2(A)

]

E
[
‖x‖2

L2(A)

] = 1−
∑n−1

ℓ=0 λℓ(OA,B)

|A||B| .

As in our discussion following Theorem 3, the term 1 −
∑n−1

ℓ=0
λℓ(OA,B)

|A||B| appearing in Theorem 5

and Corollary 2 can be very small when we choose n slightly larger than |A||B|. This suggests that
in a probabilistic sense, most band-limited functions, when time-limited, will be well-approximated
by a small number of eigenfunctions of the operator OA,B.

4.4. Applications in the common time and frequency domains. We now review several
applications involving the time-frequency limiting operator OA,B in the common time and frequency
domains, where the eigenfunctions correspond to DPSSs, PSWFs, and PDPSSs.

It follows from (35) that, among all the functions that are time-limited to the set A, the first
eigenfunction u0(g) is maximally concentrated in the subset B of the frequency domain. Motivated
by this result, the first DPSS vector is utilized as a filter for super-resolution [18]. In [73], the
first ≈ 2NW DPSS vectors are utilized as window functions (a.k.a. tapers) for spectral estimation.
The multitaper method [73] averages the tapered estimates with the DPSS vectors, and has been
used in a variety of scientific applications including statistical signal analysis [10], geophysics and
cosmology [11]. By exploiting the fact that the number of DPSS eigenvalues in the transition region
grows like O(logN log 1

ǫ
) as in (32), the very recent work [35] provided nonasymptotic bounds

on some statistical properties of the multitaper spectral estimate as well as a fast algorithm for
evaluating the estimate.

By exploiting the concentration behavior of the PSWFs in the time and frequency domains (where

G = R and Ĝ = R), Xiao et al. [79] utilized the PSWFs to numerically construct quadratures,
interpolation and differentiation formulae for band-limited functions. Gosse [21] constructed a
PSWF dictionary consisting of the first few PSWFs for recovering smooth functions from random
samples. The connection between time-frequency localization of multiband signals and sampling
theory for such signals was investigated in [31]. In [62, 63], the authors also considered a PSWF
dictionary for reconstruction of electroencephalography (EEG) signals and time-limited signals that
are also nearly band-limited from nonuniform samples. Chen and Vaidyanathan [7] utilized the
PSWFs to represent the clutter subspace (and hence mitigate the clutter), facilitating space-time
adaptive processing for multiple-input multiple-output (MIMO) radar systems; see also [16,81].

DPSSs, the discrete counterpart of PSWFs, also have proved to be useful in numerous signal
processing applications since they provide a highly efficient basis for representing sampled band-
limited signals. DPSSs can be utilized to find the minimum energy, infinite-length band-limited
sequence that extrapolates a given finite vector of samples [67]. In [84,85], Zemen et al. expressed
the time-varying subcarrier coefficients in a DPSS basis for estimating time-varying channels in
wireless communication systems. A similar idea is also utilized for channel estimation in Orthogo-
nal Frequency Division Multiplexing (OFDM) systems [70], for receiver antenna selection [57], etc.
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The modulated DPSSs can also be useful for mitigating wall clutter and detecting targets behind
the wall in through-the-wall radar imaging [90,91], and for interference cancellation in a wideband
compressive radio receiver (WCRR) architecture [13]. The performance (such as the detection
probability) of the DPSS basis (and other similar bases corresponding to the time-frequency limit-
ing operator OA,B) for identifying unresolved targets was recently analyzed in [5]. By modulating
the baseband DPSS vectors to different frequency bands and then concatenating these dictionaries,
one can construct a new dictionary that provides an efficient representation of sampled multiband
signals [12, 92]. Sejdić et al. [61] proposed one such dictionary to provide a sparse representation
for fading channels and improve channel estimation accuracy. The multiband modulated DPSS
dictionaries have been utilized for the recovery of sampled multiband signals from random mea-
surements [12], and for the recovery of physiological signals from compressive measurements [60].
Such dictionaries are also utilized for cancelling wall clutter [1].

The periodic DPSSs (PDPSSs, where G = ZN and Ĝ = ZN ) are the finite-length vectors whose
discrete Fourier transform (DFT) is most concentrated in a given bandwidth (as appearing in (30)).
The PDPSSs have been utilized for extrapolation and spectral estimation of periodic discrete-time
signals [32], for limited-angle reconstruction in tomography [25], for Fourier extension [50], and
in [29], the bandpass PDPSSs were used as a numerical approximation to the bandpass PSWFs for
studying synchrony in sampled EEG signals.

