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1. Introduction

One of the commonly used approaches for multiscale problems includes homogenization and its variations [6,21,23,24,30,
7,15], where effective properties at each macroscale grid or point are computed. These computations are often based on local
solutions computed in a representative volume element (or coarse grid) centered at a macroscale point. Homogenization-
based approaches assume scale separation and that the local media can be replaced by a homogeneous material. As a result,
it is assumed that the solution average in each coarse block approximates the heterogeneous solution within that coarse
block.

In many cases, even within the scale separation realm, homogenization (as discussed above) is not sufficient and the
coarse-grid formulation requires multiple homogenized coefficients. These approaches are developed for different appli-
cations [27,4,28,1,19,8,3,5,9,2] and we call them (following the literature) multicontinuum approaches. Multicontinuum
approaches assume that the solution average is not sufficient to represent the heterogeneous solution within each coarse
block. In the derivation of multicontinuum approaches, there are typically several assumptions: (1) continua definitions;
(2) physical laws describing the interaction among continua; and (3) conservation laws deriving final equations. Various
assumptions are typically made in deriving these models. The first such approach is presented in [27], where the author
assumes existence of continua that have different equilibrium temperatures among each other (continua) and formulates
empirical laws for interaction among continua. In more rigorous approaches related to porous media [4,28,3,26], the con-
tinua are assumed to be fracture and matrix regions. In our earlier works [14,13,31], we define the continua via local
spectral decompositions and show that the resulting approach converges independent of scales and contrast if representa-
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Fig. 1. Illustration.

tive volumes are chosen to be coarse blocks. In this work, we use similar ideas (as in [14,13,31]) for problems with scale
separation and formulate cell problems and formally derive multicontinuum equations.
The main objectives of this paper are the following.

o We derive multicontinuum methods using a homogenization-like expansion and present constraint cell problem formu-
lations.

e Constraint cell problems allow using averages for different quantities and regions (continua) and give flexibility to the
framework.

e We discuss appropriate local boundary conditions in representative volume elements for problems with scale sepa-
ration and introduce oversampling. Using oversampling, we consider reduced constraint cell problems, where we use
constraints for the averages only.

e The resulting multicontinuum equations show that local averages of the solution will differ among each other if dif-
fusion and reaction terms in the upscaled equations balance each other. This requires smaller reaction and/or larger
diffusion terms, which occur in the presence of high contrast. We discuss this issue and show that a multicontinuum
concept is via local spectral decomposition.

e We discuss the relation to NLMC approaches that go beyond scale separation.

e The average constraints, discussed in this paper, are easy to set and guarantee exponential decay (i.e., we remove
boundary effects).

e We present numerical results.

We note that to go beyond scale separation, numerical approaches use entire coarse blocks (see Fig. 1) to do local com-
putations [10,16-18,20,11,25]. Among these approaches, multiscale finite element method and its variations are proposed,
where multiscale basis functions are computed on coarse grids.

1.1. The main idea of this paper

In this section, we briefly present the main idea of the paper. We consider a steady-state or dynamic problem

L) =f

subject to some boundary and initial conditions. It is assumed that the problem is solved on a computational grid consisting
of grid blocks, denoted w, that are much larger than heterogeneities. We assume some type of homogeneity within each
computational block represented by Representative Volume Element R, that corresponds to a computational element w
(see Fig. 1) (more precise meaning will be defined later). We assume that within each R,,, there are several distinct average
states can be achieved (known as multicontinua). We denote the characteristics function for continuum i within R, by
¥’ (w will be omitted since local computations are restricted to a coarse block), i.e., ; =1 within continuum i (can be
irregular shaped regions consisting of several parts, in general) and 0 otherwise. We introduce oversampled R, that contains
several R?'s. We denote the central (target) RVE by simply R,. In general, one can define the regions corresponding to the
continuum via local spectral decomposition of the solution space within R, as discussed later.
We assume a variational formulation of the problem

;wa(u,v):Q/fv,

where A is the corresponding bilinear form. We assume that R, can be used to approximate each integral fw (in general
space-time integral). Le.,

/A(u,v)% %/A(u,v). (1)
0] @ Rw

Summation over repeated indices is assumed in the paper. Next, we construct local cell problems in R, that are used to
represent u.
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We assume there are several macroscopic quantities denoted by U{” in each R, where i is the continuum. These quan-
tities can be thought of as average solutions within each continuum. We introduce cell problems in R}, (that consists of
RP) that can distinguish these states. The first represents averages (formally written)

L(#i) =ri in R}

Z[¢iwf=8i,~fw}’, (2)
PR, R}

where r; accounts for constraints, wf is ith continuum characteristics function in R?), and the second one accounts for the
gradients (formally written)

L@ =r" inR}
/«p{"wf = aijf(xm —oy7,
R RY

/ (Xm — c)l/ffo = 0 (condition that defines c).

(3)

RPO

Additional initial conditions are posed. pg refers to the target RVE, R,,. These cell problems are written formally and will
more precisely be described in next sections. We will use oversampling regions and constraints in each RVE within an
oversampled region to avoid boundary effects. Using these cell problems, the local solution in R, is written as

u~¢iU;i + ¢"VinU;. (4)

We assume U;j(x) is a smooth function representing the ith continuum. Le., U;(xy,) ~ wa ullfi/wa ¥, with x, being a

center point of R,. Substituting (4) into (1) and taking v ~ ¢sVs + gbé‘Vsz, we obtain multicontinuum equations for U;.
Substituting (4) and the form for v into equations, we obtain multicontinuum models.

