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Uniqueness of compact ancient solutions to the
higher-dimensional Ricci flow

By Simon Brendle at New York, Panagiota Daskalopoulos at New York,
Keaton Naff at New York and Natasa Sesum at Pitscataway

Abstract. In dimensions n > 4, an ancient k-solution is a nonflat, complete, ancient
solution of the Ricci flow that is uniformly PIC and weakly PIC2; has bounded curvature;
and is k-noncollapsed. In this paper, we study the classification of ancient x-solutions to
n-dimensional Ricci flow on S”, extending the result in [S. Brendle, P. Daskalopoulos and
N. Sesum, Uniqueness of compact ancient solutions to three-dimensional Ricci flow, Invent.
Math. 226 (2021), no. 2, 579-651] to higher dimensions. We prove that such a solution is either
isometric to a family of shrinking round spheres, or the Type II ancient solution constructed by
Perelman.
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1. Introduction

In this paper, we consider a solution to the Ricci flow 6a_t g(t) = —2Ricg () on a compact
manifold which exists for all times ¢ € (—oo, T)). We call such a solution an ancient solu-
tion. The main focus of this paper is the classification of ancient solutions to Ricci flow in
dimensions n > 4, under natural isotropic curvature conditions that will be discussed below.
Ancient solutions play an important role in singularity formation in geometric flows since
these solutions occur as limits of sequences of rescalings in regions of high curvature. For
example, Perelman’s work on the Ricci flow [27] shows that high curvature regions in a three-
dimensional Ricci flow are modeled on ancient solutions with nonnegative curvature that are
k-noncollapsed. In the same paper, Perelman also showed that even in higher dimensions,
ancient solutions that occur as blow-up limits around points of high curvature are «-noncol-
lapsed. We will focus on these k-noncollapsed ancients solutions. Let us begin by briefly
reviewing what is known in dimensions two and three.

In dimension two, ancient solutions to the Ricci flow have been completely classified
through a combination of work by Chu, the second author, Hamilton, and the fourth author in
three papers [18,20, 21]. In particular, there is actually a classification of both collapsed and
k-noncollapsed ancient solutions. Altogether, there are precisely three (nonflat, non-quotient)
ancient solutions: the family of shrinking round spheres, the King solution, and steady cigar
soliton. The King solution, independently discovered by King [25] and Rosenau [28], resem-
bles two steady cigar solitons which have been cut and glued together to form a compact
solution. Of course, the sphere is k-noncollapsed, while the cigar and, hence, the King solution
are both collapsed.

In dimension three, there are expected to be many more examples of collapsed ancient
solutions. For k-noncollapsed ancient solutions however, Perelman’s conjecture [27], and its
analogue in the compact setting, indicated a simple classification should exist. These conjec-
tures stood for a number of years until several recent breakthroughs made it possible to resolve
them in full. In dimension three, noncollapsed ancient solutions have now been completely
classified through a combination of results by Angenent, and the first, second, and fourth authors
in four papers [1,7,10, 13] (as well as a pinching result in [14]). See also [4]. Altogether, there
are precisely four (nonflat, non-quotient) xk-noncollapsed ancient solutions: the family of shrink-
ing round spheres, the family of shrinking round cylinders, Perelman’s ancient oval solution
on S3, and the steady Bryant soliton. Perelman’s ancient oval is the higher-dimensional ana-
logue of the King solution: it resembles a gluing of two Bryant solitons at very negative times.

We now turn our attention to dimensions n > 4. We are interested in classifying ancient
solutions which model singularity formation. The question is: what class of singularity models
can we understand using the techniques developed in dimension three? The classification of
ancient k-solutions in dimension three relies on a number of ingredients. As we have men-
tioned, Perelman’s «-noncollapsing is crucial and holds in all dimensions. There are two ingre-
dients special to dimension three though, which do not apply in higher dimensions. The first
ingredient is the Hamilton—Ivey curvature pinching estimate, which ensures that all blow-up
limits have nonnegative curvature. Once one has nonnegative curvature, Hamilton’s Harnack
inequality [22] holds. The Harnack inequality then implies bounded curvature at bounded dis-
tance and, finally, an argument of Perelman upgrades this to bounded curvature. Therefore, in
dimension three, ancient k-solutions automatically have nonnegative and bounded curvature.
No general Hamilton—Ivey-type estimate holds in higher dimensions without an initial curva-
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ture positivity assumption. The second ingredient is that the cross section of a noncompact
singularity model in dimension three must be compact. Perelman used this property to estab-
lish an important “tube and cap” structure theorem for ancient «-solutions in dimension three.
When n > 4 however, there will be new singularity models, such as generalized cylinders,
which will require new arguments to classify.

The correct assumption on initial data, for the purpose of generalizing the singular-
ity model classification in dimension three to higher dimensions, turns out to be positive
isotropic curvature. It was Hamilton who first introduced positive isotropic curvature (PIC)
to the Ricci flow in dimension four [23]. Importantly, Hamilton established an analogue of the
Hamilton-Ivey pinching estimate for PIC initial data. Hamilton’s result showed singularities
must have nonnegative curvature and compact cross-section, whenever the models are noncom-
pact. In [9], the first author generalized Hamilton’s results for PIC initial data to dimensions
n > 12. In these dimensions, PIC initial data does not ensure singularity models have nonneg-
ative curvature, but rather they must satisfy a weaker curvature condition known as PIC2. See
Section 2 to recall the precise definitions of PIC and PIC2. Importantly, however, this latter
curvature condition is still strong enough to ensure Hamilton’s Harnack inequality holds [6].
Hamilton and the first author’s work justifies the following definition.

Definition 1.1. Suppose n > 4. An ancient «-solution is an n-dimensional, ancient,
complete, nonflat solution of the Ricci flow that is uniformly PIC and weakly PIC2; has
bounded curvature; and is k-noncollapsed on all scales.

To summarize, if the initial data of a Ricci flow is PIC and n = 4 or n > 12, then singu-
larity models must be ancient k-solutions in the sense above. We expect a similar result to be
true for5 <n < 11.

