
Measuring and Disrupting Anti-Adblockers Using
Differential Execution Analysis

Shitong Zhu⇤, Xunchao Hu†, Zhiyun Qian⇤, Zubair Shafiq‡ and Heng Yin⇤
⇤University of California, Riverside

Email: shitong.zhu@email.ucr.edu, zhiyunq@cs.ucr.edu, heng@cs.ucr.edu
†Syracuse University, Email: xhu31@syr.edu

‡University of Iowa, Email: zubair-shafiq@uiowa.edu

Abstract—Millions of people use adblockers to remove in-

trusive and malicious ads as well as protect themselves against

tracking and pervasive surveillance. Online publishers consider

adblockers a major threat to the ad-powered “free” Web. They

have started to retaliate against adblockers by employing anti-

adblockers which can detect and stop adblock users. To counter

this retaliation, adblockers in turn try to detect and filter

anti-adblocking scripts. This back and forth has prompted an

escalating arms race between adblockers and anti-adblockers.

We want to develop a comprehensive understanding of anti-

adblockers, with the ultimate aim of enabling adblockers to

bypass state-of-the-art anti-adblockers. In this paper, we present a

differential execution analysis to automatically detect and analyze

anti-adblockers. At a high level, we collect execution traces by

visiting a website with and without adblockers. Through differ-

ential execution analysis, we are able to pinpoint the conditions

that lead to the differences caused by anti-adblocking code. Using

our system, we detect anti-adblockers on 30.5% of the Alexa top-

10K websites which is 5-52 times more than reported in prior

literature. Unlike prior work which is limited to detecting visible

reactions (e.g., warning messages) by anti-adblockers, our system

can discover attempts to detect adblockers even when there is no

visible reaction. From manually checking one third of the detected

websites, we find that the websites that have no visible reactions

constitute over 90% of the cases, completely dominating the ones

that have visible warning messages. Finally, based on our findings,

we further develop JavaScript rewriting and API hooking based

solutions (the latter implemented as a Chrome extension) to help

adblockers bypass state-of-the-art anti-adblockers.

I. INTRODUCTION

The ad-powered Web keeps most online content and ser-
vices “free”. However, online advertising has raised serious
security and privacy concerns. Attackers have repeatedly ex-
ploited ads to target malware on a large number of users [48,
55]. Advertisers track users across the Web without providing
any transparency or control to users [30, 32, 39, 41, 47]. The
popularity of adblockers is also rising because they provide a
clean and faster browsing experience by removing excessive
and intrusive ads.

Millions of users worldwide now use adblockers [51] that
are available as browser extensions (e.g., Adblock, Adblock
Plus, and uBlock) and full-fledged browsers (e.g., Brave and
Cliqz). Even Chrome has now included a built-in adblocker in
its experimental version — Chrome Canary [7]. According to
PageFair [26], 11% of the global Internet population is block-
ing ads as of December 2016. A recent study by comScore [40]
reported that 18% of Internet users in the United States use
adblockers. Moreover, the prevalence of adblockers is much
higher for certain locations and demographics. For instance,
approximately half of 18-34 year old males in Germany use
adblockers.

The online advertising industry considers adblockers a
serious threat to their business model. Advertisers and pub-
lishers have started using different countermeasures against
adblockers. First, some publishers such as Microsoft and
Google have enrolled in the so-called acceptable ads program
which whitelists their ads. While small publishers can enroll
in the program for free, medium- and large-sized publishers
have to pay a significant cut of their ad revenue to enroll.
Second, some publishers — most notably Facebook — are
manipulating ads that are harder to remove by adblockers
[13]. However, adblockers have been reasonably quick to
catch up and adapt their filtering rules to block these ads
as well [3]. Third, many publishers have implemented anti-
adblockers — JavaScript code that can detect and/or respond to
the presence of adblockers at client-side. While Facebook is the
only reported large publisher that has tried to use the second
approach, a recent measurement study of Alexa top-100K
websites [42] reported that the third strategy of anti-adblocking
is more widely employed. Common anti-adblockers force users
to whitelist the website or disable their adblocker altogether.

We want to develop a comprehensive understanding of anti-
adblockers, with the ultimate aim of enabling adblockers to be
resistant against anti-adblockers. To this end, we propose a sys-
tem based on differential execution analysis to automatically
detect anti-adblockers. Our key idea is that when a website
is visited with and without adblocker, the difference between
the two JavaScript execution traces can be safely attributed
to anti-adblockers. We use differential execution analysis to
precisely identify the condition(s) used by anti-adblockers to
detect adblockers which helps us understand how they operate.
The experimental evaluation against a ground-truth labeled
dataset shows that our system achieves 87% detection rate with
no false positives.

We employ our system on Alexa top-10K list and are able

Network and Distributed Systems Security (NDSS) Symposium 2018
18-21 February 2018, San Diego, CA, USA
ISBN 1-1891562-49-5
http://dx.doi.org/10.14722/ndss.2018.23331
www.ndss-symposium.org

to detect anti-adblockers on 30.5% websites. From manually
checking one third (1000) of these detected websites, we find
that the number of websites that have no visible reactions
versus is an order of magnitude higher than the ones that
have visible warning messages. We not only discover anti-
adblocking walls (warnings) invoked after adblockers are de-
tected, but also websites that silently detect adblockers and
subsequently either switch ads [49] or report adblock statistics
to their back-end servers. Our ability to detect visible as well
as silent anti-adblockers allows us to detect 5-52 times more
anti-adblockers than reported in prior literature.

We further leverage our systematic detection of anti-
adblockers using differential execution analysis to help ad-
blockers evade state-of-the-art anti-adblockers. First, since we
can precisely identify the branch divergence causing adblock
detection, we propose to use JavaScript rewriting to force the
outcome of a branch statement for avoiding anti-adblocking
logic. Second, we propose to use API hooking in a browser
extension to intercept and modify responses to hide adblock-
ers. The evaluation shows that our current proof-of-concept
implementations, which still have room for engineering im-
provements, are able to successfully evade a vast majority of
the state-of-the-art anti-adblockers.

II. BACKGROUND AND RELATED WORK

Adblockers rely on manually curated filter lists to block
ads and/or trackers. EasyList and EasyPrivacy are the two most
widely used filter lists to block ads and trackers, respectively.
The filter lists used by adblockers contain two types of rules
in the form of regular expressions. First, HTTP filter rules
generally block HTTP requests to fetch ads from known third-
party ad domains. For example, the first filter rule below blocks
all third-party HTTP requests to doubleclick.com. Second,
HTML filter rules generally hide HTML elements that contain
ads. For example, the second filter rule below hides the HTML
element with ID banner_div on aol.com.

||doubleclick.comˆ$third-party
aol.com###banner_div

It is noteworthy that filter lists may contain tens of thou-
sands of filter rules that together block ads/trackers on different
websites. At the time of writing, EasyList contains more than
63K filter rules and EasyPrivacy contains more than 13K filter
rules. The filter lists are maintained by a group of volunteers
through informal crowdsourced feedback from users [16]. As
expected, adding new rules or removing redundant rules in the
filter lists is a laborious manual process and is prone to errors
that often result in site breakage [20].

Adblocking browser extensions (e.g., Adblock, AdBlock
Plus, uBlock) and full-fledged browsers (e.g., Brave, Cliqz)
are used by millions of mobile and desktop users around the
world. According to PageFair [26], 11% of the global Internet
population is blocking ads as of December 2016. Adblocking
results in billions of dollars worth of lost advertising revenue
for online publishers. Therefore, online publishers are fast
adopting different technical measures to counter adblockers.

First, publishers can manipulate ad delivery to evade filter
lists. For example, publishers can keep changing domains that

serve ads or HTML element identifiers [13, 52] to bypass
filter list rules. Such manipulation forces filter list authors to
update filter list rules very frequently, making the laborious
process even more challenging. To address this problem,
researchers [31] proposed a method based on network traffic
analysis (e.g., identify ad-serving domains) for updating HTTP
filter list rules automatically. This method, however, does
not address HTML manipulation by publishers (like recently
done by Facebook [13]). While adblockers have updated their
filter rules to block Facebook ads for now [3], Facebook can
continuously manipulate their HTML to circumvent new filter
rules. To address this challenge, researchers [50] proposed
a perceptual adblocking method for visually identifying and
blocking ads based on optical character recognition and fuzzy
image matching techniques. The key idea behind the perceptual
adblocking method is that ads are distinguishable from organic
content due to government regulations (e.g., FTC [12]) and in-
dustry self-regulations (e.g., AdChoices [27]). Researchers [50]
reported that perceptual adblocking fully addresses the ad
delivery manipulation problem.

Second, publishers try to detect and stop adblockers using
anti-adblocking scripts. At a high level, anti-adblockers check
whether ads are correctly loaded to detect the presence of
adblockers [45]. After detecting adblockers, publishers typi-
cally ask users to disable adblockers altogether or whitelist the
website. Some publishers also ask users for donation or paid
subscription to support their operation. Prior work [42] showed
that 686 out Alexa top-100K websites detect and visibly react
to adblockers on their homepages.

Adblockers try to circumvent anti-adblockers by remov-
ing JavaScript code snippets or by hiding intrusive adblock
detection notifications. To this end, adblockers again rely on
crowdsourced filter lists such as Anti-Adblock Killer [11] and
Adblock warning removal list [18]. First, HTTP filter list rules
block HTTP requests to download anti-adblock scripts. For
example, the first filter rule below blocks URLs to download
blockadblock.js. Second, HTML filter rules hide HTML
elements that contain adblock detection notifications. For ex-
ample, the second filter rule below hides the HTML element
with ID ad_block_msg on zerozero.pt.

/blockadblock.js$script
zerozero.pt###ad_block_msg

Prior work [35] showed that these filter lists targeting anti-
adblockers are maintained in an ad-hoc manner and are always
playing catchup. Publishers can evade these filter lists by either
serving anti-adblocking scripts from first-party or by incorpo-
rating them in the base HTML. Moreover, some third-party
anti-adblocker services deploy fairly sophisticated hard-to-
defeat techniques to detect adblockers [42]. In sum, adblockers
currently are simply not effective against anti-adblocking. For
example, prior work showed that adblockers remove less than
20% of the adblock detection warning messages shown by
anti-adblockers [42].

