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Abstract:
ing technique that attempts to combine information ex-

Browser fingerprinting is a stateless track-

posed by multiple different web APIs to create a unique
identifier for tracking users across the web. Over the last
decade, trackers have abused several existing and newly
proposed web APIs to further enhance the browser fin-
gerprint. Existing approaches are limited to detecting a
specific fingerprinting technique(s) at a particular point
in time. Thus, they are unable to systematically de-
tect novel fingerprinting techniques that abuse differ-
ent web APIs. In this paper we propose FP-RADAR,
a machine learning approach that leverages longitudi-
nal measurements of web API usage on top-100K web-
sites over the last decade, for early detection of new and
evolving browser fingerprinting techniques. The results
show that FP-RADAR is able to early detect the abuse
of newly introduced properties of already known (e.g.,
WebGL, Sensor) and as well as previously unknown (e.g.,
Gamepad, Clipboard) APIs for browser fingerprinting.
To the best of our knowledge, FP-RADAR is also first to
detect the abuse of the Visibility API for ephemeral
fingerprinting in the wild.
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1 Introduction

The online tracking ecosystem employs increasingly so-
phisticated tracking techniques to track users across the
web [25] [56] [70, [1T12]. In addition to well-known state-
ful tracking using third-party cookies, trackers have now
started to use more intrusive stateless tracking tech-
niques such as browser fingerprinting to gather device-
specific identifying information captured through var-
ious HTTP header fields and APIs [16] 25| 27] [54] [71]
72, [78]. Stateless tracking is more intrusive than stateful
tracking because the former does not lend itself to trans-
parency and control. While cookies are directly observed
and removed at the client-side, browser fingerprint is
not directly visible at the client-side and it cannot be
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trivially removed or even modified. As web browsers
have started to implement aggressive countermeasures
against stateful tracking [90] 108} [110], it has encour-
aged trackers to migrate to more opaque and invasive
stateless tracking [41] [90].

Browser fingerprinting techniques have evolved over
time. As web browsers support new functionality by
adding new APIs or update existing APIs [95], the
browser’s fingerprinting surface has continued to ex-
pand. Early work by Mayer [57] and Eckersley [24]
demonstrated simple fingerprinting techniques that
abuse information exposed in HT'TP headers and a few
APIs. A steady stream of more sophisticated fingerprint-
ing techniques have since been developed that abuse
existing and new APIs. For example, researchers have
shown that Canvas [72], WebGL [16], fonts [27], exten-
sions [96], the Audio API [25], the Battery Status API
[78[79], the Performance API [88], and even sensor APIs
[7) 17] can expose information that can be abused to
build a more reliable fingerprint. Thus, as new APIs are
introduced in web browsers, it is reasonable to expect
that they might be abused to implement novel browser
fingerprinting techniques. In summary, browser finger-
printing is not a static phenomenon, but it is rather
evolving; as novel fingerprinting techniques are designed
over time.

Browser fingerprinting and its privacy implications
have received much attention from the research commu-
nity. Researchers have conducted large-scale measure-
ments to study the prevalence of browser fingerprinting
[2 3 177, 25] 26, 28] [41], [76], [79]. However, prior research
on browser fingerprinting is lacking in two major ways.
First, prior work is mostly limited to analyzing a spe-
cific fingerprinting technique(s) at a particular point in
time. Since fingerprinting techniques evolve over time,
it is important to study browser fingerprinting longitu-
dinally. Second, prior work is limited to detecting de-
ployment of already known fingerprinting techniques. It
is important to detect new fingerprinting techniques in
a timely fashion because early detection can aid proac-
tive mitigation efforts by the standards bodies [23] and
also prompt deployment of targeted countermeasures by
browser vendors [55] [8T].
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We propose FP-RADAR, a machine learning ap-
proach for early detection of web API abuse for finger-
printing. FP-RADAR detects abuse of new methods of
existing APIs or new APIs altogether by using the guilt-
by-association principle. More specifically, it first uses
the Wayback Machine to crawl the historical snapshots
of scripts on top-100K websites over the last decade.
FP-RADAR conducts static analysis to construct a se-
ries of temporal API co-occurrence graphs for each year.
FP-RADAR then uses hand-crafted and embedding fea-
tures to predict the evolution of co-occurrence relation-
ships between different API keywords over the years.
FP-RADAR then builds and labels temporal clusters,
including the fingerprinting cluster, using the temporal
graphs. Finally, FP-RADAR tracks the membership of
the fingerprinting cluster over time for early detection
of API abuse.

The results show that FP-RADAR is able to detect
the abuse of already known as well as unknown APIs
for fingerprinting. First, FP-RADAR detects the abuse
of a number of previously unknown APIs including
Page Visibility, Gamepad, Clipboard, and Network
Information for browser fingerprinting. We find novel
types of user environment/hardware fingerprinting such
as peripheral configuration via Gamepad and system ca-
pabilities via Network Information APIs. We also find
that even though an API (e.g., Page Visibility) does
not directly expose highly identifying information it can
be abused for ephemeral fingerprinting. To the best of
our knowledge, FP-RADAR is also the first to detect the
abuse of web APIs for ephemeral fingerprinting in the
wild. Second, FP-RADAR detects the abuse of newly in-
troduced features of APIs that are already known to be
abused for fingerprinting. We find that several of the
newly introduced features of Navigator (e.g., related
to hardware capabilities such as memory), Performance
(e.g., time for DNS lookup and page rendering), and
WebGL (e.g., WebGL2 capabilities) are now being abused
for fingerprinting. Finally, FP-RADAR is able to detect
the fingerprinting abuse of APIs before/at their disclo-
sure or at the time of their release by browser vendors
or their first occurrence in our data. We find that FP-
RADAR’s time-to-detection is often several years before
public disclosure (e.g., as much as 6 years for Gamepad
and 7 years for Page Visibility APIs).

We summarize our key contributions as follows:

1. A retrospective longitudinal measurement study
of web API usage over the last decade.

2. A graph-based supervised ML approach that
builds a series of API co-occurrence graphs to pre-
dict the evolution of API usage in the future.

3. A graph-based unsupervised ML approach that
clusters temporal API co-occurrence graphs for
early detection of their abuse for fingerprinting.

2 Background & Related Work

2.1 Background

Web browsers support standardized web APIs to facili-
tate feature-rich websites that can be seamlessly loaded
on different browsers (e.g., Chrome, Firefox), operating
systems (e.g., Mac/Windows), and devices (e.g., mo-
bile/desktop). Unfortunately, the rich set of informa-
tion exposed by the web APIs can also be exploited by
trackers to fingerprint users’ devices. Trackers can sim-
ply combine several pieces of readily available informa-
tion, such as the operating system name, browser name,
browser version in the user-agent field, to build a fin-
gerprint that can distinguish between different devices.
Trackers can also use more sophisticated fingerprinting
techniques that exploit subtle differences in the under-
lying hardware/software configurations and capabilities
to gather distinctive information. For example, canvas
images are rendered differently on different browsers due
to the differences in their hardware/software image pro-
cessing pipeline. Combining several of these fingerprint-
ing techniques, trackers can create a fingerprint that is
often sufficient to uniquely and persistently identify the
web browser [24].

Browser fingerprinting is called stateless tracking
since there is no need to store state at the client-side, as
done in traditional cookie-based stateful tracking. State-
less tracking is considered more intrusive than stateful
tracking because the former does not lend itself to trans-
parency and control. While cookies and other types of
client-side storage mechanisms (e.g., localStorage, In-
dexedDB) can be readily observed and blocked at the
client-side, browser fingerprint is not directly visible at
the client-side and it cannot be trivially removed or
even modified. As web browsers have started to imple-
ment aggressive countermeasures against stateful track-
ing [90} 108 T10], it has encouraged trackers to migrate
to more opaque and invasive stateless tracking [41] [90].
Browser fingerprinting is already being used for cross-
site tracking [4] [4T] [52] and is universally regarded as an
abusive practice by standards bodies [23] [77] and web
browsers [15] 53] [73].
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Fig. 1. The timeline summarizes the chronological disclosure and adoption of fingerprinting APls and countermeasures. Disclosures are

represented with red, adoptions are represented with purple, and countermeasures are represented with green.

2.2 Chronology of Browser Fingerprinting

The fingerprinting surface has continued to expand with
the introduction of new APIs and the disclosure of fin-
gerprinting potential in existing APIs. Soon after an
API is disclosed to have fingerprinting potential, they
are adopted by trackers. Countermeasures, also follow
suit, and attempt to mitigate the fingerprintability of
the API. As shown in Figure [1| this pattern has been
repeated over the years. We next provide a chronology
of the disclosure, adoption, countermeasure of web APIs
for fingerprinting.

