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ABSTRACT

Many applications where tasks should be assigned to agents can be
modeled as matching in bipartite graphs. In this paper, we consider
applications where tasks arrive dynamically and rejection of a task
may have significant adverse effects on the requester, therefore
performing the task with some delay is preferred over complete
rejection. The performance time of a task depends on the task, the
agent, and the assignment, and only its distribution is known in
advance. The actual time is known only after the task performance
when the agent is available for a new assignment. We consider such
applications to be one of two arrival types. With the first type, the
arrival distribution is known in advance, while there is no assump-
tion about the arrival times and order with the second type. For the
first type, we present an LP-based online algorithm with a competi-
tive ratio of 0.5. For the second type, we show no online algorithm
with a constant competitive ratio. We run extensive experiments to
evaluate our algorithm in a real-world dataset, demonstrating the
advantages of the LP approach.
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1 INTRODUCTION

In classic bipartite matching problems such as assigning classes
to classrooms [28] or papers to reviewers [24], both sides of the
matching are known in advance. However, in many other problems,
one side of the matching is known, but the other side is dynamic.
Such is the case in many two-sided marketplace problems where
the available supplies (e.g., goods in a grocery store) are known
in advance but the requirements (e.g., customers’ demand) are
dynamic.

In other applications, the product is rented out and will be avail-
able after the current customer finishes using it. An example of this
is a cell phone application such as "Get Taxi" that assigns drivers to
continuously arriving customers. Once a taxi finishes its journey it
becomes available for the next customer. In some cases, we may as-
sume that the usage time depends only on the user (e.g., when taxi
drivers are very similar to one another). However, sometimes there
are significant differences between them. Gong et al. [13] showed
that, in the former case, there is no approximation algorithm with
a reasonable ratio for the problem. In some situations, depending
on the task properties and the available resources, it is possible
that a request will not be fulfilled. If this occurs frequently, it may
damage the usefulness and popularity of the application. In other
applications, rejecting a request is disastrous. An example of such
an application is assigning hospital resources like beds or doctors
to patients (see, for example, [32]). In such applications, rejecting a
patient or even serving her too late is not acceptable. At the begin-
ning of the COVID-19 pandemic, many people who didn’t get the
required resources such as trained staff, beds, or respirators were
affected severely or even died (see for example Emanuel et al. [9]).

Our motivating application is teleoperating autonomous cars
(driving them remotely) [2, 15, 16, 35] that have special characteri-
zations. In many situations, autonomous cars get stuck and cannot
continue their trip without human intervention. For example —
consider an object permanently blocking the vehicle’s way. A rea-
sonable human driver would bypass this object even if they had to
cross a continuous dividing line to do so. That decision cannot be
made by an autonomous vehicle. The establishment of dedicated
centers of human teleoperators, whose job is to deal with such
cases will be required [40] and already exists (e.g., autonomous
mining trucks [34]). Furthermore, in many countries, a process has
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been started to define regulations for such solutions [23]. When an
autonomous vehicle encounters a scenario that it doesn’t know to
deal with, it will call for help from human teleoperators sitting in
the centers. The chosen teleoperator from the center will take con-
trol of the car and drive it remotely. Once the situation is resolved,
control will be given back to the car for continued autonomous
driving. In this domain, the efficiency (i.e., task waiting time) of
the allocation of a request for intervention (tasks) to human op-
erators (agents) is extremely important since waiting in a stuck
car is extremely annoying and may become dangerous (e.g., if the
car is blocking a road). Therefore, in this case, it is not acceptable
to refuse a task or have a long delay. Another characterization of
this application is that the time duration of the performance of a
request for intervention (task) depends on the operator, the type
of request for the intervention itself, and the assignment time. The
dependency on the assignment time stems from the traffic load
changes during the day. Furthermore, the arrival of a specific type
of request for intervention also depends on the time and the type
of request.

In this study, we address delayed online matching problems
where a long delay or rejection is costly or unacceptable and one of
two settings below applies. In the first setting, the expected arrival
rate is known to the algorithm. We develop a novel online algo-
rithm with a competitive ratio of 0.5 (a ratio between the expected
yield of the online algorithm and an optimal offline algorithm) and
demonstrate its effectiveness through extensive experiments on a
dataset based on both simulations and real-world data. For settings
where the arrival rate is unknown, we have the second category. In
this category, there is no knowledge about the arrival distribution
of tasks and therefore we consider an adversarial model for the
sequence of arriving tasks. We adopt a proof of Gong et al. [13]
and show that there is no online algorithm with a competitive ratio
better than O(log T/T).

2 RELATED WORK

Online and offline bipartite matching is a rich area of study with
many theoretical works. We are specifically interested in weighted
matching problems, where each edge is assigned a weight and our
goal is to maximize the total weight of the matching edges. The
bipartite online matching problem was introduced by Karp et al.
[21]. In this problem, tasks arrive over time and must be performed
as they arrive. On the other hand, the agents serving these tasks are
stationary. In teleoperation environments, we consider rejecting
tasks problematic, and a short delay in providing the service is
allowed.