Prior research has proposed several solutions to detect
and circumvent anti-adblockers. One solution is to fingerprint
third-party anti-adblocking scripts using static code signatures
[50]. However, JavaScript fingerprinting is not scalable if code
signatures are not automatically derived. Manual JavaScript

2

code analysis is much more challenging compared to iden-
tifying ad-related URL or HTML elements. So even if the
effort is crowdsourced, it is unlikely to catch up with the
quickly changing landscape of anti-adblockers. Worse, even
simple obfuscation techniques such as code minimization will
likely substantially increase the manual effort to rebuild these
signatures. Similarly, the approach in [45] also bears the above
limitations even when they attempt to reduce the amount of
manual work by analyzing only commonly appeared scripts in
clusters.

Researchers have proposed automated static JavaScript
code analysis techniques (based on syntactic and structural
analysis) for malicious JavaScript detection [28, 37, 46]. Prior
work has borrowed these techniques to automatically extract
signatures for tracker [34] and anti-adblock [35] detection.
Ikram et al. [34] proposed syntactic and semantic JavaScript
static code features with one-class SVMs to detect tracking
JavaScript programs. Iqbal et al. [35] proposed syntactic
JavaScript static code features with SVMs to detect anti-
adblocking scripts. However, it is challenging for static code
analysis techniques to truly capture JavaScript behavior, which
is dynamic and can be easily obfuscated.

To aid future research on the arms race between adblockers
and anti-adblockers, in this paper we propose a dynamic code
analysis approach to systematically characterize anti-adblock
behavior on a large scale. Our key idea is that differential
execution analysis (i.e., with and without adblocker) will reveal
anti-adblockers trying to detect adblockers. Our proposed
approach has three major advantages over prior work. First,
it allows us to detect anti-adblockers without prior knowledge
about their behavior. Second, it is robust against simple (e.g.,
code minimization) and more advanced (e.g., runtime code
generation) code obfuscation techniques. Finally, unlike prior
work [42] that only detects visible reactions by anti-adblockers,
it can identify whether there is an attempt to detect adblockers
even if there is no visible reaction.

III. PROBLEM FORMULATION & SYSTEM OVERVIEW

An anti-adblocker script consists of two main components:
(1) trigger, which detects the presence of adblockers (e.g.,
by checking the absence of an ad); (2) reaction, which can
display the adblock detection message and/or simply report
the results to a backend server. As discussed earlier, prior
work [35, 42, 43, 45] has reported a wide range of strategies
used by different publishers to detect and react to adblockers.
Some websites use simple anti-adblock scripts, served from
first-party domains, to check display-related attributes of ads
for detecting adblockers. Others use more sophisticated third-
party anti-adblocking services that may employ active baits,
do continuous detection, or use cookies track users’ adblock
detection status across different visits. Therefore, it is challeng-
ing to automatically detect diverse anti-adblocking behaviors
used by different publishers and third-party anti-adblocking
services. The state-of-the-art solution in prior literature [42]
uses machine learning to automatically detect anti-adblockers
that exhibit visible reactions. However, this solution can largely
underestimate the ubiquitous of anti-adblockers because it
cannot detect silent anti-adblockers or subtle reactions (more
details in §V-B). In this section, we formulate the anti-
adblock detection problem. We then present the blueprint for a

1 <div class="banner_ads"> </div>
2 <script>
3 var ads = document.getElementsByClassName(’

banner_ads’),
4 ad = ads[ads.length - 1];
5 if (!ad || ad.innerHTML.length == 0 || ad.

clientHeight === 0)
6 alert("We’ve detected an ad blocker running on

your browser." + ...);
7 }
8 </script>

Fig. 1: A simple anti-adblocking example from a real website

Differential Trace
Analysis

Positive
Traces

Negative
Traces

branch divergences &
conditions

Instrumented
Browser w/
Adblocker

Instrumented
Browser w/o

Adblocker

Fig. 2: System overview

program analysis based approach to automatically detect anti-
adblockers.

We start by providing a motivating example to introduce
our key ideas. Our key observation is that a website employing
anti-adblocking would have a different JavaScript execution
trace if it is loaded with adblocker (positive trace) as compared
to without adblocker (negative trace). To illustrate the point,
we consider a simple real-world anti-adblocking example in
Figure 1. We note that the anti-adblocking script embeds an
empty div whose class is set to banner_ads which is a
known class type that will trigger blocking. The code then
simply checks whether the ad frame is blocked to determine
the presence of adblockers. Specifically, when an adblocker is
used, the ad frame will become undefined, and its length
and height values will be zero. The if condition in the
anti-adblocking script checks the values of these attributes. If
the script detects that the value of either of these attributes is
zero, it detects adblocker and reacts by displaying an alert and
subsequently redirecting the user to a subscription page (code
omitted for brevity). Without adblocker, the if condition will
not be satisfied.

It is noteworthy that the JavaScript execution trace will
differ under A/B testing. More specifically, since we are able
to control two execution environments (i.e., browser instances)
where the only difference is the presence/absence of an ad-
blocker, the execution trace difference can be safely attributed
to adblocking (barring some noise issues which are discussed
§IV-B). Equipped with the knowledge of the trace difference,
we can then track the origin of the objects that are checked in
the branch statements (e.g., which objects/variables and what
attributes), as well as understand the subsequent reactions.
Next, we provide more details of the differential execution
analysis approach.

Given two traces, we define two types of execution dif-
ferences [36]: flow differences and value differences. A flow
difference is caused by control flow divergence in the two

3

executions (i.e., with and without adblocker). A value differ-
ence is caused when a variable in any statement has different
values in the two executions. Note that anti-adblockers have
to execute some additional statements (after an adblocker is
detected) such as displaying warning messages or sending
statistics to their backend servers. Thus, we can rely on control
flow differences to detect anti-adblockers without needing to
track value differences. A recent study [42] also reported that
most anti-adblockers manifest themselves through conditional
branches. Therefore, in this work, we consider only the flow
differences in our differential trace analysis and leave value
differences (which may be required for more advanced anti-
adblockers) for future work.

Figure 2 illustrates the overview of our proposed system
of differential trace analysis. First, we instrument the open-
source Chromium [25] browser to collect execution traces.
Since we focus on the control flow of JavaScript, we collect
traces for all branch statements along with the call stack
information which is needed for trace alignment (discussed
later in §IV). We discuss other details of the instrumentation
later in §IV-A. After we collect the execution traces, we
feed them to the differential execution analysis to identify the
diverging branches between the positive trace (with adblocker)
and the negative trace (without adblocker). The differential
execution analysis outputs a list of branch divergences and the
conditions checked in those branch statements.

The produced result not only allows one to affirm the
presence of anti-adblocking logic but also helps us understand
how they operate. As we will show later in §V, we conduct
both large-scale and small-scale evaluation and analysis of the
identified anti-adblocking scripts. Finally, in §VI, we show how
one can apply the learned knowledge and use it against anti-
adblockers.

IV. DIFFERENTIAL EXECUTION ANALYSIS

In this section, we describe the framework, building blocks,
as well the methodology for differential execution analysis
(branch divergence discovery). Overall, we need to select
one or more adblocker extensions for A/B testing, instrument
Chromium, and conduct the differential execution analysis.

Adblocker choice. As the A/B testing requires the collection
of the Javascript execution trace with and without an adblocker,
we need to select an adblocker extension. We choose Adblock
as it is one of the most popular. It is also possible to use
Adblock Plus or uBlock, as the way they operate is exactly
the same — HTTP filters and HTML element hiding. In fact,
they share the same basic set of filter lists and we confirm
that they yield the same result from our differential execution
analysis.

A. Chromium Instrumentation

Prior work has proposed several instrumentation ap-
proaches to collect JavaScript execution traces. These include
JavaScript rewriting [54], JavaScript debugger interface [33],
and JavaScript engine-based approaches. In this paper, we use
the last approach which modifies the JavaScript engine to
output the execution traces. We prefer this approach because
it does not require any change to JavaScript code itself.
Moreover, our approach is transparent which makes it much

more challenging for anti-adblocking scripts to detect that they
are being instrumented and possibly change their behavior.

We instrument the JavaScript engine for Chromium (V8
[22]). V8 generates an abstract syntax tree (AST) for every
function. The ASTs are then compiled into native code (also
called Just-In-Time code). Our instrumentation is embedded
into the native code generation process. Our instrumentation
collects the source map information (e.g., the offset of the
statement located within a script) as well as the JavaScript
statement information (e.g., whether a true/false branch is
taken) for every statement of interest. As we discuss later, we
instrument only a subset of statements that are pertinent to anti-
adblockers. The information is stored into inlined variables.
Before emitting the native code for the statements, we modify
the JIT engine to emit stub code, which at runtime will
access the inlined variables to record the executed JavaScript
statements. The source map information is used as the ID of
the executed statement (which is later required for trace align-
ment). The JavaScript statement information simply records
the branch outcomes, so that we can perform the differential
trace analysis to identify any branch divergence or flip between
two different execution runs (with and without adblocker).

Since we only monitor control flow differences to de-
tect anti-adblockers, we monitor all branch statements to
record the control flow part of the execution trace. In
JavaScript, the branch statements include if/else (including
else if), switch/case, and conditional/ternary opera-
tors (condition?expr1:expr2), for/while loop, and
try/catch for exception handling. In addition, there are
implicit branching expressions such as A && B; where the
outcome of A in fact determines whether B will be executed
(i.e., if A is false, B will not be executed). We currently
monitor only the if/else and conditional/ternary operators,
which are reported to be most commonly used by anti-
adblockers [42]. For trace alignment (see §IV-B), we also
record all function call/ret statements and call stack informa-
tion for all branch statements to include their calling context.

B. Branch Divergence Discovery

We now explain our approach to discover branch diver-
gences. We visit a website to collect two sets of execution
traces with (positive trace) and without (negative trace) the
adblocker. We then analyze their flow differences between the
positive and negative traces.

Adblockers can be used in different ways based on their
filter list configurations. The default configuration on Ad-
block [15] includes two blacklists (EasyList to remove ads and
Adblock Warning Removal List to remove adblock detection
responses) and one whitelist (Acceptable Ads List to allow
some ads). We choose a configuration that can maximize the
likelihood of detecting anti-adblockers (which is also what was
used in [42]). We first disable the Acceptable Ads List, not
allowing websites to show even the whitelisted ads. Then we
disable the Adblock Warning Removal List, allowing intru-
sive notifications by some anti-adblockers. Finally we further
remove the sections of rules in Easylist that are specifically
crafted against anti-adblockers. It is worth mentioning that
Adblock, as shown in a recent study [42], does not actually
do a good job in defending against anti-adblockers, but we

4

disable these capabilities nevertheless to get a more complete
picture of anti-adblockers in the wild.

We need to align a positive trace and a negative trace
to discover branch divergences. Trace alignment is a well-
research issue for comparing different execution traces of the
same program [36, 53]. To accurately align two execution
traces, we can assign each execution point an execution index
while taking into account the program’s nesting structure and
the caller/callee relationship. We opt for the use of call stack
information as the calling context for each recorded statement.
More specifically, two execution traces are said to be aligned
only when the following two conditions hold simultaneously:

1) the call stacks of all statements of both traces match
perfectly; and

2) the identifiers of all statements (represented by their
offset) of both traces match perfectly.

The key challenge in aligning JavaScript execution traces
is that JavaScript runtime has a unique concurrency model
[44]. More specifically, standard JavaScript execution for each
web page is single-threaded and event driven. This means that
each event is processed independently and completely before
any other event is processed. Instead of generating a single
sequence of trace for each page visit, we are now forced
to consider the code executed to handle all events (e.g., on
successfully loading an external resource) on different sub-
traces because they all start from the beginning of the event
loop.

We address this challenge by aligning sub-traces in a dis-
joint manner. More specifically, we slice a trace into sub-traces
by recording all the function call/ret statements. Whenever a
ret statement is encountered where its call stack is empty (i.e.,
an iteration of the event loop is about to end), we know that
it is the end of a sub-trace. We align two sets of positive
and negative sub-traces separately in a pairwise manner. The
number of alignments is on the order of O(n ⇥ m) where n
is the number of positive sub-traces and m is the number of
negative sub-traces.

Given a pair of aligned positive and negative traces, we next
attempt to discover and locate branch divergences. Basically,
given a positive and a negative trace, we record all encountered
branches (with the same call stack at the same offset) with
opposite outcomes. In the example shown in Figure 1, the
positive and negative traces will simply be (3, 4, 5-true,
6) and (3, 4, 5-false) respectively — the numbers here are
statement identifiers. We can therefore confirm the branch
divergence at statement 5. The key technical challenge we
need to address is that a script can generate different execution
traces due to external factors (e.g., time) or other sources of
randomness. We need to cater for this to avoid mistakenly
attributing branch divergences to adblockers which are actually
completely unrelated.

Handling execution noises. The following example illus-
trates this problem. Two different runs of the same code can
possibly produce two different execution traces – one with
coinFlip() returning true and the other with coinFlip() returning
false. If the two runs happen to occur when an adblocker is on
and off respectively, we will mistakenly think that the branch
divergence is due to an adblocker.

1 function coinFlip() {
2 return Math.floor(Math.random() * 2);
3 }
4 if (coinFlip()) {
5 // displayDynamicContent
6 }

To counter such “noises”, we generate redundant positive
and negative traces with the goal of identifying unrelated
divergences. Based on our pilot experiments, we decide to
generate three runs of positive traces and three runs of negative
traces to detect and eliminate unrelated divergences.

Note that even though not incorporated yet, our system
can generate these traces from the same webpage (by simply
forcing the same exact webpage and scripts to be reloaded),
thus avoiding the case where different runs encounter two
different versions of webpages or scripts. This means that even
if a website intentionally tries to deliver a different webpage or
script every time [52], we are still able to analyze one specific
version and determine if anti-adblocker is present.

Due to the nature of JavaScript runtime, we are unable to
handle implicit branching caused by callbacks. The following
example illustrates implicit branching. Depending on whether
the URL is successfully loaded, success() and error()
will be invoked respectively. It is important to note that the
URL is pointing to an advertisement; therefore, if it fails
to load, it is indicative that an adblocker is present (and
error() will be invoked accordingly in reaction to it).
However, since success() and error() are both invoked
at the beginning of the event loop (i.e., their call stack is
empty), we are unable to correctly align the two sub-traces and
therefore will not discover the branch divergence. To address
this issue, we will need to consider all callback functions
for a same event (URL fetch) as implicit branch statements.
This means that if we see success() in a positive run
but error() in a negative run, we can attribute it to a
branch divergence. Our system currently does not support this
uncommon special case. We plan to address this limitation in
our future revisions.

1 $.ajax({
2 type: "GET",
3 url: "some_ads_url",
4 success: function(){ ## display ads },
5 error: function(XMLHttpRequest, textStatus,

errorThrown) {
6 ## adblocker detected!
7 }
8 });

V. EVALUATION

We first evaluate the timing requirements of our differential
execution approach. Recall that we visit each website three
times with adblocker and three times without adblocker. For
each visit, we wait for 20 seconds before we stop the trace
collection to ensure the website finishes loading (Chromium
loads websites slower with our instrumentation). In addition,
it takes less than a minute to perform the differential trace
analysis. Overall we need about 3 minutes per website on
average to run our differential execution analysis. Given a
server with 32 cores, we need a little over 14 hours to process
ten thousand websites (assuming we schedule one Chromium

5

instance per core). Therefore, our current implementation is
efficient enough to analyze Alexa top-10K websites on a daily
basis using only one server.

We next evaluate the accuracy of anti-adblocker detection
on a small and large scale data set. We have constructed an
anonymous project website at https://sites.google.com/view/
antiadb-proj/ to show some detailed cases studies of anti-
adblocking websites and scripts.

A. Small-Scale Ground Truth Analysis

For positive examples, we pick the list of 686 websites
that were reported to use anti-adblockers in February 2017
[42]. Since some websites may no longer be using anti-
adblockers now (August 2017), we manually re-analyze these
686 websites and shortlist 428 websites which still visibly
react to adblockers. During manual screening, we at each
loaded mainpage manually for around 30s each without any
clicking (but scrolling down is also performed to be able to
catch minor warning messages inserted in the middle of the
page). For negative examples, we manually select 100 websites
(e.g., Wikipedia, academic, and non-profit websites) that do not
contain any ads. Thus, these websites do not trigger adblockers
and also do not contain anti-adblockers.

We evaluate the accuracy of our system in detecting anti-
adblockers on the aforementioned manually labeled set of
websites. Our system achieves 86.9% (372/428) true positive
rate and 0% false positive rate. For the 100 labeled negative
websites, our system did not mistakenly detect any as using
anti-adblockers. For the 56 false negative cases, we identify
that three main reasons: (1) incomplete instrumentation of
branch statements; (2) inherent randomness in website loading,
and (3) incomplete blocking of ads by the adblocker. We
elaborate on these reasons below.

First, we note that websites can implement anti-adblock
detection logic in JavaScript (or any other Turing-complete
programming language for that matter) using many different
constructs that may not be covered by our current implementa-
tion. For example, the presence of a bait object can be checked
using

1 if (bait_is_absent()) {
2 reaction_func()
3 }

ternary operators,
1 bait_is_present() ? do_nothing() : reaction_func()

callbacks,
1 <script onerror="reaction_func()" src="/bait.js"></

script>

and && operator.
1 bait_is_absent() && reaction_func()

Among these, our prototype implementation currently only
covers the if/then/else clause and ternary operators
while leaving out callbacks. Moreover, some solutions (e.g.,
BlockAdblock) utilize eval to wrap their anti-adblocking
logic represented as a string, which is not currently instru-
mented in our implementation. Finally, one website (expats.

cz) implements anti-adblocking logic using non-control-flow
paradigms (e.g., using an array element to decide whether to
trigger anti-adblock reaction). To tackle this issue, our system
needs to trace value difference [36] as well.

Second, several websites seem to be impacted by different
sources of randomness that can bypass our current implemen-
tation. These include (1) behavioral randomization and (2)
content randomization. In behavioral randomization, a website
randomly activates its anti-adblocking module which results
in inconsistent positive/negative traces. Our system rules out
such inconsistencies as noise. In content randomization, a
website may change various page elements (e.g., DOM/vari-
able/bait names) across multiple runs, thereby breaking our
trace alignment (e.g., our current implementation requires the
same variable name). As mentioned earlier in §IV-B, this is not
a fundamental limitation of differential trace analysis as we can
force the same exact page to be loaded across multiple runs.
However, it is much more challenging to deal with behavioral
randomization, which we discuss in §VII.

Third, we also note a few special cases. For instance,
one interesting case is that an anti-adblock warning message
(initially invisible) is placed behind the real ad, and becomes
visible when the ad in the front is blocked. In this case, no
extra code is executed to conduct anti-adblocking but its effect
is still preserved (it’s arguable whether it should be considered
an anti-adblocker). The best solution is probably to let the
adblocker block the warning message as well.

We mentioned earlier that there are 428 out of 686 websites
that have visible anti-adblockers. We are curious about the
remaining 258 websites — could it be that they are simply
performing anti-adblocking with no visible reactions? After
running our system on these websites, it turns out that most of
them are actually flagged as positive (with branch divergences
under A/B testing). To understand if our results are correct,
we conduct small-scale manual verification. Specifically, we
look at the branch divergence and the triggered logic when
an adblocker is detected. Interestingly, we indeed find many
websites that perform adblocker detection with minimal or
no visible reactions. We illustrate two interesting types of
them from two websites memeburn.com and englishforum.ch
in Figure 3.

1. Switching ad sources: As shown in Figure 3(a),
memeburn.com uses a first-party anti-adblock script. Upon
detecting an adblocker, it immediately replaces one of its
banner ads with a gif image (see Figure 4 for the visual
differences). Interestingly, instead of switching to external ads,
in this case the website has chosen to advertise its own services
(about its tech news podcasts).

2. Collecting adblocker usage statistics: We find
englishforum.ch has a first-party script that detects
adblockers yet does not exhibit any visible reaction. As shown
in Figure 3(b), the variable blockStatus indicates the
presence of adblockers, which is set to true as soon as an
ad frame is found missing. The ga() function is of Google
Analytics API that reports events back to the website owner.
As we can see in this case, there are no additional reactions
besides the silent recording of adblocker usage.

6

https://sites.google.com/view/antiadb-proj/
https://sites.google.com/view/antiadb-proj/
expats.cz
expats.cz
memeburn.com
englishforum.ch

1 if(window.advertsAvailable === undefined){
2 //adblocker detected, show fallback
3 jQuery(’.replace-me’).html(’<img style="width:

auto;height:auto;max-width:728px" id="
testreplace" src="/images/Burn_sad.gif" width
="728" height="90" alt="Please support us by
allowing ads on our site"/>’);

4 jQuery(’#testreplace’).css(’display’,’block’);
5 }

(a) Switching ad sources upon detecting any adblocker

1 var blockStatus = ’Unblocked’;
2 var ad = $(’#adsense’)[0];
3 if (!ad || ad.innerHTML.length == 0 || ad.

clientHeight === 0) blockStatus = ’Blocked’;
4 ga(’send’, ’event’, ’Ad block JavaScript’,

blockStatus, ’Desktop’, {nonInteraction: true});
5 ga(’theLocalNetwork.send’, ’event’, ’Ad block

JavaScript’, blockStatus, ’Desktop’, {
nonInteraction: true});

(b) Reporting adblocker usage through Google Analytics

Fig. 3: Silent anti-adblocker (Left: memeburn.com. Right: englishforum.ch)

(a) Original banner ads (shown when there is no adblockers) (b) Replaced banner ads (shown when the original is blocked)

Fig. 4: Ad switching behavior on memeburn.com

B. Large-Scale Analysis of Alexa Top-10K Websites

We now conduct a large-scale in the wild evaluation of
our system. Surprisingly, we are able to detect anti-adblockers
on 30.5% on the Alexa top-10K websites. Our results point
out that roughly one-third of the most popular websites are
equipped with anti-adblockers. Our investigation shows that
1238 websites use only if/else type of branch divergences, 473
use only ternary-type divergences, and the remaining 1344 are
detected to contain both divergences. This finding highlights
that anti-adblockers implement their detection logic in several
different ways. Thus, as we expand support for other types of
branch statements in our implementation in future, our anti-
adblock detection rate may further increase.

It is noteworthy that our results show that anti-adblockers
are much more pervasive than previously reported in prior
work [42, 45]. An earlier study [45] published in May 2016 re-
ported that 6.7% of Alexa top-5K websites use anti-adblockers.
Our anti-adblock detection results are approximately 5⇥ more
than theirs. Another study [42] conducted in February 2017
reported that 0.7% of Alexa top-100K websites use anti-
adblockers. Our anti-adblock detection results are approxi-
mately 52⇥ more than theirs. To better understand the dis-
crepancy, we should reiterate that an anti-adblocker has at least
two components: (1) adblocker detection and (2) subsequent
reaction. The solution in [42] also leverages A/B testing but
it aims to detect HTML changes caused by anti-adblockers. It
makes the assumption that there will be a significant reaction
(visible at the HTML level) after an adblocker is detected.
However, as we have shown earlier, this assumption may not
hold as many websites can have subtle or no visible changes
at all while still having the ability to detect adblockers. The
authors in [45] relied on manual analysis and may miss some
anti-adblockers that do not have obvious keyword in the scripts
(e.g., obfuscated). Moreover, the anti-adblock prevalence has
likely increased [35] since more than a year ago [45] when the
study was conducted. In contrast to prior work, our approach
is oblivious to the reactions by anti-adblockers; instead, it
essentially relies on catching the adblocker detection logic that

Fig. 5: Popularity of anti-adblockers by website ranking

is evident by the discovered branch divergence. Later we will
sample a number of popular websites and scripts with manual
inspection to validate our results.

In summary, our hypothesis is that a much larger fraction
of websites than previously reported are “worried” about
adblockers but many are not employing retaliatory actions
against adblocking users yet. To verify the hypothesis, we
manually inspected 1000 websites out of the 3000+ detected
websites. Following the same inspection methodology de-
scribed in §V-A, we find that there are only 66 (10 of them
simply switch sources of the ads) websites that do have visible
reactions and 934 that do not, which indeed represents a huge
disparity. While it may be useful to conduct automated analysis
of subsequent reactions (e.g., whether they invoke APIs that
have visual impact, or whether they send data over to network
to log adblocker usage), we leave this as future work.

We now attempt to categorize the websites that use anti-
adblockers in the following aspects. First, we are curious to
see whether there’s any correlation between their popularity
and the likelihood of them deploying anti-adblockers. Figure 5
shows that the higher ranked websites are more likely to use
anti-adblockers. This is somewhat counter-intuitive as most top
websites do not actually have any visible reactions to adblocker
users, leaving users the impression that they are not doing

7

memeburn.com
englishforum.ch
memeburn.com

Rank Script Source Detection

Trigger1

Reaction Count2

1 Google Analytics unknown unknown 614
2 Google DoubleClick real ads silent

reporting
403

3 YouTube real ads silent
reporting

311

4 Taboola baits silent
reporting

144

5 PageFair mixed baits +
extension
probing

silent
reporting +

local storage

95

6 Chartbeat unknown unknown 82
7 Mail.ru baits silent

reporting
72

8 Addthis unknown unknown 61
9 Yandex baits silent

reporting
57

10 Cloudflare baits silent
reporting

51

11 Twitter unknown unknown 45
12 Criteo baits silent

reporting +
ads switching

32

13 Outbrain baits silent
reporting +

local storage

32

1 All scripts check attributes of DOM elements as opposed to others.
2 The number of websites that contain the script.
See cases for checks against other types of variables in §VI-B

TABLE I: Top origins of anti-adblocker scripts based on
different sources

anything about adblockers. We find that many popular websites
are passively collecting statistics (to evaluate what they should
do). Second, our analysis of website categorization corroborate
results reported in prior work [42, 45] that “news and media”
websites are much more likely to use anti-adblockers. This is
expected because online advertising is a key source of income
for news and media websites.

We investigate the source of anti-adblocking scripts used by
websites. More specifically, are they first-party vs. third-party
scripts? Are there a small number of third-party scripts that
are widely deployed by many websites? Our results show that
there are 422 websites that use only first-party anti-adblocking
scripts while 2219 websites use only third-party scripts (414
websites use both). This discrepancy shows that most websites
choose to outsource anti-adblocking to dedicated third-party
anti-adblocking service providers such as PageFair [24]. To
better understand the small set of third-party anti-adblocking
scripts, we aggregate their sources using the domain and URL
information. Table I reports the third-party sources of the most
popular anti-adblocking scripts. We note that analytics and
ads scripts by Google are the most popular source of anti-
adblocking scripts. As expected, we also note several other
online advertising services such as Taboola and Outbrain using
anti-adblockers.

To better understand popular third-party anti-adblocking
scripts, we next investigate them using several different anal-
ysis approaches such as code base, network traffic, cookie
content, probing etc. For instance, if silent reporting exists,
the network traffic would contain at least some difference in
the payload during A/B testing. Similarly, a different cookie
value set during A/B testing can also support silent reporting.
These anti-adblocking scripts are fairly challenging to analyze
because they are large, complex, and often use obfuscation.

It is also challenging to analyze some of them because they
do not have visible reactions to adblocker detection. For
example, 9 out of 13 most popular anti-adblocking scripts,
which account for almost one-third of the Alexa top-10K
websites that use anti-adblockers, detect adblockers silently.

Table I reports the detection mechanism and subsequent
reactions of popular anti-adblockers. They all check attributes
of DOM elements in certain way (as opposed to alternatives
which are more common in less popular scripts. See §VI-B
for details). Most of the checked DOM elements are baits and
a number of them are real ads. Specifically, we are able to
confirm DoubleClick detects adblockers by checking the
height and length of ad-related objects and sends view-status
ad requests to the back-end server. Scripts from PageFair
and Taboola are also performing anti-adblocking, which is
expected since both are known to provide anti-adblocking
services [10, 14]. In particular, PageFair [42] attempts to craft a
diverse set of baits and even probes into the extension folder 1.
The probing methodology is deprecated in newer browsers but
still effective against older versions of Chrome [9] to detect
adblockers. Both scripts from PageFair and Taboola silently
report adblocking statistics. It is noteworthy that PageFair has
two types of scripts: one is analytics which only collects
adblocker usage; the other one has the ability to switch ad
sources [1]. In our study, the analytics script is the one that
showed up as top scripts, likely because it is a free service
while the other is not [1].

Being the biggest adblock-analytics-tech player in the
market, PageFair meticulously crafts a diverse set of baits
to maximize its chances of detecting adblockers. Its analytics
script measure.min.js creates six different baits in total,
with two of them being the <div> elements and the rest as
images/scripts. Then the blocking status of these six baits will
be monitored and stored independently. Finally the script saves
the status into a local cookie for future use, and also sends it
to back-end server with multiple fields indicating the state of
each bait and other statistics.

1 TRC.blocker.blockedState = TRC.blocker.
getBlockedState(this.global["abp-detection-class
-names"] || ["banner_ad", "sponsored_ad"])

2
3 getBlockedState: function(a) {
4 return a && this.isBlockDetectedOnClassNames(a) ?

this.states.ABP_DETECTED : this.states.
ABP_NOT_DETECTED

5 }

Fig. 6: Taboola’s anti-adblocking script snippet

Next, we illustrate the anti-adblocking logic for Taboola,
another big play in the field, in Figure 6. We can see
that the key function is getBlockedState() on line
4. As we can see, multiple strings are passed as ar-
guments. Notably, the “banner ad” and “sponsored ad”
are two known element ids that are filtered by Easylist.
isBlockDetectedOnClassNames() will create a DOM
element for each string in the list. These elements serve

1Every extension in Chrome is organized in a folder with a globally unique
extension ID assigned by Google as the folder name

8

as baits. Upon the detection of them being blocked,
isBlockDetectedOnClassNames() returns true.

1 setTimeout(function() {
2 c.tj(a);
3 c.ba = (0 < c.gd).toString();
4 d.h.log("AdBlock - finish long status check.

adBlock = " + c.ba);
5 c.af = !0;
6 d.b.yh("OB-AD-BLOCKER-STAT", c.ba);
7 c.cd.o("onAdBlockStatusReady", [c.ba])
8 }, e)

Fig. 7: Outbrain’s anti-adblocking script snippet

Finally, Outbrain’s anti-adblocking script is illustrated in
Figure 7. We can see the code is minified and the key check
here is (0 < c.gd) that checks on variable c.gd which
stores the concatenated and encoded value of all deployed
baits to determine if they are still present. To validate our
analysis we manually remove the filter rules associated with
DIV ids Ads_4, AD_area, ADBox and AdsRec, and can
indeed successfully flip the relevant adblock status field in its
reporting request. Outbrain also chooses to save the status
in browser’s cookie (OB-AD-BLOCKER-STAT).

Unlike the multiple-bait strategies used in PageFair and
Taboola, some scripts use the “pixel” technique [29], which
loads a small, unobtrusive piece of image (i.e., pixel) and then
drops a browser cookie for future inter-domain ad re-targeting.
This ad re-targeting technique allows publishers to ensure that
their ads are served only to people who have previously visited
their site. The pixel often contains ads-related keywords in
its URL path, and therefore can be used as a bait object to
detect adblockers. Most of these scripts also silently report
adblocking statistics by using a query string (e.g., adblock=0/1)
in the HTTP request to load the next pixel. Yandex and
Criteo also leverage the same “pixel” technique. mail.ru,
Outbrain and Cloudflare instead create regular DOM
baits and check their presence to detect adblockers. It is
noteworthy that Criteo, besides silent adblocker reporting,
also switches ads to acceptable ads [17].

Since many popular third-party anti-adblocking scripts
are obfuscated and challenging to manually analyze, we
randomly sample a few popular websites that use non-
obfuscated anti-adblocking scripts. Our goal is to (1) con-
firm that the identified websites are not false positives,
and (2) understand their detection approach and reaction to
adblockers. We select these websites from the Alexa top-
1K list: businessinsider.com, nytimes.com, cnn.com, aol.com,
cnet.com, gmx.net, reddit.com, sourceforge.net, nba.com,
glassdoor.com, expedia.com, iqiyi.com, thefreedictionary.com,
ria.ru, jeuxvideo.com, gamespot.com, intel.com, nfl.com,
myanimelist.net, kizlarsoruyor.com. All of these websites de-
tect adblockers and some even have visible reactions that
were not reported in prior work [42]. This demonstrates
the usefulness of differential execution analysis in accurately
pinpointing the adblocker detection logic used on any website.
Next we discuss in detail the the anti-adblocking logic of a few
interesting examples.

The homepage of businessinsider.com is flagged
by our system to have multiple branch divergences. Surpris-

1 var setAdblockerCookie = function(adblocker) {
2 var d = new Date();
3 d.setTime(d.getTime() + 60 * 60 * 24 * 30 *

1000);
4 document.cookie = "__adblocker=" + (adblocker ?

"true" : "false") + "; expires=" + d.
toUTCString() + "; path=/";

5 }
6 var s = document.createElement("script");
7
8 s.setAttribute("src","//www.npttech.com/advertising.

js");
9 s.setAttribute("onerror","setAdblockerCookie(true);"

);
10 s.setAttribute("onload","setAdblockerCookie(false);"

);
11 document.getElementsByTagName("head")[0].appendChild

(s);

Fig. 8: First-party anti-adblocking script in
www.businessinisder.com

ingly, we do not see any warning messages and the page
seems to be completely ad-free. Upon a closer look, we
realize that the website has a first-party script that silently
detects the presence of adblocking and records the infor-
mation into the cookie. The code snippet is illustrated in
Figure 8. We note that the website injects a bait script at
www.npttech.com/advertising.js and invokes the
pre-defined callbacks either onload() or onerror(), de-
pending on whether the bait scripts gets blocked by adblockers.
As mentioned earlier, our instrumentation currently does not
support callback-based implicit branching which means this
may be a false negative case. Fortunately, as we can see inside
setAdblockerCookie() (which is the registered call-
back in correspondence with onload() and onerror()),
there is a ternary operator that checks the value of variable
adblocker which allows us to correctly detect the branch
divergence.

1 BlockAdBlock.prototype.on = function(detected, fn) {
2 return this._var.event[detected === !0 ? "detected

" : "notDetected"].push(fn), this._options.
debug === !0 && this._log("on", ’A type of
event "’ + (detected === !0 ? "detected" : "
notDetected") + ’" was added’), this}

Fig. 9: First-party anti-adblocking script in nytimes.com

1 var n=document.getElementById(t);
2 n&&0!=n.innerHTML.length&&0!==n.clientHeight&&0!==n.

clientWidth&&0!==n.offsetWidth?e.application.
fire("adblock:detect",{enabled:!1}):e.
application.fire("adblock:detect",{enabled:!0}),
$(i).empty()}

Fig. 10: Third-party anti-adblocking script in aol.com

nytimes.com has a first-party script that logs adblocker
usage (see Figure 9. Similarly, aol.com includes a third-party
script from blogsmithmedia.com that fires an application
event when adblocker is detected (see Figure 10). Finally,

9

1 if (!window.isAdblockerDisabled) {
2 define(’expads’, function () {
3 var displayFallbackImage = function (slotConfig)

{
4 ...

Fig. 11: First-party anti-adblocking script in expedia.com

expedia.com has a first-party script that attempts to load
a fallback image. Interestingly, we are unable to see any
fallback image (because even the fallback image is blocked
by EasyList) when we manually inspect the page.

VI. TOWARDS IMPROVING AD-BLOCKERS

In addition to leveraging differential execution analysis to
detect anti-adblockers, we are interested in understanding how
this knowledge can help strength adblockers, making them
more resistant against anti-adblockers. As we mentioned earlier
in §II, adblockers are currently struggling to keep up with
anti-adblockers due to the challenges in manually analyzing
the anti-adblocking Javscript (which we find to be extremely
diverse and complex).

In this section, we attempt two such directions to help
adblockers, with the help of the comprehensive anti-adblocking
knowledge. We describe our solutions, implementations, and
preliminary results.

A. Avoiding Anti-adblockers with JavaScript Rewriting

The differential execution analysis enables us to understand
which branches are entered because of the presence/absence of
adblockers. This knowledge can also naturally help adblockers
to evade anti-adblockers. The idea is to force the outcome of a
branch statement towards the one corresponding to the absence
of adblockers, effectively avoiding any anti-adblocking logic.
However, forcing the outcome of a branch statement may also
cause unexpected side effects. Fortunately, since the execution
path we are attempting to force already occurs in the negative
trace (without adblocker), it is unlikely the anti-adblocking
code we avoid will cause any breakage. In other words, we
expect to not cause any program inconsistency because the
rest of the functionality on a web page is unlikely to depend
on the missed anti-adblocking code (as the example in Figure 1
illustrated). Note that our Javascript rewrite is targeting specific
branches, as opposed to systematically exploring all possible
program paths (which is sometimes desired for malware anal-
ysis purposes [38]). Much more care has to be given to ensure
the reliability of such an exhaustive program exploration
(e.g., checkpointing and rollback are commonly required). In
comparison, our solution is much more lightweight and easier
to implement.

There are two options for rewriting a condition in a branch:
(1) we replace the original condition completely with the
desired branch outcome directly; or (2) we keep the original
condition but still force the outcome by appending true or false
at the end. Figure 12 illustrates the differences. Figure 12(a)
shows the original JavaScript code that attempts to detect
adblockers. Figure 12(b) and Figure 12(c) correspond to the
two rewrite choices above respectively (both can force branch

outcome to false successfully). The difference is that the
first option prevents any original code in the condition to be
executed (i.e., hasBlock()), while the second option does
allow the original function to be invoked. For the first option
of not allowing the adblocker detection code (hasBlock())
to execute, it can potentially have negative impact on the
remaining code. For instance, a variable may be defined
only inside the function. Without invoking the function, the
subsequent access to the variable may become undefined and
cause site breakage. The second option avoids this issue and
we therefore prefer it.

We can even perform more fine-grained rewrite manage-
ment, i.e., perform the rewrite only when the call stack matches
the ones collected in the trace. For instance, if function A and
B both call C, and a divergence is discovered in C only when
A calls C. Then the rewrite should rewrite the condition only
when A calls C as well. The rewritten code would look like
the following for the same example as in Figure 12:

1 if (hasBlock() && matches(StackTrace.getSync(),
recorded_stacktrace) && false) {

2 $(’.notification’).show();
3 }

This allows condition rewrite to operate with more precision
and is less likely to affect other execution paths that happen to
also depend on the same code block (and may be incorrectly
forced to either true or false all the time). Unfortunately,
without instrumenting the JavaScript execution engine, we
cannot get call stack (or stack trace) in JavaScript without
relying on non-standard features [19]. Thus, this approach may
not always work even though most modern browsers such as
Chrome and Firefox have some support for it [21]. Therefore,
we opt not to use it in our current implementation.

When two aligned traces are found to have multiple nested
branch divergences, it is important to decide whether to rewrite
all of the branch outcomes or only a subset of them. Taking
the example in Figure 13, we can force either the return
of isVisible() call or condition of Width == 0 &&
Height == 0 to false. In general, we prefer to rewrite
the condition at the outer level, meaning isVisible(obj)
will be rewritten to isVisible(obj) || true. This is
because rewriting at lower level can potentially cause func-
tionality breakage as low-level functions tend to be reused for
various purposes (potentially beyond adblocker detection).

As mentioned earlier, a typical anti-adblocker requires
conditional statements to test whether the desirable ad-related
elements are still present in page, and trigger anti-adblocking
behaviors accordingly. These elements can either be real ads,
or sometimes baits intentionally placed for adblocker detection
[42]. It is possible that sophisticated anti-adblocking scripts
(such as PageFair) will conduct multiple rounds of such
checks.

A simplified real example from www.pandajogosgratis.com
is illustrated in Figure 14. We note that the first check considers
whether the canRunAds element is blocked or not (‘undefined’
means that it is blocked). If no blocking is detected, it
continues with a secondary check which looks at the length
of an element. It is not hard to tell that the positive trace
(with adblocker) represented on the control flow graph would
be (1:false) and the negative trace (without adblocker) would

10

www.pandajogosgratis.com

1 if (hasBlock()) {
2 $(’.notification’).show();
3 }

(a) Original code

1 if (false) {
2 $(’.notification’).show();
3 }

(b) Condition rewrite (replacement)

1 if (hasBlock() && false) {
2 $(’.notification’).show();
3 }

(c) Condition rewrite (append-only)

Fig. 12: Choices of condition rewrite

1 function checkAdVisible() {
2 if(isVisible(ad)) {
3 // pass
4 } else {
5 // penalizing user
6 }
7 }
8 function isVisible(obj) {
9 return (obj.offsetWidth == 0 && obj.offsetHeight

== 0)? False: True;
10 }

Fig. 13: Nested branch divergence example

be (1:true, 2:true). Now when we analyze the two traces
differentially, only the first branch divergence can be detected.
Unfortunately it is not enough to force only the first branch
to be true, as the second branch will still turn out to be false,
resulting in adblock detection.

Our solution to this problem is to iteratively collect such
nested divergences. More specifically, once we finish one
round of differential trace analysis (with the corresponding
JavaScript rewrite rules being produced), we deploy the rule
and continue a new round of instrumentation and differential
analysis. This way, we will be able to capture the second
branch divergence and incrementally include it in our rewrite
rules. The iteration stops when no more new divergences are
detected.

Implementation and preliminary results. Ideally, we should
be able to implement JavaScript rewrite using a browser
extension. Unfortunately, JavaScript rewrite is not natively
supported by most browser extension APIs. In lieu of that, we
implement the rewrite system using the mitmproxy [23]. The
downside is that a user needs to install an external program
(and certificate) as opposed to only an extension. The benefit is
that this proxy-based solution is browser-independent and can
be deployed across different platforms. As mitmproxy already
provides nice abstractions for HTTP(S) request and response
manipulation, our implementation of JavaScript rewrite is only
less than 200 lines of python code. The whole system is
completely automated in rewriting the right conditions without
any human intervention.

To evaluate the effectiveness of the Javascript rewrite, we
choose to test the anti-adblocking websites that are known to
have visible reactions. After the Javascript rewrite, if the visible
reactions are eliminated, we consider it a success. In addition,
we will check for any functionality breakage by interacting
with the website with modified Javascript.

Overall, for the 428 detected positive websites with visible
reactions (from §V-A), we find that the JavaScript rewrite can

successfully evade 352 websites (82.2%), evident by the lack
of warning or popup messages after the rewrite. Here we
follow the same manual inspection methodology in §V-A. The
failed cases are mostly due to the same reasons as outlined in
§V-A. Only one website is found to have broken functionality
where the Javascript is mistakenly considered to be disabled.

B. Hiding Adblockers with API Hooking

While Javascript rewriting is a promising direction, it has
several drawbacks and limitations. First, it requires a MITM
proxy (or with browser modification) and cannot be imple-
mented as a browser extension. Second, it is more intrusive
and likely to cause breakage of site functionality. We next
consider an alternative solution that aims to address the above
shortcomings.

Our key observation is that all API calls used by publisher
scripts to examine the state of the page (e.g., whether an ad is
visible) can be intercepted and modified by a browser extension
[8, 50]. In Chrome extensions, for example, a content script
can run before the page is loaded (no other script can run
yet), i.e., document_start. This allows one to inject script
in the page which can define wrapper functions for existing
objects. However, many objects are created on demand and
therefore are not available for interception in the beginning.
Unfortunately, it may become too late to inject any script after
a page is loaded, i.e., document_end as other scripts might
have already executed (and race conditions may occur). This
makes API call interception a challenging task.

To understand how this problem can be overcome, we ob-
serve that there are generally two sources of variables/objects
that are checked for adblocker detection: (1) DOM elements
which are either statically or dynamically created; (2) variables
unrelated to DOM elements (defined elsewhere and potentially
nested in other objects).

For (1) — DOM element checks, all objects
are in fact retrieved through API calls from
the browser built-in object document such as
document.getElementByName(arg). This allows
our injected script to intercept the element retrieval. If the
object is deemed a bait or a real ad (based on its name, id,
or source, etc.), we can simply return a fake object prepared
ahead of time. Later when the object is checked for size,
visibility, and other attributes, we can simply return the values
according to what we have learned during the analysis of
anti-adblocking scripts. If the object is dynamically created, it
is more challenging to decide if it is an ad object (as its div

id, class and other properties are all dynamically assigned),
and therefore may require more monitoring at runtime. An
example is shown below:

11

1 $(window).load(function() {
2 if(typeof canRunAds != ’undefined’){ // check level 1
3 var adFilled = $(’.adsbygoogle’).find(’ins’).

length;
4 if(adFilled!=0){ // check level 2
5 // return okay
6 } else {
7 $(’.layerPubAdBg’).fadeIn();
8 }
9 } else {

10 $(’.layerPubAdBg’).fadeIn();
11 }
12 });

2.No block?

4. Really
no block?

10. Penalty

True False

7. Penalty5. Pass

True False

Fig. 14: An example anti-adblocker with two levels of adblock detection

1 var bait = document.createElement (’div’) ;
2 bait.setAttribute (’class’, this.options.baitClass);
3 bait = body.appendChild(bait);
4 if (bait == undefined || bait.height == 0) { /*

adblock detected */ }

In this case, bait may become null and therefore trigger
the adblock detection. Unfortunately, we don’t know at the
creation time whether the div will be blocked by adblocker
and cannot simply return a fake object (as it could be a useful
div not related to ads). However, it is possible that we still
instrument document.createElement() and inside of
it we can add additional hooks to intercept future method
invocations on this object (e.g., setAttribute), which will
allow us to determine the true class of the object. Below is the
code snippet to illustrate the instrumentation logic.

1 var old_createElement = document.createElement();
2 document.createElement = function(type) {
3 var temp = old_createElement(type);
4 var old_setAttribute = temp.setAttribute();
5 temp.setAttribute = function(key, value) {
6 // check if it is an ad-related element by

consulting the adblocker filter list
7 }
8 }

This allows us to keep monitoring the future development
of a newly created element. If it does turn out to become an
ad-related element, we will mark it so. In the future, when the
element is checked for its height or other attributes, we can
similarly return expected results from the offline knowledge.

Note that an ideal solution would require us to link the
object used for adblock detection to its name, id, or classname,
etc. This way we will know precisely what values to return
when their properties are checked. For instance, if the condi-
tion is obj.height <= 20, then we need to fake a number
that is larger than 20 for the specific obj. Such analysis is
more complex and will likely involve symbolic execution. We
leave implementation of this approach for future work.

For (2) — non-DOM element checks, if the checked vari-
ables are not related to DOM elements, the only possibility we
have observed is related to Javascript blocking. In such cases,
there is typically a global variable (or a variable nested in other
global objects) defined in an ad-related script. If the script is
blocked, then the variable becomes undefined and therefore
trips the adblocker detection. Fortunately, if the variable is a

global one and directly accessible from the browser built-in
window object, we can intercept it and return any expected
result to pass the detection check with the following single
line of code:

1 // intercept access to window.adblockV1, and always
return true;

2 window.__defineGetter__(’adblockV1’, function() {
return true; });

However, if it is a nested variable defined in other objects,
as mentioned earlier we will not be able to intercept its
accesses. As a workaround, we propose to let the ad-related
script load (instead of blocking it) and rely other adblocking
filter rules to remove any injected ads. After all, ads have to
be inserted into the DOM tree in order to be rendered (and
trigger adblockers to block them). If the ad-related script is
not injecting any ads and instead only serving as a bait to
define some variables, not blocking the script itself actually can
already successfully avoid anti-adblocking. Interestingly, we
find many bait scripts such as the one at https://tags.news.com.
au/prod/adblock/adblock.js that do exactly this. In the more
general case though, this transforms the problem into DOM
element checks which we already have a solution for.

Implementation and preliminary results. Without loss of
generality, we have implemented a proof-of-concept Chrome
extension that works for a randomly selected subset of websites
and third-party scripts for which we have ground truth (able to
manually analyze the script and confirm their behaviors). We
have picked 15 websites, 5 with popular third-party scripts
(silent reporting), 5 with less popular or custom scripts (silent
reporting), and 5 with visible reactions (ad switching or
warning messages).2 Our solution works well against all of
these websites, i.e., it successfully avoids the anti-adblockers.
Specifically, we can always successfully either avoid the
warning messages or change the reporting messages (e.g.,
from adp = 1 to adp = 0). We find that 8 websites (and
their corresponding scripts) check attributes of DOM elements

2 They are: popular third-party scripts: https://mc.yandex.ru/metrika/
watch.js, http://static.criteo.net/js/ld/publishertag.js, http://widgets.outbrain.
com/outbrain.js, https://cdn.taboola.com/libtrc/impl.254-8-RELEASE.js, http:
//asset.pagefair.com/measure.min.js; and websites with less popular or custom
scripts: philly.com, foxsports.com.au, cda.pl, bt.dk, boredomtherapy.com; and
websites with visible anti-adblockers (first with ad-switching and others
with warning messages): memburn.com, pasty.link, exspresiku.blogspot.co.id,
ani-short.net, gta.com.ua.

12

https://tags.news.com.au/prod/adblock/adblock.js
https://tags.news.com.au/prod/adblock/adblock.js
https://mc.yandex.ru/metrika/watch.js
https://mc.yandex.ru/metrika/watch.js
http://static.criteo.net/js/ld/publishertag.js
http://widgets.outbrain.com/outbrain.js
http://widgets.outbrain.com/outbrain.js
https://cdn.taboola.com/libtrc/impl.254-8-RELEASE.js
http://asset.pagefair.com/measure.min.js
http://asset.pagefair.com/measure.min.js
philly.com
foxsports.com.au
cda.pl
bt.dk
boredomtherapy.com
memburn.com
pasty.link
exspresiku.blogspot.co.id
ani-short.net
gta.com.ua

and 7 websites check values of variables other than DOM
elements (e.g., defined or not). Out of the 7, 6 check a global
variable such as window.adblockV1 and therefore can be
easily intercepted and tricked. One website, however, checks
a nested variable window.utag_data.no_adblocker.
Interestingly, both utag_data and no_adblocker are
defined in a bait script. Simply allowing the script to execute
can trick the adblock detector without any other implications.
We analyze a few more scripts below as case studies.

One of the most popular anti-adblocking third-party scripts
from Taboola has a complex logic of adblock detection span-
ning several functions (the simplified code snippet already ex-
plained in §V-B). Specifically, the script is written generically
so that it can load a list of bait DOM elements dynamically
by iterating through a list of predefined element ids (strings).3
Despite this, as soon as we can track the origin of the element
ids in the array, the rest can follow our procedure as described
earlier (about how to deal with DOM element checking).

As an interesting example, we show that mem-
burn.com’s ad switching behavior (described in Fig-
ure 3(a)) is now completely disabled as they are un-
able to detect the failure of loading the initial ad
through the simple check window.advertsAvailable
=== undefined. This is because we can intercept all ac-
cesses to window.advertsAvailable and simply fake
any arbitrary value. The page will now simply contain an
empty white space in place of the original ad frame.

Finally, we revisit the website bild.de for which Javascript
rewrite has caused functionality breakage. By manual inspec-
tion, we have found that Javascript rewrite targeted a wrong
function which is general and used by legitimate part of the
website. By applying the analysis procedure outlined in this
section, we simply hook the access to window._art and
provide a fixed constant to solve this issue.

