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1. Introduction

One of the commonly used approaches for multiscale problems includes homogenization and its variations [6,21,23,24,30,
7,15], where effective properties at each macroscale grid or point are computed. These computations are often based on local 
solutions computed in a representative volume element (or coarse grid) centered at a macroscale point. Homogenization-
based approaches assume scale separation and that the local media can be replaced by a homogeneous material. As a result, 
it is assumed that the solution average in each coarse block approximates the heterogeneous solution within that coarse 
block.

In many cases, even within the scale separation realm, homogenization (as discussed above) is not sufficient and the 
coarse-grid formulation requires multiple homogenized coefficients. These approaches are developed for different appli-
cations [27,4,28,1,19,8,3,5,9,2] and we call them (following the literature) multicontinuum approaches. Multicontinuum 
approaches assume that the solution average is not sufficient to represent the heterogeneous solution within each coarse 
block. In the derivation of multicontinuum approaches, there are typically several assumptions: (1) continua definitions; 
(2) physical laws describing the interaction among continua; and (3) conservation laws deriving final equations. Various 
assumptions are typically made in deriving these models. The first such approach is presented in [27], where the author 
assumes existence of continua that have different equilibrium temperatures among each other (continua) and formulates 
empirical laws for interaction among continua. In more rigorous approaches related to porous media [4,28,3,26], the con-
tinua are assumed to be fracture and matrix regions. In our earlier works [14,13,31], we define the continua via local 
spectral decompositions and show that the resulting approach converges independent of scales and contrast if representa-
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Fig. 1. Illustration.

tive volumes are chosen to be coarse blocks. In this work, we use similar ideas (as in [14,13,31]) for problems with scale 
separation and formulate cell problems and formally derive multicontinuum equations.

The main objectives of this paper are the following.

• We derive multicontinuum methods using a homogenization-like expansion and present constraint cell problem formu-
lations.

• Constraint cell problems allow using averages for different quantities and regions (continua) and give flexibility to the 
framework.

• We discuss appropriate local boundary conditions in representative volume elements for problems with scale sepa-
ration and introduce oversampling. Using oversampling, we consider reduced constraint cell problems, where we use 
constraints for the averages only.

• The resulting multicontinuum equations show that local averages of the solution will differ among each other if dif-
fusion and reaction terms in the upscaled equations balance each other. This requires smaller reaction and/or larger 
diffusion terms, which occur in the presence of high contrast. We discuss this issue and show that a multicontinuum 
concept is via local spectral decomposition.

• We discuss the relation to NLMC approaches that go beyond scale separation.
• The average constraints, discussed in this paper, are easy to set and guarantee exponential decay (i.e., we remove 

boundary effects).
• We present numerical results.

We note that to go beyond scale separation, numerical approaches use entire coarse blocks (see Fig. 1) to do local com-
putations [10,16–18,20,11,25]. Among these approaches, multiscale finite element method and its variations are proposed, 
where multiscale basis functions are computed on coarse grids.

1.1. The main idea of this paper

In this section, we briefly present the main idea of the paper. We consider a steady-state or dynamic problem

L(u) = f

subject to some boundary and initial conditions. It is assumed that the problem is solved on a computational grid consisting 
of grid blocks, denoted ω, that are much larger than heterogeneities. We assume some type of homogeneity within each 
computational block represented by Representative Volume Element Rω that corresponds to a computational element ω
(see Fig. 1) (more precise meaning will be defined later). We assume that within each Rω , there are several distinct average 
states can be achieved (known as multicontinua). We denote the characteristics function for continuum i within Rω by 
ψω

i
(ω will be omitted since local computations are restricted to a coarse block), i.e., ψi = 1 within continuum i (can be 

irregular shaped regions consisting of several parts, in general) and 0 otherwise. We introduce oversampled R+
ω that contains 

several R p
ω ’s. We denote the central (target) RVE by simply Rω . In general, one can define the regions corresponding to the 

continuum via local spectral decomposition of the solution space within Rω , as discussed later.
We assume a variational formulation of the problem

∑

ω

∫

ω

A(u, v) =

∫

�

f v,

where A is the corresponding bilinear form. We assume that Rω can be used to approximate each integral 
∫
ω (in general 

space-time integral). I.e.,
∫

ω

A(u, v) ≈
|ω|

|Rω|

∫

Rω

A(u, v). (1)

Summation over repeated indices is assumed in the paper. Next, we construct local cell problems in Rω that are used to 
represent u.
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We assume there are several macroscopic quantities denoted by Uω
i

in each Rω , where i is the continuum. These quan-
tities can be thought of as average solutions within each continuum. We introduce cell problems in R+

ω (that consists of 
R
p
ω) that can distinguish these states. The first represents averages (formally written)

L(φi) = ri in R+
ω

∑

p

∫

R
p
ω

φiψ
p

j
= δi j

∫

R
p
ω

ψ
p

j
, (2)

where ri accounts for constraints, ψ
p

j
is ith continuum characteristics function in R p

ω , and the second one accounts for the 
gradients (formally written)

L(φm
i ) = rmi in R+

ω∫

R
p
ω

φm
i ψ

p

j
= δi j

∫

R
p
ω

(xm − c)ψ
p

j
,

∫

R
p0
ω

(xm − c)ψ
p0
j = 0 (condition that defines c).

(3)

Additional initial conditions are posed. p0 refers to the target RVE, Rω . These cell problems are written formally and will 
more precisely be described in next sections. We will use oversampling regions and constraints in each RVE within an 
oversampled region to avoid boundary effects. Using these cell problems, the local solution in Rω is written as

u ≈ φiU i + φm
i ∇mU i . (4)

We assume U i(x) is a smooth function representing the ith continuum. I.e., U i(xω) ≈
∫
Rω

uψi/ 
∫
Rω

ψi , with xω being a 

center point of Rω . Substituting (4) into (1) and taking v ≈ φsV s + φk
s∇kV s , we obtain multicontinuum equations for U i . 