Our present goal is to complete the classification of ancient k-solutions in the sense of
Definition 1.1, extending the classification in dimension three. Having identified the correct
curvature assumptions, the program is roughly the same. The first important step was accom-
plished in [7], where the first author showed uniqueness of the Bryant soliton in the class of
steady solitons with asymptotic cylindricality. Subsequently, the first author and the third author
used [7] and arguments in [10] to prove uniqueness of the Bryant soliton among noncompact
ancient «-solutions in higher dimensions in [15]. It remains to extend the result of [13] for com-
pact ancient solution to higher dimensions, which we complete here. As in [13], the proof is
accomplished in two steps. In the first step, we use arguments from [15] to prove the following
theorem:

Theorem 1.2. Let (S™, g(t)) be an ancient k-solution on S"™. Then (S", g(t)) is rota-
tionally symmetric.

Next, we give a complete classification of all ancient k-solutions on S” with rotational
symmetry:

Theorem 1.3. Let (S”, g1(¢)) and (S", g»(t)) be two ancient k-solutions on S™ which
are rotationally symmetric. Assume that neither (S", g1(t)) nor (S", g2(¢)) is a family of
shrinking round spheres. Then (S", g1(¢)) and (S™, g2(t)) coincide up to a reparametrization
in space, a translation in time, and a parabolic rescaling.
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Combining Theorem 1.2 and Theorem 1.3, we can draw the following conclusion:

Theorem 1.4. Ler (S", g(t)) be an ancient k-solution on S™ which is not a family of
shrinking round spheres. Then (S™, g(t)) coincides with Perelman’s solution up to diffeomor-
phisms, translations in time, and parabolic rescalings.

Let us mention some related work in the mean curvature flow setting. In [19], the authors
classified compact, convex ancient solutions to the curve shortening flow. In [11, 12], the
authors proved that the bowl soliton is the only ancient solution which is noncompact, non-
collapsed, strictly convex, and uniformly two-convex. In [2], the authors showed that every
ancient solution which is compact, noncollapsed, strictly convex, and uniformly two-convex is
either the family of shrinking spheres or the ancient oval constructed by White (cf. [29]) and
Haslhofer and Hershkovits (cf. [24]). Finally, compact ancient solutions which are collapsed
were studied in [5].

The outline of the paper is as follows: In Section 2, we recall some qualitative properties
of ancient x-solutions on S”. In particular, an ancient «-solution on S” is either a family of
shrinking round spheres, or it has the structure of two caps joined by a tube (in which the
solution is nearly cylindrical). In Section 3, we give the proof of Theorem 1.2.

In Section 4, we derive a-priori estimates for rotationally symmetric solutions. In Sec-
tion 5, we introduce two weight functions 4 (p, 7) and ;—(p, t) (one for each cap). These will
be used in Section 7 to prove weighted estimates for the linearized equation in each tip region.

In Section 6, we give an overview of the proof of Theorem 1.3. The proof relies in a cru-
cial way on estimates for the linearized equation in the tip region (Proposition 6.5) and in the
cylindrical region (Proposition 6.7). These estimates are proved in Section 7 and Section 8.

2. Preliminary results on structure of compact ancient «-solutions

In this section, we will record basic facts about the structure of ancient x-solutions as
in [13, Section 2]. We begin by recalling the definitions of uniformly PIC and weakly PIC2
Riemannian manifolds.

Definition 2.1. Suppose n > 4 and that (M, g) is a Riemannian manifold of dimen-
sionn > 4.

* We say that (M, g) is uniformly PIC if there exists a real number o > 0 with the property
that R(¢, ) > o |Rm||p|? for all complex two-vectors of the form

¢ =(e1+iex) A(e3+ies),

where {eq, €3, €3, e4} is an orthonormal four-frame.

* We say that (M, g) is weakly PIC2 if R(¢,®) > 0 for all complex two-vectors of the
form
@ = (e1 +ipnez) A (ez +ildey),

where {e1, €2, €3, e4} is an orthonormal four-frame and A, o € [0, 1]. If the inequality is
always strict, we say that (M, g) is strictly PIC2.
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Equivalently:

» The Riemannian manifold (M, g) is uniformly PIC if there exists o > 0 such that for
every p € M and every orthonormal four-frame eq, e>, e3, e4 € T, M, the curvature ten-
sor R;jx; satisfies

R1313 + R1414 + R2323 + R2424 — 2R1234 > o|Rm]|.

» The Riemannian manifold (M, g) is weakly PIC2 if for every p € M, every orthonormal
four-frame ey, e, e3,e4 € T, M, and every A, u € [0, 1], the following holds:

Ri313 + A2Ria14 + 1> R2323 + A2 1? Rogng — 21 1iR1234 > 0.

Four-dimensional ancient «-solutions in the sense of Definition 1.1 automatically satisfy
the restricted isotropic curvature pinching condition used to study four-dimensional ancient
solutions in [17]. For a proof and to recall the meaning of the pinching condition, we refer
to [15, Proposition A.2]. Note that the restricted isotropic curvature pinching condition implies
four-dimensional ancient «-solutions have nonnegative curvature operator. The restricted iso-
tropic curvature condition is the assumption under which the authors in [17] developed a theory
for ancient «-solutions in dimension four, following the work of Hamilton and Perelman.
Importantly, for each of the structure results established for ancient k-solutions in dimensions
n > 5 by the first author in [9] under the uniformly PIC and weakly PIC2 assumptions, there
is an analogous result for ancient k-solutions in dimension n = 4 under the restricted isotropic
curvature pinching condition, which can be found in [17]. In particular, we note that compact-
ness of ancient x-solutions in the sense above is established in [9] for n > 5 and follows from
work in [17] for n = 4.

From now on, we assume (M, g(¢)) is an ancient x-solution which is compact and sim-
ply connected. We also assume (M, g(t)) is not a family of shrinking round spheres. Note that
because (M, g(¢)) is compact, the strong maximum principle ([9, Proposition 6.6]) implies
(M, g(t)) is strictly PIC2. By the work of the first author and Schoen, this implies M is
diffeomorphic to S”.