Fundamentally, the API hooking based solution operates
on the source of the problem — DOM elements or ad-related
scripts that get blocked by adblockers; it is therefore more
precise and less likely to cause side effects, compared to
Javascript rewrite. In addition, since our solution is readily
deployable in a standard browser extension, it has potentials
to influence the future design of adblockers.

VII. LIMITATIONS AND DISCUSSION

As we have seen, applying differential trace analysis to
detect and analyze anti-adblockers is a promising direction,
and it has validated our idea to a large extent. Future di-
rections include improving the differential execution analysis
by considering the value differences, as well as investigating
the feasibility of the techniques to hide adblockers. Below we
discuss the limitations of our solution at the implementation
level and design level.

Completeness of instrumentation. Our system is as good as
the capability of the instrumentation. At the moment, we do
not cover all branch statements. It is especially challenging
to catch implicit branching operations such as callbacks (as
mentioned in §IV-A). To overcome this, one strategy is to

3More details can be found in our project website at https://sites.google.
com/view/antiadb-proj/.

catch the registration of callbacks (e.g., onsuccess() and
onerror() that are associated to the same event. This way,
we will be aware of which one of the callbacks is taken
in the A/B testing and catch the implicit branch divergence.
Nevertheless, in theory an our system becomes popular and
the instrumentation details are made known to the websites,
they could easily counteract by hiding the adblocker detection
logic in the form that we do not capture. In addition, we also
acknowledge that in theory both flow differences and value
differences need to be considered, as anti-adblockers in theory
can hide its logic without changing control flows. One other
issue is the dynamically generated code through eval(),
which can be addressed with improvement of instrumentation
as well — after all, we are instrumenting the Javascript engine.

Robustness of differential execution analysis. Assuming a
perfect instrumentation capability, we should be able to catch
most state-of-the-art anti-adblockers. However, we point out
three different cases where randomness can interfere or defeat
our differential analysis. First, we find that fluctuations in the
network speed and system load can affect the load time of
the ads. Since adblocker detection in many cases is triggered
by a timeout callback (1s or 2s), an ad may or may not
be completely loaded when the detection logic is triggered,
introducing randomness its execution trace. To mitigate this
unintentional randomness, we can force objects to be loaded
from cache. Next, the randomization can happen at two levels:
(1) behavioral randomization — same script, different behav-
ior; (2) content randomization — different script, different
behavior. For content randomization, as we discussed, can
be addressed by forcing the same exact webpage/scripts to
be reloaded during A/B testing. For behavioral randomization
where multiple anti-adblocking modules exist and one of them
will be randomly selected in each run, we envision that it can
be addressed based on the following observation: the random
selection of modules has to be guided by some underlying
source of randomness (e.g., system clocks, external network
packets). If we can force a random source in every run, then
the random selection becomes deterministic (e.g., a random
coin flip becomes deterministic). This is very much similar
to virtual machine replay where all external non-determinism
are recorded and replayed to ensure the deterministic behavior
of the VM. In summary, we argue that the two kinds of
randomization does not pose a fundamental threat to our
differential analysis.

Robustness of anti-adblocker evasion. Equipped with the
result of differential analysis, we have demonstrated the power
of the JavaScript rewrite and API hooking based solutions.
They are subject to the ongoing arms race between adblockers
and anti-adblockers. For Javascript rewrite especially, it is
in general hard to estimate and contain the effect of any
code change, and therefore can hinder real-world deployment.
Even worse, rewriting Javascript cannot be conducted in a
browser extension and therefore further limits its uses. For API
hooking, as we discussed in §VI-B, it is much more precise,
close to the root, and therefore much less likely to induce
undesired side effects. The challenge of this approach though
is the reliance on the discovery of the exact DOM elements that
are checked in adblock detection (which may require further
program analysis), and we leave as future work.

In addition, both approaches share a fundamental limitation

13

bild.de
https://sites.google.com/view/antiadb-proj/
https://sites.google.com/view/antiadb-proj/

of webpage or Javascript content randomization. Unlike the
task of anti-adblocker detection conducted in a controlled
environment, for which we can force not only the same
page/script to be used but also the execution to be deterministic
(see discussion earlier), the task of anti-adblocker evasion
happens in real users’ browsers where we may not be able to
contain randomization. For instance, for content randomization
(different pages/scripts are loaded in each visit), there is no
fixed page or script to learn from offline and every user
will potentially obtain a unique version that has never been
observed in the past. Such frequent randomizations, however,
will likely hurt the web performance by effectively disabling
caching. Users who are not using adblockers will also be
unnecessarily penalized.

It is slightly easier to deal with behavior randomization
where the same exact script randomly selects anti-adblocking
modules during different runs. In this case, since different users
will obtain the same copy of script, it is possible to learn
which part of the code is related to the random selection of
anti-adblocking modules, and simply force the outcome of that
random outcome to eliminate this particular source of non-
determinism.

VIII. CONCLUSIONS

We presented a differential execution analysis approach to
discover anti-adblockers. Our insight is that websites equipped
with anti-adblockers will exhibit different execution traces
when they are visited by a browser with and without an
adblocker. Based on this, our system enables us to unveil many
more (up to 52⇥) anti-adblocking websites and scripts than
reported in prior literature. Moreover, since our approach en-
ables us to pinpoint the exact branch statements and conditions
involved in adblocker detection, we can steer execution away
from the anti-adblocking code through JavaScript rewriting
or hide the presence of adblockers through API hooking.
Our system can bypass a vast majority of anti-adblockers
without causing any site functionality breakage (except one
with Javascript rewriting).

We anticipate escalation of the technological battle between
adblockers and anti-adblockers — at least in the short term.
From the perspective of security and privacy conscious users,
it is crucial that adblockers are able to keep up with anti-
adblockers. Moreover, the increasing popularity of adblocking
has already led to various reform efforts within the online
advertising industry to improve ads (e.g., Coalition for Better
Ads [5], Acceptable Ads Committee [2]) and even alternate
monetization models (e.g., Google Contributor [6], Brave
Payments [4]). However, to keep up the pressure on publishers
and advertisers in the long term, we believe it is crucial
that adblockers keep pace with anti-adblockers in the rapidly
escalating technological arms race. Our work represents an
important step in this direction.

ACKNOWLEDGMENT

We would like to thank the anonymous reviewers for their
valuable feedback on this paper. This work is supported in
part by the National Science Foundation under grant numbers
1719147, 1715152, 1664315, and by a seed grant from the
Data Transparency Lab (DTL).

REFERENCES

[1] “A Publishers Guide To Counter-Ad Blocking Tech-
nology,” https://adexchanger.com/platforms/a-publishers-
guide-to-counter-ad-blocking-technology/.

[2] “Acceptable Ads Committee,” https://acceptableads.com/
en/committee/.

[3] “AdBlock for Chrome Now Hides Facebook
Ads and Blocks More Ads On More Sites,”
https://blog.getadblock.com/adblock-for-chrome-now-
hides-facebook-ads-and-blocks-more-ads-on-more-
sites-f5918ebc43c6.

[4] “Brave Payments,” https://brave.com/publishers/.
[5] “Coalition for Better Ads,” https://www.betterads.org/.
[6] “Google Contributor,” https://contributor.google.com/v/

beta.
[7] “Googles Inbuilt Ad-Blocker Comes To Chrome

Canary,” https://techviral.net/googles-inbuilt-ad-blocker-
comes-chrome/.

[8] “Introducing ES2015 Proxies,” https://developers.google.
com/web/updates/2016/02/es2015-proxies.

[9] “Manifest - Web Accessible Resources,”
https://developer.chrome.com/extensions/manifest/
web accessible resources.

[10] “Blocking Taboola ads,” https://adblockplus.org/forum/
viewtopic.php?t=20747, 2014.

[11] “Anti-Adblock Killer List,” https://github.com/reek/anti-
adblock-killer/blob/master/anti-adblock-killer-filters.txt,
2015.

[12] “Native Advertising: A Guide for Businesses,”
https://www.ftc.gov/tips-advice/business-center/
guidance/native-advertising-guide-businesses, 2015.

[13] “Facebook Will Force Advertising on Ad-Blocking
Users,” https://www.wsj.com/articles/facebook-will-
force-advertising-on-ad-blocking-users-1470751204,
2016.

[14] “The Rise of the Anti-Ad Blockers,” https:
//www.wsj.com/articles/the-rise-of-the-anti-ad-blockers-
1465805039, 2016.

[15] “AdBlock,” https://getadblock.com/, 2017.
[16] “Adblock forum,” https://forums.lanik.us, 2017.
[17] “Adblock Plus 2.0, Allow non-intrusive

advertising,” https://easylist-downloads.adblockplus.
org/exceptionrules.txt, 2017.

[18] “Adblock Warning Removal List,” https://easylist-
downloads.adblockplus.org/antiadblockfilters.txt, 2017.

[19] “Error.prototype.stack,” https://developer.mozilla.org/en-
US/docs/Web/JavaScript/Reference/Global Objects/
Error/Stack, 2017.

[20] “Forum section about false content blocking,”
https://forums.lanik.us/viewforum.php?f=64&sid=
acd4dfc10ed86e1bc7e29d5f482fd8c7, 2017.

[21] “Generate, parse, and enhance JavaScript stack traces
in all web browsers,” https://github.com/stacktracejs/
stacktrace.js, 2017.

[22] “Google v8,” https://developers.google.com/v8/, 2017.
[23] “mitmproxy,” https://mitmproxy.org/, 2017.
[24] “PageFair,” https://pagefair.com/, 2017.
[25] “The Chromium Projects,” https://www.chromium.org/

Home, 2017.
[26] “The state of the blocked web 2017

Global Adblock Report. PageFair,”

14

https://adexchanger.com/platforms/a-publishers-guide-to-counter-ad-blocking-technology/
https://adexchanger.com/platforms/a-publishers-guide-to-counter-ad-blocking-technology/
https://acceptableads.com/en/committee/
https://acceptableads.com/en/committee/
https://blog.getadblock.com/adblock-for-chrome-now-hides-facebook-ads-and-blocks-more-ads-on-more-sites-f5918ebc43c6
https://blog.getadblock.com/adblock-for-chrome-now-hides-facebook-ads-and-blocks-more-ads-on-more-sites-f5918ebc43c6
https://blog.getadblock.com/adblock-for-chrome-now-hides-facebook-ads-and-blocks-more-ads-on-more-sites-f5918ebc43c6
https://brave.com/publishers/
https://www.betterads.org/
https://contributor.google.com/v/beta
https://contributor.google.com/v/beta
https://techviral.net/googles-inbuilt-ad-blocker-comes-chrome/
https://techviral.net/googles-inbuilt-ad-blocker-comes-chrome/
https://developers.google.com/web/updates/2016/02/es2015-proxies
https://developers.google.com/web/updates/2016/02/es2015-proxies
https://developer.chrome.com/extensions/manifest/web_accessible_resources
https://developer.chrome.com/extensions/manifest/web_accessible_resources
https://adblockplus.org/forum/viewtopic.php?t=20747
https://adblockplus.org/forum/viewtopic.php?t=20747
https://github.com/reek/anti-adblock-killer/blob/master/anti-adblock-killer-filters.txt
https://github.com/reek/anti-adblock-killer/blob/master/anti-adblock-killer-filters.txt
https://www.ftc.gov/tips-advice/business-center/guidance/native-advertising-guide-businesses
https://www.ftc.gov/tips-advice/business-center/guidance/native-advertising-guide-businesses
https://www.wsj.com/articles/facebook-will-force-advertising-on-ad-blocking-users-1470751204%20
https://www.wsj.com/articles/facebook-will-force-advertising-on-ad-blocking-users-1470751204%20
https://www.wsj.com/articles/the-rise-of-the-anti-ad-blockers-1465805039
https://www.wsj.com/articles/the-rise-of-the-anti-ad-blockers-1465805039
https://www.wsj.com/articles/the-rise-of-the-anti-ad-blockers-1465805039
https://getadblock.com/
https://forums.lanik.us
https://easylist-downloads.adblockplus.org/exceptionrules.txt
https://easylist-downloads.adblockplus.org/exceptionrules.txt
https://easylist-downloads.adblockplus.org/antiadblockfilters.txt
https://easylist-downloads.adblockplus.org/antiadblockfilters.txt
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Error/Stack
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Error/Stack
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Error/Stack
https://forums.lanik.us/viewforum.php?f=64&sid=acd4dfc10ed86e1bc7e29d5f482fd8c7
https://forums.lanik.us/viewforum.php?f=64&sid=acd4dfc10ed86e1bc7e29d5f482fd8c7
https://github.com/stacktracejs/stacktrace.js
https://github.com/stacktracejs/stacktrace.js
https://mitmproxy.org/
https://pagefair.com/
https://www.chromium.org/Home
https://www.chromium.org/Home

https://pagefair.com/downloads/2017/01/PageFair-2017-
Adblock-Report.pdf, 2017.

[27] “YourAdChoices Gives You Control,” http:
//youradchoices.com/, 2017.

[28] C. Curtsinger, B. Livshits, B. Zorn, and C. Seifert, “ZOZ-
ZLE: Fast and Precise In-Browser JavaScript Malware
Detection,” in USENIX Security Symposium, 2011.

[29] Digital-Advertising-Blog, “What tracking pixels are and
why they matter to your next digital ad campaign,” http://
www.digitaland.tv/blog/what-is-tracking-pixel-ht/, 2017.

[30] S. Englehardt and A. Narayanan, “Online tracking: A 1-
million-site measurement and analysis,” in ACM Confer-
ence on Computer and Communications Security (CCS).
ACM, 2016.

[31] D. Gugelmann, M. Happe, B. Ager, and V. Lenders,
“An automated approach for complementing ad blockers
blacklists,” Proceedings on Privacy Enhancing Technol-
ogy (PETS) 2015, 2015.

[32] S. Guha, B. Cheng, and P. Francis, “Privad: Practical
privacy in online advertising,” in NSDI, 2011.

[33] X. Hu, A. Prakash, J. Wang, R. Zhou, Y. Cheng, and
H. Yin, “Semantics-preserving dissection of javascript
exploits via dynamic js-binary analysis,” in Proceedings
of the 19th Symposium on Research in Attacks, Intrusions
and Defense (RAID’16), Sep. 2016.

[34] M. Ikram, H. J. Asghar, M. A. Kaafar, A. Mahanti, and
B. Krishanmurthy, “Towards seamless tracking-free web:
Improved detection of trackers via one-class learning,” in
Proceedings on Privacy Enhancing Technology (PETS),
2017.

[35] U. Iqbal, Z. Shafiq, and Z. Qian, “The ad wars: Retro-
spective measurement and analysis of anti-adblock filter
lists,” in Proceedings of the ACM Internet Measurement
Conference (IMC), 2017.

[36] N. M. Johnson, J. Caballero, K. Z. Chen, S. McCamant,
P. Poosankam, D. Reynaud, and D. Song, “Differential
slicing: Identifying causal execution differences for se-
curity applications,” in Proceedings of the 2011 IEEE
Symposium on Security and Privacy, ser. SP ’11, 2011.

[37] A. Kapravelos, Y. Shoshitaishvili, M. Cova, C. Kruegel,
and G. Vigna, “Revolver: An Automated Approach to the
Detection of Evasive Web-based Malware,” in USENIX
Security Symposium, 2013.

[38] K. Kim, I. L. Kim, C. H. Kim, Y. Kwon, Y. Zheng,
X. Zhang, and D. Xu, “J-force: Forced execution on
javascript,” in Proceedings of the 26th International Con-
ference on World Wide Web, ser. WWW ’17, 2017.

[39] A. Lerner, A. K. Simpson, T. Kohno, and F. Roesner,
“Internet Jones and the Raiders of the Lost Trackers:
An Archaeological Study of Web Tracking from 1996
to 2016,” in Proceedings of USENIX Security, 2016.

[40] M. Malloy, M. McNamara, A. Cahn, and P. Barford, “Ad
blockers: Global prevalence and impact,” in ACM Internet
Measurement Conference (IMC), 2016.

[41] H. Metwalley, S. Traverso, M. Mellia, S. Miskovic,
and M. Baldi, “The Online Tracking Horde: A View
from Passive Measurements,” in Traffic Monitoring and
Analysis, 2015.

[42] M. H. Mughees, Z. Qian, and Z. Shafiq, “A first look
at ad-block detection: A new arms race on the web,”
Proceedings on Privacy Enhancing Technology (PETS),
2017.

[43] A. Narayanan and D. Reisman, “The princeton web
transparency and accountability project.”

[44] M. D. Network, “Concurrency model and
Event Loop,” https://developer.mozilla.org/en-
US/docs/Web/JavaScript/EventLoop, 2017.

[45] R. Nithyanand, S. Khattak, M. Javed, N. Vallina-
Rodriguez, M. Falahrastegar, J. E. Powles, E. D.
Cristofaro, H. Haddadi, and S. J. Murdoch,
“Adblocking and counter blocking: A slice of
the arms race,” in 6th USENIX Workshop on
Free and Open Communications on the Internet
(FOCI 16). Austin, TX: USENIX Association, 2016.
[Online]. Available: https://www.usenix.org/conference/
foci16/workshop-program/presentation/nithyanand

[46] K. Rieck, T. Krueger, and A. Dewald, “Cujo: Efficient
detection and prevention of drive-by-download attacks,”
in Proceedings of the 26th Annual Computer Security
Applications Conference, ser. ACSAC ’10, 2010.

[47] F. Roesner, T. Kohno, and D. Wetherall, “Detecting and
Defending Against Third-Party Tracking on the Web,” in
USENIX Symposium on Networked Systems Design and
Implementation (NSDI), 2012.

[48] A. K. Sood and R. J. Enbody, “Malvertising–exploiting
web advertising,” Computer Fraud & Security, vol. 2011,
no. 4, pp. 11–16, 2011.

[49] SOPHOS, “Adblocker blockers move to a whole
new level,” https://nakedsecurity.sophos.com/2016/02/01/
adblocker-blockers-move-to-a-whole-new-level/, 2016.

[50] G. Storey, D. Reisman, J. Mayer, and A. Narayanan, “The
future of ad blocking: An analytical framework and new
techniques,” Technical Report, 2017.

[51] T. P. Team, “2017 Adblocking Report,” https://pagefair.
com/blog/2017/adblockreport/, 2017.

[52] W. Wang, Y. Zheng, X. Xing, Y. Kwon, X. Zhang, and
P. Eugster, “Webranz: Web page randomization for better
advertisement delivery and web-bot prevention,” in Pro-
ceedings of the 2016 24th ACM SIGSOFT International
Symposium on Foundations of Software Engineering, ser.
FSE 2016, 2016.

[53] B. Xin, W. N. Sumner, and X. Zhang, “Efficient program
execution indexing,” in Proceedings of the 29th ACM
SIGPLAN Conference on Programming Language Design
and Implementation, ser. PLDI ’08, 2008.

[54] D. Yu, A. Chander, N. Islam, and I. Serikov, “Javascript
instrumentation for browser security,” in ACM SIGPLAN
Notices, vol. 42, no. 1. ACM, 2007, pp. 237–249.

[55] A. Zarras, A. Kapravelos, G. Stringhini, T. Holz,
C. Kruegel, and G. Vigna, “The Dark Alleys of Madison
Avenue: Understanding Malicious Advertisements,” in
ACM Internet Measurement Conference (IMC), 2014.

15

http://youradchoices.com/
http://youradchoices.com/
http://www.digitaland.tv/blog/what-is-tracking-pixel-ht/
http://www.digitaland.tv/blog/what-is-tracking-pixel-ht/
https://developer.mozilla.org/en-US/docs/Web/JavaScript/EventLoop
https://developer.mozilla.org/en-US/docs/Web/JavaScript/EventLoop
https://www.usenix.org/conference/foci16/workshop-program/presentation/nithyanand
https://www.usenix.org/conference/foci16/workshop-program/presentation/nithyanand
https://nakedsecurity.sophos.com/2016/02/01/adblocker-blockers-move-to-a-whole-new-level/
https://nakedsecurity.sophos.com/2016/02/01/adblocker-blockers-move-to-a-whole-new-level/
https://pagefair.com/blog/2017/adblockreport/
https://pagefair.com/blog/2017/adblockreport/

	Introduction
	Background and Related Work
	Problem Formulation & System Overview
	Differential Execution Analysis
	Chromium Instrumentation
	Branch Divergence Discovery

	Evaluation
	Small-Scale Ground Truth Analysis
	Large-Scale Analysis of Alexa Top-10K Websites

	Towards Improving Ad-blockers
	Avoiding Anti-adblockers with JavaScript Rewriting
	Hiding Adblockers with API Hooking

	Limitations and Discussion
	Conclusions