Substituting (4) and the form for v into equations, we obtain multicontinuum models.
We note that one can use u = φ̃i Ũ i in deriving homogenized equations. In this case, Ũ i is a continuous function. Using 

proposed cell problems, we will have the first order approximation of Ũ i and, also, it paves a way to a higher order homog-
enization. We also note that ∇U i �=

∫
∇uψi and this can be achieved using higher order homogenization. The convergence 

proof of our proposed approach will be presented elsewhere.
Our main contributions are the following.

• We formulate constrained cell problems using Lagrange multipliers.
• To avoid boundary effects, we formulate cell problems in oversampled regions and use solutions’ averages to get fast 

decay of boundary effects. This is also shown numerically.
• We derive multicontinuum upscaled models and formulate scaling for each term, which is related to RVE size. This 

shows that unless there is some type of high contrast, the averages U i within Rω will become similar.
• We formulate spectral continuum definitions, which can be used to define ψi ’s.
• We discuss cell problems that use multiple constraints (averages and gradients) and discuss the advantages/disadvan-

tages associated with such constraints.

The paper is organized as follows. In the next section, we present preliminaries and show the arguments used in [27]. 
Section 3 is devoted to the derivation of multicontinuum approaches for a scale separation case. In Section 4, we present 
spectral continuum ideas. Section 5 is devoted to some remarks that include the derivation using multiple constraints and 
nonlinear multicontinuum models. Finally, we present some numerical results in Section 6.

2. Preliminaries

2.1. The work of L. I. Rubinstein [27] from 1948

First, we briefly discuss the paper by L. I. Rubinstein [27], which is the first paper that derives multicontinuum equations 
based on physical laws. We skip/simplify some details. In [27], the author considers time-dependent diffusion equation in 
heterogeneous media. The equation at the fine scale is

ut − ∇ · (κ∇u) = f . (5)

The paper [27] assumes that the media consists of many small particles (possible connected) divided into the group of N
components (continua), where the diffusivity of each component is κi . The media is assumed to be stochastic, i.e., κ(x, ζ ), 
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where ζ refers to a realization. At each point x, ωx is an elementary volume around point x. We denote the distribution 
within a component i as Ũ i(x, t, ζ ) and denote by

U∗
i (x, t, ζ ) =

1

ωx

∫

ωx

Ũ i(z, t, ζ )dz

and denote (mathematical expectation)

U i(x, t) =

∫
U∗

i (x, t, ζ )dν(ζ ).

It is assumed that within a representative element, different components can have different averages and conservation 
for each component is written down. The conservation consists of three terms. The first term is the diffusion flux and is 
taken by (in [27])

q1i =

∫


′

κi

∂U i

∂n
μidσ
t,

where μi is fraction of ith component on (larger) elementary volume boundary 
′ , 
t is a time interval. There are a number 
of assumption about components’ homogeneities on boundaries of �′ (RVE). The second flux is taken to be heat exchange 
within an elementary volume, which occurs because of different temperatures within each component. Using Henry’s law, 
this flux is written in [27] as

q2i j =

∫

�′

α∗
i j(U j − U i j)dω
t,

where U i j is a temperature in jth component when ith component temperature is U i . It is taken to be U i j = U i . The third 
flux is given by

q3i =

∫

�′

ciρi

∂U i

∂t
pidω
t,

where ci , ρi represent fluid properties and pi is a volume fraction of ith component. From

q3i = q1i + q2i

one arrives to

∇ · (κiμi∇U i) +
∑

j

α∗
i j(U j − U i) = ciρi pi

∂U i

∂t
.

Similar multicontinuum models are proposed in different application areas.
In this paper, we give a derivation based on formal expansion, cell problems, and then show a relation to theories de-

veloped in [13,11]. This derivation can be made rigorous under some assumptions (cf. [12]). We mention some assumptions 
as we go along without making them formal to keep the presentation simple. Our derivation (1) reveals the nature of con-
tinua, (2) shows their relation to local spectral decomposition, and (3) formulate constraint cell problems with appropriate 
boundary conditions.

3. Multicontinuum derivation based on volume average constraints

3.1. Steady-state case

In this section, we will repeat some parts of Introduction. Our approach starts from a finite element method formulated 
on a coarse grid. Coarse grid contains RVE, where local computations will be performed (see Fig. 1). We assume a partition 
of the domain into elements, where ω is a generic coarse-grid element (triangle or rectangle), Rω is a representative volume 
(RVE) within ω (see Fig. 1). We consider a steady state diffusion equation

∫

�

κ∇u · ∇v =

∫

�

f v, v ∈ H1
0(�). (6)

Representative volume, as usual, is assumed to represent the whole coarse block ω in terms of heterogeneities. In each Rω , 
we assume N continua (components) and introduce

4
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ψ j = 1 in continuum j, 0 otherwise.

In general, one can use different functions, e.g., eigenfunctions of local problems [13,11] to represent each continuum, as 
discussed later.

Next, we remind that R+
ω is an oversampled region (RVE) that surrounds Rω . It is taken to be several times larger 

compared to Rω and consists of several RVE’s, denoted by R p
ω (p is the numbering). In general, they (R p

ω ’s) can be the 
copies of Rω and it is used to remove boundary effects. The target RVE, we denote by R p0

ω or simply Rω . We introduce two 
sets of cell problems with constraints.

∫

R+
ω

κ∇φm
i · ∇v −

∑

j,p

β
mp

ij∫
R
p
ω

ψ
p

j

∫

R
p
ω

ψ
p

j
v = 0

∫

R
p
ω

φm
i ψ

p

j = δi j

∫

R
p
ω

(xm − cmj)ψ
p

j ,

∫

R
p0
ω

(xm − cmj)ψ
p0
j

= 0 condition that defines c,

(7)

where m refers to the coordinate direction, and
∫

R+
ω

κ∇φi · ∇v −
∑

j,p

β
p

i j∫
R
p
ω

ψ
p

j

∫

R
p
ω

ψ
p

j
v = 0

∫

R
p
ω

φiψ
p

j
= δi j

∫

R
p
ω

ψ
p

j
.

(8)

The first cell problem (7) one accounts for the gradient effects and is taken to vanish in the target RVE, R p0
ω . This cell 

problem accounts for standard homogenization effects. The second cell problem (8) accounts for different averages in each 
continuum. By imposing the same averages in each R p

ω , we reduce the boundary effects in an exponential manner [13,11]. 
Here, for simplicity, we do not use ω index in φi or φm

i
, though both of them depend on ω. This is because our calculations 

will be done in each ω separately. In general, one can remove the index p in ψ j if RVE’s are periodically repeated or similar.