We note that one can use u = 5,-(7,- in deriving homogenized equations. In this case, U; is a continuous function. Using
proposed cell problems, we will have the first order approximation of U; and, also, it paves a way to a higher order homog-
enization. We also note that VU; # [ Vuy; and this can be achieved using higher order homogenization. The convergence
proof of our proposed approach will be presented elsewhere.

Our main contributions are the following.

e We formulate constrained cell problems using Lagrange multipliers.

e To avoid boundary effects, we formulate cell problems in oversampled regions and use solutions’ averages to get fast
decay of boundary effects. This is also shown numerically.

e We derive multicontinuum upscaled models and formulate scaling for each term, which is related to RVE size. This
shows that unless there is some type of high contrast, the averages U; within R,, will become similar.

e We formulate spectral continuum definitions, which can be used to define v;’s.

e We discuss cell problems that use multiple constraints (averages and gradients) and discuss the advantages/disadvan-
tages associated with such constraints.

The paper is organized as follows. In the next section, we present preliminaries and show the arguments used in [27].
Section 3 is devoted to the derivation of multicontinuum approaches for a scale separation case. In Section 4, we present
spectral continuum ideas. Section 5 is devoted to some remarks that include the derivation using multiple constraints and
nonlinear multicontinuum models. Finally, we present some numerical results in Section 6.

2. Preliminaries
2.1. The work of L. I. Rubinstein [27] from 1948

First, we briefly discuss the paper by L. I. Rubinstein [27], which is the first paper that derives multicontinuum equations
based on physical laws. We skip/simplify some details. In [27], the author considers time-dependent diffusion equation in
heterogeneous media. The equation at the fine scale is

U — V- (kVu) = f. (5)

The paper [27] assumes that the media consists of many small particles (possible connected) divided into the group of N
components (continua), where the diffusivity of each component is ;. The media is assumed to be stochastic, i.e., K (x, ¢),
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where ¢ refers to a realization. At each point X, wy is an elementary volume around point x. We denote the distribution
within a component i as Uj(x, t, ¢) and denote by

1 ~
Uf(x,t,0) = . / Ui(z,t,¢)dz
X

wx

and denote (mathematical expectation)

Ui(x, t)=/U;k(X,t,§)dU(§).

It is assumed that within a representative element, different components can have different averages and conservation
for each component is written down. The conservation consists of three terms. The first term is the diffusion flux and is
taken by (in [27])

/ Ui o At
Y Pl Ny ,
qii i on Mi
E/
where w; is fraction of ith component on (larger) elementary volume boundary X/, At is a time interval. There are a number
of assumption about components’ homogeneities on boundaries of &’ (RVE). The second flux is taken to be heat exchange

within an elementary volume, which occurs because of different temperatures within each component. Using Henry’s law,
this flux is written in [27] as

Q2ij=/a{’}(Uj—Uij)def,
Q/

where Uj; is a temperature in jth component when ith component temperature is U;. It is taken to be U;j = U;. The third
flux is given by

dU;
qzi = [ cipi— - pidwAt,
at
Q/

where cj, p; represent fluid properties and p; is a volume fraction of ith component. From

q3i =q1i + q2i

one arrives to

V(i VU + ) ei(Uj — Uy = Cipipi%-
J
Similar multicontinuum models are proposed in different application areas.

In this paper, we give a derivation based on formal expansion, cell problems, and then show a relation to theories de-
veloped in [13,11]. This derivation can be made rigorous under some assumptions (cf. [12]). We mention some assumptions
as we go along without making them formal to keep the presentation simple. Our derivation (1) reveals the nature of con-
tinua, (2) shows their relation to local spectral decomposition, and (3) formulate constraint cell problems with appropriate
boundary conditions.

3. Multicontinuum derivation based on volume average constraints
3.1. Steady-state case

In this section, we will repeat some parts of Introduction. Our approach starts from a finite element method formulated
on a coarse grid. Coarse grid contains RVE, where local computations will be performed (see Fig. 1). We assume a partition
of the domain into elements, where w is a generic coarse-grid element (triangle or rectangle), R, is a representative volume
(RVE) within w (see Fig. 1). We consider a steady state diffusion equation

/KVleV:/fV, veHNQ). (6)
2 Q

Representative volume, as usual, is assumed to represent the whole coarse block w in terms of heterogeneities. In each R,
we assume N continua (components) and introduce
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¥ = 1incontinuum j, 0 otherwise.

In general, one can use different functions, e.g., eigenfunctions of local problems [13,11] to represent each continuum, as
discussed later.

Next, we remind that R}, is an oversampled region (RVE) that surrounds R,. It is taken to be several times larger
compared to R, and consists of several RVE's, denoted by R’ (p is the numbering). In general, they (R’s) can be the
copies of R,, and it is used to remove boundary effects. The target RVE, we denote by R”® or simply R,,. We introduce two
sets of cell problems with constraints.

mp
fxw;“.w—z il p/vf}’v:o
RS Rl
/gb;“w]’.’ =5ij/(xm — ¥}, (7)
RY RY

/ (Xm — ij)l//]po = 0 condition that defines c,
RPO

where m refers to the coordinate direction, and

(8)

The first cell problem (7) one accounts for the gradient effects and is taken to vanish in the target RVE, RE°. This cell

problem accounts for standard homogenization effects. The second cell problem (8) accounts for different averages in each

continuum. By imposing the same averages in each R?, we reduce the boundary effects in an exponential manner [13,11].

Here, for simplicity, we do not use w index in ¢; or ¢[", though both of them depend on w. This is because our calculations

will be done in each w separately. In general, one can remove the index p in v; if RVE's are periodically repeated or similar.
Next, we formulate some properties of B’s. We note

2 =0 ©)
J.p

mp
- 1 we

which can be obtained by taking v =1 in (32). If we take v = ¢ in (7), then, we have fR(t KV - Voy = Zp B
take v = ¢ in (8), we get

ﬁiﬁ:/w‘f””v@:zﬁfi' (10)
RS b
We assume that in R,,,
u~ iU +¢;" VmUi, (11)

where U; is a smooth function representing the homogenized solution for ith continuum. More precisely, U; can be thought
as a limit of /R(u uwi/wa Vi (piecewise constant function) taken over all R,, as the RVE size goes to zero. We will assume
U; and their gradients can be approximated by constants in RVE and use mid point to represent their values. We note that
(11) can be shown under the assumption that U; is a smooth function.

Next, we derive multicontinuum equations for U;. For any v € H], we have

N [9]
/fv_//cVu-VV_Z/KVu-VVNZm/KVwVV, (12)
Q Q @ @ @ Re

where we make an assumption that integrated average over RVE can represent the whole computational element w. This
approximation holds if all f| gp are approximately equal for all R? in w. Next, we approximate each term

/KVU~VV:/KV(¢,-U,-)-Vv—}-/lcV(qS{"VmU,-)-Vv. (13)

[9) [9] [3]
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We assume that the variation of U; and Vp,U; are small compared to the variations of ¢; and qf)lm (see scalings (17)) and
assume wa kV(piU;) - Vv ~ wa k(Vi)U; - Vv and wa kV(@VnU;) - Vv =~ wa kV (M) VinU; - Vv. We take

v =sVs + pEV Vs

Then, denoting for simplicity, R, = RE?, we have

/KV(@U:‘)'VV“U]'(XCU)/KV@"VV=

Re Ro

14
Ui (40) Vs () / V1 - Veps + Ui (%) Vin Vs (X00) / Vi - Vgl = (14)
Ui(X)BisVs(Xw) + Bis "Ui(Xw) VVs(Xe),
where
o = [ vor-vou gi= [vor-va
Ro R
Here, we use the fact that U; and V are smooth functions and take their values at some points within w. Similarly,
/KV(qblmeUi) - Vv & VnUi(xe) / KV - Vv =
R R;
15
VUi (%) Vie Vs (%) f VO - Vo + VinUi (%) Vs () / KV Vo, (13)
Row Rw

VinUi (%) Vie Vs (x00) oK™ + ViU (%) Vs (X00) B,
where
akm :fKqu}“ VK.
R

Next, using continuous approximations for U; and V;, we can write

/Kw.vaUiﬂ{‘j*vnvj+Ui/3;vj+
Ro (16)
VnUial"VaVj + VUiV .

Note that the definitions of «’s and B’s are using the volume of R, (which is of the same order as R}). Moreover, we
also have the following scalings. Assume ¢ is a diameter of RVE. First, we note that

1
I¢ill =0 (D), Vil =0(2)

(17)
"Il = 0(€), V"Il = 0(1).
Using the formulas for «’s and 8’s, we have the following scalings.
s Rol. [Rol
B = 0=, e = 0(Ru)). ;= 0(~3).
We then define rescaled quantities By, @ij, Bij, @ij such that
2
B = S pgme @I = R, o™ By = 7. (18)
~ IRl [Rol
With these scalings, we have
/KVH‘VV%/@VmUiVnV]’-F
: (19)
/ﬁm*VmU Vi+ /ﬂm*U ViV /,BUU V.
Q Q
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The sum of the second and third terms is negligible (this can be shown by integration by parts). It can be shown that
> o
J

The last term can be written as
/ﬂijUiVjZZ/ﬂij(Ui -Ujvj, (20)
Q J#ig

which gives a form that is often used in multicontinuum models. If we ignore the second and the third term in (19), we get

_ 1 —
—Vn(e]"VmUj) + E—Zﬂijuj = fi (21)

We see from the equation that the reaction term is dominant unless we deal with large diffusions (high contrast). When
reaction terms dominate, we have all U;’s are approximately the same. Thus, in general, to define appropriate multicontin-
uum models (when U;’s differ), one needs appropriate multicontinuum definitions, which we will do in Section 4.

If we have one continuum (as in standard homogenization), then ¢; =1 and 55‘ = 0. The function ¢" will have the

averages pr o = pr (Xm — x%), where x?n = (Xm) gpo. In this regard, @' acts as having linear growth as in homogenization
w w w
case (see later discussions on imposing gradient constraints).

3.2. Time dependent case

We consider

th1 th1 tny1
//utv+//KVu-Vv://fv.
th Q th Q th Q

We introduce cell problems (we keep the same notations as the stationary case) as time-dependent cell problems in R}, x
[tn, fn+1]

tht1 tn1
[ [emws [ [evor-vv-
th R$ th Rg
mp thy1
ﬂij 0
Z th+1 \/I]V—
p Jty wa 12 i R,
th+1 tht1 (22)
/[¢§”1ﬁj=5u’ / /(Xm—ij)Wj
fn RE, fn R,
th41
/(Xm—ij)lﬁjZO
th Rg)o
ot =tn) =&,

where £ is the steady state solution given by (7). The second cell problem is defined with constraints on the average
solutions in R} x [tn, th41]
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thi1 tnt1

//<¢f>tv+f/xwi~w—

tn R; th R(t

i1

ﬂ?

Z tart /‘/’f"zo

b Jr, Vi (23)

tn

n+1 n+1
//¢1¢j=5ij//1ﬁj

th Rg) th R(I:)

it =tn) = ¥i.
We again assume that in R, = RE?
u=¢iUi + ¢V Ui. (24)

Next, we derive multicontinuum equations for U;. Then, we have (for any v = ¢sVs + ¢§Vk Vs)

//n_//W+//WuW_

tn

1 1

Z//utv—i-Z//KVwVv% (25)
| | th1
w
2 iR // +Z|Rw| //KV” v

th Ry th Ry

Next,

thtt thy1
//ufv—i— / /KVU'VV’NV(Ui)th//qﬁi‘Pk‘i‘
th Ro

tn Re

Uin//((¢i)t¢l<+KV¢i'V¢k)+VmUiVnd//((¢;n)t¢£+KV¢?1'Vfl’]g)‘i‘
UiVndf/((¢i)t¢E+KV¢i~V¢E)+VmUiV1<//((¢,m)r¢k + KV V) +

(Ui )tvnVI<//¢l¢/< =mij(Upe Vi + BikUi Vi +0l VUi Va Vi+

BikUiVa Vi + o VUi Vi +mi; (Ui)e Vi V.

We note that if the cell problems do not contain ¢, i.e., " and ¢; do not depend on t, we get similar homogenized equations
(which can easily be derived from (26)). Here for simplicity of the notations, [ [ - f[”“ Jr %, - and the notations for mig, Bic,
a?j’“, T oy, and m can be seen from the above equality. We neglect ¢!" Vi, U; and (Uj);Vn kaf¢>,-¢>,’<1 based on scalings
(27).

Assume € is a diameter of RVE. We note that

1
I¢ill =0 (D), Vil =0(2)
l$"l = 0(€), Vel =0(D).

Thus, the last term in (26) can be neglected.
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Using continuous approximation U;’s and V;’s, we can write

tht1 tnt1 tnt1
/ffv://utv—i—//KVwVv%
th Q th Q th Q

1 th1

f/ml](u)fvj // manUVn

tht1 thi1

//a VUiV + //ﬂl]U VaVj+

thi1
/ﬂijUiVj,
th Q

(28)

where ~ denotes rescaled - with scaling of R,, and At (i.e.,~=
Formally, we can write the system of differential equations

TRoTAT SO that we can write the integrals.

Ui — Vnag-mvmuj +/3 ViU
—Vn(iUj) + ByUj = fi

Using the formulas for «’s and B’s, we have the following scalings (if we ignore the terms with temporal derivatives)

(29)

|Rw|

At
I = 0( ), ™ = O(|Ry|AL)

IR |At |Ryw| At
m—O(” R —O<“

)-

One can make similar argument as in steady state case.
4. Choices of continua. Spectral continua

In this section, we discuss how high contrast can balance «’s and f8's. First, we note that if reaction terms (represented
via B) dominate, then all U;’s are approximately the same and we do not have multicontinuum (i.e., different averages in
different continua). We assume steady-state case and two continua, where the continuum 1 has high-contrast « = 0 (1), n
is large, and the continuum 2 has a conductivity of order 1. The next arguments do not take into account RVE sizes and
are purely in terms of 7. We can see that a M (the diffusivity) is large O(n) (at least in some direction) since the local
solutions have linear growth conditions. In general, the scalings of «’s in terms of the contrast depend on heterogeneities
(see numerical results). On the other hand, 817 is of order 1 (in terms of the contrast, while it depends on the size of R,).
Since Z]- Bij ~ 0, we can conclude that other g’s are of order 1. Thus, if the contrast balances the RVE size (e.g., = 0(¢ ~2y)
(where € is the size of R,,), we expect that 8 terms do not dominate and there are differences between average states and
one has multicontinuum homogenized limit.

Next, we discuss how one can identify the continuum via local spectral problems. We consider g;; = ]R(UKqu,- - Vo
and assume, for simplicity, that the cell problem (8) is formulated in R,,. We would like to minimize g;; with constraints.
We assume (1) ¢;'s are in the space of local solutions (¢;) (2) ¥ can take any values and the constraints are given by
wa K@iy j = &;j. The functions ¢; are local homogeneous solutions, V- (k' V¢j) =0 in Ry, with boundary conditions ¢; = 5;’ x)
on dR, where §;(x) is a fine-grid hat function defined on the boundary of R,. In this case, if we consider the eigenvalue
problem

—div(kVn;j) =AjKkn;. (30)
(see [16,11]). With corresponding Rayleigh quotient,
Jr, K K|Vl
e klol2

it is clear that y; = ¢; = n;. The eigenvectors corresponding to the smallest eigenvalues are constant functions in high-
contrast regions. In general, one can identify high-contrast regions by finding nearly constant gradient regions of Vé;.

9
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Moreover, the number of smallest eigenvalues will correspond to the number of high-conductivity channels (channels that
connect boundaries of R,,).

Based on the above discussion, one can perform local spectral decomposition based on (30) and identify v; based on
smallest eigenvalues that correspond to high contrast (they scale as the inverse of high contrast). Using these eigenvec-
tors, the local problems (8) and (7) are solved. We can use instead of ﬂir;?p/ng ¥} and ﬁf]’./ng ¥, the terms without

denominator, ﬂgw and /35‘ so that not to worry that 1//}7 may vanish.
5. Remarks
5.1. Multicontinuum derivation based on average and gradient constraint problems in representative volumes
One can also use gradient type constraints in addition. We demonstrate this and point out some issues in this procedure.
We consider a steady state diffusion equation.

In each RVE, we introduce two sets of cell problems with constraints formulated in R, (though, one can use oversam-
pling).

/Kv¢m~vv— air?n /lﬂjvnv— ﬁlr]n /lﬂj\/:O

£, wa Vi g, wa Vi £,
/V¢lmlﬁj=5ijem/¢j (31)
Row

Ry
f oy =0,
Ry

where e, is mth unit vector. The second cell problem is defined with constraints on the average solutions in R,

/KV¢,--VV— % fw-vnv— bii /1//~v:0
wa‘/’J'R ! wa‘/’jR !

R 1)
/¢i¢j=5ij/1/fj (32)
Ry Ry
/V¢i1ﬂj=0-
R

Some properties of Lagrange multipliers are discussed. We note Zj Bij = 0, which can be obtained by taking v =1
in (32). If we take v = ¢; in (31) then waKV(bim -Voj = . If we take v =¢" in (32), we get waKqui Vo = al.
Therefore, ag? = /331 If we take v = ¢}, in (31), then, we have waKV([),-m - Ve = o, If we take v = ¢ in (32), we get
waKV¢i Vs = Bis.

Next, we assume that the local solution in @ can be represented by constraint problems in R,

u~giU; +¢f"Vi", (33)

where

_wal“ﬁi m_waVmUIﬁi

U; = , V= (34)
1 wa Vi : wa Vi
Similarly, we introduce for test functions
v Vv
p=dr Vg S ¥V (35)

wawi ' i wawi

For any v € H}, we have
< ol
ffv:fKVu-Vv:Z/KVu~Vv~ZM KkVu-Vv, (36)
Q Q ©w @ Re

10
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where we make an assumption that integrated average over RVE can represent the whole computational element w. Next,
we approximate each term

/KVU~Vv:/KV(@U,-)~VV+/KV(¢?1V{”)-Vv. (37)
Re Re Re

We assume that the variation of U; and V[" are small compared to the variations of ¢; and ¢ (since they vary at RVE
scale) and assume wa kV(piUp) - Vv~ wa k(Vei)U; - Vv and wa kV(@I'VT) - Vv ~ wa kV(@MV™. Vv. Then (denoting
X, center of R,),

/KV(¢iUi)'VV%Ui(xw)/‘de)i'sz

Ra) R
Uitoo) 10 fwj Vv + Ustr) 7 /w— (38)
WJ
Ui(xw)aiij (Xw) + Ui(Xw),Bij Pj(x).
Similarly,
/ww{”vmui) Vv A v{"(xw)//cv(;s;" Vv =
Ry Ro
V'”(Xw)/lﬁ Vav + Vm(xw)/w V=
T, Vi wj ! wa v !

Vm(Xw)Ol Q] (Xw)+Vm(Xw)ﬁ,]P Xo)-

Next, using continuous approximations for all quantities, we have

/KVu Vv~ U,’(X%Q? + UiBijPj+
Re (40)
Vit Ql + VB P

Consequently,

/fV=/KVuVV%/OﬁIVan+
/,Bme /Ot .U Qn /ﬂUU Pj,

where ™ denotes rescaled - with scaling (i.e., = 7). The equation (41) is a multicontinuum model equation. Similar scaling
arguments as before can be applied.

The resulting equations are similar to those we obtained earlier. In our numerical studies, we have found that the cell
problems using multiple simultaneous constraints (e.g., average solution and average gradient) are prone to large errors. This
is because one needs to choose these simultaneous constraints (for averages and gradients) such that the local problems ¢;
and ¢!" have similar fine-scale features as the exact solution. When there is no compatibility (i.e., averages and gradients
do not correspond to each other), then there are large errors, especially at the interfaces of the continuum, which can cause
large errors on average characteristics. For this reason, we have found one constraint cell problems to be more accurate,
easy to implement, and easy to remove boundary effects with oversampling.

(41)

5.2. Nonlinear case. Steady state

The derivations presented earlier can be done for nonlinear problems. We consider

/K(x,Vu)-Vv:/fv.
Q

Q

In this case, we can split the cell problem into average-based and gradient based due to nonlinear interaction and we
consider the following cell problem.

11
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[k vomen: W—Zaé’ﬂ(n s>/w”v—

& (42)
/¢”Ew"—nfw"+sj /(x—c)wp
We will use the following approximations
u~¢U, VU)
Vigp A Z pr wa” —¢i)-VVi.
Then,
PP
/;c(x V¢ (U, VU)) - VV_Zaff,f(U VU)Vlf vivi
J - Jep 1072
Z(xg)f(u VU)M VV;= (43)

fR,PD

Zaf,’,f(u VUVj+ > MU, VUV,

m,p

where all U’s and V'’s are taken to be constants at RVE-level and
yime =Y ablm.6)
p
p
ng) (Xm — Cm)wj
[v)

Here, we took account ng) Wfllfip = §jj fR('L I/fip and ng) 1#}7 1//1.1’ (x —ci) = §jj fR('L 1//,.p (x — ¢i). We get the following multicontin-
uum equations

BIM(n. &)= abl(n.6)
p

/yf(U,VU)vj+/ﬂf(u,VU)-vv,:fj.
Q Q

In general, these equations are complicated to solve. Some machine learning techniques are needed to train the local
upscaled quantities. We have presented some cases in [22,29,14]. In some special cases, one can simplify the resulting
multicontinuum equations.

6. Numerical results

In this section, we will present numerical examples of the proposed upscaling method. We will present three numerical
examples. The goal is to show that our proposed algorithm is accurate and the cell problem solutions provide better accuracy
as we increase oversampling size.

In all examples, we consider the elliptic problem (6) in a unit square, and solve the cell problems (7) and (8). The
macroscopic equation is given by (21). In the first example, we consider the layered medium parameter « (see Fig. 2). The
period of k is denoted as €. We denote the low conductivity region and the high conductivity region of x by € and €3,
respectively. The source term f and conductivity « is given as

1000 min{k Je~401x=05°+(=05% y ¢ 0,

fo= o —40/(x—0.5)2+(y—0.5)?| xe 2

and

K(X) = 101000

—— Xx€
100e

12
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Fig. 2. Left: k for Case 1 with € = 10 Right: The solution snapshot.

The computational domain 2 is partitioned into M x M coarse grid. The coarse mesh size H is defined as H = 1/M. For
simplicity, we consider the whole coarse grid element as an RVE for the corresponding coarse element. The oversampling
RVE R}, (or w™) for each coarse RVE w is defined as an extension of K by I layers of coarse grid element, where | will be
varied.

We will define the relative L2-error in §2; and the relative L%-error in €2 by

1 1
— [ Uj— —— ul?
e(i)_ ZK||K|‘[K 1 |I<in|fKﬂQ,' |
) = .

- ul2
ZK|I<infKﬁQ,' |

K denotes the RVE, which is taken to be w. This represents the Ly error of our proposed approach.
Our goals in this section are the following.

o We show that the errors between the upscaled solutions and corresponding fine-grid solutions are small.

e The errors are stable for different mesh sizes, RVE sizes, and contrasts. If the number of layers is appropriately chosen
(to avoid boundary effects), the error will decrease as we decrease the mesh size.

e We discuss the effective properties and show their values for different values of mesh sizes and RVE sizes.

e The numerical results show scalings of effective parameters.

For the first case, we take the fine-mesh size to be 1/800. We present eg') in Table 1. We make several observations.
First, we observe that the proposed approach provides an accurate approximation of the averaged solution. In Fig. 3, we
depict upscaled solutions and corresponding averaged fine-scale solutions. We observe that these solutions are very close.
In the first table, we decrease the coarse-mesh size and it gets closer to €. In standard numerical homogenization methods,
this was known to give a resonance error and error will increase. Here, by choosing an appropriate number of layers, we
observe that the error remains small. In the second table, we decrease the period size and observe that the error decreases
to a certain level. In the third table, we observe convergence as we decrease the mesh size and €. In general, we expect a
certain threshold error due to fine-scale discretization, which is used to compute the solution. In Table 2, we present the
errors for fixed contrast ratio 1/10000 (in 1) and 1/10 (in Q2). As we decrease the mesh and RVE sizes, we observe that
the upscaled solution converges to the averaged fine-scale solution.

In Table 3, we present the results for effective properties that are computed. First, we note that the scalings of these
quantities are in accordance with our theoretical findings. In Case 1, we observe anisotropy as expected. | ~ 0, unless
i = j =2 since the flow in vertical direction for the gradient. We observe larger a%% since the flow in the vertical direction
and the second continuum accounts for high conductivity. We only show 811 as other 8;;’s depend on them and are similar
(follows from symmetry and the fact that the sum of elements in each row is zero). We note that with our scalings of
conductivity, 8 should scale as 1/¢, which we observe in the table.

6.1. Case2

Next, we consider a different case, Case 2. We depict the conductivity field in Fig. 4 and the corresponding fine-grid
solution. The fine-mesh size is taken to be 1/400. In Fig. 5, we depict upscaled solutions and corresponding averaged fine-

13
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Fig. 3. Case 1. Top-Left: Reference averaged solution in €21. Top-Right: Multiscale solution U;. Bottom-Left: Reference averaged solution in ;. Bottom-Right:
Multiscale solution Us.

scale solutions. We observe that these solutions are very close. For this case, we present eg') in Table 4. We observe similar
findings. First, we observe that the proposed approach provides an accurate approximation of the averaged solution. In this
table, we decrease the coarse mesh size while keeping € fixed. We observe that the error decreases if we scale the number
of layers as —log(H). In the second part of the table, we decrease € and observe that error does not change if the number
of layers is fixed. Finally, we reduce both H and € and observe that the error decreases. Thus, the proposed method is
robust with respect to the size of heterogeneities.

In Table 5, numerical results for effective properties are presented. In this case, we do not have strong anisotropy and
observe similar values for a’s when the continua are fixed. From the second table, we observe that the values of o]}’ are
larger compared to of}" and @Y. This is because the second continuum account for high conductivity region. Again, 8
should scale as 1/¢, which we observe in the table.

6.2. Case 3

Next, we consider a different case, Case 3. We depict the conductivity field in Fig. 6 and corresponding fine-grid solution.
In this case, we do not have strict periodicity as in other cases and the conductivity slowly changes. The fine-mesh size
is taken to be 1/400. In Fig. 7, we depict upscaled solutions and corresponding averaged fine-scale solutions. We observe
that these solutions are approximately the same. For this case, we present e<2') in Table 6. We observe similar findings as in
previous cases. First, we observe that the proposed approach provides an accurate approximation of the averaged solution.
In this table, we decrease the coarse mesh size while keeping € fixed. We observe that the error decreases if we scale the
number of layers as —log(H). In the second part of the table, we decrease ¢ and observe that error does not change if the
number of layers is fixed. Finally, we reduce both H and € and observe that the error decreases. Thus, the proposed method
is robust with respect to the size of heterogeneities.

14
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Table 1
Error comparison for Case 1.
(1) (2)
l H € e, e,
2log(H)1 =5 ! 1.50% 137%
[ og(H)] = 0 410 .50% 37%
—2log(H)1=6 — — 0.48% 0.50%
[—2log(H)] T 410
—2log(H)1=8 — — 0.61% 0.60%
[—2log(H)] w0
l H € e;l) e(zz)
1 1
5 — — 4.60% 8.35%
10 10
1 1
5 — — 1.60% 131%
10 20
1 1
5 — — 1.50% 137%
10 40
(1 2)
l € e, e,
2log(H 5 ! ! 4.60% 8.35%
[—2log(H)] = ? 11*0 -OU» -397%
—2log(H)1=6 — — 2.02% 2.40%
[—2log(H)] 210 210
—2log(H)1=8 — — 0.61% 0.60%
[—2log(H)] 410 410
—2log(H)1=9 — — 0.14% 0.14%
[—2log(H)] 30 80
Table 2
Error comparison for Case 1 with a fixed contrast.
(1) (2)
I H € e, e,
2log(H)1=5 ! ! 3.83% 6.24%
[—2log(H)] = 110 110 . -
—2log(H)1=6 — — 2.20% 2.50%
[—2log(H)] 210 210
—2log(H)1=8 — — 0.88% 0.90%
[—2log(H)] 0 40
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Fig. 4. Left: « for Case 2 with € = o Right: The solution snapshot.

7. Conclusions

In this paper, we propose a derivation of multicontinuum models using constraint cell problems in oversampled regions.
The proposed cell problems allow reducing boundary effects and take into account both average and gradient constraints.
Imposing constraints on averages allows a fast decay of artificial boundary effects. Our derivations show that one obtains
coupled equations and derives the formula for exchange between continua. The exchange terms in the form of the reaction
scale as the square of the inverse of RVE size and, thus, they dominate. As a result, the solutions in these continua are equal
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Table 3
Effective properties o and B’s. Case 1.
l H € all/IRy| a2} /IRy a?/|Ry|
1 1
—2log(H)]1=5 — — ~0 ~0 1.9685e-05
[—2log(H)] 110 110 e
—2log(H)]1=5 — — ~0 ~0 1.9006e-05
[—2log(H)] 1]0 210 e
—2log(H)] = — — ~ ~ 1.9247e-
[-2log(H)]1=5 10 0 0 0 9247e-05
! H € a3 /IRol a3 /IRol a3 /IRwl
1 1
—2log(H)]1=5 — — 1.4876e-05 ~0 0.0201
[—2log(H)] 110 1]0 e
—2log(H)]1=5 — — 6.2843e-06 ~0 0.0401
[—2log(H)] 110 20 e
—2log(H)] = — — 1331e- ~ . 2
[ og(H)] =5 10 0 3.1331e-06 0 0.080
! H € a3 /IRol ai3/IRol a3 /IRol
1 1
—2log(H)] = — — ~ ~ -11 =
[ og(H)] =5 110 110 0 0 669e-05
—2log(H)1 =5 — — ~0 ~0 -1.4998e-05
[—2log(H)] 1]0 210 e
—2log(H)] =5 — ~0 ~0 -1.7243e-05
[—2log(H)1 10 20 e
l H € B11/IRw| B12/IRw| B22/IRw|
1 1
—2log(H)]1=5 — — 0.0150 -0.0150 0.0150
[—2log(H)] 110 110
—2log(H)] = — — . 1 -0. 1 . 1
[ og(H)]1 =5 110 210 0.030 0.030 0.030
—2log(H)] =5 — — 0.0610 -0.0610 0.0610
[—2log(H)] o 0
Table 4
Error comparison for Case 2.
1 2)
l H € e, e,
2log(H 5 ! 8.42% 8.54%
[—2log(H)T = 10 ? Gako .
—2log(H)1 =6 — — 2.42% 2.50%
[—2log(H)] 20 410
—2log(H)1 =8 — — 0.65% 0.72%
[—2log(H)] 20 40
l H € e(zl) 9(22)
1 1
5 — — 8.28% 10.08%
1]0 110
5 — — 9.60% 10.17%
110 210
5 — — 8.42% 8.54%
10 40
(1) 2)
l H € e, e,
2log(H 5 L ! 8.28% 10.08%
[—2log(H)] = 11*0 11*0 .£0% Uo7
—2log(H)] =6 — — 2.98% 3.43%
[—2log(H)] 210 210
—2log(H)1 =8 — — 0.65% 0.72%
[—2log(H)] 410 410
—2log(H)1 =9 — — 0.18% 0.19%
[—2log(H)] 30 80

