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Abstract. It is a common practice to think of a video as a sequence of
images (frames), and re-use deep neural network models that are trained
only on images for similar analytics tasks on videos. In this paper, we
show that this “leap of faith” that deep learning models that work well on
images will also work well on videos is actually flawed. We show that even
when a video camera is viewing a scene that is not changing in any human-
perceptible way, and we control for external factors like video compression
and environment (lighting), the accuracy of video analytics application
fluctuates noticeably. These fluctuations occur because successive frames
produced by the video camera may look similar visually, but are perceived
quite differently by the video analytics applications. We observed that the
root cause for these fluctuations is the dynamic camera parameter changes
that a video camera automatically makes in order to capture and produce
a visually pleasing video. The camera inadvertently acts as an “uninten-
tional adversary” because these slight changes in the image pixel values in
consecutive frames, as we show, have a noticeably adverse impact on the
accuracy of insights from video analytics tasks that re-use image-trained
deep learning models. To address this inadvertent adversarial effect from
the camera, we explore the use of transfer learning techniques to improve
learning in video analytics tasks through the transfer of knowledge from
learning on image analytics tasks. Our experiments with a number of dif-
ferent cameras, and a variety of different video analytics tasks, show that
the inadvertent adversarial effect from the camera can be noticeably offset
by quickly re-training the deep learning models using transfer learning. In
particular, we show that our newly trained Yolov5 model reduces fluctu-
ation in object detection across frames, which leads to better tracking of
objects (~40% fewer mistakes in tracking). Our paper also provides new
directions and techniques to mitigate the camera’s adversarial effect on
deep learning models used for video analytics applications.

1 Introduction

Significant progress in machine learning and computer vision [9,24,41,42], along
with the explosive growth in Internet of Things (IoT), edge computing, and
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high-bandwidth access networks such as 5G [7,37], have led to the wide adoption
of video analytics systems. These systems deploy cameras throughout the world
to support diverse applications in entertainment, health-care, retail, automotive,
transportation, home automation, safety, and security market segments. The
global video analytics market is estimated to grow from $5 billion in 2020 to $21
billion by 2027, at a CAGR of 22.70% [14].

Video analytics systems rely on state of the art (SOTA) deep learning mod-
els [24] to make sense of the content in the video streams. It is a common
practice to think of a video as a sequence of images (frames), and re-use deep
learning models that are trained only on images for video analytics tasks. Large,
image datasets like COCO [27] have made it possible to train highly-accurate
SOTA deep learning models [2,6,21,30,39,40] that detect a variety of objects
in images. In this paper, we take a closer look at the use of popular deep neu-
ral network models trained on large image datasets for predictions in critical
video analytics tasks. We consider video segments from two popular benchmark
video datasets [3,13]. These videos contain cars or persons, and we used several
SOTA deep neural network (DNN) models for object detection and face detec-
tion tasks to make sense of the content in the video streams. Also, these videos
exhibit minimal activity (i.e., cars or persons are not moving appreciably and
hence, largely static). Since the scenes are mostly static, the ground truth (total
number of cars or persons) does not change appreciably from frame to frame
within each video. Yet, we observe that the accuracy of tasks like object detec-
tion or face detection unexpectedly fluctuate noticeably for consecutive frames,
rather than more or less stay the same. Such unexpected, noticeable fluctuations
occur across different camera models and across different camera vendors.

Such detection fluctuations from frame to frame have an adverse impact on
applications that use insights from object or face detection to perform higher-
level tasks like tracking objects or recognizing people. Understanding the causes
for these unexpected fluctuations in accuracy, and proposing methods to mit-
igate the impact of these fluctuations, are the main goals of this paper. We
investigate the causes of the accuracy fluctuations of these SOTA deep neural
network models on largely static scenes by carefully considering factors external
and internal to a video camera. We examine the impact of external factors like
the environmental conditions (lighting), video compression and motion in the
scene, and internal factors like camera parameter settings in a video camera,
on the fluctuations in performance of image-trained deep neural network mod-
els. Even after carefully controlling for these external and internal factors, the
accuracy fluctuations persist, and our experiments show that another cause for
these fluctuations is the dynamic camera parameter changes that a video camera
automatically makes in order to capture and produce a visually pleasing video.
The camera inadvertently acts as an “unintentional adversary” because these
slight changes in image pixel values in consecutive frames, as we show, have
a noticeably adverse impact on the accuracy of insights from video analytics
tasks that re-use image-trained deep learning models. To address this inadver-
tent adversarial effect from the camera, we explore ways to mitigate this effect