Next, we formulate some properties of β ’s. We note
∑

j,p

β
p

i j
= 0

(9)

which can be obtained by taking v = 1 in (32). If we take v = φk in (7), then, we have 
∫
R+

ω
κ∇φm

i · ∇φk =
∑

p β
mp

ik
. If we 

take v = φs in (8), we get

β∗
is =

∫

R+
ω

κ∇φi · ∇φs =
∑

p

β
p

is
.

(10)

We assume that in Rω ,

u ≈ φiU i + φm
i ∇mU i, (11)

where U i is a smooth function representing the homogenized solution for ith continuum. More precisely, U i can be thought 
as a limit of 

∫
Rω

uψi/ 
∫
Rω

ψi (piecewise constant function) taken over all Rω as the RVE size goes to zero. We will assume 
U i and their gradients can be approximated by constants in RVE and use mid point to represent their values. We note that 
(11) can be shown under the assumption that U i is a smooth function.

Next, we derive multicontinuum equations for U i . For any v ∈ H1
0 , we have

∫

�

f v =

∫

�

κ∇u · ∇v =
∑

ω

∫

ω

κ∇u · ∇v ≈
∑

ω

|ω|

|Rω|

∫

Rω

κ∇u · ∇v, (12)

where we make an assumption that integrated average over RVE can represent the whole computational element ω. This 
approximation holds if all 

∫
R
p
ω

are approximately equal for all R p
ω in ω. Next, we approximate each term

∫

Rω

κ∇u · ∇v =

∫

Rω

κ∇(φiU i) · ∇v +

∫

Rω

κ∇(φm
i ∇mU i) · ∇v. (13)

5



Y. Efendiev and W.T. Leung Journal of Computational Physics 474 (2023) 111761

We assume that the variation of U i and ∇mU i are small compared to the variations of φi and φm
i

(see scalings (17)) and 
assume 

∫
Rω

κ∇(φiU i) · ∇v ≈
∫
Rω

κ(∇φi)U i · ∇v and 
∫
Rω

κ∇(φm
i

∇mU i) · ∇v ≈
∫
Rω

κ∇(φm
i

)∇mU i · ∇v . We take

v = φsV s + φk
s∇kV s.

Then, denoting for simplicity, Rω = R
p0
ω , we have

∫

Rω

κ∇(φiU i) · ∇v ≈ U i(xω)

∫

Rω

κ∇φi · ∇v =

U i(xω)V s(xω)

∫

Rω

κ∇φi · ∇φs + U i(xω)∇mV s(xω)

∫

Rω

κ∇φi · ∇φm
s =

U i(xω)β∗
isV s(xω) + βm∗

is U i(xω)∇V s(xω),

(14)

where

βm∗
ik =

∫

Rω

κ∇φm
i · ∇φk, β∗

ik =

∫

Rω

κ∇φi · ∇φk.

Here, we use the fact that U i and V s are smooth functions and take their values at some points within ω. Similarly,
∫

Rω

κ∇(φm
i ∇mU i) · ∇v ≈ ∇mU i(xω)

∫

R+
ω

κ∇φm
i · ∇v =

∇mU i(xω)∇kV s(xω)

∫

Rω

κ∇φm
i · ∇φk

s + ∇mU i(xω)V s(xω)

∫

Rω

κ∇φm
i · ∇φs

∇mU i(xω)∇kV s(xω)αkm
is + ∇mU i(xω)V s(xω)βm∗

is ,

(15)

where

αkm
is =

∫

Rω

κ∇φm
i · ∇φk

s .

Next, using continuous approximations for U i and V i , we can write
∫

Rω

κ∇u · ∇v ≈ U iβ
n∗
i j ∇nV j + U iβ

∗
i jV j+

∇mU iα
mn
ij ∇nV j + ∇mU iβ

m∗
i j V j .

(16)

Note that the definitions of α’s and β ’s are using the volume of Rω (which is of the same order as R+
ω ). Moreover, we 

also have the following scalings. Assume ε is a diameter of RVE. First, we note that

‖φi‖ = O (1), ‖∇φi‖ = O (
1

ε
)

‖φm
i ‖ = O (ε), ‖∇φm

i ‖ = O (1).

(17)

Using the formulas for α’s and β ’s, we have the following scalings.

βm∗
i j = O (

|Rω|

ε
), αmn

ij = O (|Rω|), β∗
i j = O (

|Rω|

ε2
).

We then define rescaled quantities β̂i j , α̂i j , β̂i j , α̂i j such that

β̂m∗
i j =

ε

|Rω|
βm∗
i j , α̂mn

ij = |Rω|−1αmn
ij β̂i j =

ε2

|Rω|
β∗
i j. (18)

With these scalings, we have
∫

�

κ∇u · ∇v ≈

∫

�

α̂mn
ij ∇mU i∇nV j+

1

ε

∫

�

β̂m∗
i j

∇mU iV j +
1

ε

∫

�

β̂m∗
i j

U i∇mV j +
1

ε2

∫

�

β̂i jU iV j .

(19)

6
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The sum of the second and third terms is negligible (this can be shown by integration by parts). It can be shown that

∑

j

β̂i j ≈ 0.

The last term can be written as

∫

�

β̂i jU iV j =
∑

j �=i

∫

�

β̂i j(U i − U j)V j, (20)

which gives a form that is often used in multicontinuum models. If we ignore the second and the third term in (19), we get

−∇n(α̂
mn
ij

∇mU j) +
1

ε2
β̂i jU j = f i (21)

We see from the equation that the reaction term is dominant unless we deal with large diffusions (high contrast). When 
reaction terms dominate, we have all U i ’s are approximately the same. Thus, in general, to define appropriate multicontin-

uum models (when U i ’s differ), one needs appropriate multicontinuum definitions, which we will do in Section 4.

If we have one continuum (as in standard homogenization), then φ1 = 1 and β p

i j
= 0. The function φm

i
will have the 

averages 
∫
R
p
ω

φm
1 =

∫
R
p
ω
(xm − x0m), where x0m = 〈xm〉

R
p0
ω
. In this regard, φm

1 acts as having linear growth as in homogenization 
case (see later discussions on imposing gradient constraints).