Proposition 2.2. The asymptotic shrinking soliton associated with the ancient k-solu-
tion (M, g(t)) is a cylinder.

Proof. The only gradient shrinking Ricci solitons which are uniformly PIC and weakly
PIC2 are the round sphere S”, the round cylinder S”~! x R, or a quotient of one of these two
by a discrete group of isometries (see [15, Theorem A.1]). If the asymptotic soliton has constant
curvature, then (M, g(¢)) would have constant curvature by the pinching result in [14]. This
would contradict our assumption that (M, g(¢)) is not a family of shrinking round spheres.
The asymptotic soliton cannot be a compact quotient of the cylinder for a number of rea-
sons. Perhaps the clearest is that these compact quotients of S”~! x R do not move self-
similarly under the Ricci flow. Alternatively, if the asymptotic soliton is compact, then by
smooth Cheeger—Gromov convergence M must be diffeomorphic to a compact quotient of the
cylinder, but M is diffeomorphic to S”. Finally, if the asymptotic soliton is a noncompact
quotient of the cylinder, then by [8, Theorem A.1] the fundamental group of some nontrivial
quotient of $”~1 would inject into the fundamental group of M, which is trivial by assumption.
It follows the asymptotic soliton must be isometric to a round cylinder. |
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Proposition 2.3. Let (xi, t;) be an arbitrary sequence of points in space-time satisfying
limg_, o tx = —00. Consider the family of rescaled metrics

gk (1) := R(xg, tr)g (tx + R(xg. 1)~ '1).

After passing to a subsequence, the sequence of pointed flows (M, gy (t), X ) converges in the
Cheeger—Gromov sense to either a family of shrinking cylinders or the Bryant soliton.

Proof.  'We have compactness of ancient «-solutions for n > 4 and a classification in the
noncompact case by [15]. Thus, the proof of [13, Proposition 2.2] works here. O

We now fix a large number L < oo and a small number &; > 0 so that the Neck Improve-
ment Theorem in [15, Theorem 4.8] holds. Also, denoting by A1 (x, t) the smallest eigenvalue
of the Ricci tensor at (x,t), we fix a small number 6 > 0 with the property that if (x,?) is
a spacetime point satisfying A1(x,?) < OR(x,1), then the point (x, ¢) lies at the center of an
evolving &1 -neck. The existence of 6 is based on a standard contradiction argument which uses
compactness of ancient k-solutions in higher dimensions. See [15, Lemma A.2] for a proof in
the noncompact case. The proof in the compact case is nearly identical.

Definition 2.4. We say that a point p is a tip of (M, g(¢)) if A1(p,t) > %R(p, t) and
VR(p,t) =0.

By work of Hamilton, every neck admits a canonical foliation by CMC spheres. This will
be referred to as Hamilton’s CMC foliation.

Proposition 2.5. Consider a sequence of times t, — —oo. If k is sufficiently large, then
we can find two disjoint compact domains 21 j and 2, . with the following properties:

* Q x and Q; j are each diffeomorphic to B".

» Foreachx € M\ (21 x U3 k), we have A1(x, 1) < OR(x, ty). In particular, the point
(x, t) lies at the center of an evolving &1-neck.

» Foreachx € Qq j U Qp , we have A1 (x, 1x) > %QR(x,tk).
* 0Q  and 02, i are leaves of Hamilton’s CMC foliation of (M, g(ty)).
e For each k, there exists a leaf Xy of Hamilton’s CMC foliation with the property that
Q1 k and Q, i lie in different connected components of M \ X, and
A1 (x, tg)

— 0.
xXeXy R(X, tk)

* The domains (21 k., g(tx)) and (23 k., g(tx)) each converge, after rescaling, to a corre-
sponding subset of the Bryant soliton.

Proof. The proof is the same as the proof of [13, Proposition 2.4]. m)
Corollary 2.6. If k is sufficiently large, then the manifold (M, g(t)) has exactly two

tips. One of these points lies in 21 . and the other lies in 2, . In particular, these points are
contained in different connected components of M \ Zy.
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Proof. The proof is the same as the proof of [13, Corollary 2.5]. We note that in higher
dimensions, at the tip of the n-dimensional Bryant soliton we have Ric = %R g, VR =0,
and V2R < 0. Moreover, the tip is the unique point on the Bryant soliton where VR = 0 and
A1 > %R. The claim now follows from the previous proposition. |

The following proposition is an immediate consequence of Proposition 2.3.

Proposition 2.7. Consider a sequence of times ty — —o0. Let p1, and p> ;. denote
the tips in (M, g(tr)). If we rescale the flow around (p1, ., tx) or (p2,4..1) as in Proposi-
tion 2.3, then the rescaled flows subsequentially converge to the Bryant soliton in the Cheeger—
Gromov sense.

Proposition 2.8. Consider a sequence of times ty — —oc. Let p1y, and p> ;. denote
the tips in (M, g(tx)). Then we have

R(pl,tk s tk)dg(lk) (pl,tk s p2,tk)2 — 00,
R(P2t t1)dg (1) (Pt > P21 ) — 0.
Proof. 'We have Perelman’s long-range curvature estimate for n = 4 by [17, Proposition

3.6 ] and for n > 5 by [9, Theorem 6.13]. Thus, the proof of [13, Proposition 2.7] works
here. =

Proposition 2.9. Consider a sequence of points (xi, ty) in spacetime such that ty, tends
to —oo. Let p1 . and p3 4, denote the tips of (M, g(tx)). If

R(p1sg- 1) dg (1) (P11 - Xic)* — 00,
R(pZ,tk’ tk)dg(tk)(PZ,tk, xk)z — 00,

then
MOk )
R(xg. 1)
Proof. The proof is the same as the proof of [13, Proposition 2.8]. |

By combining Corollary 2.6, Proposition 2.7, Proposition 2.8, and Proposition 2.9, we
obtain the following analogue of [13, Corollary 2.9]:

Corollary 2.10. The following statements hold:

(i) If —t is sufficiently large, then the manifold (M, g(t)) has exactly two tips p1, and p ;,
and these points vary smoothly on M in t.