432 S. Paul et al.

and propose the transfer of knowledge from learning on image analytics tasks to
video analytics tasks.
In this paper, we make the following key contributions:

— We take a closer look at the use of popular deep learning models that are
trained on large image datasets for predictions in critical video analytics tasks,
and show that the accuracy of tasks like object detection or face detection
unexpectedly fluctuate noticeably for consecutive frames in a video; consecu-
tive frames capture the same scene and have the same ground truth. We show
that such unexpected, noticeable fluctuations occur across different camera
models and across different camera vendors.

— We investigate the root causes of the accuracy fluctuations of these SOTA
deep neural network models on largely static scenes by carefully considering
factors external and internal to a video camera. We show that a video cam-
era inadvertently acts as an “unintentional adversary” when it automatically
makes camera parameter changes in order to capture and produce a visually
pleasing video.

— We draw implications of the unintentional adversarial effect on the practical
use of computer vision models and propose a simple yet effective technique to
transfer knowledge from learning on image analytics tasks to video analytics.
Our newly trained Yolovh model reduces fluctuation in object detection across
frames, which leads to better performance on object tracking task (~40%
fewer mistakes in tracking).

2 Motivation

In this section, we consider video segments from two popular benchmark
datasets. These videos contain cars or persons, and the videos exhibit mini-
mal activity (i.e., cars or persons are not moving appreciably and hence, largely
static). Since the scenes are mostly static, the ground truth (total number of cars
or persons) from frame to frame is also not changing much. Yet, we observe that
the accuracy of tasks like object detection or face detection unexpectedly fluctu-
ate noticeably for consecutive frames. Such accuracy fluctuations from frame to
frame have an adverse impact on applications that use insights from object or
face detection to perform higher-level tasks like tracking objects or recognizing
people.
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2.1 Object Detection in Videos

(a) Roadway Dataset (b) LSTN Dataset

Fig. 1. Sample frames from video datasets.

One of the most common task in video analytics pipelines is object detection.
Detecting cars or people is critical for many real-world applications like video
surveillance, retail, health care monitoring and intelligent transportation systems
(Fig. 1).

Figure 2 shows the performance of different state of the art and widely-used
object detectors like YOLOv5-small and large variant [21], EfficientDet-v0 and
EfficientDet-v8 [40] on video segments from the Roadway dataset [3]. These
videos have cars and people, but the activity is minimal, and scenes are largely
static. The “ground truth” in the figures is shown in blue color, and it shows
the total number of cars and people at different times (i.e. frames) in the video.
The “detector prediction” waveform (shown in red color) shows the number of
cars and people actually detected by the deep learning model.

Our experiments show that (a) for all the detectors we considered, the num-
ber of detected objects is lower than the ground truth!, and (b) more impor-
tantly, even though the ground truth is not changing appreciably in consecutive
frames, the detections reported by the detectors vary noticeably, and (c) light-
weight models like Yolov5-small or Yolovh-large exhibit a much higher range of
detection fluctuations than the more heavier models like efficientDet. However,
the heavier deep learning models make inferences by consuming significantly
more computing resources than the light-weight models.

2.2 Face Detection in Videos

Next, we investigate if accuracy fluctuation observed in object detection models
also occur in other image-trained Al models that are used in video analytics
tasks. We chose Al models for face detection task, which is critical to many real-
world applications e.g., identifying a person of interest in airports, hospitals or
arenas, and authenticating individuals based on face-recognition for face-based
payments. Figure 3 shows the performance of three well-known face detection Al

1 'We have 1-2 false positive detections for Yolov5 and efficientDet.
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Fig. 2. Performance of various object detection models on a segment of pre-recorded
video from the Roadway dataset [3]. (Color figure online)

models on videos from the LSTN video dataset [13]. Like the object detection
case, we observe that (a) the number of faces detected by these models is typically
lower than the ground truth, (b) more importantly, even though the ground
truth barely changes, there is noticeable fluctuation in the number of detections
in consecutive frames, and (c) the light-weight models like MTCNN [38] exhibit
a much higher range of detection fluctuations than the more heavier models like
RetinaNet with resnet-50 and mobilenet backbone [10].