Following the paper by Wang et al. [37], work on online matching
can be divided into two categories. The first refers to problems that
use the adversarial model. In this model, there is no prior knowledge
about the incoming tasks and the order in which they arrive. The
goal of the work in this category is to provide a bound for the worst-
case scenario. The second category assumes some knowledge about
the underlying distribution of incoming tasks. Work that belongs to
this category usually attempts to optimize the expected utilization
or revenue. In this paper, we address both categories.

Another branch of the problem is one where resources can be
reused. Most similar to our work is that of Dickerson et al. [7],
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who considered the online matching problem when resources are
reusable and the distribution of customer types is known. They
considered cab dispatching and ride-sharing applications where
stationary drivers are dynamically assigned to incoming tasks. They
proposed a simulation- and LP-based approach and presented an
algorithm with an online competitive ratio of 1/2 — € for any given
€ > 0. However, in their case tasks cannot be delayed and are re-
jected if they cannot be assigned immediately upon arrival. For
the adversarial setting, Goyal et al. [14] discussed the case of on-
line allocation of reusable resources and the uncertainty about
their usage duration when their capacity is large or even infinite.
Reusable resources have also been considered in the context of e-
commerce (e.g., Feng et al. [10]) and crowdsourcing (e.g., Manshadi
and Rodilitz [25]).

Righter [30] considers the problem of allocating resources to ac-
tivities where the activities are known in advance and the resources
arrive dynamically and delays are allowed. However, the arrival
time or the waiting time does not affect the reward and therefore it
is not useful in our application.

Dervovic et al. [6] assumes a Poisson process for the arrival of
jobs and has presented an algorithm with a performance guarantee
for the expected revenue. Recently, Aouad and Saritag [1] consider
a dynamic matching setting, where the algorithm can choose to
handle the tasks in batches and serve them. However, unlike our
setting, they do not consider reusable resources and assume that
we can match more than one edge at a given time step.

Wang et al. [37] use a reinforcement learning(RL) approach to
solve online matching with delays, where both sides of bipartite
graphs arrive dynamically over time. However, as in the previous
work, the value of an assignment depends only on the agent and
the task and not on other important features such as the arrival
time and the waiting time. In addition, workers arrive dynamically
and therefore we cannot use the available knowledge about the
current workers to optimize the reward obtained. In both works, the
only drawback associated with a longer waiting time is the higher
probability that workers or jobs will disappear before they are
assigned. Qin et al. [29] presents an RL approach to balance the cost
of delaying tasks with the benefit of improved allocation efficiency.
However, they assume a static Poisson process for arrivals, which
is different from our more realistic arrival probabilities. Moreover,
in the last couple of works, the decision about the time steps for
assigning a request (or a driver) is made in batches, which reduces
the complexity of the problem but does not optimize the utility of
the assignment. Recent work by Li et al. [22] also addresses the
problem of solving online matching with delays, where both sides
of bipartite graphs arrive dynamically. They propose an LP-based
approach with a constant approximation ratio. However, in their
setting, the delay is not penalized but only capped.

Jintao et al. [20] presented a combined approach of RL and com-
binatorial optimization for cases where the decision is made for
each passenger individually. Their model attempts to optimize some
factors, such as the number of rejected tasks and the time from
request arrival to matching. However, like many other RL works,
they have not obtained theoretical results regarding the optimality
of their approach compared to the performance of an optimal offline
solution.
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Another area that overlaps with online matching is online as-
sortment optimization. In these problems, the decision maker’s
objective is to select a subset of products from the available re-
sources to offer to the user, who in turn chooses to buy one of them,
in order to maximize the expected reward of the decision maker,
given the user’s selection. For any given subset of the products
offered, the user’s choice depends on his probabilistic preference
for the set of products, including the option to buy nothing or to
drop out. The optimal selection of a subset is similar to the selection
of the optimal single resource in a matching problem, which is con-
sidered an assortment problem where the resources are reusable
and the execution time is uncertain.

In the literature, areas such as crowdsourcing, ride-sharing, ride-
hailing and internet advertising have been studied in depth. For
example, Ho and Vaughan [17] have studied the problem of assign-
ing heterogeneous tasks to agents with different unknown skills in
crowdsourcing markets such as Amazon Mechanical Turk. They
present a two-stage task assignment algorithm and empirically
evaluate this algorithm using data collected on Mechanical Turk.
They show that this algorithm performs better than random assign-
ments or greedy algorithms. In addition, Tong et al. [36] identified
a practical micro-task allocation problem called “the Global Online
Micro-task Allocation in spatial crowdsourcing” (GOMA). They con-
sidered the average performance of online algorithms, also known
as the online random-order model, and demonstrated the effective-
ness and efficiency of the proposed methods through extensive
experiments on real and synthetic datasets.

Another family of problems involves multi-class queues where
each task has its own characteristics, such as its urgency, the time
it takes to be completed, and its arrival rate. Yoon and Lewis [39]
address the problem of finding an optimal admission policy for
queues with multiple classes. However, they have only one class of
tasks. Rigter et al. [31] consider multiple classes of tasks. However,
they only consider cases where all servers are identical. This as-
sumption is unacceptable in our setting since there are very large
differences between different teleoperators.

To the best of our knowledge, there is no research in the literature
that pertains to our problems of online arrival of tasks during a finite
time period, where the delay is allowed but is costly and resources
are reusable. Furthermore, the duration time of the performance
of a task depends on the arrival time, the resource, and the type
of the task. When the arrival time duration is known, the arrival
probability depends on the arrival time. Finally, we aim to bind the
competitive ratio of the proposed solution.

3 PROBLEM DEFINITION: ONLINE
MATCHING WITH DELAYED ASSIGNMENTS
(OMDA)

Following works by [18, 27, 38], we use a bipartite graph G =
(I, ], E) to model the network between offline agents I (human
operators) and online agent types J (task types), where an edge
e = (i, j) indicates the feasibility of matching between agent i and
agent of type j due to practical constraints. We assume here by
default that the offline agents are all static, while the online agents
arrive dynamically. The online process is as follows: we have a time
horizon of T rounds. During each round (interchangeably time)
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t € [T] := {1,2,...,T}, a task of type j will be sampled from J
such that Pr[j = j] = p;j, with 2jejpjt = 11, In this case, we say
that a task of the sampled type, j, arrived at time ¢. For each task
of type j arriving at time ¢, we can assign it to any offline neighbor
i with (i, j) € E at any time ' > t as long as i is available (i.e., un-
matched) at ¢/, which is referred to as an assignment A = (j, t, i, ¢').
Let A = {A = (j,t,i,t")|(i,j) € E,t' > t} be the collection of all
valid assignments. For each valid assignment A = (j,t,i,t") € A, it
is associated with a positive reward w) gained by the system and
a usage duration C; € [T], which denotes the (random) number
of rounds during which i will be occupied by the assignment of
the task of type j arriving at ¢ that is scheduled on i at ¢’. Note
that our setting is general enough to allow both reward (w,) and
the occupation distribution (C;) to be sensitive to all of the four
elements involved in the assignment, i.e., the task type, the arriving
time, the assigned agent, and the scheduling time. We assume the
distributions of {C,} are all accessible to the algorithm. In addi-
tion to that, all information of {G = (I, J,E), T, {w, }} is known as
part of the input. We consider two variants of the problem. In the
first case, the arriving probabilities {p;;} are also known to the
algorithm, which is referred to as OMDA-KD; while in the second
case, they are unknown but fixed by an adversary (referred to as
OMDA-UKD). Our goal is to design online policies (or algorithms)
such that the expected total rewards are maximized. Throughout this
paper, we denote [n] = {1,2,...,n} for a generic positive integer
n; we use OPT to denote both a clairvoyant optimal policy and the
corresponding performance, and the same applies to ALG, which
denotes both a generic algorithm and its performance.

4 FIRST CASE: KNOWN ARRIVAL
DISTRIBUTIONS

In this section, we describe the case where the arrival probabilities
{pjt} of the tasks are known. First, we define the competitive ratio
used to evaluate our algorithm. Then, we define a benchmark linear
program used by the algorithm. Finally, we define our algorithm
and give a theoretical guarantee for its performance.

4.1 Competitive Ratio (CR)

The CR is a commonly-used metric to evaluate the performance
of online algorithms. Consider a given online algorithm (or policy)
ALG and a clairvoyant optimal OPT. In the context when the arrival
distributions are known in advance, ALG observes task arrivals
sequentially, while OPT can access all arrivals of tasks at the very
beginning (including their arriving time). Neither ALG nor OPT
has the information of the exact realized values of {C, }, but both
can access their distributions in advance. The CR is defined as
E[ALG]/E[OPT].

4.2 Benchmark Linear Program (LP)

For each assignment A, let x; be the probability that A is made
in OPT. Recall that A = {1 = (j,t,i,t')|(i,j) € E,t’ > t} is the
collection of all valid assignments. For each given pair j € J and
t € [T], let Aj; denote the collection of all valid assignments

'We can always make this equal by creating a dummy node whose arrival simulates
the case of no arrival at time ¢.
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involving task of type j arriving at t. Similarly, let A; » be that of
all valid assignments that are scheduled to be matched on i at ¢’.

max Z X) " W), (1)
AEA
DL <pin VieLvie[T] ()
A€,
Z Z Pr[Cy>t—-t]<LVieLVte[T]  (3)
VSt Qe
0<x3 <1, VA eA. (4)

Throughout this paper, we refer to the LP above simply as LP (1)
that has Constraints (2) to (4) by default.

LEMMA 1. The optimal value of LP (1) is a valid upper bound of
the total expected reward achieved by a clairvoyant optimal policy
for OMDA-KD.