Disclosure. Mayer [57] first investigated browser finger-
printing in 2009 and showed that the fingerprints cre-
ated through navigator and screen can uniquely iden-
tify 96.23% of the browsers. Soon after that in 2010, Eck-
ersly [24] conducted a large scale user study to demon-
strate that the information exposed through HTTP
headers, e.g., User-Agent and APIs, e.g., navigator,
and Flash, e.g. fonts, can be used to uniquely identify
94.2% of the browsers. In 2012, Mowery and Shacham
[72] first introduced “execution-based” canvas and We-
bGL fingerprinting and showed that the certain images
rendered through canvas and WebGL APIs on different
devices produce different outputs due to the variance
in hardware (e.g., graphics card) and software (e.g.,
browser version, configurations). Since then researchers
have demonstrated the fingerprinting potential of mo-
bile sensors and canvas font in 2014 [7| [I00], Battery
Status and WebRTC [I0} [78] in 2015, and AudioContext
in 2016.

Adoption. Roughly after 2 years of disclosure, i.e., in
2013, browser fingerprinting, based on HTTP header
information, JavaScript APIs, and Flash, was discov-
ered on 40 of the top-10K websites [76]. Within the
next year, fingerprinting adoption exploded and can-
vas fingerprinting was discovered on 5,542 of top-100K
websites, which is only 2 years after its initial disclo-
sure [2]. The wide adoption of canvas fingerprinting was
attributed to the release of fingerprintjs2 [I], an open-
source fingerprinting library. Later, in 2016, Englehardt
et al., conducted a large scale study of top-1 million

websites and further found the deployment of canvas
font, WebRTC, Audiocontext, and Battery Status API
fingerprinting on 14,371, 3,250, 715, 518, and 22 web-
sites, respectively [25] [79], i.e., only after 1-2 years of
their disclosure. In 2018, Das et al. [I7] found the usage
of sensors, such as motion and orientation, for browser
fingerprinting on 3,695 of the top-100K websites, which
is 4 years after their initial disclosure.

Countermeasures. Countermeasures against browser
fingerprinting have a difficult time keeping up with
the adoption of APIs for browser fingerprinting. It
nearly took 2 years, after the adoption of HTTP header
(e.g., User-Agent) and APIs (e.g., Navigator) exploita-
tion for fingerprinting to propose robust countermea-
sures against them [75] [I0T]. Similarly, the countermea-
sures against Battery Status, canvas, AudioContext,
and WebGL, fingerprinting were first proposed in 2016
[68], 2016 [5], 2017 [53], and 2019 [II1], respectively,
which is nearly 1-7 years after their adoption. Some
recent heuristics and machine learning approaches [I8],
25 4T1] [85, [86] have attempted to detect known fin-
gerprinting techniques and block the scripts that im-
plement them. Englehardt and Narayanan [25] pro-
posed heuristics to detect fingerprinting scripts that im-
plement canvas, canvas Font, and webRTC fingerprint-
ing techniques. They incidentally discovered the use of
AudioContext fingerprinting in their manual analysis of
the detected fingerprinting scripts. Igbal et al. [41] pro-
posed a supervised machine learning approach to de-
tect fingerprinting scripts that implement various fin-
gerprinting techniques, such as canvas, canvas Font,
webRTC, WebGL, and AudioContext. They also inciden-
tally discovered the potential use of peripheral prob-
ing (e.g., getLayoutMap) and Permissions API based
fingerprinting in the post-hoc analysis of the detected
fingerprinting scripts. DuckDuckGo proposed to de-
tect browser fingerprinting scripts based on the sum of
“API weights” — which are the ratio of API’s appear-
ance in “suspicious scripts” to “non-suspicious scripts”
[18]. Based on the API weights, DuckDuckGo inciden-
tally discovered the potential use of deviceMemory and
Presentation APIs for browser fingerprinting [19].
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2.3 Takeaway

In conclusion, prior work is limited to reactive detection
of scripts that implement known fingerprinting tech-
niques. Unsurprisingly, as discussed above, existing ap-
proaches have a difficult time keeping up because they
are not designed to detect new fingerprinting techniques
[18 25 [41]. Thus, as we discuss next, it is important
to design approaches to detect new fingerprinting tech-
niques in a timely fashion.

3 FP-Radar

We present the design and implementation of FP-
RADAR, a temporal graph based machine learning ap-
proach for early detection of web API abuse for browser
fingerprinting. As shown in Figure[2] FP-RADAR can be
divided into four components. First, it models the tem-
poral co-occurrence of web APIs in scripts using a graph
representation. Second, it leverages the temporal graph
representation to predict future co-occurrence of web
APIs. Third, it leverages the predicted co-occurrence
to cluster web APIs based on their functionality. Fi-
nally, the temporal clusters are analyzed to detect abuse
of specific APIs (and their respective keywords) for
browser fingerprinting.

3.1 Modeling Temporal API
Co-occurrence

FP-RADAR relies on the principle of guilt by association
to detect the abuse of web APIs for browser fingerprint-
ing. It means that if an API is being used alongside
known fingerprinting APIs then we can presume that
the API in question is also being abused for browser fin-
gerprinting. We rely on the insight that trackers often
use several fingerprinting techniques, and thus several
fingerprinting APIs, together, to conduct browser fin-
gerprinting [I7) 25| [41] [54]. FP-RADAR operationalizes
this insight in a longitudinal fashion to capture tempo-
ral trends in web API usage and early detection of web
API abuse for browser fingerprinting.

3.1.1 Longitudinal Data Crawling
To longitudinally analyze web APIs, FP-RADAR needs

to measure their usage on the web over time. We conduct
a retrospective measurement study to analyze how web

API usage has evolved on popular websites. To gather
historical snapshots of popular websites, we rely on the
Internet Archive’s Wayback Machine [106]. The Way-
back Machine has periodically archived popular websites
and their resources (e.g., scripts, images) since 1996 and
has already archived more than 600 billion web pages
thus far. The Wayback Machine has been used in prior
literature to conduct longitudinal measurements of on-
line tracking [42 [56].

Crawling scripts using the Wayback Machine.
FP-RADAR relies on the Wayback Machine [106] to
crawl historical snapshots of a large set of scripts
present on Alexa top-100K websites over the last decade
(2010-2019). Since crawling the Wayback Machine in-
curs significant additional overheads as compared to live
web crawls, we limit our Wayback Machine crawls to
scripts observed in our initial live crawl of Alexa top-
10K websites and 10K websites randomly sampled from
Alexa 10K-100K websites. To improve coverage of fin-
gerprinting scripts, we further use the Wayback Ma-
chine to crawl historical snapshots of known fingerprint-
ing scripts reported in recent prior work on Alexa top-
100K websites [41]. It is noteworthy that FP-RADAR is
able to establish a comprehensive longitudinal view of
web APIs usage because it conducts large-scale crawls
of Alexa top-100K websites using Wayback machine in-
stead of narrowly analyzing historical snapshots of a few
number of JavaScript libraries for fingerprinting such as
fingerprintingjs2 [1I.

Completeness issues in the Wayback Machine.
The Wayback Machine has completeness issues due to
the inherent challenges of archiving the web [9] [34]
42 [47, 56]. First, the Wayback Machine used to not
crawl websites based on their robots.txt policyE Sec-
ond, the Wayback Machine’s crawls might miss dynamic
resources. The Wayback Machine does not fully exe-
cute JavaScript during its archival process and thus
misses some client-side dynamically generated URLs
[56]. Moreover, a resource might also not be captured
by the Wayback Machine if the resource URL (file name
or path) changes; thus the same resource is present
with a different URL in the Wayback Machine’s archival
crawl as compared to our initial live crawl. Third, the
Wayback Machine crawls less popular websites less fre-
quently and thus might not crawl resources on low-
ranked websites at least once every year.

1 Note that the Wayback Machine has resumed crawling web-
sites since 2017 irrespective of their robots.txt policy [30].
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Fig. 2. FP-RADAR: (a) We use the Wayback Machine to craw! historical snapshots of scripts present on Alexa top-100K websites from

2010 to 2019, (b) We first create AST representation of crawled scripts to extract web API keywords, we then model the temporal

co-occurrence of web APIs in scripts in a graph representation, (c) We leverages the temporal graph representation to predict future

co-occurrence of web API keywords, (d) We first leverage the predicted co-occurrence to cluster web APIls based on their functionality,

we then analyze the temporal clusters to detect abuse of specific APl keywords for browser fingerprinting.