(i1) Suppose that a large number A is givenl. If —t is sufficiently large ( deperlzding on A), then
the two balls Bg)(p1,t, AR(p1,¢,1)”2) and Bg(r)(p2,t. AR(p2,¢,1)” 2) are disjoint.

(i) Suppose a large number A and a small number ¢ > 0 are given. If —t is sufficiently
large (depending on A and &), then the solution in the ball Bg(1)(p1,:. AR(p1,. t)_%) is
(after suitable rescaling) e-close to the corresponding piece of the Bryant soliton in the
Cheeger—Gromov sense. Similarly, the solution in the ball Bg ) (p2,:, AR(p2,s, Z)_%) is
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(after suitable rescaling) e-close to the corresponding piece of the Bryant soliton in the
Cheeger—Gromov sense.

(iv) Given € > 0, we can find a time T € (—o0, 0] and a large constant A with the follow-

. 1 _1
ing property. If t <T and x ¢ Bg(1)(P1,t. AR(P1,:.1)"2) U Bg(1)(p2,1- AR(p2,s.1)”2),
then (x,t) lies at the center of an evolving e-neck.

3. Rotational symmetry of compact ancient «-solutions in higher dimensions

In this section, we give a proof of rotational symmetry, extending [13, Section 3] to higher
dimensions. The arguments are essentially the same, except we will use results from [15], which
is the higher-dimensional analogue of part two of [10], where the first author first established
rotational symmetry of noncompact ancient k-solutions in dimension three. Throughout this
section, we assume n > 4 and (M, g(¢)) is an n-dimensional ancient x-solution which is com-
pact and simply connected. We also assume that (M, g(¢)) is not a family of shrinking round
spheres. The proof of rotational symmetry is by contradiction. Therefore:

We will assume throughout this section that (M, g (¢)) is not
rotationally symmetric.

As in the previous section, let us fix a large number L < oo and small number £; > 0 so
that the Neck Improvement Theorem in [15] holds. Then let us choose a small number 6 > 0 so
that if A1(x,7) < OR(x,t), the spacetime point (x, 7) lies at the center of an evolving £1-neck.

We begin with a definition of e-symmetry of the caps based on the definition used in the
noncompact case in [15].

Definition 3.1 (Symmetry of caps). We will say the flow is e-symmetric at time 7 if
there exists a compact domain D C M and a family of time-independent vector fields

oo ()

which are defined on an open subset containing D such that the following statements hold:

e The domain D is a disjoint union of two domains D1 and D», each of which is diffeo-
morphic to B”.

e A1(x,7) < OR(x,1) for all points x € M \ D.

e Ai(x,1) > %GR(x,ﬂ for all points x € D.

e 0D and 0D, are leaves of Hamilton’s CMC foliation of (M, g(t)).

e Foreach x € M \ D, the point (x, 7) is e-symmetric in the sense of [15, Definition 4.2].

 The Lie derivative &£ ;) (g(#))) satisfies the estimate

2

3)
sup Z Z p%l }Dl(cECU(m(g(t)))l2 < &2,

Dy x[f—p?.f] =0 a=1

where p1? := sup,cp, R(x.1).
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The Lie derivative £ (g(¢))) satisfies the estimate

2 (5)
SN 3 DN Ly g < &

DzX[t pz,ﬂl =0a=1
where p52 := supyep, R(x,1).

If ¥ C D; is a leaf of Hamilton’s CMC foliation of (M, g(¢)) that has distance at most
50 rpeck(0D1) from 0D, then

sup Z P2 (U@ )2 < &2,

where v is the unit normal vector to X in (M, g(7)) and ryeck(0D1) is defined by the
identity areag 5 (0D1) = areag,,_, (S Hrpeek (@D 1)L,

If ¥ C D, is a leaf of Hamilton’s CMC foliation of (M, g(¢)) that has distance at most
50 rpeck (0 D7) from 0 D5, then

supr (U@ v)|]? < &2,

where v is the unit normal vector to X in (M, g(7)) and rpeck(0D2) is defined by the
identity areag ) (0D2) = areag, | (S VY rpeck (0D2)" 1.

If ¥ C D; is a leaf of Hamilton’s CMC foliation of (M, g(¢)) that has distance at most
50 rpeck (0D 1) from 0D, then

%)

2

a,b=1

2
< &2

_n+l
ap — areag gy (5) w1 /E U@ U)o dpg e,

If ¥ C D, is a leaf of Hamilton’s CMC foliation of (M, g(¢)) that has distance at most
50 rpeck (0 D7) from 0 D5, then

%)

2

a,b=1

2
< &2,

_n+1
8ap — areag i (X) ™~ /Z(U(“)vU(b)>g(r‘)dMg®

Remark 3.2. The tips of (M, g(¢)) are contained in different connected components

of the domain D. In particular, after relabeling D; and D; if necessary, we may assume
P1i € D1 and p, 7 € Dy. In view of Corollary 2.10 and Definition 3.1, we have

. - —1 . -1
diam, 7 (D1) < CR(py7,1)" 2 and diamgi)(D2) < CR(pyz.1)" 2

for some constant C, which depends only on our choice of 8. By the long-range curvature
estimate, this implies

1 - _
ER(pI,,-,Z) < R(x,t) < CR(py;.1) forallx € D,

1
ER(Pz,fﬂ < R(x,i) < CR(p,7.7) forallx € Ds.
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Recall by [10, Lemma 9.5] (cf. [15, Lemma 5.5]):

Lemma 3.3. Suppose that the flow is e-symmetric at time t. If T is sufficiently close to ,
then the flow is 2e-symmetric at time t.

By Corollary 2.10, the solution is increasingly symmetric back in time.

Proposition 3.4. Let ¢ > 0 be given. If —t is sufficiently large (depending on ¢), then
the flow is e-symmetric at time t.

Now to proceed with the proof by contradiction, consider an arbitrary sequence of posi-
tive real numbers e, — 0. For k large, define
tr ;= inf{t € (—o0, 0] : the flow is not ez -symmetric at time ¢}.

We must have lim supy _, o, #x = —0o0 since otherwise the flow would be symmetric for —¢
sufficiently large, in contradiction with our assumption.

For sufficiently negative times, we denote by p;; and p, ; the tips of (M, g(¢)). Since
tx — —oo, Proposition 2.7 implies that, if we rescale the flow about either (p1, . %) by the
factor rl_]% := R(p1,4. k) or (P2, ) by the factor rz_i := R(p2,4.. tr), then the sequence
subsequentially converges to the Bryant soliton in the pointed Cheeger—Gromov sense. This
gives us the analogue of Proposition 3.5 in [13].

Proposition 3.5. There exists a sequence of real numbers 8; — 0 such that the follow-
ing statements hold when k is sufficiently large:

e Foreacht € [ty — 5,:11’12,(, ], we have
dg()(Prug> pr) < Skrik and 1 =8 < rf R(p1,t) < 1+ 6.
e The scalar curvature satisfies rl2 (R(x,1) <4and
o _ _ _
ﬁ(rl,llcdg(t)(pl,tk,x) + 17 < Vlz,kR(x,t) < 2K(r1,]1cdg(t)(p1,tk»x) + 17!

for all points (x,t) € Bg(,k)(pl,,k,(?;lrl’k) X [t — 8]:11’12,](, %]-

o There exists a nonnegative function

J1:= Skt Beo (Pra- 8¢ rip) x [tk — 8 ' ri g ti] > R

such that | Ric —D? f1| < Skrl_i and
_ _ 0 _
Afi+ VAP =2l <&} and | fi+ VAP S S
Moreover, the function f satisfies
| _
ﬁ(’”l,}cdg(z)(l?l,tk,x) +1) =< fik,)+1= 2K(V1,11¢dg(t)(P1,zk,X) +1)

for all points (x,t) € Bg(,k)(pl,,k,(S,:lrl,k) X [te — 5,:1r12’k, -
Here, K := K(n) > 1 is a universal constant. Analogous statements also hold if we replace
P by P2y T1k by 12k, and f1 by fo.
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The following three results are restatements of [13, Lemmas 3.6-3.8]. See also [15, Lem-
ma 5.14].

Lemma 3.6. By a suitable choice of 8y, we can arrange the following holds. If
t € =8 i tk] and  dgy(pry.X) < 8 ik

then the time derivative of the distance function satisfies the estimate

d
-1
0= _Edg(t)(pl,tk» .X) <2n Ik
Similarly, if
—1.2 -1
1 e [lk _8k r2’k,tk] and dg(t)(pZ,tk,X) S 8k rz,k,
then the time derivative of the distance function satisfies the estimate

d _
0= _ng(t)(Pz,tk»x) <2n rZ,IIC'

Lemma 3.7. By a suitable choice1 of 8, we can arrange so that z‘he1 following holds:
the two balls Bg)(p1,, 5;2R(p1,t, t)"2) and Bg(t)(ngt,(S,:ZR(ngt,t)_i) are disjoint for
t € (—o0,tg].

Lemma 3.8. [ft € (—oo, ty), then the flow is ej-symmetric at time t. In particular, if
(x,1) € M x (—o0, 1) is a spacetime point satisfying A1(x,t) < %GR(x, t), then the point
(x,t) is e-symmetric in the sense of [15, Definition 4.2].

By Corollary 2.10, we can find a time 7" € (—o0,0] and a large constant A with the
following properties:

o« Ly/4K <1076,

e If (x,7) € M x (—oo, T] satisfies
_ A 1 _ A ~ 1
de (P17 %) = ER(pl,t_’Z) 2 and dyi(pai, X) = ER(pZ,f’Z) 2,

then |
A1(x, 1) < EQR(x, t)

for all points (x,1) € By ) (X, Lrneck(¥.7)) X [ — Lrneck(X.7)?, 7], where

s 1 _
rneck(x’t) - —(I’l — 1)(71 _2)R(X,a.

The next two results are extensions of [13, Lemma 3.9 and Lemma 3.10] to higher
dimensions. The proofs are exactly the same.

Lemma 3.9. If(x,1) € M x (—o0, 1] satisfies

A _1 A _1
dey (P17 %) = ER(pl,f’f) 2 and dgi)(pag, X) > ER(Pz,E,ﬂ 2,

then (X,1) is %--symmetric.
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Lemma 3.10. [f(X,7) € M X [ty — 8;1r12k, tr] satisfies

Aryg < dg@y(Prag. X) < 8 ' rig.
then
_ A 1 _ A -1
de@ (P17 X) = ER(Pl,fJ) 2 and dgi)(pai,X) = ER(pZ,f’Z) 2.
Similarly, if (x,1) € M X [ty — 8;11"22,{, tr] satisfies
Ara g < dg@y(P2,e. %) < 8 ra g,
then
_ A _1 _ A __1
de@(P1,7:X) = ER(Pl,f’D 2 and dgi)(pai,X) = ER(Pz,z',f) 2.

The proof of the following proposition is the same as the proof of [13, Proposition 3.11],
except for minor difference with how we define the scale of a neck in higher dimensions. Recall
that if (X, 7) lies at the center of an evolving neck, then we define

- ~—2 1 _ -
Fneck (X, 1) 77 1= —(n—l)(n—Z)R(x’t)'

For the convenience of the reader, we verify this minor difference here.

Proposition 3.11. If (Xx,i) e M x [t — 27/ 8;1;"12’,(, tx] satisfies
250 Ary g < dyry(Prag . 5) < (400n° KL) /8 i,
then (%,1) is 2~/ ~Yeg-symmetric. Similarly, if (¥,1) € M x [ty — 27/ 8,:11’22’,(, tx] satisfies
230 A1y g < gty (Prig. %) < (400n3KL) /85 ra g,
then (x,1) is 277/ ey -symmetric.
Proof. The proof is by induction on j. The assertion for j = 0 follows from the previ-

ous two lemmas.
Assume j > 1 and that the assertion holds for j — 1. Suppose

(*.0) € M x [1r =277 8. r7 1 1]
such that ,
J .
2900 Ary gk < dg iy (P1,ye. %) < (400n° KLY/ 8 ry g

By Lemma 3.10, this implies A1 (X, 7) < %QR (x, 1) and so (X, ) lies at the center of an &1 -neck.
By Lemma 3.5,

rneck()z’ ﬂz = (n - 1)(” - 2)R()E, f)_l = 4Kn2r1,kdg(t_)(p1,lk’)_€)-

Therefore, ) ) .
[ — L reek(%,1)? = T — 4K Ln?ry dg iy (P15 %)

— 4K Ln*(400n*KL) /817,

-2

v 1V
A

A%
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Since rueck(¥,7)% < 4Kn2ry g dg(iy(prag. ©) < L2 dy o (p14 . %)% and L/ 42K < 1076,
we obtain
Lrpeck (X, [_) = 10_6dg(t_)(p1,lk’ X).

Consequently, if x € By 7)(¥, L rneck (X, f)), then

dg @) (Prac: %) Z dg @y (P1a X) = Lineek(X.1)
> (1= 107)d (P14 %)
> (1= 1076250 Ar
> 2{‘%&/\}’1’](.

_ 1 _ . ) .
Now on the other hand, %rl’ k < R(X,1)72 < rpeck(X, 7). Putting this together with

l"neck()_C, Dz < 4K”2r1,kdg(t')(P1,tk,)_C),
we obtain
de@(P1ty>X) + 2nL rpeck (X, t_)zrl_,llc
< dgi@) (P14, X) + L roeck (X, 1) + 2nL rpeci (X, t_)zrl_,llc
< dg@)(Prag> %) + 21+ 2) L roeek (X, D)%
< 400n° KL dg(ﬂ(pl,tka)_c)
< (400n* KL) ™8

for all x € By ) (X, L rneck (X, 7)). Since by Lemma 3.6

de (P11 %) < dgt)(Prt> X) < dg)y(Pr,ay» X) + 21 L reck (X, t_)zrl_,llcv

we conclude )
o0 d,: 3Ly +g1
2400 Ary g < dg7)(P1gy»X) < (400n°KL) t Tk

forall (x,1) € By()(X, L rneck(X. 1)) X [f — L reck (%, 7)?, 7. It follows by the induction hypo-
thesis and the Neck Improvement Theorem that the point (X, 7) is 27/ ~!eg-symmetric. O

The remaining arguments in the proof of rotational symmetry in Section 5 of [15], go
through without change to give us the following final proposition.

Proposition 3.12. If k is sufficiently large, then the flow is %‘-symmetric at time ty,.
The proposition above contradicts the definition of 7 in view of Lemma 3.3. This com-
pletes the proof of rotational symmetry.
4. A priori estimates for compact ancient «-solutions with

rotational symmetry

We begin by recalling some basic facts about the Bryant soliton in higher dimensions.
For the convenience of the reader we include some further discussion in Appendix A.
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Proposition 4.1 (R. Bryant [16]). Consider the n-dimensional Bryant soliton, normal-
ized so that the scalar curvature at the tip is equal to 1. Then the metric can be written in the
form ®(r)"Vdr ® dr + r? ggn—1, where ®(r) satisfies the ODE

1 —2—-9 2(n —2
O(r)®"(r) — 3 ' (r)? + n-2-%0) ' (r) + #@(1’)(1 —®(r)) = 0.
r r
Moroever,

LSy 0

- r r—0,
D(r) = n(n—1) “
n=2%r2—m-50-2>3r"*4+00"% asr— oo
Proof. See [16, Theorem 1 on p. 17]. O

Proposition 4.2. Let n > 0 be given. If s is sufficiently small (depending on 1), then
}CD((I +s)r)y = CD(r)_1| < 77(<I>(r)_1 - 1)

forallr > 0.

Proof. See [13, Proposition 4.2]. O

Lemma4.3. Consider the Bryant soliton, normalized so that the scalar curvature at the
tip is equal to 1. Then

r®, +20 =2(n—-5n—-2>"*+ 00" forr>1.

As a result we have

1
57O+ - ®% = 3(n—-2>%"*+007%).

Proof.  According to Proposition 4.1, we have
dr)=n—-2>2r2—m-5n—-2>%"*+00"%
implying that
r®d'(r)=-2n—-2*r2+4m—-5m -2+ 00"

as r — oo. Hence
r®, +20 =2(n—5)(n—2)r"*+ 007

as r — oo. This proves the first formula. The second one follows from the first and the fact that
(r)2=m—-2*r*4+ 0@ % asr — oco. m

Corollary 4.4. Consider the n-dimensional Bryant soliton, normalized so that the sca-
lar curvature at the tip is equal to 1. Let us write the metric in the formdz ® dz + B(z)? ggn-1.
Then, there exists a large constant Lo and such that

d? [ B(z)? d 4
F(T) - (EB(Z)) <0

holds if B(z)? > 2.
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Proof. The functions B(z) and ®(r) are related through the identity

d 2
(EB(Z)) = ®(B(2)).

This implies

2 2 4
%(@) - (%B(z)) = JBE(BE) + 9(B(:)) — 9(B(:))”

By Lemma 4.3, %rdD/ (r) + ®(r) — ®(r)?> < 0 if r is sufficiently large. This completes the
proof of the lemma. |

Corollary 4.5. Consider the Bryant soliton, normalized so that the scalar curvature
at the tip is equal to 1. Let us write the metric in the form dz ® dz + B(z)? ggn—1. Then
B(z) %B(z) —n—2asz — oo.

Proof. Note that r @(r)% — n —2asr — oo. Using the identity

d 2
(580)) = o,
we obtain B(z)jl—ZB(z) = B(z)@(B(z))% —n—2asz — oo. |

We now assume that (S, g(¢)) is an ancient «-solution which is not a family of shrinking
round spheres. Let ¢ € S™ be a reference point chosen as in [1]. The same proof as the one in [1]
implies that if £; — —oo and if we dilate the flow around the point (g, ;) by the factor (— j)_%,
then the rescaled manifolds converge to a cylinder of radius /2(n — 2). Let F(z,t) denote the
radius of a sphere of symmetry in (S”, g(¢)) which has signed distance z from the point g. The
function F'(z,t) satisfies the PDE

Fr(z,1) = Fez(2,0) = F( )(1—FZ(Z 1)%) — (n — 1) Fx(z, t)/ —;Z(S/Z;)
Furthermore, if
GE.1) = e F(e %€, —e %) — 2(n—2)
straightforward computation shows that
Gr=Ggg—§G$+G+(n—2) i G®
2 \/2(”7— +G  2(,2(1-2) +G)
—(n— )G ¢ G?E(s/ 2 ’
0 V2 D1 GED "
or, equivalently,
GrZGgg—gGg—FG— GSZ - G?
2 V20—=2)+ G 2(y/2(n —2) + G)
+(n - 1)05( Ge(0.7) /f GZ(E'. 1) E’).
V20 =2 +G60.0) o (21 =2) + G 1)?
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We can write this equation as

GSZ G2
G =£G — - + E@¢, 1),

i V2 —2) 220 -2)
where E (£, 7) is the error term and £G = Ggg — % Gg + G. Asin [1], let P4, Py and P_
be orthogonal projections associated with the direct sum # = H4+ @ Ho B H—, where H 4,
Ho and H_ are the positive, zero and negative eigenspaces with respect to operator £, respec-
tively. Exactly the same reasoning and arguments as in [1] yield that for 7 sufficiently small the
positive mode, i.e. the projection onto #fy dominates and that

/ 1 e‘¥E(E, T) (% —2)dE = O(A(r)?),
|&<8(z)” T00

where A(7) is the norm of the orthogonal projection of G(E ) =GE, )6 (r)ﬁé) onto Fy.
Note that y is a cut off function with the support in a parabolic region and lim;—,_ 6(7) = 0,
where both, y and 6(t) are defined in the same way as in [1]. Having the equation for G and
the integral estimate above, the same arguments as in [1] imply the following asymptotics:

Theorem 4.6. Let (S™, g(t)) be a rotationally symmetric ancient k-solution which is
not isometric to a family of shrinking spheres. Then we can find a reference point ¢ € S"
such that the following holds. Let F(z,t) denote the radius of the sphere of symmetry in
(S™, g(t)) which has signed distance z from the reference point q. Then the profile F(z,t)
has the following asymptotic expansions:

(1) Fix a large number L. Then, ast — —oo, we have

2 J—
LR — i - 2] (S0

log(—t) log(—t)
for|z| < L/—t
(ii) Fix a small number 60 > 0. Then as t — —oo, we have

1 2421
S FE0? =0 =21 - m] +o(~1)

for 2| < 2/(1 = 62) /(=) Tog(—1).
(iii) The reference point q has distance (2 + 0(1))+/(—t) log(—t) from each tip. The scalar
curvature at each tip is given by
log(—1)
(=)
Finally, if we rescale the solution around one of the tips, then the rescaled solutions
converge to the Bryant soliton as t — —oc.

(I +o(1))

We next let 1
H(z,t):= 5F(z, 1% + (n —2)t,
K(z,1) := Fy(z,0)%,
0(z,t):= H;;(z,t) — K(z,1).
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Lemma 4.7. Let Lg be the constant in Corollary 4.4. There exists a time To < O with

the following property. Ift < Ty and F(z,1)* = L% lofg?i)t)’ then Q(z,t) < 0.

Proof. The proof of this is identical to the proof of [13, Lemma 4.5] once we use
Corollary 4.4. m]

Lemma 4.8. The function H(z,t) satisfies the equation

HZ , 2 z FZZ /’ /
Hy(z,t) — Hy;(z,1) = (n _3)% —( -1 HZ[) F(%[;)dz ‘

Proof. Wehave H, = FF;, H, = FF;, H;; = FF,, + F2. Hence,

z FZZ(Z/J)d ’

— _F2_(y_ _ F2 9 —(n —
Hi—Hi = —F2 = =21 F2)+ 1=2) =) FF; [ 220

which gives
sz z FZZ (Z/v Z) /
H,—HZZ:(n—S)ﬁ—n—l)HZ/O mdz [}
Lemma 4.9. The function H;,(z,t) satisfies the evolution equation

szt(Z, t) - HZZZZ(Za t)

F;(z, 2 F;; /, ’
_ ((n—S) F(ZZ t’)) —(n—l)/0 %dz)szz(z,t)

2
—4(n—4) FZ(Z’;)(ZF;)Z @0 4F,,(z,1)>.

Moreover, the function K(z,t) satisfies the evolution equation

Kt(z’t)_KZZ(Z’[)
_ ((n—S)FZ(Z”) (n—l)/z Faz (2 0) dz/)Kz(z,t)
0

F(z,t) F(z',1)
F,(z,)*F,,(z,1) 2 2
+ 8 FG.1) —12F;(z,t) F;7(z,1)
1— F,(z,1)? 4
+4(n—2)WFZ(Z,t) .

Proof. 'We differentiate twice the equation of H to find

H? z Fzz(Z/,t)
Hyzt —Hzzz7 = (n— 3)(F_;)zz —(n— I)szz/(; m !

H,,F F,
—2(n—1) Z; ZZ—(n—l)HZ( ;Z)
z

Nextweuse H, = FF,, H;;, = FF,, + FZ2 and H;;; = FF;;; + 3F; F;; to compute
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and also use
sz 2 2
= (Fz )zz = 2(Fzez)z =2F;F;z; + 2Fzz
4

F2
F F2?F.
_Z;szz 6 ZFZZ+2FZZZ'
Combining the above yields
2 F, .zt F.
szt —H;z7; = Hzzp (_(” - 1)/ ;,Z(%’t)) dZ/ + (n - 5)?2)
F2?F
—6(n—23) F” +2(0n —3)F2 —2(n — 1)F2,

F2F, F2F
—2(n— 1)ZT” +4(n—1)—==

—szz( (n—l)/ %dz +(n—5)%)

F2

—4(n —4) 2 _4F2.

Next, a simple computation shows that F satisfies the equation

z FZZ(Z,v 1)
F(',t)

Set K = FZ4 . Using the previous equation, along with the identities

F ) F.
F, = F,,, + ((n - 3)72 —(n— 1)/ dz )FZZ +(n—2)(1—F?) F—Zz
0

Ky =4F2F,, K, =4F’F,;, K;; =4F2F,,, + 12F?F2

zZZ>

we find that K satisfies

F t
Kt—Kzz:—12F22FZZZ+4FZ3((;1_3)__( _1)/ zz(Z ) )F

F(Z.1)
+4(n—2)(1— F2)

_ F; Fzz(Zlat) /

F 4
+ 8F* ;Z 12F2F2 +4(n —2)(1 — FZ)

This completes the proof of the lemma. m)

Combining evolution equations for H;; and K, we obtain that Q = H,, — K satisfies

Fy Z Fro (2, F2 Fzz
Qt_szz((n—S)F_(n_l)/ (Z t)

o de/)QZ—A‘-(n 4)

2 FZ4F 202 2 4
—4F2 —8~Z" %% L 12F?F2 4(n—2)(1—F)

~(0-9F-w-v [ if(zz(z,)’z) i')0:
F2

— (4(n —4) + 8FH 22 PP, — (4—12F})F2 —4(n — ) ZF2
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The definition of Q implies

F2F,; FZ?Q—-F}+F? F} 1—F?

4
F F2 _F_Z2Q_ FZZFZ'
Therefore
F, z FZZ(Z/vt) ’
0= 0:: = (=97~ [ ZEELa Yo,
2 F22 2 2 (1_F22)2 4
— (@4 =4 +8F2) 50 — (4= 12FYF), —8—— 2 F.

We will use this equation, Lemma 4.7 and the maximum principle to prove the following
lemma, which is the analogue of [13, Proposition 4.7].

Proposition 4.10. We can find constants Lo and —Ty, large enough so that Corol-
lary 4.4 and Lemma 4.7 are satisfied, so that the following holds. If t < Ty and

(—1)
log(—1)’

F(z,0)> > L}
then Q(z,t) <O.

Proof. Consider the spacetime region consisting of points (z, ) such that ¢t < Ty and

Fet) = Lo |-

log(—1)"

By Theorem 4.6, part (iii), if Lo and —Tp are sufficiently large, then |F;| < ﬁ whenever
t <Tpand

—t
F(z,t) > Ly ) .
log(—t)
In particular, in the region t < Ty and F(z,t) > Ly lo(gz—i)t), the function Q satisfies
F, 2 F(Zt)
Qr—0zz = ((n—5)7—(”—1) /0 Wdz oF
N
Moreover, by Lemma 4.7, Q < 0 when ¢t < Ty and
(=1)
F(z,t)=L :
(z,1) = Lo log(—1)

Now suppose the assertion of the lemma is false. Then we can find a point (zg, #o9) such
that tg < Tp, F(zo, zo)2 > L% lofgziotz))’ and Q(zp, to) > 0. By the maximum principle, we have
sup Q(z,1) = Q(z0,20) > 0

F(z,02>L3 525
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for each t < t9. Let us consider a sequence #; — —oo. For j large, we can find a point z; such

that
(1))
F(zj,t;))> > L2 —"— and 0Q(z;.t;) > Q(zo.19) > 0.
J %] 0 log(_tj) J 5]

Using the inequality F,, < 0, we obtain F;(zj,#;)?> > Q(zj,t;) > Q(z0, 1) > 0 for j large.
Hence, if we rescale around the points (z;,#;) and pass to the limit, then the limit cannot be
a cylinder. Consequently, the limit of these rescalings must be the Bryant soliton. Hence, after
passing to the limit, we obtain a point z, on the Bryant soliton such that B(zs)? > L% and

d? [ B(z)? d 4
ﬁ( 2Z )—(EB(Z)) >0 atzeo.

This contradicts Corollary 4.4. O

We next recall a crucial estimate from [1].

Proposition 4.11 (cf. [1]). Fix a small number 6 > 0 and a small number n > 0. Then

z2 4+ 2t 72 ¢
=7
4log(—t) log(—t)

1
3 Fz.0)>? 4+ (n—=2)t + (n —2)
if F(z,t) > 4%«/ —t and —t is sufficiently large (depending on 1 and 0).

Proof. The proof is analogous to the proof of [13, Proposition 4.8] and is based on
the asymptotics of the ancient solution in radially symmetric setting. In [1] we showed pre-
cise asymptotics in the case n = 3, but the proof carries over without any changes to higher
dimensions due to new results in [15] and [26]. O

Proposition 4.12. Let us fix a small number 6 > 0 and a small number n > 0. Then

n—2)z lz| + V-t
FEOFGO+ o o = o)

if F(z,t) > %«/ —t and —t is sufficiently large (depending on 1 and 6).

Proof. The beginning of the proof is similar to the proof of [13, Proposition 4.9]. The
difference comes from the fact that FF, is not necessarily monotone decreasing in higher
dimensions, but instead one needs to use Proposition 4.10.

Let 6 € (0, %) and n € (0, %) be given. We can find a small positive number p € (0, n%Z)
and time Ty with the property that

0
F((1+p)z,t) > m\/—_t

whenever F(z,t) > %«/ —t and t < Tp. Moreover, by Proposition 4.11, we can find a time
T < