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Abstract. Quenching has been an extremely important natural phenomenon observed in many
biomedical and multiphysical procedures, such as a rapid cancer cell progression or internal com-
bustion process. The latter has been playing a crucial rule in optimizations of modern solid fuel
rocket engine designs. Mathematically, quenching means the blow-up of temporal derivatives of
the solution function u while the function itself remains to be bounded throughout the underlying
procedure. This paper studies a semi-adaptive numerical method for simulating solutions of a
singular partial differential equation that models a significant number of quenching data streams.
Numerical convergence will be investigated as well as verifying that features of the solution is
preserved in the approximation. Orders of the convergence will also be validated through exper-
imental procedures. Milne’s device will be used for data collections and further building-up of
our deep neural network (DNNs). Highly accurate data models will be presented to illustrate
theoretical predictions.

1 Introduction

A key behavior observed during tumor progress, wound healing, and cancer invasion is that of rapid
collective and coordinated cellular motion. Hence, understanding the different aspects of such
coordinated migration is fundamental for describing and treating cancer and other pathological
defects [1, 2]. To reduce the number of invasive surgical procedures on patients, accurate tumor
models and simulations have become crucial in the study. One of such effective models is built
the nonlinear quenching partial differential equation which characterizes sudden growths of cancer
cells once certain environmental criteria are reached. Similar modeling equations are frequently
used in the energy industry for internal combustion machine designs [3, 4, 5].

For the sake of simplicity in formulations, we focus at an one-dimensional quenching model
problem in this paper. In the circumstance, the quenching dynamics can be characterized through
following modeling problem [3, 6, 7, 8]:

σ(s)qt =
1

a2
qss + ϕ(q), 0 < s < 1, t0 < t ≤ T, (1.1)

q(0, t) = q(1, t) = 0, t > t0, (1.2)

q(s, t0) = q0(s), 0 ≤ s ≤ 1, (1.3)
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where a > 0 is the physical size of a tumor contaminated region, or a linear combustion chamber,
q is the cell population index, ϕ(q) → +∞ as q → b−, b is a trigging threshold of the population,
and T < +∞ is sufficiently large. We adopt the following degenerate and reaction functions,

σ(s) = αsθ(1− s)1−θ, ϕ(q) = (b− q)−p, α > 0, 0 ≤ θ ≤ 1, p > 0. (1.4)

Note that σ(s) = 0 indicates possible hidden defects within combustion chamber walls, and loca-
tions of such defects can be stochastically distributed in the spacial domain. Size of such a location
set is often extremely small otherwise they can be detected in earlier stage of the manufacturing
process [4, 6, 9]. On the other hand, the nonlinear source function ϕ(q) must be monotonically
increasing with ϕ(0) = ϕ0 > 0 and lim

q→b−
ϕ(q) = ∞. Our functions in (1.4) are particularly chosen to

reflect aforementioned features in a relatively simple manner, and to achieve quick and successful
data stream analysis in mathematics.

It has been shown that there exists a critical value a∗ > 0 such that if a in (1.1) is greater than
a∗ then the maximal value of solution of (1.1)-(1.3) reaches its ceiling b in finite time Ta = T (a).
This indicates that

lim
t→T−

a

max
s∈[0,1]

q(s, t) = b and lim
t→T−

a

sup
s∈(0,1)

qt(s, t) = +∞.

Such a phenomenon is refereed to as quenching, and the corresponding q is a quenching solution.
Further, q must increase monotonically as t increases at any fixed cell location 0 < s < 1 [10, 11,
12, 13].

In the study of numerical combustion, the quenching stream (1.1)-(1.3) is particularly used
to model combustible systems utlizing solid or liquid fuels. The ignition process starts with ap-
pearance of a outside thermal source which results in an region heating up. If the conditions are
appropriate then the region will have high temperatures with drastic increase in reaction rates,
eventually resulting in an explosion. The process may be found in everyday applications like auto-
mobile engine and in a more interesting setting, rocket engines. In addition to the function ω used
to show certain defects in side-wall of a combustor, air bubbles contained in the fuel and, more
seriously, hidden cracks in engine structures can also be formulated approximately. The partial
differential equations often provide lower cost evaluations of modern engine designs before any
expensive physical tests and experiments. The mathematical model and data obtained also help
optimize the improvement of engines to maximize the efficiency in fuel consumptions. Needless to
say, this has been one of the top concerns in the energy industry.

Our investigation is organized as follows. In the next section, we propose a second order
Crank-Nicolson scheme for solving (1.1)-(1.4) on uniform spatial mesh and adaptive temporal steps.
Preservations of the solution geometry such as the cell population positivity and monotonicity are
studied. A proof of the convergence of the numerical solution sequence is given. A remark is stated
for the more general simulation applications. Section 3 focuses on multiple numerical experiments
that illustrate our analysis. Comparisons are offered with typical numerical methods in the field.
Experiments are conducted on the order of accuracy of our simulation method. It is found that
the method remarkably retains second order accuracy in space and first order in time, except in
the quenching, or cell bursting, area as the quenching time is approached. Finally, in Section 4,
brief concluding remarks and discussions are given for future endeavors in biomedical simulations.
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2 Conservative and convergent algorithm

Let b = 1, N ∈ N+, N ≫ 1 and h = 1/(N + 1). Further, let D̄N = {s0, s1, . . . , sN+1} ⊂ Ω̄, where

sk = kh, k = 0, 1, . . . , N +1. Denote q
(i)
k as an approximation of q(sk, ti), k = 0, 1, . . . , N +1, i =

0, 1, . . . Assume that DN ⊂ D̄N be the set of interior mesh points. We approximate the spacial
derivative in (1.1) through second-order central difference

(qss)
(i)
k =

q
(i)
k−1 − 2q

(i)
k + q

(i)
k+1

h2
+O(h2), sk ∈ DN .

Drop the truncation error. Utilizing a Crank–Nicolson method we obtain the following semi-
adaptive nonlinear method from (1.1)-(1.3):

q(j+1) =
(
I − τj

2
A
)−1 (

I +
τj
2
A
) [
q(j) +

τj
2
ψ
(
q(j)
)]

+
τj
2
ψ
(
q(j+1)

)
, j = 0, 1, . . . , J, (2.1)

q(0) = q0, (2.2)

where q(i) =
(
q
(i)
1 , q

(i)
2 , . . . , q

(i)
N

)⊤
, ψ =

(
ϕ
(i)
1

σ1
,
ϕ
(i)
2

σ2
, . . . ,

ϕ
(i)
N

σN

)⊤

, A = BT ∈ RN×N ,

B = diag

[
1

σ1
,
1

σ2
, . . . ,

1

σN

]
, T =

1

a2h2


−2 1
1 −2 1

· · · · · · · · ·
1 −2 1

1 −2

 , k = 1, 2, . . . , N,

and q
(ℓ)
k is an approximation of q(tℓ), tℓ =

ℓ∑
k=0

τk, ℓ = 0, 1, 2, . . . , j+1, and variable temporal steps

τj can be determined through a proper monitoring function, such as an arc-length function [6, 14].
Needless to mention, an iterative procedure, or a linearization of the last term in (2.1), needs to
be implemented for solving system (2.1), (2.2). Monotone upper-lower solution vector procedures
may also be incorporated in such computations [11].

As discussed intensively in [12, 15, 16], solution positivity and monotonicity are among the
most distinguished mathematical characteristics of singular problems such as (1.1)-(1.3), and thus
(2.1), (2.2). These properties reflect proper natural behaviors of the cancer cell population growth
or decay, and should be preserved throughout simulations. To the end of analysis, we let ∨ be one
of the operations <, ≤, >, ≥ . For α, β ∈ RN , we assume following notations:

1. α ∨ β means αk ∨ βk, k = 1, 2, . . . , N ;

2. c ∨ α means c ∨ αk, k = 1, 2, . . . , N, for any c ∈ R.

If
τj
h2

≤ 2a2

σmax
, j ∈ N. Then matrices I − τj

2
A, I +

τj
2
A are nonsingular. Furthermore, I +

τj
2
A

is nonnegative, I− τj
2
A is monotone and inverse-positive. Under the same constraint, If there exits

ℓ > 0 such that

τjψq(ξ
(j)
k )

2
≤ 1, k = 1, 2, . . . , N ; Aq(j) + ψ

(
q(j)
)
≥ 0, j = 0, 1, . . . , ℓ,
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then the solution sequence, q(0), q(1), . . . , q(ℓ), . . . , generated by (2.1), (2.2) are monotonically
increasing. To see the above, from (2.1) we may observe that

q(j+1) − q(j) =
(
I − τj

2
A
)−1 (

I +
τj
2
A
) [
q(j) +

τj
2
ψ
(
q(j)
)]

+
τj
2
ψ
(
q(j+1)

)
− q(j) =

(
I − τj

2
A
)−1

w(j), (2.3)

where

w(j) = τjAq
(j) + τjψ

(
q(j)
)
+
τj
2

(
I − τj

2
A
)
ψq

(
ξ(j)
)(

q(j+1) − q(j)
)
.