Wayback Machine crawl statistics. Despite the
aforementioned completeness issues in the Wayback Ma-
chine’s crawls, we are able to longitudinally crawl yearly
snapshots of almost 100K scripts from the Wayback Ma-
chine over the last decade (2010-2019). Based on clas-
sification of [I03], this includes 1,658 fingerprinting and
92,193 non-fingerprinting scripts from our initial live
crawl. Note that we use a two step process to crawl the
Wayback Machine: we first fetch the URLs that point
to the historical snapshots of scripts [I05] and then send
requests for those URLs to gather their script content.
The first step returns URLs with the timestamp and
the hash digest of the script content. The timestamps
enables us to crawl scripts that are one year apart from
each other and the hash digest helps us avoid crawling
duplicate scripts in the second step.

We acknowledge that FP-RADAR’s longitudinal
data collection misses a substantial number of scripts
due to the completeness issues in the Wayback Ma-
chine. Specifically, with reference to our initial live crawl,
we note that FP-RADAR is unable to crawl snapshots
of 43.09% of the scripts from the Wayback Machine.
While not ideal, we do not observe any bias in the miss-
ing scripts. Specifically, both fingerprinting and non-
fingerprinting scripts are missed with roughly the same
proportion, i.e., 43.60% and 46.74%, respectively. More-
over, despite the missing data, FP-RADAR’s longitudi-
nal data collection is able to capture the overall trend

of increasing adoption of browser fingerprinting over the
years. Specifically, we observe fingerprinting scripts on
1.16% and 3.70% of the top-100K websites in 2016 and
2018, respectively. This corroborates with the findings of
prior studies of browser fingerprinting, which reported
that 1.43% of the top-million [25] and 3.69% of the top-
100K [I7] websites conduct browser fingerprinting in
2016 and 2018, respectively. Thus, we conclude that FP-
RADAR’s longitudinal data collection using the Wayback
Machine is sufficient for us to retrospectively study the
evolution of browser fingerprinting and draw meaningful
conclusions. We discuss alternates to the Wayback Ma-
chine and ideas to improve completeness of longitudinal
crawls in Section [l

3.1.2 Graph Representation

To model guilt by association, we represent web API co-
occurrence in a graph. Specifically, we model API key-
words as nodes and include an edge between the nodes
if the API keywords co-occur in the same script. We
further weigh the edges based on the normalized co-
occurrence frequency.

API keyword extraction. To extract API keywords
from scripts, we model script text in abstract syn-
tax trees (ASTs) that normalize scripts for developer
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coding stylesﬁ ASTs also remove the non-essential
script content (e.g., comments), generalize the APIs
into generic primitives (e.g., VariableDeclaration and
ForStatement), and capture the syntactical relationship
between the APIs in form of a tree (e.g., an API call in
a loop). Most importantly, ASTs provide a traverse-able
tree representation of scripts, which allows us to extract
the API keywords. We then traverse the ASTs from their
roots to extract API keywords that match the standard-
ized web APIs [69].

Temporal graph representation. We capture the
longitudinal co-occurrence of API keywords by anno-
tating the edges with the timestamp, i.e., year, of API
keyword co-occurrence. Furthermore, we capture the fre-
quency of co-occurrence between the APIs over years by
summing the edge weights. Figure |3| demonstrates the
creation of temporal graph. The figure shows a sample
non-temporal graph representation for year 2010, 2011,
and 2012 and their aggregated temporal graph represen-
tation. It can be seen in the aggregated graph represen-
tation that the edges are annotated with all the years in
which the APIs co-occur and that the weight over the
years is combined together. For example, the weight of
edge between random and fullPath in the aggregated
graph (0.0041) is the sum of the weight of the edges
between 2010 and 2012.

3.2 Predicting APl Co-occurrence

To assist with FP-RADAR’s goal of early detection of
web API abuse for browser fingerprinting, we attempt
to predict API co-occurrence in the future. To this end,
we leverage the longitudinal connectivity of APIs with
each other to predict their future connectivity. We cap-
ture the longitudinal connectivity of APIs using hand-
crafted and graph-embedding features. Our rationale for
relying on these features is that the existing connectivity
of APIs is indicative of their future connectivity.

Hand-crafted features. We first capture API co-
occurrence patterns, targeting neighborhood connectiv-
ity, through hand-crafted features. These features model
the connectivity between APIs, centrality of APIs, and
the commonalities in API neighborhood. We also incor-
porate node weight and temporal information by giving
more value to the recently formed edges. Specifically,

2 We unpack eval’ed scripts with an instrumented browser [43].
Unpacking allows us to treat scripts as code, which otherwise will
be treated as a text string.

the weight between two nodes is multiplied by a time

factor, which decreases by one per year, for prior years.

Incorporating weighted temporal information allows us

to give more importance to the recent API co-occurrence

patterns in the graph, which might be a better represen-
tative of the future connectivity between APIs.
We list hand-crafted features below:

1. Common Neighbors: The number of common neigh-
bors between a node pair. The value is higher if the
nodes have high number of common neighbors.

2.  Adamic-Adar Index: The sum of the inverse loga-
rithmic degree of the neighbors shared by a node
pair. The nodes with fewer common neighbors have
higher values.

3.  Hub Promoted Indez: The number of common neigh-
bors divided by the number of neighbors of the node
with least degree in a node pair. The node pairs ad-
jacent to hubs (high-degree nodes) have high values.

4. Hub Depressed Inder: The number of common
neighbors divided by the number of neighbors of the
node with highest degree in a node pair. The node
pairs adjacent to hubs (high-degree nodes) have low
values.

5.  Jaccard Index: The proportion of common neighbors
by the total number of neighbors of a node pair.
The value is higher if a node pair has more common
neighbors in their neighborhood.

6. Leicht-Holme-Newman Index: The number of com-
mon neighbors divided by the product of the degree
of the node pair. The value is higher if the nodes
have low degree.

7. Resource Allocation Index: The summation of the
inverse of the degree of common neighbors between
a node pair. The value is higher if the neighbors have
low degree.

8. Salton Inder (Cosine similarity): It measures the
cosine of the angle between the neighbors of a node
pair. The more common the neighboring nodes, the
higher the value.

9. Sorensen Similarity: The proportion of the common
neighbors by the sum of the degree of a node pair.
The value is higher if the node pair has low degree.

Prior research [I3] has shown that these features are
highly predictive of the future connectivity in temporal
graphs. However, these features were only evaluated on
temporal social network graphs and they may not be
effective on temporal web API co-occurrence graphs. To
this end, we compute the information gain [46] (feature
importance) of these features to evaluate their potential
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Fig. 3. Creation of a sample temporal graph representation over years. (1), (2) and (3) represent the sub graphs for years 2010, 2011,

and 2012, respectively. (4) represents the aggregated temporal graph.

in predicting the future connectivity between web APIs
in temporal API co-occurrence graphs. Table|[l]lists the
information gain of hand-crafted features. It can be seen
from the table that almost all feature provide an infor-
mation gain of at least 5% and the top three features
provide the information gain of more than 12%. Over-
all, information gain indicates that the hand-crafted fea-
tures are generic enough to be used for predicting fu-
ture connectivity between web APIs in temporal API
co-occurrence graphs.

Features Information gain (%)
Leicht Holme Newman Index 16.52 + 1.63
Temporal Edge Weight 13.42 + 3.48
Edge Weight 12.06 + 3.16
Salton 8.61 + 1.77
Resource Allocation 8.5+ 1.94
Average Degree 7.8 £ 219
Sorensen Similarity 6.43 + 1.58
Jaccard 6+16
Common Neighbiors 5.74 + 1.51
Hub Depressed 55 £ 1.31
Adamic-Adar 484 +1.19
Hub Promoted 4.57 + 2.07

Table 1. Hand-crafted features used by FP-RADAR for graph
prediction and information gain values (averaged over 10 years)

Graph embedding-based features. We capture
more nuanced API co-occurrence patterns, potentially
not modeled by our hand-crafted features, through
graph embeddings. Graph embeddings encapsulate a
node’s neighborhood in a vector representation, such
that the similar nodes in the graph have similar vector
representation [33}[80]. We determine a node’s neighbor-
hood through a series of biased random walks. Specif-
ically, the random walks respect time order, i.e., edges

are traversed in ascending order of time, and recently
formed edges are selected with higher probability. Once
a node’s neighborhood is determined, it is mapped to
an embedding space, such that the embeddings of two
nodes that are similar to each other in the graph also
have similar embeddings. After creating the node em-
beddings, we combine the emdeddings of a node pair
using a weighted L2 regularization [33].

Edge Prediction. We use a random forest [8] machine
learning ensemble to predict the JavaScript APIs future
co-occurrence. Random forest combines the decisions
from several decisions trees, each trained on a subset of
features selected at random, and outputs the majority
decision. We configure a random forest ensemble with
100 decision trees.