Finally, the eigenvalue concentration behavior in Theorem 3 can also be exploited for solving a
linear system involving the Toeplitz operator OA,B: y = OA,Bx. Since the operator OA,B has a mass
of eigenvalues that are very close to 0, the system is often solved by using the rank-K pseudoinverse
of OA,B where K ≈ |A||B|. In the case where the Toeplitz operator is the prolate matrix BN,W

defined in (29), its truncated pseudoinverse is well approximated as the sum of B∗
N,W (which is

equal to BN,W ) and a low-rank matrix [37, 50] since most of the eigenvalues of B∗
N,W are very

close to either 1 or 0. By utilizing the fact that BN,W is a Toeplitz matrix and BN,Wx has a
fast implementation via the FFT, an efficient method for solving the system y = BN,Wx can be
developed; such a method has been utilized for linear prediction of band-limited signals based on
past samples and the Fourier extension [37,50].

4.5. Questions. Inspired by the applications listed above, we raise several questions concerning
Theorems 3 and 4. Following from the two remarks after Theorem 3, two natural questions are:

Question 3. Can we improve the second term in (27)? Furthermore, what nonasymptotic result
(like (31) for the PSWF eigenvalues and (32) for the DPSS eigenvalues) can we obtain for the
number of eigenvalues of the Toeplitz operator OA,B within the transition region (ǫ, 1− ǫ)?

Question 4. Can we extend (34) to the general time-frequency limiting operator OA,B?

Another related important question concerns how accurately the subspace spanned by the first
n eigenfunctions of TABBTA can represent each individual time-limited character TAχξ with ξ ∈ B.
Theorem 4 ensures that accuracy is guaranteed in the MSE sense if one chooses n ≈ |A||B| such
that the sum of the remaining eigenvalues of TABBTA is small. We suspect that a uniform guarantee
for each TAχξ can also be obtained since the derivative of ‖χξ‖2L2(A)

is bounded, given a finer result

concerning the eigenvalue distribution for TABBTA. Using the approach utilized in [88, 89] with a
theorem of Bernstein for trigonometric polynomials [59], we can have an approximation guarantee

for the DPSS basis in representing each complex exponential ef :=
[
ej2πf0 · · · ej2πf(N−1)

]T
with

frequency f inside a band of interest; this provides a non-asymptotic guarantee which improves
upon our previous work [92].

Theorem 6. (Representation guarantee for pure sinusoids with DPSSs) Let N ∈ N and W ∈ (0, 12 )
be given. Also let [S]K be an N ×K matrix consisting of the first K DPSS vectors. Then for any
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ǫ ∈ (0, 12), the orthobasis [S]K satisfies

‖ef − [S]K [S]∗Kef‖22
‖ef‖22

≤ ǫ

for all f ∈ [−W,W ] with

K = 2NW +O

(
log(N) log

(
1

ǫ2

))
.

Question 5. More generally, what uniform guarantee can we have for each time-limited character
TAχξ in the subspace spanned by the first n eigenfunctions of TABBTA?
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Appendix A. Proof of Proposition 1

Proof of Proposition 1. We have

dn(W(A, φ̂(ξ))) = inf
Mn

sup
x∈W(A,φ̂(ξ))

inf
y∈Mn

‖x− y‖L2(A)

= inf
Mn

sup
‖α‖≤1

‖Aα− PMn‖

= inf
Mn

sup
z⊥Mn

sup
‖α‖≤1

|〈Aα, z〉|
‖z‖

= inf
Mn

sup
z⊥Mn

sup
‖α‖≤1

|〈α,A∗z〉|
‖z‖

= inf
Mn

sup
z⊥Mn

‖A∗z‖
‖z‖

= inf
Mn

sup
z⊥Mn

√
〈AA∗z, z〉
‖z‖

=
√

λn,

where the last line follows from the Weyl-Courant minimax theorem. �

Appendix B. Proof of Theorem 3

Proof of Theorem 3. We first note that χξ(0) = 1 for all ξ ∈ Ĝ. Thus, we have

∑

ℓ

λℓ(OAτ ,B) =

∫

Aτ

KB(0) d h = |Aτ |
∫

B

χξ(0) d ξ = |Aτ ||B|,(38)

where the first equality follows because OAτ ,B is a trace class operator [14]. We write the operator
(TAτBBTAτ )

2 as

(TAτBBTAτBBTAτx)(g) =

∫

Aτ

KB(h̃
−1 ◦ g)

(∫

Aτ

KB(h
−1 ◦ h̃)x(h) d h

)
d h̃

=

∫

Aτ

(∫

Aτ

KB(h̃
−1 ◦ g)KB(h

−1 ◦ h̃) d h̃
)
x(h) d h.
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Thus,
∑