Substitute the above back into (2.3) to yield

q(j+1) − q(j) = τj

[
I − τj

2
ψq

(
ξ(j)
)]−1 (

I − τj
2
A
)−1 [

Aq(j) + ψ
(
q(j)
)]
.

Therefore
[
I − τj

2
ψq

(
ξ(j)
)]−1

is nonnegative. This ensures the anticipated monotonicity q(j+1) ≥

q(j).

Theorem A. The semi-adaptive method (2.1), (2.2) is convergent.

Proof. Assume that Q
(ℓ)
k be the exact solution of (1.1)-(1.3), then

Q(j+1) =
(
I − τj

2
A
)−1 (

I +
τj
2
A
) [
Q(j) +

τj
2
ψ
(
Q(j)

)]
+
τj
2
ψ
(
Q(j+1)

)
+O

(
τ2j
)
.

Subtracting (2.1) from the above and denote ε(ℓ) = Q(j+1) − q(j+1), we find that

ε(j+1) =
(
I − τj

2
A
)−1 (

I +
τj
2
A
){

ε(j) +
τj
2

[
ψ
(
Q(j)

)
− ψ

(
q(j)
)]}

+
τj
2

[
ψ
(
Q(j+1)

)
− ψ

(
q(j+1)

)]
+O

(
τ2j
)
. (2.4)

Note that
ψ
(
Q(ℓ)

)
− ψ

(
q(ℓ)
)
= ψq

(
ξ(ℓ)
)
ε(ℓ),

where elements of ξ(ℓ), ξ
(ℓ)
k ∈

(
min

{
q
(ℓ)
k , Q

(ℓ)
k

}
,max

{
q
(ℓ)
k , Q

(ℓ)
k

})
, k = 1, 2, . . . , N. Recall (2.1).

From (2.4) we obtain immediately that

ε(j+1) =
(
I − τj

2
E

(j+1)
1

)−1 (
I − τj

2
A
)−1 (

I +
τj
2
A
)(

I +
τj
2
E

(j)
0

)
ε(j) +O

(
τ2j
)
.

It follows readily that∥∥∥ε(j+1)
∥∥∥
2
=

∥∥∥∥(I − τj
2
E

(j+1)
1

)−1 (
I − τj

2
A
)−1 (

I +
τj
2
A
)(

I +
τj
2
E

(j)
0

)
ε(j)
∥∥∥∥
2

+ C0τ
2
j ,

where C0 > 0 is a constant. Using norm properties,∥∥∥ε(j+1)
∥∥∥
2
≤ (1 +Mτj)

∥∥∥ε(j)∥∥∥
2
+ Cτ2j ,
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where constants M, C ∈ R+. Use the above inequality recursively. We acquire that∥∥∥ε(j+1)
∥∥∥
2

≤ (1 +Mτj)(1 +Mτj−1)
∥∥∥ε(j−1)

∥∥∥
2
+ (1 +Mτj)Cτ

2
j−1 + Cτ2j

= (1 +Mτj)...(1 +Mτ0)
∥∥∥ε(0)∥∥∥

2
+ Cτ20 (1 +Mτj)...(1 +Mτ1) + · · ·

+Cτ2j−1(1 +Mτj) + Cτ2j

= Cτ20 (1 +Mτj) · · · (1 +Mτ1) + · · ·+ Cτ2j−1(1 +Mτj) + Cτ2j ,

since ε(0) = 0 due to the initial value used. We further observe that

Cτ20 (1 +Mτj) · · · (1 +Mτ1) + · · ·+ Cτ2j−1(1 +Mτj) + Cτ2j

= Cτ20 (1 +Mτ∗0 )
j + Cτ21 (1 +Mτ∗1 )

j−1 + · · ·+ Cτ2j−1(1 +Mτ∗j−1) + Cτ2j ,

where τ∗i for i = 0, 1, . . . , j − 1 are adaptive time steps used. Recursively, we obtain that