3 Analysis and Control of External Factors

The behavior of a DNN model is deterministic in the sense that if a frame
is processed multiple times by the DNN model, then the DNN inferences are
identical. In this section, we analyze three external factors that may be causing
the unexpected accuracy fluctuations described in Sect. 2:

— Motion in the field of view of the camera affects the quality of the captured
video (blurring of moving objects is likely).
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Fig. 3. Performance of face detection models on videos from LSTN video dataset.

— Lossy video compression methods like H.264 can also result in decoded frames
whose quality can differ from the pre-compression frames.

— Environmental conditions like lighting can also affect the quality of the frames
processed by the DNNs. For example, flicker in fluorescent lighting can affect
the quality of frames captured by the camera (most people cannot notice
the flicker in fluorescent lights, which flicker at a rate of 120 cycles per sec-
ond 120 Hz; as we show later, flicker also contributes to fluctuations in the
analytics accuracy of video analytics tasks).

3.1 Control for Motion

It is difficult to systematically study the impact of motion on accuracy fluctu-
ations by using videos from the datasets. Instead, as shown in Fig.5a, we set
up a scene with 3D models of objects (i.e., persons and cars), and continuously
observed the scene by using different IP cameras like AXIS @Q1615. A fluorescent
light provides illumination for the scene. Figure 5a shows a frame in the video
stream captured by the IP camera under default camera parameter settings.
This setup easily eliminates the effect of motion on any observed accuracy fluc-
tuations. Also, this set up makes it easy to study whether accuracy fluctuations
are caused by only certain camera models or fluctuations happen across different
camera models from different vendors.

3.2 Analysis and Control for Video Compression

By using static 3D models, we eliminated the effect of motion. To understand
the effect of video compression, we fetch frames directly from the camera instead
of fetching a compressed video stream and decoding the stream to obtain frames
that can be processed by a DNN model.

Figure4a and Fig.4b show the object detection counts with and without
compression for the YOLOv5 model. We observe that eliminating compression
reduces detection fluctuation. We also analyzed the detection counts with and
without compression by using the t-test for repeated measures [44]. Let A be the
sequence of true-positive object detection counts (per frame) for the experiment
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Fig. 4. Effect of video compression on fluctuations in Yolov5 object detection counts
(scene with 3D models)

where video compression is used. Let B be the sequence of true-positive object
detection counts for the case when no compression is used. We compute a third
sequence D that is a sequence of pair-wise differences between the true-positive
object count without compression and with compression (i.e., B — A).

Essentially, the use of difference scores converts a two-sample problem with
A and B into a one-sample problem with D. Our null hypothesis states that
compression has no effect on object detection counts (and we hypothesize a
population mean of 0 for the difference scores). Our experiment with a sample
size of 200 frames showed that we can reject the null hypothesis at the 0.01 level
of significance (99% confidence), suggesting there is evidence that elimination of
compression does reduce the accuracy fluctuations. Similar results were observed
for sample sizes of 100 and 1000 frames.

While t-test measures the statistical difference between two distributions, it
doesn’t reflect on the fluctuations observed in repeated measures. We propose
two metrics to quantify the observed fluctuations across a group of frames. (1)

. . tp(i)—tp(i+1 . . .
F2 which is defined as % for frame i, where tp(i), gt(i) are true-
positive object detection count and ground-truth object count respectively on
frame i (on a moving window of 2 frames) and (2) F10 which is defined as
[maz(tp(d),...,tp(i+9)) —min(tp(3),...,tp(i+9))|
mean(gt(i),..,gt(i4+9))

By eliminating video compression, the maximum variation in object count on
static scene can be reduced from 17.4% to 13.0% (F2) and from 19.0% to 17.4%
(F10). Clearly, video compression is highly likely to have an adverse effect on
accuracy fluctuations, and eliminating compression can improve results of deep

learning models.

(on a moving window of 10 frames).