unless the diffusive terms can balance the reaction terms. This occurs if the media have high contrast. We discuss these
issues and how one can use spectral problems to define the continua. Based on obtained multicontinuum models, we show
that one needs high contrast to have different average values. We derive multicontinuum models for dynamic problems
with dynamic cell problems and discuss nonlinear cases. In addition, we discuss the use of both average and gradient
constraints at the same time and its disadvantages. We also briefly discuss nonlinear multicontinuum models. Numerical
results are presented. Our numerical results show that the proposed approach provides an accurate representation of the
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Fig. 5. Case 2. Top-Left: Reference averaged solution in Q1. Top-Right: Multiscale solution U;. Bottom-Left: Reference averaged solution in ;. Bottom-Right:
Multiscale solution Us.

1
Fig. 6. Left: « for Case 3 with € = I Right: The solution snapshot.

0.25

0.05

solution’s averages and converges as we decrease the mesh size. We study various parameter regimes and their influences
on effective properties. Finally, we would like to note that the proposed approaches can be extended to problems without
scale separation. These problems are carefully studied in our previous works [13,11].
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Table 5
Effective properties o and B’s. Case 2.
! H € il /IRy a?l/IRy| afZ/IRy|
1 1
[—2log(H)] =5 m m 1.4528e-04 -1.0341e-06 7.5875e-05
1 1
[—2log(H)1 =5 T 50 1.4534e-04 -4.9526e-07 7.5874e-05
1 1
[—2log(H)] =5 T e 1.4535e-04 -2.4487e-07 7.5866e-05
! H € a33/IRo| @32 /IRy aZ2/IR,|
1 1
—2log(H)]1=5 — — 0.0094 -0.0119 0.0192
[—2log(H)] 110 110
[—2log(H)] =5 — — 0.0187 -0.0239 0.0384
110 210
—2log(H)] = — — .037 -0.0477 .07
[=2log(H)]1=5 o 0 0.0373 0.0 0.0768
! H € a3 /IRol a3 /IRol af/IRul
1 1
[—2log(H)] =5 o I -1.4056e-04 2.5701e-05 -5.7296e-05
1 1
[—2log(H)1 =5 o o -1.4302e-04 1.2903e-05 -6.6648e-05
1 1
[—2log(H)] =5 o 0 -1.4419e-04 6.4525¢-06 -7.1260e-05
l H € B11/IRw| B12/IRw| B22/IRw|
1 1
[—2log(H)] =5 T T 0.1572 -0.1572 0.1572
1 1
—2log(H)] = — — 314 -0.314! .314
[ og(H)]1 =5 110 210 0.3145 0.3145 0.3145
—2log(H)] =5 — — 0.6291 -0.6291 0.6291
[—2log(H)] o 0
Table 6
Error comparison for Case 3.
l H € e(zl) ef)
2log(H 5 ! ! 4.19% 4.24%
[—2log(H)] = ? ? 19% 24z%
—2log(H)1 =6 — — 1.21% 137%
[—2log(H)] 210 410
—2log(H)1 =8 — — 0.95% 1.14%
[—2log(H)] 0 20
l H € egl) 6(22)
1 1
5 — 5.41% 5.95%
10 110
5 — 4.07% 4.21%
10 210
5 — — 4.19% 4.24%
10 40
! H e o) o®
2log(H 5 ! ! 5.41% 5.95%
[—2log(H)] = ? ? 4ale g
—2log(H)1 =6 — — 1.92% 2.25%
[—2log(H)] 210 210
—2log(H)1 =8 — — 0.95% 1.14%
[—2log(H)] 0 0
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Fig. 7. Top-Left: Reference averaged solution in €21. Top-Right: Multiscale solution U;. Bottom-Left: Reference averaged solution in . Bottom-Right:
Multiscale solution Us.
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