Cτ20 (1 +Mτ∗0 )
j + Cτ21 (1 +Mτ∗1 )

j−1 + · · ·+ Cτ2j−1(1 +Mτ∗j−1) + Cτ2j

≤ Cτ20 e
b0T + Cτ21 e

b1T + · · ·+ Cτ2j−1e
bj−1T + Cτ2j ,

where bi for i = 0, 1, . . . , j − 1 are positive constants such that τ∗i = biτ
∗
bi and τ∗bi = T/N. Let us

take the bk that gives us the maximum of bi in the above. Therefore,

Cτ20 e
b0T + Cτ21 e

b1T + · · ·+ Cτ2j−1e
bj−1T + Cτ2j ≤ CebkT (τ20 + τ21 + · · ·+ τ2j−1 + τ2j ).

Now, denote CebkT = C̃ and set τm = max
ℓ
τℓ ≪ 1. From above investigations, we have∥∥∥ε(j+1)

∥∥∥
2
≤ C̃τm (τ0 + τ1 + · · ·+ τj−1 + τj) = C̃τmT → 0

as h, τm → 0. This ensures the expected convergence.

Remark 2.1. As an extension of the theorem, we may also prove that for any given ℓ ∈ N and
beginning solution q(ℓ) < 1, if

γj =
τj
h2

≤ 2a2

σmax
;
τj
2
ψq(ξ

(j)
k ) ≤ 1, k = 1, 2, . . . , N ; Aq(j) + ψ

(
q(j)
)
≥ 0, j = ℓ, ℓ+ 1, ℓ+ 2, . . . ,

then the vector solution sequence q(ℓ), q(ℓ+1), q(ℓ+2), . . . , generated by the semi-adaptive scheme
(2.1), (2.2) increases monotonically until unity is exceeded by a component of the vector (that is,
until quenching occurs) or converges to a steady solution of the problem (1.1)-(1.3). In the latter
case, we do not have a quenching solution.

Remark 2.2. We note that the last set of inequalities used in Remark 2.1 has been ensured at
least for the case ℓ = 0 and q(0). It seems that the solution monotonicity requires more rigor-
ous constraints than those for the numerical convergence. This additional numerical feature is
definitely justified for ensuring expected quenching-blow up phenomena. However, the quenching
data monotonicity requirement has also made applications of nonuniform spacial grids much more
challenging.

Remark 2.3. The simulation method (2.1), (2.2) is numerical stable in the von Neumann sense
[17]. Since the scheme is often solved via a suitable linearization of the nonlinear function ψ, the
simulation method is also convergent due to a natural conclusion of the Lax equivalence theorem.
However, in the circumstance, the order of convergence remains to be determined [11, 18].
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3 Order of convergence and simulation results

The order of convergence r > 0 of a consistent numerical method is defined through the error
estimate, ∥∥∥q(j) − q(tj)

∥∥∥
p
= O(hr), h→ 0+, j ∈ {0, 1, . . . , J}, (3.1)

in the p-norm (p ≥ 1). Since (3.1) is in general difficult to use, r is often replaced practically by
the order of the truncation error, or defect, of the underlying method [5, 18, 19].

Theorem B. The order of convergence of the semi-adaptive method (2.1), (2.2) is quadratic in
the maximum norm.

Proof. Since our simulation method (2.1), (2.2) is proven to be convergent and numerical stable
according to the Lax equivalence theorem, we know that r > 0. To estimate such an order via a
defect function, we notice that

σ(s)qt −
1

a2
qss − ϕ(q) = 0

due to (1.1). Further, let τ, h be the temporal and spacial discretization parameters, respectively.
Based on the forward temporal difference and central spacial difference, we acquire from the above
equation that

σ(sk)

(
q
(j+1)
k − q

(j)
k

τ
+O(τ)

)
− 1

a2

(
q
(j)
k+1 − 2q

(j)
k + q

(j)
k−1

h2
+O(h2)

)
− ϕ(q

(j)
k ) = 0,

k = 1, 2, . . . , N ; j = 0, 1, . . . , J.

Recall the Courant constraint τ/h2 = O(1) for thermodynamic finite difference approximations
[18]. Then the above equalities imply that the pointwise defect

d
(j)
k = σ(sk)

q
(j+1)
k − q

(j)
k

τ
− 1

a2
q
(j)
k+1 − 2q

(j)
k + q

(j)
k−1

h2
− ϕ(q

(j)
k ) = O(h2), (3.2)

k = 1, 2, . . . , N ; j = 0, 1, . . . , J.