ℓ

λ2
ℓ (OAτ ,B) =

∫

Aτ

∫

Aτ

KB(h̃
−1 ◦ h)KB(h

−1 ◦ h̃) d h̃dh =

∫

Aτ

∫

Aτ

∣∣∣KB(h
−1 ◦ h̃)

∣∣∣
2
d h̃ dh,

where we use the fact that KB(h
−1 ◦ g) =

∫
B
χξ(h

−1 ◦ g) d ξ = (
∫
B
χξ(g

−1 ◦ h) d ξ)∗ since χξ(−g) =

χ∗
ξ(g). Applying the change of variable h̃ = h ◦ h, we obtain

∑

ℓ

λ2
ℓ(OAτ ,B) =

∫

Aτ

∫

Aτ−h

∣∣KB(h)
∣∣2 dh dh =

∫

Aτ

κAτ ,B(h) d h,(39)

where κAτ ,B(h) =
∫
Aτ−h

∣∣KB(h)
∣∣2 dh ≥ 0. The function κAτ ,B(h) is dominated as

κAτ ,B(h) ≤
∫

G

∣∣KB(h)
∣∣2 dh =

∫

G

∣∣∣∣
∫

B

χξ(h) d ξ

∣∣∣∣
2

dh =

∫

Ĝ

1ξ∈B d ξ = |B|,

where we use Parseval’s theorem by viewing
∫
B
χξ(h) d ξ as the inverse Fourier transform of a

window function supported on B, i.e. 1ξ∈B =

{
1, ξ ∈ B,

0, otherwise,
.

On the other hand, we have limτ→∞ κAτ ,B(h) =
∫
G

∣∣∫
B
χξ(h) d ξ

∣∣2 dh = |B| for all h ∈ G. It

follows that limτ→∞
∑

ℓ λ
2
ℓ (OAτ ,B) =

∫
Aτ

|B|dh = |Aτ ||B|. Thus, we have
∑

ℓ

λ2
ℓ (OAτ ,B) = |Aτ ||B| − o(|Aτ ||B|).(40)

Subtracting (40) from (38) gives
∑

ℓ

λℓ(OAτ ,B) (1− λℓ(OAτ ,B)) = o(|Aτ ||B|).(41)

Utilizing the fact that 0 ≤ λℓ(OAτ ,B) ≤ 1, we have

ǫ(1− ǫ)N (OAτ ,B; (ǫ, 1 − ǫ)) ≤
∑

ℓ

λℓ(OAτ ,B) (1− λℓ(OAτ ,B)) = o(|Aτ ||B|).

On the other hand, (41) also implies that
∑

ℓ:λℓ(OAτ ,B)<1−ǫ

ǫλℓ(OAτ ,B) <
∑

ℓ

λℓ(OAτ ,B) (1− λℓ(OAτ ,B)) = o(|Aτ ||B|).(42)

Plugging this term into (38) gives

|Aτ ||B| =
∑

ℓ

λℓ(OAτ ,B) =
∑

ℓ:λℓ(OAτ ,B)≥1−ǫ

λℓ(OAτ ,B) +
∑

ℓ:λℓ(OAτ ,B)<1−ǫ

λℓ(OAτ ,B)

=
∑

ℓ:λℓ(OAτ ,B)≥1−ǫ

λℓ(OAτ ,B) + o(|Aτ ||B|).

Similarly, plugging (42) into (40) gives

|Aτ ||B| =
∑

ℓ:λℓ(OAτ ,B)≥1−ǫ

λ2
ℓ(OAτ ,B) + o(|Aτ ||B|).

Combining the above two equations and the fact that λℓ(OAτ ,B) ≤ 1, we have
∑

ℓ:λℓ(OAτ ,B)≥1−ǫ

λℓ(OAτ ,B)− λ2
ℓ(OAτ ,B) = o(|Aτ ||B|).(43)
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On one hand, combining (43) with
∑

ℓ:λℓ(OAτ ,B)≥1−ǫ

λℓ(OAτ ,B)− λ2
ℓ (OAτ ,B) ≤

∑

ℓ:λℓ(OAτ ,B)≥1−ǫ

1− λℓ(OAτ ,B)

gives

N (OAτ ,B; [1− ǫ, 1]) −
∑

ℓ:λℓ(OAτ ,B)≥1−ǫ

λℓ(OAτ ,B) =
∑

ℓ:λℓ(OAτ ,B)≥1−ǫ

1− λℓ(OAτ ,B) ≥ o(|Aτ ||B|),

which further implies

N (OAτ ,B; [1− ǫ, 1]) ≥ |Aτ ||B| − o(|Aτ ||B|).
On the other hand, using (43) and

∑

ℓ:λℓ(OAτ ,B)≥1−ǫ

λℓ(OAτ ,B)− λ2
ℓ (OAτ ,B) ≥ (1− ǫ)

∑

ℓ:λℓ(OAτ ,B)≤1−ǫ

1− λℓ(OAτ ,B),

we also have

N (OAτ ,B; [1− ǫ, 1]) −
∑

ℓ:λℓ(OAτ ,B)≥1−ǫ

λℓ(OAτ ,B) =
∑

ℓ:λℓ(OAτ ,B)≥1−ǫ

1− λℓ(OAτ ,B) ≤ o(|Aτ ||B|),

which further implies N (OAτ ,B; [1−ǫ, 1]) ≤ |Aτ ||B|+o(|Aτ ||B|). Thus, limτ→∞
N (OAτ ,B;[1−ǫ,1])

|Aτ | = |B|.
�

Appendix C. Proof of Theorem 4

Proof of Theorem 4. We first recall the eigendecompostion of OAτ ,B =
∑

ℓ≥0 λℓuℓu
∗
ℓ , where λℓ is

short for λℓ(OAτ ,B). Utilizing the fact that uℓ, ℓ = 0, 1, . . . is a complete orthonormal basis for
L2(Aτ ), we rewrite the function in (37):

‖χξ(g) − PMnχξ(g)‖2L2(Aτ )
=

∑

ℓ

∣∣∣〈(I − PMn)χξ(g), uℓ(g)〉L2(Aτ )

∣∣∣
2

=
∑

ℓ

〈〈
(I − PMn)χξ(g)χ

∗
ξ(h), u

∗
ℓ (h)

〉
L2(Aτ )

, uℓ(g)
〉
L2(Aτ )

=
∑

ℓ

〈〈
(I − PMn)χξ(h

−1 ◦ g), u∗ℓ (h)
〉
L2(Aτ )

, uℓ(g)
〉
L2(Aτ )

where the second equality utilized the fact that PMn is the orthogonal projector onto the subspace

Mn, and
∑

ℓ

〈〈
(I − PMn)χξ(g)χ

∗
ξ(h), u

∗
ℓ (h)

〉
L2(Aτ )

, uℓ(h)

〉

L2(Aτ )

is equivalent to the trace of (I −

PMn)χξ(g)χ
∗
ξ(h). Plugging this equation into (37) gives

∫

B

‖χξ(g) − PMnχξ(g)‖2L2(Aτ )
d ξ =

∫

B

∑

ℓ

〈〈
(I − PMn)χξ(θ

−1 ◦ g), u∗ℓ (h)
〉
L2(Aτ )

, uℓ(g)
〉
L2(Aτ )

d ξ

=
∑

ℓ

∫

B

〈〈
(I − PMn)χξ(θ

−1 ◦ g), u∗ℓ (h)
〉
L2(Aτ )

, uℓ(g)
〉
L2(Aτ )

d ξ

=
∑

ℓ

〈(I − PMn)OAτ ,Buℓ, uℓ〉L2(Aτ )
=

∑

ℓ

λℓ 〈(I − PMn)uℓ, uℓ〉L2(Aτ )

where the second line follows from monotone convergence theorem (since each term inside the
summation is nonnegative). Thus, we conclude that the optimal n-dimensional subspace which
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minimizes the last term in the above equation is Un (which is spanned by the first n eigenfunctions).
With this choice of subspace and (27) that

∑
ℓ λℓ = |Aτ ||B|, we have

∫

B

‖χξ(g) − PUnχξ(g)‖2L2(Aτ )
d ξ =

∑

ℓ≥n

λℓ = |Aτ ||B| −
n−1∑

ℓ=0

λℓ

The proof is completed by noting that ‖χξ(g)‖2L2(Aτ )
= |Aτ | for any ξ ∈ B. �

Appendix D. Proof of Theorem 5

Proof of Theorem 5. First let ν be a random variable with uniform distribution on [0, 2π). We
define the random vector

r(g) = r(g; ξ, ν) = χξ(g)e
jν ,

where the term ejν acts as a phase randomizer and ensures that r is zero-mean:

E [r(g)] =
1

|B|2π

∫

B

χξ(g)e
jν d ξ d ν =

1

|B|2π

∫

B

χξ(g) d ξ

∫ 2π

0
ejν d ν = 0

for all g ∈ Aτ .
Now we compute the autocorrelation R of the random variable r as

R(g, h) = E [r(g)r∗(h)] = E
[(
χξ(g)e

jν
) (

χ∗
ξ(h)e

−jν
)]

= E
[
χξ(h

−1 ◦ g)
]

=
1

|B|

∫

B

χξ(h
−1 ◦ g) d ξ =

1

|B|KB(h
−1 ◦ g)

(44)

for all h, g ∈ Aτ . Here KB is defined in (24). Note that KB(h
−1 ◦ g) with h, g ∈ Aτ is the kernel of

the Toeplitz operator OAτ ,B. Now it follows from the Karhunen-Loève (KL) transfrom [71] that

E
[
‖r − PUnr‖2L2(Aτ )

]
=

1

|B|
∑

ℓ≥n

λℓ(OAτ ,B) = |B| −
n−1∑

ℓ=0

λℓ(OAτ ,B).

We then compute the expectation for the energy of r as

E
[
‖r‖2L2(Aτ )

]
=

1

|B|
1

2π

∫

B

|χξ(g)e
jν |2 d ξ d ν = |Aτ |.

The proof is completed by noting that E
[
‖r − PUnr‖2L2(Aτ )

]
= E

[
‖x− PUnx‖2L2(Aτ )

]
and E

[
‖r‖2

L2(Aτ )

]
=

E
[
‖x‖2

L2(Aτ )

]
. �
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[6] C. Carathéodory. Über den variabilitätsbereich der fourierschen konstanten von positiven harmonischen funktio-
nen. Rendiconti Del Circolo Matematico di Palermo (1884-1940), 32(1):193–217, 1911.

[7] C.-Y. Chen and P. P. Vaidyanathan. MIMO radar space–time adaptive processing using prolate spheroidal wave
functions. IEEE Trans. Signal Process., 56(2):623–635, 2008.

25



[8] G. S. Chirikjian and A. B. Kyatkin. Harmonic Analysis for Engineers and Applied Scientists: Updated and
Expanded Edition. Courier Dover Publications, 2016.

[9] J. B. Conway. A course in functional analysis, volume 96. Springer, 2019.
[10] D. D. Cox. Spectral analysis for physical applications: Multitaper and conventional univariate techniques, 1996.
[11] F. Dahlen and F. J. Simons. Spectral estimation on a sphere in geophysics and cosmology. Geophys. J. Int.,

174(3):774–807, 2008.
[12] M. Davenport and M. Wakin. Compressive sensing of analog signals using discrete prolate spheroidal sequences.

Appl. Comput. Harmon. Anal., 33(3):438–472, 2012.
[13] M. A. Davenport, S. R. Schnelle, J. Slavinsky, R. G. Baraniuk, M. B. Wakin, and P. T. Boufounos. A wideband

compressive radio receiver. In Military Communications Conf. (MILCOM), pages 1193–1198. IEEE, 2010.
[14] A. Deitmar and G. van Dijk. Trace class groups. arXiv preprint arXiv:1501.02375, 2015.
[15] G. T. Di Francia. Degrees of freedom of an image. J. Opt. Soc. Am., 59(7):799–804, 1969.
[16] W. Du, G. Liao, and Z. Yang. Robust space time processing based on bi-iterative scheme of secondary data

selection and PSWF method. Digital Signal Process., 52:64–71, 2016.
[17] A. Edelman, P. McCorquodale, and S. Toledo. The future fast Fourier transform? SIAM J. Sci. Comput.,

20(3):1094–1114, 1998.
[18] A. Eftekhari and M. B. Wakin. Greed is super: A fast algorithm for super-resolution. arXiv preprint

arXiv:1511.03385, 2015.
[19] M. Franceschetti. On Landau’s eigenvalue theorem and information cut-sets. IEEE Trans. Inform. Theory,

61(9):5042–5051, 2015.
[20] H. Gazzah, P. A. Regalia, and J.-P. Delmas. Asymptotic eigenvalue distribution of block Toeplitz matrices and

application to blind SIMO channel identification. IEEE Trans. Inf. Theory, 47(3):1243–1251, 2001.
[21] L. Gosse. Compressed sensing with preconditioning for sparse recovery with subsampled matrices of Slepian

prolate functions. Annali Dell’Universita’Di Ferrara, 59(1):81–116, 2013.
[22] R. Gray. On the asymptotic eigenvalue distribution of Toeplitz matrices. IEEE Trans. Inf. Theory, 18(6):725–730,

1972.
[23] R. M. Gray. Toeplitz and circulant matrices: A review. Commun. Inf. Theory, 2(3):155–239, 2005.
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