Each node in the decision tree is split using the best
feature, based on information gain, among the subset of
features. We note that our classes are imbalanced, i.e.,
API pairs are far less likely to not co-occur than they are
to co-occur. Thus, we bias our model by down sampling
no-occurrence instances to the half of co-occurrence in-
stances. Penalizing the model allows us to predict the
APIs co-occurrence more favorably.

We predict the API co-occurrence over the year,
i.e., from 2010-2020, by iteratively building the tem-
poral graph. Specifically, as we move forward in time,
our temporal graph contains APIs co-occurrences from
all the snapshots thus far. For example, for year 2010,
our temporal graph only contains API co-occurrence
that existed in year 2010, however, for year 2014, the
temporal graph contains the API co-occurrence that ex-
isted between years 2010 and 2014. For each year Y, we
treat all possible API pairs, from the temporal graph
of the last year Gy _1, as probable candidates that may
co-occur in the current year. The actual co-occurrence
between the APIs in the current year Y, is considered
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as ground truth. We then use this information to train
FP-RADAR’s random forest ensemble. Once we train the
model, we use it to predict the future graph in the fol-
lowing year, i.e., year Y 4 1. Specifically, we treat all
possible API pairs, from the temporal graph of cur-
rent year Gy, as probable candidates that may co-occur
next year. Since we are retrospectively predicting the
APIs co-occurrence, we are in a unique position to also
validate the predicted APIs co-occurrence that would
happen in the future, i.e., by using the future API co-
occurrence in year Y + 1. It is noteworthy that we com-
bine both hand-crafted and graph embedding based fea-

tures to train a combined random forest ensemble.

Results. Table[2] presents FP-RADAR’s accuracy in pre-
dicting API co-occurrence over the years. We provide
separate as well as the combined accuracy of hand-
crafted and graph embedding-based features. Table
shows that FP-RADAR’s accuracy is significantly im-
proved when hand-crafted and graph embedding-based
features are combined together. Specifically, the aver-
age accuracy, over the years, for hand-crafted features
is 87.5% and graph-embedding based features is 76.24%.
When combined together, the mean accuracy increases
to 88.13%.

3.3 Clustering APl Temporal Graphs

FP-RADAR’s temporal graphs allow us to longitudinally
investigate the evolution of web API co-occurrence. To
this end, we partition temporal API graphs into clusters
to systematically analyze APIs that are used for similar
functionality together. FP-RADAR clusters the graphs
based on the Louvain method [6], which partitions the
graph such that the modularity is maximized between
clusters. If a cluster contains more than one-third of the
API keywords, FP-RADAR partitions it again into sub-
clusters.

FP-RADAR clusters temporal API co-occurrence
graphs and links clusters across consecutive years to-
gether to form temporal clusters. Specifically, FP-
RADAR links clusters together if their Jaccard similarity
in more than 20%. If more than one cluster meets the
similarity threshold in the prior year, they are merged
together in the following year. If a cluster from prior
year matches more than one clusters in the following
year, it is attached to all of the clusters in the following
year. If none of the clusters from prior years meet the
similarity threshold, a new temporal cluster is created
in the following year. Cluster from prior years that do
not get attached to the clusters in the following year,

may get attached to clusters in the coming years. Short-
lived clusters, with a lifespan of at most 2 years, are
filtered because they do not capture meaningful longi-
tudinal trends. Finally, FP-RADAR extracts 14 temporal
clusters.

Jaccard similarity threshold. Figure |4| plots the
trade-off between the number of short-lived clusters and
the merging and splitting of clusters with varying Jac-
card similarity threshold. It can be seen from the figure
that as the similarity threshold increases, the number of
short-lived clusters increases and the number of merg-
ing and splitting of clusters reduces. We pick 20% as a
threshold to link clusters, across consecutive years, be-
cause it provides the best trade-off. If we pick a higher
similarity threshold, we risk losing a significant number
of APIs, present in the short-lived clusters, and also risk
merging clusters with varying functionality, together.
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Fig. 4. Number of short-lived temporal clusters along with num-
ber of merging and splitting events with different similarity
thresholds.

3.4 Labeling Temporal Clusters

We next semi-automatically analyze the temporal clus-
ters to label them. To this end, we expect functionally
related APIs to appear together in a temporal clus-
ter. To map keywords to their respective interfaces and
APIs, we use MDN’s [69] hierarchical taxonomy of 88
APIs and 1024 interfaces. We then identify the domi-
nant APIs of each temporal cluster using this taxonomy.
Specifically, we measure the dominance of an API in a
cluster as the fraction of its keywords that exist in the
cluster.
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Year # of # of Hand-crafted Graph embeddings Combined

Nodes | Edges Accuracy Precision Recall Accuracy Precision Recall Accuracy Precision Recall
2012 | 1,170 226,013 87.12 % 78.90% 71.10% 79.40% 82.93% 86.99% 88.40% 89.50% 98.40%
2013 | 1,354 310,954 91.12% 84.25% 77.35% 77.63% 79.16% 90.13% 86.50% 91.80% 93.10%
2014 | 1.896 564,448 86.20% 89.40% 63.80% 76.18% 71.93% 79.20% 90.10% 96.0% 93.40%
2015 | 2,096 746,379 86.50% 81.30% 72.20% 71.93% 73.66% 90.76% 87.30% 89.70% 96.50%
2016 | 2,599 1,286,524 85.90% 82.10% 73.30% 73.28% 75.16% 89.50% 87.70% 97.60% 89.20%
2017 | 2,978 1,669,328 87.30% 81.14% 83.30% 74.75% 75.91% 91.01% 91.10% 94.80% 95.70%
2018 | 3,409 2,241,026 87.96% 80.90% 83.4% 74.42% 75.87% 90.35% 90.30% 95.40% 94.20%
2019 | 3,603 2,684,157 88.41% 80.30% 81.20% 78.14% 83.08% 84.41% 91.70% 92.70% 98.80%
Mean | 2,385 1,216,103 ‘ 87.58% 82.29% 75.71% ‘ 75.71% 78.13% 90.08% ‘ 89.13% 93.44% 94.91%

Table 2. FP-RADAR's accuracy in predicting APIs co-occurrence with hand-crafted and graph embedding-based features.

Labeling the fingerprinting cluster. Since differ-
ent fingerprinting techniques are often used together
[17, 25| [41] [54], we expect that the web APIs abused for
fingerprinting will be partitioned in a separate temporal
cluster. To label the fingerprinting cluster, we analyze
the following fingerprinting metrics for each of the 14
temporal clusters:

1. Percentage of API keywords that appear in finger-
printing scripts reported by [41].

Percentage of API keywords that are used in
the open-source fingerprintjs2 fingerprinting library
containing 152 API keywords [I].

Percentage of API keywords that only appear in
known fingerprinting scripts reported by [41] (i.e.,
not in any non-fingerprinting scripts).

Ratio of the fraction of API keywords that appear
in fingerprinting scripts to that in non-fingerprinting
scripts as reported by [41].

Note that FP-RADAR partially relies on FP-Inspector
[41] to label the fingerprinting cluster. However, we ar-
gue that it is the best available ground truth for browser
fingerprinting, as compared to using other alternatives
such as filter lists. Disconnect [22] only provides the do-
main names of fingerprinting vendors, rather than the
full URLs of fingerprinting scripts, and thus cannot dis-
tinguish between fingerprinting and non-fingerprinting
resources served from the same domain.

Results. Table [3|shows the temporal clusters and their
key characteristics. Each row represents a cluster and
the rows are sorted based on the cluster size. We note
that the top-ranked cluster clearly has significantly more
pronounced fingerprinting metrics than other clusters,
we label it as fingerprinting and the remaining as other.
First, 63% of the keywords in the fingerprinting cluster
are used in fingerprinting scripts, which is at least ~3X
more than any other temporal cluster. Second, 36% of

the keywords in the fingerprinting cluster are used in fin-
gerprintjs2, which is at least ~6X more than any other
temporal cluster. Third, 13% of the keywords exclu-
sively appear in fingerprinting scripts, which is at least
~4X more than any other temporal cluster. Finally, the
fraction of the keywords appearance in fingerprinting to
non-fingerprinting scripts is 26.85, which is ~4X more
than any other temporal cluster.

4 Analysis of APIs in the
Fingerprinting Cluster

In this section, we conduct an in-depth analysis of the
fingerprinting cluster detected by FP-RADAR. Table
lists a subset of the keywords of top dominant APIs
in the fingerprinting cluster We investigate how the
functionality of dominant APIs is being abused for fin-
gerprinting. We also assess the time-to-detection of FP-
RADAR as compared to their browser release and dis-
closure dates. For each API keyword, we define release,
disclosure, and detection dates as follows:
1. Release refers to the earliest date of support by one
of the major browsers (i.e., Chrome, Firefox, Safari).

2. Appearance refers to the earliest date when the API
keyword appeared in our dataset.
3. Disclosure refers to the earliest date that a proof-

of-concept fingerprinting design or implementation
involving the API keyword was presented in a re-
search publication, W3C documentation, or public
forums.

3 We select a representative subset out of 313 total keywords
to capture diverse use cases and cover almost all of the time-to-
detection categories for each API. We will include the complete
table along with the code/data as part of the artifact release.
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Cluster | Life-span | % keywords | % keywords % keywords in | FP/Non- | Dominant
size in years in FP scripts in fpjs2 [1] only FP scripts | FP ratio | APIs
313 5 23% 2% 0% 6.06 Long Tasks, Resource Timing, Background Tasks
256 4 15% 1% 0 1.43 XMLSerializer, Mouse, ShadowRoot
222 6 17% 6% 2% 3.13 Mouse, TouchEvents, Canvas
161 4 11% 3% 2% 0.89 CSS Painting, XMLHT TPRequest
143 4 11% 3% 0 0.79 VideoTrack, Geolocation, Long Tasks
142 10 20% 5% 0 0.61 HTMLIFrameElement, Navigator, URL
141 5 15% 4% 0 1.19 Visual Viewport, Crypto, Channel Messaging
125 4 10% 2% 0 0.25 Fetch API, Notification, NodeFilter
121 9 18% 4% 0% 1.24 Resource Timing, Page Visibility, History
92 5 20% 2% 0% 0.98 FullScreen, VideoTrack, HTMLMediaElement
78 4 3% <1% 3% 1.94 FileReader, Web Animations, XMLHttpRequest
67 4 3% 2% 0 0.27 Sensors, Gamepad, Fullscreen, Web Bluetooth
28 4 2% 1% 0 0.00 History, HTMLElement, HTMLTableElement

Table 3. Temporal clusters detected by FP-RADAR and their key characteristics. Based on their fingerprinting potential, clusters are

marked with different gradients of red. The fingerprinting cluster (represented by

) clearly stands out as compared to the

remaining clusters in terms of its similarity with known fingerprinting scripts.

4. Detection refers to the earliest date when the API
keyword was detected as a member of the finger-
printing cluster by FP-RADAR.

Based on this information, we classify each API key-
word in the fingerprinting cluster into the following 4
categories:

1. FP-RADAR detects abuse of API-keywords that
are yet undisclosed to the best of our knowl-
edge. Denoted with [green color in Table
FP-RADAR detects a number of yet-undislosed
API keywords such as deviceMemeory (Navigator),
WebGL2RenderingContext (WebGL), illuminance
(Sensor), and paint (Performance).

2. FP-RADAR detects abuse of APIs before dis-
closure. Denoted with yellow color in Table
FP-RADAR detects a number of API key-
words before their disclosure such as getGamepads
(GamePad), visibilityState (Page Visibility),
and clipboardData (Clipboard).

3. FP-RADAR detects abuse of APIs after disclosure.
Denoted with [red color in Table 4| FP-RADAR de-
tects some API keywords after their disclosure such
as longitude (Geolocation), DeviceMotionEvent
(Sensor), and plugins (Navigator).

4. FP-RADAR detects abuse of APIs at disclosure.
Denoted with 'orange color in Table 4] FP-RADAR
detects a number of API keywords at their disclo-
sure such as chargingTime (Battery Status), now
(Performance), and force (Touch). Note that most
of the late detections are in fact detected as early as

possible by FP-RADAR because the API keywords
did not appear in our data before the detection date.
In other words, FP-RADAR detects these API key-
words at the first possible opportunity. We also de-
note these with orange color in Table |4f and include
API keywords such as altitudeAccuracy (Geoloca-
tion), bufferData (WebGL), and chargingchange
(Battery Status).

Next, we do a manual deep dive into each of the APIs
listed in Table [4|in the descending order of their domi-
nance. Note that we do not discuss some of the known
web APIs, such as canvas and canvas font, webRTC,
AudioContext, that are already shown to be widely
abused for browser fingerprinting [2] 25].

Battery Status, standardized in 2011 [49] and sup-
ported in major browsers as early as 2014, is a non-
permissioned API that provides information about a
device’s battery status to help web applications ad-
just resource usage when battery power is low. In
2015, Olejnik et al. disclosed that battery capacity
and charging level can be abused for fingerprinting
[78] More specifically, the information about current
battery level (level) and predicted time to charge
(chargingTime) or discharge (dischargingTime) can be
used to estimate a device’s battery capacity, which is
lower than its design capacity and often distinctive. FP-
RADAR detects these keywords in 2015, right at the

4 Due to these fingerprinting concerns [74], Firefox stopped sup-
porting the API in 2017 [11].



FP-RADAR: Longitudinal Measurement and Early Detection of Browser Fingerprinting = 11

APl Name Keywords Release Date | Appearance Date | Disclosure Date | Detection Date
chargingTime 2014 2015 2015 [78] 2015
chargingchange 2014 2017 2015 |78] 2017
Batt tat
attery Status dischargingTime 2014 2016 2015 [78] 2016

Navigator

hardwareConcurrency 2014 2014 2017 [87]
oscpu 2004 2015 2009 [57]

Network Information

downlink
downlinkMax
rtt

altitudeAccuracy

2017 2018 2020 [32] 2018
2017 2018 2020 [32] 2019
2017 2017 2020 [32] 2017
2009 2016 2008 2016

. 82
Geolocation geolocation 2009 2012 2008 [82] 2011
bufferData
webgl 2011 2011 2012 [72]
WebGL WEBGL_debug_ renderer_info 2014 2014 2016 [25]
Performance
2012 2012 2016
Page Visibility visibilityState 2013 2013 2020 [35] 2017
focused 2013 2013 2020 [35] 2013
Web Worker applicationCache 2010 2011 2017 2011
Gamepad 2014 2014 2020 [14] 2019
GamePad getGamepads 2014 2014 2020 [14] 2014
Mouse movementX 2014 2016 2013 |92] 2016
force 2012 2013 2013 [92] 2013
Touch ontouchstart 2011 2011 2013 [92] 2011
Sensor
copy 2007 2018 2020 [37] 2019
Clipboard clipboardData 2013 2018 2020 [37] 2018
paste 2007 2018 2020 |37] 2019

Table 4. List of dominant API detected by FP-RADAR and their time-to-detection: _ early detection

on-time detection _
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time of disclosure. Furthermore, FP-RADAR detects a
change in the abuse of Battery Status API staring
2017. More specifically, fingerprinters started gathering
the change frequency of the battery status using key-
words such as chargingchange, chargingtimechange,
dischargingtimechange, and levelchange that reflect
different workloads to create short-lived fingerprint.
Script [2| shows a fingerprinting snippet that uses the
aforementioned keywords.

Navigator, standardized in 1997 and supported by
all major browsers since then [62], is a non-permissioned
interface that provides information about the browser.
In 2009, Mayer [57] disclosed that the navigator ob-
ject provides information about a browser’s settings
that can be abused for fingerprinting. More specifi-
cally, the user agent string (userAgent), the languages
supported by the browser (languages), the list of in-
stalled plugins (plugins), and supported file formats
(mimeType) can reveal distinctive information about a
browser. Since these features individually might not be
sufficient to uniquely identify a browser, fingerprinters
tend to gather a number of device-specific information
exposed by navigator to increase the entropy of the fin-
gerprint [54]. Script [3| shows a fingerprinting snippet
that gathers 18 different navigator properties includ-
ing the aforementioned keywords. FP-RADAR detects
navigator-related keywords as early as 2013, which is
roughly around the time when researchers first docu-
mented fingerprinting on the web through large-scale
measurements [76]. Note that the Navigator interface
has been updated several times over the years to sup-
port new features. FP-RADAR is able to detect the abuse
of most of the newly introduced navigator properties
in a timely fashion. For example, FP-RADAR detects
hardwareConcurrency, which returns the available num-
ber of logical processor cores, in 2014 right after its stan-
dardization even though its abuse was disclosed later in
2017 [87].

Network Information API, standardized in 2014
[6I] and supported by major mobile browsers (ex-
cept Safari) since 2017 [63], is a non-permissioned API
that provides network connection information of the
browser. More specifically, connection type (type, such
as WiFi, WIMAX, Ethernet), delay (rtt), bandwidth
(downlink and downlinkMax), and change in connec-
tion type (onchange) information are accessible via this
API. It is noteworthy that potential privacy issues of
the Network Status API were originally dismissed by
W3C (“minimal impact on privacy or fingerprinting”)
[50] and none of the prior fingerprinting measurement
studies report its abuse [10, [24] 57 [72] [78] [100]. How-

ever, as later acknowledged by W3C in 2020 [32], this
information could be abused to fingerprint a user based
on the time and order of transitions between networks
as well as user location. Note that Firefox and Safari ex-
plicitly declined to support this API due to fingerprint-
ing concerns [I2] [94]. FP-RADAR is able to detect these
keywords as soon as 2017, right at their release date but
before their disclosure. Script [4]shows an example finger-
printing snippet that collects all of the aforementioned
network properties.

Geolocation API, standardized in 2008 [82] and
supported in all major browsers around 2009, is a
permissioned API that provides information about
geographical location of device including (latitude,
longitude, altitude, speed), as well as the accu-
racy of the acquired location data (altitudeAccuracy),
and whenever the position of the device changes
(watchPosition). The information exposed by the Ge-
olocation API can be abused for fingerprinting due to
its high precision (a double representing the position
in decimal degrees). Note that the Geolocation API was
permissioned from the very beginning because of the ob-
vious privacy concerns acknowledged by W3C [82]. FP-
RADAR detects these keywords as early as 2011, at the
earliest formation of the fingerprinting cluster. Note that
the permission status (i.e., whether or not the user has
granted permission) itself reveals one bit of information
that can be combined with other fingerprinting features.
FP-RADAR detects the abuse of PERMISSION_DENIED
and POSITION UNAVAILABLE in 2016. Script [f] shows a
fingerprinting snippet that gathers the aforementioned
geolocation information, in addition to other fingerprint-
ing information.

WebGL API, standardized in 2010 [48] and sup-
ported in all major browsers soon afterwards, is a
non-permissioned API that can render interactive3D
objects in the browser and manipulate them through
JavaScript. WebGL API can be abused for finger-
printing in two main ways. First, WebGL can be
used to list all WebGL capabilities to build a fin-
gerprint. For example, scripts can check for We-
bGL support using window.WebGLRenderingContext

and  getContext(‘webgl’) and list capabil-
ities such as  SHADING_LANGUAGE_VERSION  or
WEBGL_debug_renderer_info. Second, WebGL
can be used to render a canvas image (using

WebGLRenderingContext.canvas) that is then encoded
and hashed (using toDataURL) to build a fingerprint.
The rendering varies across devices due to differences in
the rendering pipeline that involves the operating sys-
tem, web browser, rendering engine, graphics driver, and
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the underlying hardware. Note that WebGL 1 [21I] was
extended to WebGL 2 [20] in 2017 to include new capa-
bilities such as pixel buffer objects (GetBufferSubData),
Primitive restart (draw_primitive_restart), and ras-
terizer discard (RASTERIZER_DISCARD). FP-RADAR de-
tects the keywords associated with WebGL 1 as early
as 2011 and WebGL 2 as early as 2017.

Performance API, standardized in 2011 [45] and
supported in all major browsers around 2012, is a non-
permissioned API that covers Performance Timeline,
Resource Timing, Performance Timeline, Navigation
Timing, Resource Timing, and Paint Timing. It al-
lows scripts to accurately measure various performance-
related metrics during the page load such as DNS us-
ing domainLookupStart and domainLookupEnd or HTTP
using fetchStart, requestStart, responseStart, and
responseEnd. However, access to high resolution tim-
ing information (up to sub-millisecond granularity) can
be abused for fingerprinting by precisely timing cer-
tain operations that depend on the underlying soft-
ware/hardware pipeline [I07]. For example, in [88] they
measured clock difference on a device using combi-
nation of Performance and Crypto API. Specifically,
they used performance.now to time the execution
of the pseudo-random generator (getRandomValues)
to create a browser fingerprint. FP-RADAR detects
most of the associated keywords as early as 2016.
Paint Timing API is a recent addition to Perfor-
mance API and has been supported by Chrome since
2017 and in other major browsers since 2020 [64].
This API measures the time it takes between the
moment a user navigate to a URL and the mo-
ment a pixel renders on a screen (e.g., first-paint
or first-contentful-paint representing time be-
tween navigation start performanceEntry.startTime
and when the browser renders any/content pixel, re-
spectively). This timing information can be distinctive
across different browsers based on differences in their
underlying compute/communication performance. FP-
RADAR captures the abuse of Paint Timing API in 2019,
the first time it appears in our data. Script |7| shows a
fingerprinting snippet that measures the First Time to
Paint and First Contentful Paint in addition to other
fingerprinting information.

Page Visibility API, standardized in 2011 [44]
and supported in all major browsers by 2013, is a
non-permissioned API. This API provides access to de-
termine the visibility state (i.e. visible, hidden, and
prerender) or be notified when the visibility state
of a document changes. While the visibility state (or
the change in visibility state) is not directly useful

// Register an event that will be

// triggered on visibility state change.

+ document.addEventListener ('visibilitychange
, VisibilityStateHandler) ;

w N

6 // return visibility state of the page
7 function getVisibilityState() {
8 return document.visibilityState;

11 // return current time

12 function getCurrentTime () {

13 return Date.now () ;

14 T

16 // Capture current time & visibility state.
17 function VisibilityStateHandler () {

19 VisibilityStateFP = {
20 VisibilityState: getVisibilityState(),
21 CurrentTime: getCurrentTime ()

2 3,

Script 1. Simplified version of a script that uses the Visibility
API to conduct ephemeral fingerprinting. Each time the visibility
state changes, it is recorded with the current timestamp.

for fingerprinting, but it can be abused for ephemeral
fingerprinting [35] when the changes in page visibility
state can be correlated across different sites. Specifically,
when a user switches between a pair of tabs/windows
then a change in the visibility state will be simultane-
ously triggered for both tabs/windows. This informa-
tion can be correlated by a script on both tabs/win-
dows to link whether the tabs/windows are on the same
browser/device. For example, Script |1| measures times-
tamps of the changes in page visibility state. It uses
Date.now to log the exact time the page visibility state
changes (onvisibilitychange). The sequence of times-
tamps when the page visibility state changes is expected
be the same and distinctive across all of the co-visible
sites in a user’s browser/device. Thus, it can be used
to build a cross-site ephemeral fingerprint. Disclosed in
2020 [35], FP-RADAR first detects the abuse of this API
in 2017.

Web Worker API, standardized in 2009 [36] and
supported in all major browsers by 2010, is a non-
permissioned API. This API allows sites to run heavy
processing scripts in the background without affect-
ing the performance of the main page. Although
DOM and Window objects are not accessible to Web
Worker API, however, they do have access to a num-
ber of other APIs including WebGL. Workers can be
used to run a fingerprinting technique (e.g., Can-
vas fingerprinting using OffscreenCanvas [29]) in a
background thread separate from the main execution
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thread of a web application without making the main
thread slow or blocked. We have not detected such
a scenario in our dataset of scripts. However, FP-
RADAR detects the presence of this API as early
as 2011 where scripts simply probe the support sta-
tus of this API (e.g., using window.Worker) alongside
other fingerprinting information. FP-RADAR also de-
tects SharedWorkerGlobalScope.applicationCache in
a number of scripts as the cache of the worker that allow
scripts to set and get client-side state as an alternative
to cookies.

Gamepad API, standardized in 2014 [91] and sup-
ported in all major browsers since then is a non-
permissioned API that allows browsers to connect to
gamepads. getGamepads method returns the list of
Gamepad objects as well as their configuration such as
axes, buttons, displayIld or hand. Probing whether a
browser has a connected Gamepad and, if there is one
connected, collecting the aforementioned configuration
information can reveal distinctive information about a
browser. Due to its potential privacy threats, start-
ing 2020, Mozilla requires thirds-party iframes to ask
for permission before calling the getGamepads method
[I4]. FP-RADAR detects these keywords as early as
2014, right after it was supported in major browsers,
even though it was disclosed 6 years later. Script
shows a fingerprinting snippet from 2014 that probes the
presence of Gamepad API and calling the getGamepads
method in addition to collecting other fingerprinting in-
formation.

Mouse-related interfaces, including MouseEvent,
WheelEvent, MouseScrollEvent, MouseWheelEvent, and
Pointer Lock, was first introduced in 2004 and has since
been updated to support new features. It can capture
coordinates of a pointing device’s (such as a mouse) in-
cluding clientX/Y, pageX/Y, offsetX/Y, movementX/Y
in addition to its events such as click, dblclick, and
mousemove without granting any permission. Beginning
as early as 2004 [84], there has been a steady stream
of studies demonstrating how mouse movements can
be used to identify users [99]. FP-RADAR first detects
the abuse of mouse-related keywords for user behav-
ior fingerprinting in 2016 and since then has detected
other properties such as movementX/Y, deltaX/Y/Z, and
wheelDelta. Script [9] shows an example fingerprinting
snippet that collects mouse movement information in
addition to other fingerprinting information.