Therefore
∥∥∥d(j)∥∥∥

∞
= O(h2) as h → 0+, j ∈ {0, 1, . . . , J}. Hence the order of convergence of the

data stream method (2.1), (2.2) is quadratic in the maximum norm.

Remark 3.1. The order of convergence of the semi-adaptive simulation method (2.1), (2.2) is r = 1.5
in the Euclidean norm.

This can be seen readily from (3.2). We observe that d
(j)
k ≈ ck,jh

2, where ck,j > 0 is a constant,
k = 1, 2, . . . , N ; j = 0, 1, . . . , J Now,∥∥∥d(j)∥∥∥

2
≈ cj

√
Nh4 = cj

√
Nh2 ≤ cj√

h
h2 = cjh

3/2, j = 0, 1, . . . , J,

where cj , j = 0, 1, . . . , J, are positive constants. This completes our derivation.
Although a replacement definition based on defects cannot warrant (3.1), it offers straightfor-

ward estimate and is extremely convenient to use. In fact, the actual order of convergence defined
in (3.1) is often lower than than that calculated via the replacement definition [20, 21]. Since
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a quadratic or higher convergence is often favorable to applications, such as those in cell migra-
tion model simulations [22], it is extremely meaningful to investigate and ensure the quality of
convergence of (2.1), (2.2).

Fortunately, the task is possible through a generalized Milne device. This is stated through the
following remark.

Remark 3.2. The order of convergence of the semi-adaptive simulation method (2.1), (2.2) is
quadratic based on computational verifications via a generalized Milne device.

To demonstrate the result, we let qτh denote the quenching solution with temporal steps τ ∈
{τ1, τ2, . . . , τJ} h being the uniform spatial step. Further, let qτh/2 be the numerical solution with
halved spatial step size h/2. Likewise, we define qτh/4 by a similar argument. It follows that a
generalized Milne formula can be built for estimating the point-wise order of convergence via

r
(j)
k =

1

ln(2)
ln

∣∣∣∣∣∣∣
(
q
(2j)
k

)τ
h/2

−
(
q
(j)
k

)τ
h(

q
(4j)
k

)τ
h/4

−
(
q
(2j)
k

)τ
h/2

∣∣∣∣∣∣∣ , k = 1, 2, . . . , N ; j = 1, 2, . . . , J, (3.3)

given that the denominator is nontrivial [20]. Stretch the data from computational space [0, 1]

to original physical space [0, 5] [19]. A surface of function r
(j)
k is shown in Fig. 1. The surface

can be viewed as a computational order of convergence spreading the entire space-time domain
considered. Although the evaluation takes place on three “consecutive” meshes in the space, it can

be conveniently extended for multidimensional cases. Detailed values of r
(j)
k immediately before

the quenching time are given in Tab. 1.
There is little surprise that such a surface of r obtained is not linear due to the strong quenching-

blow up singularity of the quenching problem. We may notice the dramatic decay of the point-
wise order of convergence from quadratic to one half in the quenching neighborhood near Ta.
The phenomenon is consistent with existing discussions [15, 20, 19]. We note that if the variable
Courant numbers γj = τj/h

2 ≤ a2ϕmin, j = 1, 2, . . . , J, then a quadratic convergence in space
implies a linear convergence in time, that is,∥∥∥q(j) − q(tj)

∥∥∥
2
= O(τ̃), τ̃ → 0+, j ∈ {0, 1, . . . , J}, (3.4)

where τ̃ = max
0≤j≤J

τj .

Formula (3.3) can be also extended via any standard p-norm, that is,

r
(j)
ℓ =

1

ln(2)
ln

∥∥∥(q(2j))τh/2 − (q(j))τh

∥∥∥
p∥∥∥(q(4j))τh/4 − (q(2j))τh/2

∥∥∥
p

, 1 ≤ p ≤ ∞, j = 1, 2, . . . , J. (3.5)

On the other hand, if us consider a subset of the numerical solution sequence

Qm,n =
{
q(m), q(m+1), . . . , q(j), . . . , q(n)

}
⊆
{
q(0), q(1), . . . , q(j), . . . , q(J)

}
,

where 0 ≤ m < n ≤ J, then the following (n−m+ 1)-dimensional vectors

wk =
(
q
(m)
k , q

(m+1)
k , . . . , q

(j)
k , . . . , q

(n)
k

)⊺
, k = 1, 2, . . . , N,
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Fig. 1. [LEFT] Surface plot of the point-wise order of convergence of the numerical solution
v by (2.1), (2.2). Formula (3.3) is employed.; [RIGHT] A locally enlarged surface plot of the
left image near the quenching singularity. It can be observed that the the point-wise order is
approximately quadratic except in a small area around the quenching data location which is
at (s∗, Ta). Though the order decreases dramatically in such a small area, it still stays above
0.5 which indicates a satisfactory data reliability even in the tumor cell population blow-up
area.

Tab. 1. The order of convergence of the solution q(s, t) calculated via (3.3) at ten different sj
locations right before data quenching. Note the order is approximately 2 everywhere except
around s = 2.5 which decreases to 0.5 due to the quenching singularity. These results are
consistent with the existing theory [10, 11, 12, 13].

sj order of convergence
2.02970297 1.99667070
2.12871287 1.99507152
2.22772277 1.99132454
2.32673267 1.97782804
2.42574257 1.80611369
2.52475247 0.50791656
2.62376237 1.95012804
2.72277227 1.98707873
2.82178217 1.99364935
2.92079207 1.99601168
3.01980198 1.99715469

can be defined. Therefore (3.5) can be simplified to

rℓ,k =
1

ln(2)
ln

∥∥∥wτ
k,h/2 − wτ

k,h

∥∥∥
ℓ∥∥∥wτ

k,h/4 − wτ
k,h/2

∥∥∥
ℓ

, 1 ≤ ℓ <∞, k = 1, 2, . . . , N. (3.6)

The above new formula is extremely convenient to use in cell simulation experiments. It also
provides an effective order of convergence estimate spanning from tm to tn at each spacial location
sk, k = 1, 2, . . . , N. It reflects the quality of performance of the algorithm dynamically in different
stage of stream simulations.
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Again, for the simplicity of illustration, let us consider the case with an uniform Courant
number γ = τ/h2 = 1.0201 with h = 1/101. In Fig. 2, we present order estimates based on
temporal intervals [t0, t1674], [t1675, t3348] and [t3349, t5023] in Fig. 2. The spectral norm (ℓ = 2)
is used. It is found that the order is persistently stay at two, while decays repeatedly around the
quenching-blow up location s∗ = 2.5 in the last stage. We also notice that the order is slightly
higher in the first stage probably due to the excellent stability of the argorithm.

0 1 2 3 4 5

s
k

0.5

0.75

1

1.25

1.5

1.75

2

r
p
,k

0 1 2 3 4 5

s
k

0.5

0.75

1

1.25

1.5

1.75

2

r
p
,k

0 1 2 3 4 5

s
k

0.5

0.75

1

1.25

1.5

1.75

2

r
p
,k

Fig. 2. Simulations of the order of convergence estimates based on formula (3.6). The three
temporal stages used are [t0, t1674], [t1675, t3348] and [t3349, t5023], respectively.

Finally, we may show a simulated quenching solution q and its rate-of-change function qt. To
do so, we may linearize (2.1), (2.2) to the following.

q(j+1) =
(
I − τj

2
A
)−1 (

I +
τj
2
A
) [
q(j) +

τj
2
ψ
(
q(j)
)]

+
τj
2
ψ
(
ω(j+1)

)
, j = 0, 1, . . . , J, (3.7)

q(0) = q0, (3.8)

where

ω(j+1) ≈ q(j+1) = q(j) + τj

[
Aq(j) + ψ(q(j))

]
.

Consider a typical nonstochastic reaction function of the type (1.4) with p = 1. Let us keep
τ (ℓ) to be uniformly for simplicity in simulations. A fixed physical space of a = 5 is selected.

Fig. 3 shows the simulated solution and its corresponding temporal derivative function for the
final 223 temporal levels before the quenching at T5 ≈ 0.50111987 (J = 723 temporal steps are
used in the full simulation). Linearized scheme (3.7), (3.8) is utilized. A single point quench is
observed at s = 2.5 as predicted [5, 10, 24]. The numerical solution is clearly nonnegative, and
monotonically increasing as time t increases at any s ∈ (0, a). It can also be observed that while the
solution q remains bounded throughout the computation, its rate of change, that is, the temporal
derivative function qt seems to shoot to the infinity at s = 2.5 as data quenching is approached
[15, 22, 9].

In the thermal physics, the phenomenon indicates that a combustion is ignited when the rate
of change of the fuel temperature in a combustion chamber tends to be unbounded. In Tab. 2, we
list maximal values of q and qt in ten representative time levels, including six levels immediately
before the quenching-blow up. We note that τj becomes variable after j = 500 due to the kick-in
of the adaptation. The patterns of the data agree very well with those given in [5, 10].
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Fig. 3. Surface plots of the numerical solution q of (3.7)-(3.8) (first row), the corresponding
rate derivative qt (second row) for the last 223 temporal steps immediately before quenching.
It can be observed that T5 ≈ 0.50111987, max

0≤s≤5,0≤t≤Ta

q(s, t) = q(2.5, Ta) ≈ 0.99008661 and

max
0≤s≤5,0≤t≤Ta

qt(s, t) = qt(2.5, Ta) ≈ 99.77142399.

Our simulation strategy is the following. (i) A uniform time step τ is used until the solution
almost quenches, for example, as the value max

0≤s≤a
q(x, t) reaches 0.950. (ii) Then the sequence of

adaptive time steps, {τj} , begins through

τj = max

{
min
j

{
τj−1, c0 min

k

{(
1− qjk

)2}}
,m0

}
,

where c0 > 0 is a suitable speed controller, and m0 is a minimum step size that may keep the
ratio of τj/τj−1 being bounded and smooth [13, 14]. A quadratic function is being used to reflect
the nonlinearity and determine the next step size which allows the actual quenching singularity to
drive the process. The above monitoring function developed is different from classical arc-length
formulas and is highly satisfactory.

We plot the variable temporal steps generated as well as the performance ratio τj/τj−1 in
final 223 advancements in Fig. 4. It can be observed that while both qj and (qt)j increases
monotonically, τk decreases monotonically due to our effective grid adaptation mechanism. In
fact, the decay of τj is at a logarithmic rate.
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Tab. 2. Maximal values of the solution q(s, t) and its temporal derivative function qt(s, t)
at ten different time levels before quenching-blow up. Note that the temporal adaptation
starts at j = 500. Both values increase monotonically, with the latter increases exponentially
immediately before the quenching-blow up. The results agree with known results given in
[3, 21, 5, 23].

j tj max
0≤s≤a

q(s, tj) max
0≤s≤a

qt(s, tj)

10 0.01 0.00904086 1.00963768
100 0.1 0.10445547 1.11733601
500 0.49724053 0.91046311 11.22462715
700 0.50109449 0.98766458 81.72099321
715 0.50111365 0.98937234 94.91275358
716 0.50111474 0.98947743 95.86501759
717 0.50111580 0.98958149 96.82691747
718 0.50111685 0.98968452 97.79855187
719 0.50111787 0.98978654 98.78002048
720 0.50111887 0.98988755 99.77142399

501 550 600 650 700

j
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0

2
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j

10-5

502 550 600 650 700

j

0.98031

0.98032

0.98033

0.98034

0.98035

0.98036

0.98037

0.98038

0.98039

0.9804

j/
j-
1

Fig. 4. [LEFT] Adaptive temporal step sizes used in the last 223 excursions of simulations.
[RIGHT] Profile of the ratio τj/τj−1, in the final 223 temporal steps. It can be noticed that
both τj and the ratio decrease monotonically while the ∥qj∥∞ increases monotonically.

4 Conclusions and expectations

To conclude, in this paper, we have extended the theory and practice of semi-adaptive finite dif-
ference methods for degenerate quenching data stream simulations via nonlinear reaction-diffusion
partial differential equations. The particular modeling equation studied is emerged from multiple
bio-medical and physical applications, in particular in rapid cell bursts and solid fuel combustion
[1, 2, 4, 7, 9, 13, 21, 22]. Systematic investigations and improved analysis of key characteristic
issues, including the convergence, positivity and monotonicity of the simulated data streams.

Computational experiments are carried out to illustrate the theoretical results though demon-
strations of the solution accuracy and order of convergences. It is found that the implicit simulation
method implemented is quadratically convergent within the time-space physical regions considered.

The new preservative simulation method utilizes a uniform mesh in space and a temporal
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adaption in time. In our forthcoming work, we shall implement fully adaptive methods where
mesh adaptations will be considered in both space and time. These may help further improve the
accuracy and efficiency of the laboratory data. Geometrically non-symmetric degeneracy functions
[10, 21] and initial values will be introduced and tested for potential biomedical and industrial
applications.
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