3.3 Analysis and Control for Flicker

By using static 3D models, we eliminated the effect of motion. We are also able
to eliminate the adverse effect of video compression by fetching frames directly
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(a) With flicker in lighting (b) Without flicker in lighting

Fig. 5. Scene with 3D models, with and without flickering light.
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Fig. 6. Object detection counts when there is no motion, video compression or flickering
light.

from the camera. We now analyze the effect of lighting. We set up an additional,
flicker-free light source to illuminate the scene with static 3D models. Figure5
shows the 3D models scene with and without flickering light. Figure 6a shows the
fluctuation in detection counts when there is no motion, no video compression,
and no flicker due to fluorescent light.

Compared to Fig. 4 results with no compression (but with fluorescent light-
ing), the results in Fig. 6a are highly likely to be an improvement. We compared
the sequence of object detection counts with and without fluorescent light (no
video compression in both cases) using the t-test for repeated measures, and
easily rejected the null hypothesis that lighting makes no difference at a 0.01
level of significance (99% confidence). Also, eliminating light flickering on top
of motion and compression can reduce the maximum (F2) and (F10) variations
from 13.0% to 8.7% and 17.4% to 13.0% respectively. Therefore, after eliminat-
ing motion and video compression, fluorescent light with flicker is highly likely to
have an adverse effect on accuracy fluctuations, and eliminating flicker is highly
likely to improve the results from the DNN model.
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Figure 6b shows the object detection counts for EfficientDet-v0 when there
is no motion, video compression or flickering light. We observe fluctuations in
object detection count up to 13.0% (F2) and 14.0% (F10). Due to space rea-
sons, we have not included the graphs for with and without compression for
EfficientDet-v0. However, like the YOLOV5 case, eliminating motion, video com-
pression and flickering light improves the detection results.

Our detailed analysis in this section shows that eliminating motion, video
compression and flicker does improve the object detection results. However, even
after controlling for motion, video compression and flickering light, noticeable
fluctuations in object detection counts still remain. We repeated the above exper-
iments for three SOTA open-source face detection models. Fig.7 shows fluctu-
ation in face detection counts when there is no motion, video compression or
flickering light. F2 metric reports true-positive face detection fluctuations up to
8.7%, 4.3%, 21.7% for two retinaNet models and MTCNN respectively.
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3.4 Impact of Different Camera Models

We also investigated whether the fluctuation in video analytics accuracy is
observed only on specific camera model or is it present across different cam-
era models across different vendors. Figure 8 shows the performance of YOLOv5
object detection model on AXIS Q3515 and PELCO SARIX IME322 IP cameras,
both of them observing the same scene and in absence of motion, compression
and flicker in lighting. We note that both of them show fluctuation in the count
of detected objects and F2 metric reports up to 13.1% and 4.4% fluctuations
for the two camera models. This shows that the fluctuation in video analytics
accuracy is observed across different camera models from different vendors.

4 Camera as an Unintentional Adversary

In Sect. 3, we investigated various factors external to the camera that could lead
to fluctuations in video analytics accuracy. Specifically, we looked at motion,
compression, flicker in lighting, and camera models from different vendors and
different deep learning models, and found out that fluctuation is observed across
different deep learning models, on different cameras, even when motion, com-
pression, flicker in lighting are eliminated. This leads us to hypothesize that the
remaining factors causing accuracy fluctuation may not be external. Rather, it
could be internal to the camera.

4.1 Hypothesis

Auto-parameter Setting in Modern Cameras. Along with exposing endpoints
to retrieve streaming videos (e.g.,RTSP stream URL), IP cameras also expose
APIs to set various camera parameters (e.g., VAPIX [8] API for Axis camera
models). These camera settings aid in changing the quality of image produced
by the camera. Camera vendors expose these APIs because they do not know
ahead of time in what environment their camera would be deployed and what
settings would be ideal for that environment. Therefore, they set the camera
settings to some default values and let end users decide what settings would
work best for their environment. There are two types of camera settings that
are exposed by camera vendors: (1) Type 1 parameters include those that affect
the way raw images are captured, e.g., exposure, gain, and shutter speed. These
parameters generally are adjusted automatically by the camera with little con-
trol by end users. They only allow end users to set maximum value, but within
this value, the camera internally changes the settings dynamically in order to
produce a visually pleasing video output. We refer to such parameters as auto-
mated parameters (AUTO). (2) Type 2 parameters include those that affect
processing of raw data in order to produce the final frame, e.g., image specific
parameters such as brightness, contrast, sharpness, color saturation, and video
specific parameters such as compression, GOP length, target bitrate, FPS. For
these parameters, camera vendors often expose fine control to end users, who
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can set the specific value. We refer to such parameters as non-automated param-
eters (NAUTO). The distinction between AUTO and NAUTO parameters help
us refine our hypothesis where we can fix values of NAUTO parameters, vary
the maximum value for AUTO parameters and observe how camera internally
changes these parameters to produce different consecutive frames, which might
be causing the fluctuations.

The Hypothesis. The purpose of a video camera is to capture videos, rather
than still images, for viewing by human eyes. Hence, irrespective of how the scene
in front of the camera looks like, i.e., whether the scene is static or dynamic,
video camera always tries to capture a video, which assumes changes in successive
frames. To capture a visually pleasing and smooth (to human eyes) video, the
camera tries to find the optimal exposure time or shutter speed. On one hand,
high shutter speed, i.e., low exposure time, freezes motion in each frame, which
results in very crisp individual images. However, when such frames are played
back at usual video frame rates, it can appear as hyper-realistic and provide
a very jittery, unsettled feeling to the viewer [28]. Low shutter speed, on the
other hand, can cause moving objects to appear blurred and also builds up
noise in the capture. To maintain appropriate amount of motion blur and noise
in the capture, video cameras have another setting called gain. Gain indicates
the amount of amplification applied to the capture. A high gain can provide
better images in low-light scenario but can also increase the noise present in
the capture. For these reasons, the optimal values of AUTO parameters like
exposure and gain are internally adjusted by the camera to output a visually
pleasing smooth video. Thus, video capture is fundamentally different from still
image capture and the exact values of exposure and gain used by the camera for
each frame are not known to end users or analytics applications running on the
video output from the camera. This loose control over maximum shutter time
and maximum gain parameters is likely the explanation for fluctuations in video
analytics accuracy, i.e., the camera’s unintentional adversarial effect.

4.2 Hypothesis Validation

The above explanation of our hypothesis that internal dynamic change of AUTO
parameters applied by a camera causes successive frames to differ and hence fluc-
tuations in video analytics accuracy, also points us a way to partially validate
the hypothesis. Since the camera still exposes control of maximum values of
AUTO parameters, we can adjust these maximum parameter value and observe
the impact on the resulting fluctuation of analytics accuracy. Figure 9 shows the
fluctuation in accuracy of YOLOvV5 object detection model for two different set-
tings of maximum exposure time. We observe that when the maximum exposure
time is 1/120 s, the fluctuation in object count is significantly lower than when it
is 1/4s. Here, reducing the max exposure time decreases the maximum F2 fluc-
tuations from 13.0% to 8.7%. This corroborates our hypothesis — with a higher
value of maximum exposure time, the camera can possibly choose from a larger
number of different exposure times than when the value of maximum exposure
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Fig. 9. Performance of YOLOv5 Object detectors for two different settings of an AUTO
parameter, in absence of motion, compression and flicker in lighting.

time is low, which in turn causes the consecutive frame captures to differ more,
resulting in more accuracy fluctuation.

We compared the sequences of object detection counts at a maximum expo-
sure of 1/120s and 1/4s using the t-test for repeated measures, and easily
rejected the null hypothesis that lowering the maximum exposure time (i.e.,
changing exposure time from 1/4s to 1/120s) makes no difference in detection
counts, at a 0.01 level of significance (99% confidence). Therefore, the choice of
maximum exposure time has a direct impact on the accuracy of the deep learn-
ing models, and the precise exposure time is automatically determined by the
video camera. We quantify this using object tracking task (discussed in Sect. 5)
and observe 65.7% fewer mistakes in tracking when exposure changes.

5 Implications

SOTA object detectors (Yolovh [21] or EfficientDet [40]) are trained on still
image datasets e.g., COCO [27] and VOC [12] datasets. We observed in prior
sections that the accuracy of insights from deep learning models fluctuate when
used for video analytics tasks. An immediate implication of our finding is that
deep learning models trained on still image datasets should not be directly used
for videos. We discuss several avenues of research that can mitigate the accuracy
fluctuations in video analytics tasks due to the use of image-trained DNN models.

5.1 Retraining Image-Based Models with Transfer Learning

One relatively straight-forward approach is to train models for extracting insights
from videos using video frames that are captured under different scenarios. As a
case study, we used transfer learning to train Yolov5 using the proprietary videos
captured under different scenarios. These proprietary videos contain objects from
person and vehicle super-category (that have car, truck, bus, train categories),
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captured by the cameras at different deployment sites (e.g., traffic intersection,
airport, mall, etc.) during different times-of-the-day (i.e., day, afternoon, night)
and also under different weather conditions (i.e., rainy, foggy, sunny). We extract
total 34K consecutive frames from these proprietary video snippets, and these
frames form our training dataset.

Training Details. The first 23 modules (corresponding to 23 layers) of our new
deep learning model are initialized using weights from COCO-trained Yolovh
model, and these weights are frozen. During training, only the weights in the
last detect module are updated. For transfer learning, we used a learning rate of
0.01 with a weight decay value of 0.0005. We trained Yolov5 model on NVIDIA
GeForce RTX 2070 GPU server for 50 epochs with a batch size of 32. This
lightweight training required only 1.6 GB GPU memory and took less than 1.5h
to finish 50 epochs. We used the newly trained Yolovb model to detect objects
(i.e., cars and persons) in (a) our static scene of 3D models, and (b) a video
from the Roadway dataset (same video that was used in Sect. 2).

Figure 10a shows the improvement in detection counts due to the transfer-
learning trained Yolo5 model (green waveform). The improvement over the orig-
inal Yolo5 model (shown as red waveform) is noticeable visually. We also com-
pared the sequence of object detection counts for the original Yolovs model (red
waveform) and the transfer-learning trained Yolovb model (green waveform) by
using a t-test for repeated measures. We easily rejected the null hypothesis that
transfer-learning makes no difference, at a 0.01 level of significance (99% confi-
dence). Then, we estimated the size of the effect due to transfer-learning, and
we observed that at a 0.01 level of significance, the improvement is 2.32 addi-
tional object detections (14.3% improvement over the mean detections due to
the original Yolovb model). For this experiment, the camera was automatically
setting AUTO camera parameters to produce a visually pleasing video, and the
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transfer-learning trained Yolovh detector was able to detect more objects despite
the unintentional adversary (camera).

In practical deployments of video analytics systems that operate 24 x 7,
it is difficult to control motion or environmental conditions, and the default
video compression settings also vary from camera to camera. To understand
the impact of transfer-learning trained Yolovb model, we did experiments on
videos in the Roadway dataset. These videos have motion, and the environmental
conditions or video compression settings are unknown (such information is not
part of the Roadway dataset). Figure 10b shows the results for a video in the
Roadway dataset. The true-positive object detections by our transfer-learning
trained Yolovd model (green waveform) show noticeably less range of fluctuations
than the original Yolovs model (red waveform). We also compared the sequence
of object detection counts for the original Yolovs model (red waveform) and the
transfer-learning trained Yolovb model (green waveform) by using a t-test for
repeated measures. We easily rejected the null hypothesis that transfer-learning
makes no difference, at a 0.01 level of significance (99% confidence). Then, we
estimated the size of the effect due to transfer-learning, and we observed that
at a 0.01 level of significance, the improvement is 1 additional object detection
(9.6% improvement over the mean detections due to the original Yolovh model).
Our newly trained Yolovh model reduces the maximum variation of correctly
detected object counts from 47.4% to 33.2% (F10), and 42.1% to 32.5% (F2).

Impact on Object Tracking. We evaluated the impact of the fluctuations
in detection counts on object tracking task where we track the objects across
different frames using MOT SORT [1] tracker. Object trackers assign the same
track-id to an object appearing in contiguous frames. If an object is not detected
in a frame, then the object’s track is terminated. If the object is detected again
in subsequent frames, a new track-id is assigned to the object. We use the num-
ber of track-ids assigned by a tracker as an indicator of the quality of object
detections. Our tracker reported 157 track-ids when the original Yolovb model
was used for detecting objects in the video from the Roadway dataset. In con-
trast, the same tracker reported 94 track-ids when the transfer-learning trained
Yolovs model was used (i.e., 40.1% fewer mistakes in tracking). We manually
annotated the video and determined the ground-truth to be 29 tracks. We also
manually inspected the tracks proposed by the tracker for the two models (with
and without transfer-learning) to ensure that the tracks were true-positives.
These experiments suggest that the transfer-learning based Yolovh model leads
to better performance on object tracking task.

5.2 Calibrating Softmax Confidence Scores

In general, we use softmax confidence output as the correctness probability esti-
mate of the prediction. However, many of these neural networks are poorly cal-
ibrated [16,32]. The uncertainty in softmax confidence scores from poorly cali-
brated NN can potentially worsen the robustness of video analytics performance.
To mitigate this, we can employ several post-hoc methods on SOTA models to
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improve the softmax estimates, e.g., via averaging predictions obtained from
bag of models (e.g., detectors, classifiers) [25], platt scaling [16], isotonic regres-
sion [34], etc. We can also adapt the confidence threshold to filter out the low-
confidence mispredictions. This confidence threshold value can be adapted based
on the difficulty level to detect in a certain frame. We leave the investigation of
neural network calibration and confidence threshold adaptation as future work.

6 Related Work

Several efforts [5,20,31,33,49] have been made to improve the robustness of deep
learning models against adversarial attacks. Recent works [18,45] propose several
adversarial examples that can be used to train a robust model and also serve as
performance measures under several distribution shifts. Robust model training
based on shape representation rather than texture-based representation is pro-
posed in [15]. Xie et al. [46] use unlabeled data to train SOTA model through
noisy student self distillation which improves the robustness of existing mod-
els. However, the creation of these “robust” models does not take into account
the kind of adversaries introduced by dynamic tuning of AUTO parameters
by video cameras. Also, the perturbations introduced in variants of ImageNet
dataset (i.e., -C, -3C, -P etc.) [17] are not the same as observed when AUTO
parameters are tuned, which makes such datasets unsuitable for our study.

While there have been many efforts [4,11,19,22,26,29,47,48] on saving com-
pute and network resource usage without impacting the accuracy of video ana-
lytics pipelines (VSPs) by adapting different video-specific parameters like frame
rate, resolution, compression, etc., there has been little focus on improving the
accuracy of VAPs. Techniques to improve the accuracy of VSPs by dynamically
tuning camera parameters is proposed by Paul et al. [36], but they focus on
image-specific NAUTO parameters rather than AUTO parameters, which we
show is the cause for “unintentional” adversarial effect introduced by the cam-
era. Otani et al. [35] show the impact of low video quality on analytics, but they
study network variability rather than the camera being the reason for low video
quality.

Koh et al. [23] identify the need for training models with the distribution
shift that will be observed in practice in real-world deployment. Inspired from
this, rather than using independent images or synthetically transformed images
for training, we use real video frames for training, which takes into account the
distribution shift observed in practice for video analytics.

Wenkel et al. [43] tackle the problem of finding optimal confidence threshold
for different models in model training and mention the challenge that there is a
possibility of fluctuation in accuracy based on small changes between consecutive
frames. However, they do not go in depth to analyze it further as we do. To
our best knowledge, we are the first to expose the camera as an “unintentional
adversary” for video analytics task and propose mitigation techniques.
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7 Conclusion

In this paper, we show that blindly applying image-trained deep learning mod-
els for video analytics tasks leads to fluctuation in accuracy. We systematically
eliminate external factors including motion, compression and environmental con-
ditions (e.g., lighting) as possible reasons for fluctuation and show that the fluc-
tuation is due to internal parameter changes applied by the camera, which acts
as an “unintentional adversary” for video analytics applications. To mitigate this
adversarial effect, we propose a transfer learning based approach and train a new
Yolovb model for object detection. We show that by reducing fluctuation across
frames, our model is able better track objects (~40% fewer mistakes in track-
ing). Our paper exposes a fundamental fallacy in applying deep learning models
for video analytics and opens up new avenues for research in this direction.
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