TouchEvent interface, standardized in 2011 [67] and
supported by all major browsers including mobile ver-

sion of browsers since 2013[] TouchEvent is a non-
permissioned interface that is similar to mouse inter-
faces except that it supports simultaneous touches and
at different locations on the touch surface. Beginning
as early as 2013 [92], there has been a steady stream
of studies demonstrating how touch events can be use
to identify users [99]. Specifically, frequency of tapping
(captured by events such as ontouchstart, touchenter,
touchleave, and touchmove), and strength of tapping
(captured by force) can be used for user behavior fin-
gerprinting. FP-RADAR first detects the abuse of touch-
related keywords for user behavior fingerprinting in 2011
and since then has detected other properties such as
rotationAngle.

Sensor APIs, standardized in 2012 [102] and is
only supported in Chrome since 2017. Privacy-oriented
browsers like Firefox and Safari have declined to im-
plement this API due to privacy concerns [65] [94]. It
is a permissioned API that provides sensor informa-
tion such as light intensity (using AmbientLightSensor)
and the force caused by vibration or a change in
motion (using Accelerometer. Older interfaces such
as DeviceMotionEvent and DeviceOrientationEvent,
which are not part of Sensor AIP but implemented by
all major browsers (except Safari) since 2011 [60], pro-
vide non-permissioned access to a subset of sensors re-
lated to a device’s position and orientation. The infor-
mation exposed by these APIs and interfaces has been
shown to be used for user behavior fingerprinting [7}, [98]
104]. FP-RADAR detects the sensor keywords associated
with DeviceMotionEvent starting from 2017. Although
in the previous studies, the sensor data was collected us-
ing DeviceMotionEvent, we detect the abuse of Sensor
API that are not supported by DeviceMotionEvent
For example, FP-
RADAR detects the abuse of AmbientLightSensor and
illuminance that are not yet disclosed. Script [10] shows
an example fingerprinting snippet that collects sensor

and DeviceOrientationEvent.

information in addition to other fingerprinting informa-
tion.

Clipboard API, standardized in 2015 [97] but not
supported as early as 2018 by major browsers [59], im-
plements clipboard operations such as copy, cut, and
paste. Moreover, if a user grants permission, it pro-
vides asynchronous access to read and modify the con-
tents of the system clipboard using read (or readText
or clipboardData.getData(’Text’)) and write (or

5 Desktop version of Firefox started supporting this interface
lately in 2017 [66].
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writeText) methods. However, since this API can ac-
cess the clipboard data, there are serious privacy con-
cerns due to the possibility that the clipboard might con-
tain personally identifiable information (PII) [37]. FP-
RADAR detects the abuse of Clipboard API as early as
2018. Script [6] shows an example fingerprinting snippet
that collects clipboard information in addition to other
fingerprinting information.

Validation. We sift through public disclosures
to validate the fingerprinting potential and abuse of
APIs listed in Table Figure [5| shows the break-
down of disclosed and undisclosed APIs along with
FP-RADAR’s detection time. We find that the 44% of
API keywords detected by FP-RADAR are still publicly
undisclosed. We try to validate the remaining undis-
closed detections by comparing with DuckduckGo’s re-
cently released list of fingerprinting APIs [19]. We
note that FP-RADAR detects more than 80% of fin-
gerprinting API keywords detected by DuckDuckGo.
However, 90% of keywords detected by FP-RADAR, in-
cluding several well-known fingerprinting APIs, such
as Battery.changingTime, Geolocation.geolocation,
and WebGL.WEBGL_debug_renderer_info are still unde-
tected by DuckDuckGo. DuckDuckGo primarily misses
the remaining keywords because it detects a limited
number of APIs, i.e., 96, using a very simple heuristic
that uses the ratio of an APIs appearance in “suspi-
cious” script to an “non-suspicious” script to label them
as fingerprinting (more details in Section .

disclosed
14.0% 29.0%
early on-time
13.0% late
44.0%

not-yet-disclosed

Fig. 5. Breakdown of disclosed and undisclosed APls along with
FP-RADAR's detection time.

5 Limitations

In this section, we discuss some of the limitations of FP-
RADAR’s pipeline including completeness of retrospec-
tive measurements, robustness of the analysis technique,
and ground truth assessment of fingerprinting scripts
and fingerprinting techniques.

Measurements. FP-RADAR relies on the Wayback
Machine for retrospective longitudinal measurements of
browser fingerprinting. As we discuss in Section
the Wayback Machine’s archiving process has limita-
tions that lead to potentially incomplete coverage. Un-
fortunately, to the best of our knowledge, there is no
other publicly available service that archives complete
historical version of webpages. HTTP Archive [38] is
a related project that archives millions of URLs each
month. However, it does not store the response bodies
of all of the resources [31] and the downloadable data is
only available for the last 6 year, i.e., 2016 to 2021 [39].
Given the democratization of large-scale web crawling
tools and capabilities, going forward, future work can
consider conducting live crawls to complement missing
resources in archiving services such as the Wayback Ma-
chine or HTTP Archive.

Robustness. FP-RADAR relies on static analysis of
JavaScript code snippets, i.e., AST-based representa-
tion of scripts, to extract web API keywords. Re-
lying on static analysis makes it challenging for
FP-RADAR to process obfuscated scripts and at-
tribute some generic keywords to APIs. Specifically,
some fingerprinting scripts use eval-based code ob-
[93]
implemented by multiple APIs, e.g., font is im-

fuscation techniques and some keywords are
plemented by CanvasRenderingContext2D [58] and
HTMLElement.style [6I]. We attempt to unpack ob-
fuscated scripts by loading them in an instrumented
browser and extracting scripts as they are parsed by
the JavaScript engine. This approach is able to unpack
scripts containing eval or Function, but does not fully
address other more sophisticated obfuscation techniques
[89]. While we do not fully address the keywords at-
tribution issue because it is non-trivial to attribute a
generic keyword to the calling API without executing
the scripts, we mitigate this issue in our analysis by fil-
tering generic keywords that belong to multiple APIs.
To fully address these concerns, FP-RADAR can be ex-
tended to include dynamic analysis as well; however, it
suffers from code coverage issues that are non-trivial to
address. Note that FP-RADAR is not susceptible to ob-
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fuscation by a small number of scripts since it leverages
tens of thousands of scripts to build its API keyword
co-occurrence graph representation. Similarly, filtering
a small number of generic keywords does not affect the
correctness of the analysis.

Ground truth. Since FP-RADAR uses unsupervised
clustering, it relies on the classification of fingerprint-
ing scripts [I03], provided by FP-Inspector [41], to label
the fingerprinting cluster. Since the classifications of FP-
Inspector are not validated for scripts observed in prior
years, we cannot solely rely on that as our ground truth
while investigating fingerprinting techniques in Section
To mitigate this concern, we conduct manual analy-
sis to validate the fingerprinting abuse of the APIs de-
tected by FP-RADAR. We also rely on a wide range of
additional external sources including W3C documents,
published research papers, and bug reports to assist with
our manual analysis.

6 Conclusion

We presented FP-RADAR, a machine learning approach
for early detection of web API abuse for browser fin-
gerprinting. FP-RADAR advances the state-of-the-art in
browser fingerprinting in two major ways. First, unlike
prior work that is limited to analyzing a specific fin-
gerprinting technique(s) at a particular point in time,
FP-RADAR conducts a retrospective longitudinal mea-
surement study of browser fingerprinting over the last
decade using the Wayback Machine. Second, unlike prior
work that is limited to detecting deployment of already
known fingerprinting techniques, FP-RADAR is able to
detect abuse of new methods of existing web APIs or
new web APIs altogether by leveraging the aforemen-
tioned longitudinal measurements to model and cluster
the evolution of API usage as a temporal graph. Most
notably, FP-RADAR detects novel types of user environ-
ment/hardware fingerprinting such as peripheral config-
uration via Gamepad and system capabilities via Network
Information APIs as well as ephemeral fingerprinting of
Page Visibility API even though it does not directly
expose highly identifying information.

FP-RADAR is able to detect the abuse of web API
features before/at their disclosure, thus demonstrating
its utility as an early detection system that can in-
form standards bodies and browser vendors interested
in designing and deploying mitigations in a timely fash-
ion. FP-RADAR can complement prior approaches (e.g.,
[25] [41] [86]) to detect fingerprinting scripts by helping

them adapt to new and evolving fingerprinting tech-
niques. In addition to disclosing our findings to relevant
entities, we plan to release FP-RADAR’s code and longi-
tudinal measurement dataset artifacts to foster follow-
up research. We also plan to collaborate with existing
web tracking projects (e.g., [I8,183]) to develop a public-
facing implementation that can leverage their live web
crawls in the future.
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// Battery Status API support probing.

if ('getBattery' in navigator)
BatteryManagerObj=navigator.getBattery ()
|| navigator.battery ()
BatteryManagerObj.then (monitorBattery) ;

else {
ChromeSamples.setStatus ('not supported');

// Get battery level, charging,
// and discharging time.
function getStatus(battery) {
return Math.floor (100 * battery.level)
}

// Trigger the function whenever

// the battery status changes.

function monitorBattery(battery) {
// get the battery level
getStatus (battery) ;

// Monitor for further updates.
["chargingchange","chargingtimechange",
"dischargingtimechange", "levelchange"].
forEach(function(battery) {

a.addEventListener (battery,
B

null)

}

Script 2. Simplified version of a script that uses the Battery

status API for fingerprinting.

7 Appendix

We provide examples of actual fingerprinting snippets

to support the discussion in the main text. We make

minor revisions to the code to improve its readability.

Note that all of the code snippets provided here use mul-

tiple fingerprinting techniques. However, we only show

the relevant part of the code that is pertinent to our

discussion in the main text.
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1 function getUseragentData(t) {

2 nvgtr_dict = ,

3 nvgtr_dict.PX59 = navigator.userAgent,

4 nvgtr_dict.PX61 = navigator.language,

5 nvgtr_dict.PX313 = navigator.languages,

6 nvgtr_dict.PX63 = navigator.platform,

7 nvgtr_dict.PX86 = !!(navigator.doNotTrack
[l null navigator.doNotTrack ||
navigator.msDoNotTrack ||
window.doNotTrack),

8 nvgtr_dict.PX88 = getMimeType (),

9 nvgtr_dict.PX169 = navigator.mimeTypes &&

navigator.mimeTypes.length || -1,
10 nvgtr_dict.PX62 = navigator.product,
11 nvgtr_dict.PX69 = navigator.productSub,
12 nvgtr_dict.PX64 = navigator.appVersion;
13 nvgtr_dict.PX65 = navigator.appName
14 nvgtr_dict.PX66 = navigator.appCodeName
15 nvgtr_dict.PX67 = navigator.buildID
16 nvgtr_dict.PX51 = navigator.plugins,
17 nvgtr_dict.PX60 = "onLine" in navigator &&
!0 === navigator.onLine,
18 nvgtr_dict.PX68 = "cookieEnabled" in
navigator && !0 ===
navigator.cookieEnabled }

o function getMimeType () {
1 try
2 var t = navigator.mimeTypes &&
navigator.mimeTypes.toString () ;
23 return "[object MimeTypeArray]" === t ||
/MSMimeTypesCollection/i.test(t) }
24 catch (t) { return !1} +

Script 3. Simplified version of a script that reads several of the
Navigator API properties to conduct fingerprinting.

1 function NetworkConnection (i) {

2 function connectionObject(t, i, r) {

3 // Returns the NetworkInformation object

4 // that contains information about the

5 // network connection of a device.

6 return navigator.connection ||
navigator.mozConnection ||
navigator.webkitConnection

+

9 // Return network properties.
0 return t(a, i.Events), r(a, [{
value: function () {
this._dataQueue.addToQueue (

timestamp: this.getEventTimestamp (),
connectionType: this._connection.type 7
this._connection.type : "",
efectivType:this._connection.effectiveType
? this._connection.effectiveType : "",
downlinkMax: this._connection.downlinkMax
? this._connection.downlinkMax.toString ()
: "" ,downlink: this._connection.downlink 7
this._connection.downlink.toString() : "",
rtt: this._connection.rtt 7
this._connection.rtt.toString() : "",
)3

+
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Script 4. Simplified version of a script that uses several properties
of the Network Information API to conduct fingerprinting.

// Other tracking functionality.

1
3 this.monitorEmailHashes = function() {...},
1 this.doCookieMatching = function() {...},

7 // Collection of latitude and longitude.
s this.requestGeo = function() {

o var e = this;

10 navigator.geolocation.getCurrentPosition (
11 function(t) {

12 e.bountyAppend ("lat",t.coords.
13 e.bountyAppend ("lng",t.coords.
14 e.bountyAppend ("acc",t.coords.

latitude),
longitude) ,
accuracy)

15 }, function(t) {

16 e.error ("Could not lookup Geo Location")
17}, {

18 enableHighAccuracy: !0,

19 timeout: 1500,

20 maximumAge: Infinity

21 })

22},

// Collection of other fingerprinting
information.

5 this.collectBrowserInfo = function() {...}

Script 5. Simplified version of a script that collects email hashes,
does cookie matching and uses Geolocation API to conduct
fingerprinting.

1 oo
2 // Capturing clipboard text & current time.

;3 u._sendToQueue = function(e, t) {
| var n = u.getEventTimestamp(e),
5 o = e.clipboardData 7

6 e.clipboardData.getData("text")
7 window.clipboardData 7

8 window.clipboardData.getData ("text"):"";

9

10 var s = u.getExports().

11 EnumDef .Events.clipboardEventType [e.typel;

13 u._dataQueue.addToQueue ("clipboard_event",
14 {timestamp: n, copiedText: o,

15 clipboardEventType: s1})

16

17 ¥

18

Script 6. Simplified version of script that uses the Clipboard API
to conduct ephemeral fingerprinting.

2 // Reading the timing of webpage paint
events.

s {

!

key: "onWindowLoad",
5 value: function() {
6 y.a.preloadAll () ;

7 e = performance.getEntriesByType ("paint");

8

9 e.forEach(function(e) {

10 console.log("".concat(e.name, ": ").
concat (e.startTime))

11 i)

Script 7. Simplified version of script that uses the Performance
API to conduct fingerprinting.
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1

2 onLoad = function() {

5 frame = document.createElement ('iframe');
+ flags = [];

¢ 1if (isPresent(navigator, 'getGamepads')) {

flags.push('gamepads');

10 flags = flags.join(',');

11 frame.src = ("http://" + host + "/
statframe.html#") + flags;

2 frame.style.cssText = 'display: none;';

return document.body.appendChild (frame) ;

s

Script 8. Simplified version of a script that probes the GamePad
API to conduct fingerprinting.

1 PR
> function mn(t) {

;  g("PX847");

4 var n = p(Q);

5 if (va) {

6 var e = palsil;

7 ua = si, la = n;

8 var r = t.deltaY || t.wheelDelta
9 [l t.detail;

10

11 if (r = +r.toFixed(2), null === e) {
12 fa++;

13 var o = wn(t, !'1);

14 0.PX172 = [r], o0.PX173 = gt(n)
15 , palsi] = o

16

7 else ma.mousewheel <= pal[si].PX172.length

18 7 (Xn(), va = !1) : palsi].PX172.push(r)}
19
20 X("PX847")

+

function gn() {
if (g("PX847"), pa.mousemove) {

AW N =

NN NN NN NN
B 5 oo

t = pa.mousemove.coordination_start.length
6 , I = pa.mousemove.
7 coordination_start[t-1].PX70,
8 e = Sn(Tn(_t(pa.mousemove.
9 coordination_start))),
30 r = Tn(_t(pa.mousemove.coordination_end)) ;
31 r.length > 0 && (r[0].PX70 -= n);
32 var o = Sn(r);
33
34 pa.mousemove.PX172 = "" I== o
35 ?7 e+ "|" + 0 : e,

36 delete pa.mousemove.coordination_start,
37 delete pa.mousemove.coordination_end,

38 yn(pa.mousemove , "mousemove'"),
39 pa.mousemove = null

40 T

11 X("PX847")

12}

43

Script 9. Simplified version of a script that uses the Mouse API to
conduct fingerprinting.

N

9

vn.DataMappingDefs = {

// This script define 23 variable with the
name of methods/properties related to
each API. Then starts collecting
information for each API including
Sensor API.

AMBIENT _LIGHT_EVENT_MAP: ["eventSequence", "
timestamp", "illuminance"],

ACCELEROMETER_EVENT_MAP: ["eventSequence", "
timestamp", "x", "y", "z"],

GYRO_EVENT_MAP: ["eventSequence", "timestamp
", "absolute", "alpha", "beta", "gamma"

15
ORIENTATION_EVENT_MAP: ["eventSequence', "
timestamp", "absolute", "alpha", "beta",
" gamma ||] s

Script 10. Simplified version of a script that uses Sensor APlIs to

conduct fingerprinting.
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