Proor. Note that for each valid assignment 1 € A, x; denotes
the probability that A is made in clairvoyant optimal policy (OPT).
We can verify that Objective (1) encodes the expected reward in
OPT. Thus, to prove Lemma 1, it suffices to show that {x,} is
feasible to all constraints in LP (1). For Constraint (2): Observe that
the left-handed side (LHS) value denotes the probability that a task
of type j arriving at time ¢ gets assigned in OPT. Thus, it should be
no larger than the probability that j arrives at ¢, which is exactly
equal to pj ;. As for Constraint (3): consider a given i and t. The
summation over ¢’ < ¢ on the LHS represents the probability that i
is occupied by some assighments made at some previous time ¢’ < t,
while the summation on t = t’ represents the probability that i is
available at ¢ since Pr[C; > 0] = 1. Thus, the sum of these two
parts of t’ < t and ¢’ = t should be no more than 1. Constraint (4)
is trivial since x is a probability value. Therefore, we establish the
feasibility of {x, } to all constraints in LP (1). O

4.3 A Sampling Policy with Attenuations

We present an LP-based sampling policy with attenuations in ALG-LP.
First, the algorithm solves the LP (1). Then, during its online phase,
it iterates through all the available unprocessed valid assignments
and assigns them to an agent with some probability if the agent is
available. Note that all unprocessed tasks that have arrived so far
are considered candidates for the assignment.

Slightly abusing the notation, we use {x} to denote an optimal
solution to LP (1).

Remarks on ALG-LP. (i) For each t € [T], let A(t) € A be the
set of all possible valid assignments that are scheduled at ¢t. We
can impose an arbitrary order n; over A(t), which then yields an
order on S;. Note that S; is a random set but surely is a subset of
A(t). Here is an example of 7; over A(t). Consider two different
assignments A = (j, /,i,t) and A = (J, ,1,t) in A(t). We set A < A
(A falls before A under 7;) if eitheri < i2 ort’ < ¥ or j < J. (ii) The
value f3; can be estimated at an arbitrary accuracy via simulating
Steps (5) to (11) before ALG-LP checking A for enough number of

2We assume i is indexed as 1,2, . . ., n with n = |I|. Similarly for j € J.
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times.> Note that ) can be affected by the orders {x;} imposed
on {S;}. (iii) The constant 0.5 in line 10 is the best possible we
can choose. Let « be the constant such that we sample each valid
available assignment x from S; with a probability ax, /f,. On the
one hand, we should set an « value as large as possible since it
determines the final competitive ratio achieved by ALG-LP(-); on
the other hand, to ensure ALG-LP(-) functions well, we can set the
a value no more than 0.5 (see the proof of Theorem 1). That’s how
we get the final choice of 0.5.

THEOREM 1. ALG-LP(-) achieves a competitive ratio of 0.5 for
OMDA-KD.

Proor. We first show that the expected total weight of all as-
signments made by ALG-LP should be at least half of the optimal
value of the benchmark LP-(1). This further suggests a competitive
ratio of 0.5 since LP-(1) offers a valid upper bound for the clair-
voyant optimal (by Lemma 1). For showing the ratio between the
expected weight of assignments and the optimal solution of the
LP-(1), we observe that in Step 10 of ALG-LP, we sample an as-
signment with probability 0.5x,/f,. Thus, the fact that f; > 0.5x
for every A € S; and every t € [T] is a critical (and also suffi-
cient) condition that ensures ALG-LP function properly. Under that
assumption, we see that each valid assignment A is scheduled suc-
cessfully with a probability equal to 0.5x. The ratio follows from
the linearity of expectation. It remains to prove the fact that every
assignment in A will be made with a probability of at least 0.5x.
The proof is by induction over a given order 7 = {r;} imposed on
A = U A(t), where A(?) is the collection of all valid assignments
that are scheduled at ¢t € [T]. Consider the base case when t = 1.
Let A = (j, ' = 1,i,t = 1) be the first assignment under order 1 on
S1. In this case, we see f§; = pj,;+ > 0.5x;, which follows from the
fact that xj < p; due to Constraint (2). Consider a given valid
assignment A = (j,¥,7,F) € A. Let A(X) be an ordered collection of
all valid assignments before 2 that are arranged following the given
order imposed on A. Now assume that any A € A(2) is made with a
probability equal to 0.5x, and we show 2 will be made with a prob-
ability equal to 0.5x. It suffices to prove that 7 > 0.5x5. Assume j
arrives at time ¢, which occurs with probability p .7~ Observe that

(j, ¥') remains in Q upon ALG-LP. Checking A should happen with

a probability equal to p; 7 — ZA:(]T,E,’*’*)EA(I) 0.5x,. Note that i

is safe at f upon ALG-LP. Checking A with a probability equal to
1- ZA:(*’*’ITJ)EA@) 0.5x) Pr[C) > f —t] > 1— 0.5 unconditionally
due to Constraint (3). Observe that the event j that arrives at ¢’
will not affect the arrival of an online agent during any other ¢ #
(since arrivals are independent over different rounds); meanwhile,
the event that (j, ') remains in @ by ALG-LP checking 2 implies
that (j, #') has not ever been matched with i. This suggests that
the occurrence of an event where (J, ') remains in Q could only
positively contribute to the chance that i is safe at . Thus, we claim
that f; > 0.5 (pj — le(ﬁ,’*’*)eA(I) 0.5x;) = 0.5x3, where the
second inequality is due to the fact that X3 ;7 «+)ea X1 < Pj 7
from Constraint (2). o

3The number of simulations needed is poly(|I|, | J|, T, 1/€) if we aim for a multiplica-
tive error of € > 0.
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Algorithm 1: An LP-based sampling policy with attenuations for OMDA-KD: ALG-LP(-).

1 Offline Phase:
2 Solve LP (1) and let {x, } be an optimal solution.
3S5etQ=0,A=1

/* A is a set storing all currently available offline agents;Q is a set storing all unprocessed tasks

arriving so far in the form of (j,t) (the task type together with its arriving time).

4 Online Phase:
s fort=1,...,T do

*/

6 Let a task of type j arrive at (the beginning of) time . Update Q = Q U {(j, t)}.
7 Let Sy = {A=(j,t',i,t) e A:rie A (j,t') € Q}, the collection of all available unprocessed valid assignments that are scheduled

at t.
8 for each A € S; (following a specific order mr; over S¢; see Remarks on ALG-LP) do
9 Let A= (j,t',i,t) and ) =Pr[Ad € S, i.e, i € A and (j,t') € Q at ¢, which can be obtained via simulations (see Remarks
on ALG-LP).

10

11

With probability 0.5x,/f,: Assign (j, ) to (i, t) with A = (j, t’, i, t), update A «— A\ {i}, Q — Q\ {(j,t')}, and remove any
assignment in S; in the form of either (x, =i, t) or (j, ¢, %, t); with probability 0.5x, /f,: Skip. (see Remarks on ALG-LP).

| For any offline agent i that finishes its task by (the end of) time ¢, add it to A by A « A U {i}.

4.4 Impossibility

We consider two types of impossibility. First, we claim that no
online algorithm can achieve a competitive ratio better than 0.5 with
respect to the benchmark LP (1). This claim follows from the proof
of Theorem 2 in the work of Dickerson et al. [7]. Second, Manshadi
etal. [26] showed that for a known arrival distribution, no algorithm
can have a better competitive ratio than 0.823 with respect to the
optimal offline solution. In their setting, no delay is allowed and
offline resources are disposable. However, their problem is a private
case of ours and hence their results hold for our problem as well.

5 SECOND CASE: ADVERSARIAL ARRIVALS

In this section, we describe the case where the distribution is un-
known. In this case, we must consider arbitrary bad arrival rates.
We first define what a competitive ratio is and then show that it is
impossible to find an algorithm with a constant competitive ratio
for the problem with |I| > 1.

5.1 Competitive Ratio (CR)

In the context where the arrival distribution is unknown, ALG
does not use information about arrival times. OPT can access all
arrival times of the tasks at the very beginning. Both have access
to the distribution of usage times. Here again, the ratio is defined
as E[ALG]|/E[OPT].

5.2 Impossibility Results

ProPoOSITION 1. In the adversarial arrival model, there is no online
algorithm with a constant competitive ratio.

Proor. We rely on Theorem 2 in the work of Gong et al. (2019).
The theorem is as follows (reformulated according to our notations).

THEOREM 2. For online matching with a single type reusable agent
and an arbitrary number of agents, if the random duration of use
depends on the task, no online (randomized) algorithm can have a
competitive ratio better than O(log T /T).
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In their proof, Gong et al. [12] construct arrival sequences and prove
by contradiction that there is no algorithm with a competitive ratio
better than O(log T/T) for these sequences. We construct similar
sequences and adjust their proof such that it holds for our setting.
We define a sequence C(c,t) as a sequence of ¢ - T tasks, each
having identical usage duration distributions. In our construction,
the workers are identical and for each pair with a task and a worker,
the task is completed after a single unit of time with probability
pr=1- % or after T +1 units of time, i.e., Pr(d; = 0) = p; = 1— %
andPr(d; =T+1)=1-p; = % where ¢ denotes the number of
agents. The set of T sequences considered in the proof is defined as
D(T) ={C(c,1),.,C(c,T)}.

O

6 EXPERIMENTS

Teleoperation of autonomous vehicles has been gaining a lot of
attention recently (e.g., [3, 11, 33, 40]) and is expected to play an
important role in helping autonomous cars handle challenging situ-
ations which they cannot handle on their own. Efficient assignment
of online requests for interventions arriving from the vehicles to
the appropriate operators is essential for making teleoperation cen-
ters feasible by enabling the reduction of the number of human
operators employed at a given time. In the next sections, we will
describe, in detail, the extensive experiments we ran in a simulated
teleoperation environment in order to evaluate the proposed al-
gorithm. We will compare it with a greedy algorithm and with a
heuristic that is based on the LP approach.

In order to evaluate the LP approach in the teleoperation of the
autonomous cars simulation environment, we need data on the
expected duration time of a task of type j performed by a given
operator (C;) and the arrival distribution of the task types over
time (pj ¢). Due to the early stage of the technology and regula-
tory and economic barriers, data has not yet been collected from
operational teleoperation centers. Therefore, we used two sources
for data. First, we ran experiments with human subjects driving in
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a simulator to generate the duration time. Second, we estimated
the arrival times based on estimates presented in the literature on
autonomous cars and their requests for interventions. Finally, we
had to define a benefits function that will be used for the evalua-
tion of the teleoperation centers. We did this in consultation with
members of the industry.

Duration time dataset. We collected data on expected duration
times using the CARLA platform [8]. The CARLA platform is an
open-source driving simulation, which is widely in use for research
in autonomous vehicles(e.g., Caesar et al. [4], Codevilla et al. [5]).
We simulated some challenging driving scenarios and asked human
participants to drive in these situations. We defined four driving
task types and asked ten subjects to drive vehicles to handle tasks
of these types. The subjects were students of computer science - 5
women and 5 men aged 22 to 31 years (the average age was 25.2
years). The tasks included driving in extreme weather conditions,
turning left at a signalized intersection when cars were approach-
ing from the opposite direction, and passing static and dynamic
obstacles. The subjects (operators) showed different levels of skill in
their performance both in general and specifically for each type of
task. That is, the average time to complete a task depends on both
the operator and the type of the specific task. Among relevant data,
we collected the usage duration times and used them to predict
the duration, C) € [T], for each pair of a human operator and an
intervention request.

Arrival Distribution. Arrival rates were determined following the
data presented in [16], which describes the expected request rate
for remote operators to assist autonomous cars in "edge" driving
scenarios. The expected number of requests for intervention at a
given hour of a day was calculated based on the estimated mileage
that an autonomous car will drive in a given city (Table 1 in [16], the
distribution over the day (Figure 2 in [16]) and the estimation of the
number of requests for intervention per mileage specified in [16].
We considered a setting where the operators were responsible for
autonomous cars in the entire area of New York, NY, Washington
DC, Philadelphia, PA, and Atlanta, GA. We picked a time window
of 5 hours, from 3 pm to 8 pm, with different traffic loads.

Experiment scenarios. In order to evaluate ALG-LP, we gener-
ated three different scenarios where tasks arrived according to the
defined arrival time from Section 6 and the expected duration as
defined in Section 6. In particular, in each scenario, we sampled the
type of the arriving tasks, their parameters, and the usage duration
according to the described distributions. Assuming that for a certain
task type an operator performs tasks of this type differently each
time (due to the effects of the environment and the mood of the
operator, as well as basic variation in performance arising from
reality), we sampled the usage duration 5 times for each scenario.
So, in total, we created 15 different simulations for the 3 scenar-
ios. Since ALG-LP involves random sampling, we ran it 10 times
for each simulation and calculated the average among them. Each
task type j was associated with a quality g;. For an assignment
(j, t,i,t"), we refer to t’ — t as the waiting time of task of type j that
arrived at time ¢. In the experiments, we bounded the waiting time
to make the scenario more realistic and to reduce the computation
time of solving the LP.
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The algorithm performance is measured by a score function
that considers both the quality of the performed tasks which is
determined by the quality(importance) of their types as well as
the time it took to complete a task (including the waiting times).
We use two normalization functions. For time normalization, we
use ¢;(y) = In(y)/In(max-time) where max-time is the maximal
overall time including the actual performance and the waiting
time. For quality ¢4(q;) = q;/max-quality where max-quality is
the maximum quality associated with any task type. Using these
functions, any request of type j € J that arrived at time ¢ € [T],
was assigned at time ¢’ € [T] and its duration time was 0 < ¢ < T,
we associated a value using the following score function:

v(jiett') = —yde(c+t—t') + (1 - y)gq(g)) +1
where 0 < y < 1. We aim at maximizing the sum of v(j, ¢, t,¢") for
all performed tasks.
For the LP (1) we set the reward to be

Wit it = —}’¢t(cj,t',i,t) +(1- Y)¢q(¢U) +1.
The datasets used in the experiments and the source code are avail-
able in a public repository*.

6.1 Heuristics

When the number of agents is much higher than the number of
arriving tasks, there are many solutions to LP (1). However, all
of the solvers that we considered generate solutions in which the
number of variables that are set to zero is maximized. As a result,
and since constraint (3) of LP (1) is relatively weak, it occurs that,
for several agents, all of their relevant variables are set to zero, and
therefore these agents are not used in the matching. This leads to
tasks being rejected even though there are agents that are available.
To mitigate this problem, we modify the LP (1) as follows: Let Q be
the total expected reward achieved by the original LP (1),0 < € < 1,
0<d<landk:IXJxTxTx[0,1] — [0,1]. x(i, j,t,t',y) was
determined using trial and error.

We add two constraints to LP (1) and refer to this heuristic as
ALG-LP-Non-Zero (ALG-LP-NZ).

ZxA-wAZQ—e, (5)
AeA
Xjeie 2 pj-O-k(i,jt,t',r),Vie LVje JVt',t € [T] (6)

We also slightly change the sampling method. For any i € A
following an order m;;, let S;; = {A = (j, t',i,t) € A: (j,t') € Q}.
Let ¢ = Y )es,, X2- We take a sample of A with 0.5x, /¢/,. That is,
nothing is skipped. When analyzing the competitive ratio of ALG-
LP-NZ, we consider the differences between the original ALG-LP
and ALG-LP-NZ. The first difference is the addition of constraints
(5) and (6). These constraints could reduce the ratio by at most /2.
The other is the modified sampling (a boost-like). We hypothesize
that the change in sampling does not reduce the competitive ratio.
This hypothesis is supported by the experimental evaluation, where
the actual ratio was much larger than 0.5.

The other heuristic that we considered is a greedy heuristic that
does not use the arrival distribution. It uses w as its evaluation
function. The suggested greedy heuristic, UKD-G, works as follows:
for each task (j, t) that arrives or has not yet been assigned, and

“https://github.com/yohayt/Allocation_Reusable_Resources_Delayed_Assignments
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Figure 1: Average sum of scores as a function of the number of
operators when the maximum waiting time is 5-time units
in (a), and as a function of the maximum waiting time (6
operators) in (b) and as a function of y (with 2 operators) (c).
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Figure 2: The average percentage of rejected tasks as a func-
tion of the number of operators (when the maximum waiting
time is 5-time units in (a)) and as a function of the maximum
waiting time (with 6 operators) in (b).

for all available agents i, it computes wj s ;;. Out of all of the
options, the match with one of the highest values is selected. We
ran a preliminary experiment where we compare the UKD-G with
another heuristic that does not use the arrival distribution and is
based on the Hungarian matching method HW. and B. [19], which
is an efficient algorithm for solving the offline weighted matching
problem in bipartite graphs. In this heuristic, for each time unit, we
use the Hungarian algorithm for assigning tasks to the appropriate
agents. Our results indicate that the UKD-G yields a higher average
sum of scores of the performed tasks and rejects fewer tasks than the
Hungarian-based heuristic. Therefore, we focused on the UKD-G
in our experiments.

Note that UKD-G does not use the arrival distributions (i.e., pj,¢),
therefore it could be used in both arrival types that we consider,
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Figure 3: Runtime of the ALG-LP as a function of the num-
ber of operators when the maximum waiting time is 5-time
units and T = 360 rounds in (a), and as a function of y(2
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Figure 4: Runtime of the ALG-LP as a function of the maxi-
mum waiting time (6 operators, T = 360 rounds) in (a) and
as a function of T (6 operators, maximum waiting time of 5
units) in (b).

known and unknown distributions. However, It does use the usage
duration C, € [T].

6.2 Results

We used € = 0.1 in all of the experiments. In the experiments re-
ported in Figure 1, in graphs (a-b) we used y = 0.1 as recommended
by our industrial consultants. In graph (a) the maximum waiting
time was set to 5 and we varied the number of operators. In graph
(b) the number of operators was set to 6 and we varied the maxi-
mum waiting time. The average score refers to the average sum of
0(j, ¢, t,t’) for all performed tasks in all the runs of a given setting.
As can be observed in these graphs, ALG-LP-NZ always yields the
highest average scores. When the number of operators is large
(i.e., 8 and 10 operators), UKD-G yields the same results as the
ALG-LP-NZ. However, when the number of operators is relatively
small (2-6), ALG-LP-NZ does significantly better than the UKD-G.
Interestingly, when the number of operators is very small ALG-LP
yields a higher score than the UKD-G, but the ALG-LP-NZ still
yields statistically significantly higher scores than the LP. However,
when the number of operators increases, the ALG-LP yields much
lower scores than both the UKD-G and the ALG-LP-NZ. These re-
sults can be explained by observing the number of rejected tasks
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presented in Figure 2. Graphs (a-b) of this figure correspond to the
same settings as those of (a-b) of Figure 1. It can be observed that
the number of rejected tasks by ALG-LP-NZ is always the lowest,
and when there are enough operators (8-10), neither ALG-LP-NZ
nor UKD-G rejects any tasks. However, ALG-LP rejects many tasks
even with 10 operators. Finally, we tested the effect of the change
in the balance between the time execution and the quality of tasks
in the score function, i.e., y. The number of operators was set to 2
and the waiting time to 5, studying situations where there are not
enough operators. As can be observed from graph (c) in Figure 1,
for all values of y, ALG-LP-NZ does significantly better than the
UKD-G. However, for y > 0.4 the differences between the results
yielded by UKD-G and those by ALG-LP-NZ are relatively small. In
addition, in many cases the gap between ALG-LP and ALG-LP-NZ
is quite small. We argue that for a significant distance between the
two heuristics, two conditions must be met. The first is that there is
a significant difference between the available operators. The second
is that there are enough scenarios in which waiting for an operator
to become free before making an assignment is beneficial. In some
problems, the combination of these conditions does not occur, and
therefore, the gap is small.

The runtimes of the application of the solver in ALG-LP were
shown in Figures 3 and 4. In graph (a) of figure 3, the time is
larger when there are 4-6 operators. The reason is that the problem
is simple when there are too few operators, since there are few
alternatives. On the other hand, the problem is also easy when there
are many operators, since it is easier to find an optimal solution. In
(b), we see that y has no significant effect on the running time. In
graph (a) of Figure 4, as the waiting time increases, the running time
also increases. That is because as the waiting time increases, the
number of valid assignments increases and, therefore, the number
of variables X, in the linear program increases. Thus, the running
time of solving the linear program increases. However, there is a
threshold effect when the waiting time is at least 25. We assume that
in this case, the solver knows that it needs to perform optimization
and ignores the unnecessary waiting times when necessary. Finally,
we can see in (b) that as the number of rounds (T) increases, so
does the running time.

6.3 Discussion

In the case where the arrival probabilities {p;} of the tasks are
known, we presented an algorithm with a guaranteed competitive
ratio of 0.5 while the known upper bound of an achievable compet-
itive ratio is 0.823. Currently, it is still an open question whether
there is a better upper bound, and it is also unknown whether it is
possible to develop an algorithm with a better guarantee.
Regardless, the guarantee of the algorithm does not necessarily
lead to good practical performance. Indeed, it has been shown to
be practical only for a relatively small number of operators.
Consider situations where there are 10 operators that are enough
to perform all tasks in our settings as indicated by the performance
of the heuristics. In this case, indeed, the bound is respected, and
there is no situation where more than 50% of the tasks are rejected.
However, even rejecting 20% of the requests (as presented in Fig-
ure 2) when there are enough operators to perform all of them is
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not acceptable. To understand the intuition behind these rejections
we present the following example.

EXAMPLE 1. Suppose there are two agents, I = {1,2}, and one
type of task ] = {1}. Both agents can perform both types of tasks
and p11 = p12 = 0.25. Furthermore, suppose that Pr[C(y ;1) >
1] = 1, i.e., the duration of the task, is always greater than one time
period. There are many solutions to the associated LP, but all of the
solvers that we checked will return a solution similar to the following:
x1,1,1,1 = 0.25 and x1,2,1,2 = 0.25 and the rest of the xs will be set to
zero. Suppose tasks of type 1 will arrive both at time 1 and at time
2. Only the first one will be performed, but it could be performed by
the second agent. In ALG-LP the latter allocation has a probability of
zero, but any greedy algorithm will choose an assignment that will
lead to the completion of both tasks.

To handle this practical problem of rejecting too many tasks,
we proposed the ALG-LP-NZ heuristic which forces the solvers to
increase the number of non-zero variables. In some cases, this leads
to a very small decrease in the optimal value of the LP.

In this paper, we discussed two types of arrivals: known arrival
distribution and unknown distribution. The UKD-G can be used in
both cases and the results presented above demonstrate the perfor-
mance of teleoperation systems when the distribution is unknown.
Determining the arrival distribution, i.e., determining the p; ;, usu-
ally requires a lot of effort. Our results can help a decision maker
decide when it is beneficial to do so. In particular, when the number
of agents is large in comparison to the number of tasks, and all tasks
could be completed, the UKD-G yields only slightly lower scores
than ALG-LP-NZ in almost all cases. However, when the number
of agents is small, collecting data to determine the arrival time
distribution is beneficial and significantly increases the number of
tasks that are performed and the overall score.

7 CONCLUSIONS AND FUTURE WORK

In this paper, we have considered online stochastic matching, which
allows for delayed assignments. We first considered a situation
where the arrival distribution of dynamic tasks is known in ad-
vance. We have shown an algorithm with a guaranteed competitive
ratio for the problem and presented the gap between its ratio and
the best-known possible ratio. For a setting when arrival distribu-
tion is not known in advance we show that there is no algorithm
with a reasonable competitive ratio. For the case where the distri-
bution is known, we then showed that there are situations where
the algorithm with the competitive ratio rejects too many tasks
and therefore suggested a heuristic variation of the algorithm. We
then presented a greedy algorithm that does not use the arrival
distribution and compared the three algorithms. We ran experi-
ments on teleportation datasets and showed that in most situations
the heuristic that is based on the competitive ratio algorithm does
significantly better than the greedy heuristic.

In future work, we propose to improve our value and score
functions by adding a notion of fairness. The aim is to improve
human satisfaction while maintaining the system’s performance.
Finally, it is also interesting to handle scenarios in which both sides
of the bipartite graph are dynamic. In our domains, operators may
take some unexpected breaks and then return to the pool.
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