3.2. Time dependent case

We consider

tn+1∫

tn

∫

�

ut v +

tn+1∫

tn

∫

�

κ∇u · ∇v =

tn+1∫

tn

∫

�

f v.

We introduce cell problems (we keep the same notations as the stationary case) as time-dependent cell problems in R+
ω ×

[tn, tn+1]

tn+1∫

tn

∫

R+
ω

(φm
i )t v +

tn+1∫

tn

∫

R+
ω

κ∇φm
i · ∇v−

∑

p

β
mp

ij∫ tn+1

tn

∫
Rω

ψ j

tn+1∫

tn

∫

Rω

ψ jv = 0

tn+1∫

tn

∫

R
p
ω

φm
i ψ j = δi j

tn+1∫

tn

∫

R
p
ω

(xm − cmj)ψ j

tn+1∫

tn

∫

R
p0
ω

(xm − cmj)ψ j = 0

φm
i (t = tn) = ξm

i ,

(22)

where ξm
i

is the steady state solution given by (7). The second cell problem is defined with constraints on the average 
solutions in R+

ω × [tn, tn+1]

7
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tn+1∫

tn

∫

R+
ω

(φi)t v +

tn+1∫

tn

∫

R+
ω

κ∇φi · ∇v−

∑

p

β
p

i j∫ tn+1

tn

∫
Rω

ψ j

tn+1∫

tn

∫

Rω

ψ jv = 0

tn+1∫

tn

∫

R
p
ω

φiψ j = δi j

tn+1∫

tn

∫

R
p
ω

ψ j

φi(t = tn) = ψi .

(23)

We again assume that in Rω = R
p0
ω

u ≈ φiU i + φm
i ∇mU i . (24)

Next, we derive multicontinuum equations for U i . Then, we have (for any v = φsV s + φk
s∇kV s)

tn+1∫

tn

∫

�

f v =

tn+1∫

tn

∫

�

ut v +

tn+1∫

tn

∫

�

κ∇u · ∇v =

∑

ω

tn+1∫

tn

∫

ω

ut v +
∑

ω

tn+1∫

tn

∫

ω

κ∇u · ∇v ≈

∑

ω

|ω|

|Rω|

tn+1∫

tn

∫

Rω

ut v +
∑

ω

|ω|

|Rω|

tn+1∫

tn

∫

Rω

κ∇u · ∇v.

(25)

Next,

tn+1∫

tn

∫

Rω

ut v +

tn+1∫

tn

∫

Rω

κ∇u · ∇v ≈ (U i)tVk

∫ ∫
φiφk+

U iVk

∫ ∫
((φi)tφk + κ∇φi · ∇φk) + ∇mU i∇nVk

∫ ∫ (
(φm

i )tφ
n
k + κ∇φm

i · ∇φn
k

)
+

U i∇nVk

∫ ∫ (
(φi)tφ

n
k + κ∇φi · ∇φn

k

)
+ ∇mU iVk

∫ ∫ (
(φm

i )tφk + κ∇φm
i · ∇φk

)
+

(U i)t∇nVk

∫ ∫
φiφ

n
k =mik(U i)tVk + βikU iVk + αnm

ij ∇mU i∇nVk+

βn
ikU i∇nVk + αm

ik∇mU iVk +mn
i j(U i)t∇nVk.

(26)

We note that if the cell problems do not contain t , i.e., φm
i

and φi do not depend on t , we get similar homogenized equations 

(which can easily be derived from (26)). Here for simplicity of the notations, 
∫ ∫

· =
∫ tn+1

tn

∫
Rω

· and the notations for mik , βik , 
αnm
ij

, βn
ik
, αm

ik
, and mn

i j
can be seen from the above equality. We neglect φm

i
∇mU i and (U i)t∇nVk

∫ ∫
φiφ

n
k
based on scalings 

(27).

Assume ε is a diameter of RVE. We note that

‖φi‖ = O (1), ‖∇φi‖ = O (
1

ε
)

‖φm
i ‖ = O (ε), ‖∇φm

i ‖ = O (1).

(27)

Thus, the last term in (26) can be neglected.

8
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Using continuous approximation U i ’s and V i ’s, we can write

tn+1∫

tn

∫

�

f v =

tn+1∫

tn

∫

�

ut v +

tn+1∫

tn

∫

�

κ∇u · ∇v ≈

tn+1∫

tn

∫

�

m̃i j(U i)tV j +

tn+1∫

tn

∫

�

α̃mn
ij ∇mU i∇nV j+

tn+1∫

tn

∫

�

α̃m
ij

∇mU iV j +

tn+1∫

tn

∫

�

β̃n
i j
U i∇nV j+

tn+1∫

tn

∫

�

β̃i jU iV j,

(28)

where ̃· denotes rescaled · with scaling of Rω and 
t (i.e., ̃· = ·
|Rω ||
t|

so that we can write the integrals.
Formally, we can write the system of differential equations

(U i)t − ∇nα̃
mn
ij

∇mU j + β̃m
ij

∇mU j

−∇n(α̃
n
i jU j) + β̃i jU j = f i

(29)

Using the formulas for α’s and β ’s, we have the following scalings (if we ignore the terms with temporal derivatives)

βm
ij = O (

|Rω|
t

ε
),αmn

ij = O (|Rω|
t)

βi j = O (
|Rω|
t

ε2
),αn

i j = O (
|Rω|
t

ε
).

One can make similar argument as in steady state case.

4. Choices of continua. Spectral continua

In this section, we discuss how high contrast can balance α’s and β ’s. First, we note that if reaction terms (represented 
via β) dominate, then all U i ’s are approximately the same and we do not have multicontinuum (i.e., different averages in 
different continua). We assume steady-state case and two continua, where the continuum 1 has high-contrast κ = O (η), η
is large, and the continuum 2 has a conductivity of order 1. The next arguments do not take into account RVE sizes and 
are purely in terms of η. We can see that αkm

is
(the diffusivity) is large O (η) (at least in some direction) since the local 

solutions have linear growth conditions. In general, the scalings of α’s in terms of the contrast depend on heterogeneities 
(see numerical results). On the other hand, β11 is of order 1 (in terms of the contrast, while it depends on the size of Rω). 
Since 

∑
j βi j ≈ 0, we can conclude that other β ’s are of order 1. Thus, if the contrast balances the RVE size (e.g., η = O (ε−2))

(where ε is the size of Rω), we expect that β terms do not dominate and there are differences between average states and 
one has multicontinuum homogenized limit.

Next, we discuss how one can identify the continuum via local spectral problems. We consider βi j =
∫
Rω

κ∇φi · ∇φ j

and assume, for simplicity, that the cell problem (8) is formulated in Rω . We would like to minimize βi j with constraints. 
We assume (1) φi ’s are in the space of local solutions (ζ j ) (2) ψ j can take any values and the constraints are given by ∫
Rω

κφiψ j = δi j . The functions ζ j are local homogeneous solutions, ∇ ·(κ∇ζ j) = 0 in Rω , with boundary conditions ζ j = δh
j
(x)

on ∂Rω , where δ j(x) is a fine-grid hat function defined on the boundary of Rω . In this case, if we consider the eigenvalue 
problem

−div(κ∇η j) = λ jκη j . (30)

(see [16,11]). With corresponding Rayleigh quotient,
∫
Rω

κ |∇φ|2

∫
Rω

κ |φ|2
,

it is clear that ψ j = φ j = η j . The eigenvectors corresponding to the smallest eigenvalues are constant functions in high-
contrast regions. In general, one can identify high-contrast regions by finding nearly constant gradient regions of ∇φ j . 

9
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Moreover, the number of smallest eigenvalues will correspond to the number of high-conductivity channels (channels that 
connect boundaries of Rω).

Based on the above discussion, one can perform local spectral decomposition based on (30) and identify ψ j based on 
smallest eigenvalues that correspond to high contrast (they scale as the inverse of high contrast). Using these eigenvec-
tors, the local problems (8) and (7) are solved. We can use instead of βmp

ij / 
∫
R
p
ω

ψ
p

j and β p

i j/ 
∫
R
p
ω

ψ
p

j , the terms without 

denominator, βmp

ij
and β p

i j
so that not to worry that ψ p

j
may vanish.

5. Remarks

5.1. Multicontinuum derivation based on average and gradient constraint problems in representative volumes

One can also use gradient type constraints in addition. We demonstrate this and point out some issues in this procedure. 
We consider a steady state diffusion equation.

In each RVE, we introduce two sets of cell problems with constraints formulated in Rω (though, one can use oversam-

pling).

∫

Rω

κ∇φm
i · ∇v −

αmn
ij∫

Rω
ψ j

∫

Rω

ψ j∇nv −
βm
ij∫

Rω
ψ j

∫

Rω

ψ jv = 0

∫

Rω

∇φm
i ψ j = δi jem

∫

Rω

ψ j

∫

Rω

φm
i ψ j = 0,

(31)

where em is mth unit vector. The second cell problem is defined with constraints on the average solutions in Rω

∫

Rω

κ∇φi · ∇v −
αn
i j∫

Rω
ψ j

∫

Rω

ψ j∇nv −
βi j∫
Rω

ψ j

∫

Rω

ψ jv = 0

∫

Rω

φiψ j = δi j

∫

Rω

ψ j

∫

Rω

∇φiψ j = 0.

(32)

Some properties of Lagrange multipliers are discussed. We note 
∑

j βi j = 0, which can be obtained by taking v = 1

in (32). If we take v = φ j in (31) then 
∫
Rω

κ∇φm
i · ∇φ j = βm

ij . If we take v = φm
k

in (32), we get 
∫
Rω

κ∇φi · ∇φm
k

= αm
ik
. 

Therefore, αm
ij

= βm
ij
. If we take v = φs

k
in (31), then, we have 

∫
Rω

κ∇φm
i

· ∇φs
k

= αms
ik

. If we take v = φs in (32), we get ∫
Rω

κ∇φi · ∇φs = βis .

Next, we assume that the local solution in ω can be represented by constraint problems in Rω

u ≈ φiU i + φm
i Vm

i , (33)

where

U i =

∫
Rω

uψi∫
Rω

ψi

, Vm
i =

∫
Rω

∇muψi∫
Rω

ψi

. (34)

Similarly, we introduce for test functions

P i =

∫
Rω

vψi∫
Rω

ψi

, Q m
i =

∫
Rω

∇mvψi∫
Rω

ψi

. (35)

For any v ∈ H1
0 , we have

∫

�

f v =

∫

�

κ∇u · ∇v =
∑

ω

∫

ω

κ∇u · ∇v ≈
∑

ω

|ω|

|Rω|

∫

Rω

κ∇u · ∇v, (36)

10
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where we make an assumption that integrated average over RVE can represent the whole computational element ω. Next, 
we approximate each term

∫

Rω

κ∇u · ∇v =

∫

Rω

κ∇(φiU i) · ∇v +

∫

Rω

κ∇(φm
i Vm

i ) · ∇v. (37)

We assume that the variation of U i and Vm
i

are small compared to the variations of φi and φm
i

(since they vary at RVE 
scale) and assume 

∫
Rω

κ∇(φiU i) · ∇v ≈
∫
Rω

κ(∇φi)U i · ∇v and 
∫
Rω

κ∇(φm
i
Vm
i

) · ∇v ≈
∫
Rω

κ∇(φm
i

)Vm
i

· ∇v . Then (denoting 
xω center of Rω),

∫

Rω

κ∇(φiU i) · ∇v ≈ U i(xω)

∫

Rω

κ∇φi · ∇v =

U i(xω)
αn
i j∫

Rω
ψ j

∫

Rω

ψ j · ∇nv + U i(xω)
βi j∫
Rω

ψ j

∫

Rω

ψ jv =

U i(xω)αn
i jQ

n
j (xω) + U i(xω)βi j P j(xω).

(38)

Similarly,
∫

Rω

κ∇(φm
i ∇mU i) · ∇v ≈ Vm

i (xω)

∫

Rω

κ∇φm
i · ∇v =

αmn
ij∫

Rω
ψ j

Vm
i (xω)

∫

Rω

ψ j∇nv +
βm
ij∫

Rω
ψ j

Vm
i (xω)

∫

Rω

ψ jv =

Vm
i (xω)αmn

ij Q n
j (xω) + Vm

i (xω)βm
ij P j(xω).

(39)

Next, using continuous approximations for all quantities, we have
∫

Rω

κ∇u · ∇v ≈ U iα
n
i jQ

n
j + U iβi j P j+

Vm
i αmn

ij Q n
j + Vm

i βm
ij P j.

(40)

Consequently,
∫

�

f v =

∫

�

κ∇u∇v ≈

∫

�

α̃mn
ij

Vm
i Q n

j +

∫

�

β̃m
ij
Vm
i P j +

∫

�

α̃n
i j
U iQ

n
j +

∫

�

β̃i jU i P j,

(41)

where ̃· denotes rescaled · with scaling (i.e., ̃· = ·
|Rω |

). The equation (41) is a multicontinuum model equation. Similar scaling 
arguments as before can be applied.

The resulting equations are similar to those we obtained earlier. In our numerical studies, we have found that the cell 
problems using multiple simultaneous constraints (e.g., average solution and average gradient) are prone to large errors. This 
is because one needs to choose these simultaneous constraints (for averages and gradients) such that the local problems φi

and φm
i

have similar fine-scale features as the exact solution. When there is no compatibility (i.e., averages and gradients 
do not correspond to each other), then there are large errors, especially at the interfaces of the continuum, which can cause 
large errors on average characteristics. For this reason, we have found one constraint cell problems to be more accurate, 
easy to implement, and easy to remove boundary effects with oversampling.

5.2. Nonlinear case. Steady state

The derivations presented earlier can be done for nonlinear problems. We consider
∫

�

κ(x,∇u) · ∇v =

∫

�

f v.

In this case, we can split the cell problem into average-based and gradient based due to nonlinear interaction and we 
consider the following cell problem.

11
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∫

R+
ω

κ(x,∇φ(η, ξ)) · ∇v −
∑

p

α
p, j
ω (η, ξ)

∫

R
p
ω

ψ
p

j
v = 0

∫

R
p
ω

φη,ξψ
p

j
= η j

∫

R
p
ω

ψ
p

j
+ ξ j ·

∫

R
p
ω

(x − c)ψ
p

j
.

(42)

We will use the following approximations

u ≈ φ(U ,∇U )

v|R p
ω

≈
∑

i

V i

ψ
p

i∫
ψ

p

i

+
∑

i

ψ
p

i∫
ψ

p

i

(x− ci) · ∇V i .

Then,

∫

R+
ω

κ(x,∇φ(U ,∇U )) · ∇v =
∑

p

α
p, j
ω (U ,∇U )V i

∫
R
p
ω

ψ
p

j
ψ

p

i∫
R
p
ω

|ψ
p

i
|2

+

∑

p

α
p, j
ω (U ,∇U )

∫
R
p
ω

ψ
p

j
ψ

p

i
(x− ci)∫

R
p
ω

ψ
p

i

· ∇V i =

∑

p

α
p, j
ω (U ,∇U )V j +

∑

m,p

β jm(U ,∇U )∇mV j,

(43)

where all U ’s and V ’s are taken to be constants at RVE-level and

γ j(η, ξ) =
∑

p

α
p, j
ω (η, ξ)

β jm(η, ξ) =
∑

p

α
p, j
ω (η, ξ)

∫
R
p
ω
(xm − cm)ψ

p

j∫
ψ

p

j

.

Here, we took account 
∫
R
p
ω

ψ
p

j
ψ

p

i
= δi j

∫
R
p
ω

ψ
p

i
and 

∫
R
p
ω

ψ
p

j
ψ

p

i
(x − ci) = δi j

∫
R
p
ω

ψ
p

i
(x − ci). We get the following multicontin-

uum equations
∫

�

γ j(U ,∇U )V j +

∫

�

β j(U ,∇U ) · ∇V j = f j .

In general, these equations are complicated to solve. Some machine learning techniques are needed to train the local 
upscaled quantities. We have presented some cases in [22,29,14]. In some special cases, one can simplify the resulting 
multicontinuum equations.

6. Numerical results

In this section, we will present numerical examples of the proposed upscaling method. We will present three numerical 
examples. The goal is to show that our proposed algorithm is accurate and the cell problem solutions provide better accuracy 
as we increase oversampling size.

In all examples, we consider the elliptic problem (6) in a unit square, and solve the cell problems (7) and (8). The 
macroscopic equation is given by (21). In the first example, we consider the layered medium parameter κ (see Fig. 2). The 
period of κ is denoted as ε . We denote the low conductivity region and the high conductivity region of κ by �1 and �2 , 
respectively. The source term f and conductivity κ is given as

f (x) =

{
1000min{κ}e−40|(x−0.5)2+(y−0.5)2| x ∈ �1

e−40|(x−0.5)2+(y−0.5)2| x ∈ �2

and

κ(x) =

⎧
⎪⎨
⎪⎩

ε

10000
x ∈ �1

1

100ε
x ∈ �2

12
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Fig. 2. Left: κ for Case 1 with ε =
1

10
. Right: The solution snapshot.

The computational domain � is partitioned into M × M coarse grid. The coarse mesh size H is defined as H = 1/M . For 
simplicity, we consider the whole coarse grid element as an RVE for the corresponding coarse element. The oversampling 
RVE R+

ω (or ω+) for each coarse RVE ω is defined as an extension of K by l layers of coarse grid element, where l will be 
varied.

We will define the relative L2-error in �1 and the relative L2-error in �2 by

e
(i)
2 =

∑
K |

1

|K |

∫
K
U i −

1

|K ∩ �i|

∫
K∩�i

u|2

∑
K |

1

K ∩ �i

∫
K∩�i

u|2

.

K denotes the RVE, which is taken to be ω. This represents the L2 error of our proposed approach.
Our goals in this section are the following.

• We show that the errors between the upscaled solutions and corresponding fine-grid solutions are small.
• The errors are stable for different mesh sizes, RVE sizes, and contrasts. If the number of layers is appropriately chosen 

(to avoid boundary effects), the error will decrease as we decrease the mesh size.
• We discuss the effective properties and show their values for different values of mesh sizes and RVE sizes.
• The numerical results show scalings of effective parameters.

For the first case, we take the fine-mesh size to be 1/800. We present e(i)
2 in Table 1. We make several observations. 

First, we observe that the proposed approach provides an accurate approximation of the averaged solution. In Fig. 3, we 
depict upscaled solutions and corresponding averaged fine-scale solutions. We observe that these solutions are very close. 
In the first table, we decrease the coarse-mesh size and it gets closer to ε . In standard numerical homogenization methods, 
this was known to give a resonance error and error will increase. Here, by choosing an appropriate number of layers, we 
observe that the error remains small. In the second table, we decrease the period size and observe that the error decreases 
to a certain level. In the third table, we observe convergence as we decrease the mesh size and ε . In general, we expect a 
certain threshold error due to fine-scale discretization, which is used to compute the solution. In Table 2, we present the 
errors for fixed contrast ratio 1/10000 (in �1) and 1/10 (in �2). As we decrease the mesh and RVE sizes, we observe that 
the upscaled solution converges to the averaged fine-scale solution.

In Table 3, we present the results for effective properties that are computed. First, we note that the scalings of these 
quantities are in accordance with our theoretical findings. In Case 1, we observe anisotropy as expected. αmn

11 ≈ 0, unless 
i = j = 2 since the flow in vertical direction for the gradient. We observe larger α22

22 since the flow in the vertical direction 
and the second continuum accounts for high conductivity. We only show β11 as other βi j ’s depend on them and are similar 
(follows from symmetry and the fact that the sum of elements in each row is zero). We note that with our scalings of 
conductivity, β should scale as 1/ε , which we observe in the table.

6.1. Case 2

Next, we consider a different case, Case 2. We depict the conductivity field in Fig. 4 and the corresponding fine-grid 
solution. The fine-mesh size is taken to be 1/400. In Fig. 5, we depict upscaled solutions and corresponding averaged fine-

13
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Fig. 3. Case 1. Top-Left: Reference averaged solution in �1 . Top-Right: Multiscale solution U1 . Bottom-Left: Reference averaged solution in �2 . Bottom-Right: 
Multiscale solution U2 .

scale solutions. We observe that these solutions are very close. For this case, we present e(i)
2 in Table 4. We observe similar 

findings. First, we observe that the proposed approach provides an accurate approximation of the averaged solution. In this 
table, we decrease the coarse mesh size while keeping ε fixed. We observe that the error decreases if we scale the number 
of layers as − log(H). In the second part of the table, we decrease ε and observe that error does not change if the number 
of layers is fixed. Finally, we reduce both H and ε and observe that the error decreases. Thus, the proposed method is 
robust with respect to the size of heterogeneities.

In Table 5, numerical results for effective properties are presented. In this case, we do not have strong anisotropy and 
observe similar values for α’s when the continua are fixed. From the second table, we observe that the values of αmn

22 are 
larger compared to αmn

11 and αmn
12 . This is because the second continuum account for high conductivity region. Again, β

should scale as 1/ε , which we observe in the table.

6.2. Case 3

Next, we consider a different case, Case 3. We depict the conductivity field in Fig. 6 and corresponding fine-grid solution. 
In this case, we do not have strict periodicity as in other cases and the conductivity slowly changes. The fine-mesh size 
is taken to be 1/400. In Fig. 7, we depict upscaled solutions and corresponding averaged fine-scale solutions. We observe 
that these solutions are approximately the same. For this case, we present e(i)

2 in Table 6. We observe similar findings as in 
previous cases. First, we observe that the proposed approach provides an accurate approximation of the averaged solution. 
In this table, we decrease the coarse mesh size while keeping ε fixed. We observe that the error decreases if we scale the 
number of layers as − log(H). In the second part of the table, we decrease ε and observe that error does not change if the 
number of layers is fixed. Finally, we reduce both H and ε and observe that the error decreases. Thus, the proposed method 
is robust with respect to the size of heterogeneities.
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Table 1

Error comparison for Case 1.

l H ε e
(1)
2 e

(2)
2

�−2 log(H)
 = 5
1

10

1

40
1.50% 1.37%

�−2 log(H)
 = 6
1

20

1

40
0.48% 0.50%

�−2 log(H)
 = 8
1

40

1

40
0.61% 0.60%

l H ε e
(1)
2 e

(2)
2

5
1

10

1

10
4.60% 8.35%

5
1

10

1

20
1.60% 1.31%

5
1

10

1

40
1.50% 1.37%

l H ε e
(1)
2 e

(2)
2

�−2 log(H)
 = 5
1

10

1

10
4.60% 8.35%

�−2 log(H)
 = 6
1

20

1

20
2.02% 2.40%

�−2 log(H)
 = 8
1

40

1

40
0.61% 0.60%

�−2 log(H)
 = 9
1

80

1

80
0.14% 0.14%

Table 2

Error comparison for Case 1 with a fixed contrast.

l H ε e
(1)
2 e

(2)
2

�−2 log(H)
 = 5
1

10

1

10
3.83% 6.24%

�−2 log(H)
 = 6
1

20

1

20
2.20% 2.50%

�−2 log(H)
 = 8
1

40

1

40
0.88% 0.90%

Fig. 4. Left: κ for Case 2 with ε =
1

10
. Right: The solution snapshot.

7. Conclusions

In this paper, we propose a derivation of multicontinuum models using constraint cell problems in oversampled regions. 
The proposed cell problems allow reducing boundary effects and take into account both average and gradient constraints. 
Imposing constraints on averages allows a fast decay of artificial boundary effects. Our derivations show that one obtains 
coupled equations and derives the formula for exchange between continua. The exchange terms in the form of the reaction 
scale as the square of the inverse of RVE size and, thus, they dominate. As a result, the solutions in these continua are equal 
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Table 3

Effective properties α and β ’s. Case 1.

l H ε α11
11/|Rω | α21

11/|Rω | α22
11/|Rω|

�−2 log(H)
 = 5
1

10

1

10
≈ 0 ≈ 0 1.9685e-05

�−2 log(H)
 = 5
1

10

1

20
≈ 0 ≈ 0 1.9006e-05

�−2 log(H)
 = 5
1

10

1

40
≈ 0 ≈ 0 1.9247e-05

l H ε α11
22/|Rω | α21

22/|Rω | α22
22/|Rω|

�−2 log(H)
 = 5
1

10

1

10
1.4876e-05 ≈ 0 0.0201

�−2 log(H)
 = 5
1

10

1

20
6.2843e-06 ≈ 0 0.0401

�−2 log(H)
 = 5
1

10

1

40
3.1331e-06 ≈ 0 0.0802

l H ε α11
12/|Rω| α12

12/|Rω | α22
12/|Rω |

�−2 log(H)
 = 5
1

10

1

10
≈ 0 ≈ 0 -1.1669e-05

�−2 log(H)
 = 5
1

10

1

20
≈ 0 ≈ 0 -1.4998e-05

�−2 log(H)
 = 5
1

10

1

40
≈ 0 ≈ 0 -1.7243e-05

l H ε β11/|Rω | β12/|Rω | β22/|Rω|

�−2 log(H)
 = 5
1

10

1

10
0.0150 -0.0150 0.0150

�−2 log(H)
 = 5
1

10

1

20
0.0301 -0.0301 0.0301

�−2 log(H)
 = 5
1

10

1

40
0.0610 -0.0610 0.0610

Table 4

Error comparison for Case 2.

l H ε e
(1)
2 e

(2)
2

�−2 log(H)
 = 5
1

10

1

40
8.42% 8.54%

�−2 log(H)
 = 6
1

20

1

40
2.42% 2.50%

�−2 log(H)
 = 8
1

40

1

40
0.65% 0.72%

l H ε e
(1)
2 e

(2)
2

5
1

10

1

10
8.28% 10.08%

5
1

10

1

20
9.60% 10.17%

5
1

10

1

40
8.42% 8.54%

l H ε e
(1)
2 e

(2)
2

�−2 log(H)
 = 5
1

10

1

10
8.28% 10.08%

�−2 log(H)
 = 6
1

20

1

20
2.98% 3.43%

�−2 log(H)
 = 8
1

40

1

40
0.65% 0.72%

�−2 log(H)
 = 9
1

80

1

80
0.18% 0.19%

unless the diffusive terms can balance the reaction terms. This occurs if the media have high contrast. We discuss these 
issues and how one can use spectral problems to define the continua. Based on obtained multicontinuum models, we show 
that one needs high contrast to have different average values. We derive multicontinuum models for dynamic problems 
with dynamic cell problems and discuss nonlinear cases. In addition, we discuss the use of both average and gradient 
constraints at the same time and its disadvantages. We also briefly discuss nonlinear multicontinuum models. Numerical 
results are presented. Our numerical results show that the proposed approach provides an accurate representation of the 
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Fig. 5. Case 2. Top-Left: Reference averaged solution in �1 . Top-Right: Multiscale solution U1 . Bottom-Left: Reference averaged solution in �2 . Bottom-Right: 
Multiscale solution U2 .

Fig. 6. Left: κ for Case 3 with ε =
1

10
. Right: The solution snapshot.

solution’s averages and converges as we decrease the mesh size. We study various parameter regimes and their influences 
on effective properties. Finally, we would like to note that the proposed approaches can be extended to problems without 
scale separation. These problems are carefully studied in our previous works [13,11].

17



Y. Efendiev and W.T. Leung Journal of Computational Physics 474 (2023) 111761

Table 5

Effective properties α and β ’s. Case 2.

l H ε α11
11/|Rω | α21

11/|Rω | α22
11/|Rω |

�−2 log(H)
 = 5
1

10

1

10
1.4528e-04 -1.0341e-06 7.5875e-05

�−2 log(H)
 = 5
1

10

1

20
1.4534e-04 -4.9526e-07 7.5874e-05

�−2 log(H)
 = 5
1

10

1

40
1.4535e-04 -2.4487e-07 7.5866e-05

l H ε α11
22/|Rω | α12

22/|Rω | α22
22/|Rω|

�−2 log(H)
 = 5
1

10

1

10
0.0094 -0.0119 0.0192

�−2 log(H)
 = 5
1

10

1

20
0.0187 -0.0239 0.0384

�−2 log(H)
 = 5
1

10

1

40
0.0373 -0.0477 0.0768

l H ε α11
12/|Rω | α12

12/|Rω | α22
12/|Rω |

�−2 log(H)
 = 5
1

10

1

10
-1.4056e-04 2.5701e-05 -5.7296e-05

�−2 log(H)
 = 5
1

10

1

20
-1.4302e-04 1.2903e-05 -6.6648e-05

�−2 log(H)
 = 5
1

10

1

40
-1.4419e-04 6.4525e-06 -7.1260e-05

l H ε β11/|Rω | β12/|Rω | β22/|Rω|

�−2 log(H)
 = 5
1

10

1

10
0.1572 -0.1572 0.1572

�−2 log(H)
 = 5
1

10

1

20
0.3145 -0.3145 0.3145

�−2 log(H)
 = 5
1

10

1

40
0.6291 -0.6291 0.6291

Table 6

Error comparison for Case 3.

l H ε e
(1)
2 e

(2)
2

�−2 log(H)
 = 5
1

10

1

40
4.19% 4.24%

�−2 log(H)
 = 6
1

20

1

40
1.21% 1.37%

�−2 log(H)
 = 8
1

40

1

40
0.95% 1.14%

l H ε e
(1)
2 e

(2)
2

5
1

10

1

10
5.41% 5.95%

5
1

10

1

20
4.07% 4.21%

5
1

10

1

40
4.19% 4.24%

l H ε e
(1)
2 e

(2)
2

�−2 log(H)
 = 5
1

10

1

10
5.41% 5.95%

�−2 log(H)
 = 6
1

20

1

20
1.92% 2.25%

�−2 log(H)
 = 8
1

40

1

40
0.95% 1.14%
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Fig. 7. Top-Left: Reference averaged solution in �1 . Top-Right: Multiscale solution U1 . Bottom-Left: Reference averaged solution in �2 . Bottom-Right: 
Multiscale solution U2 .
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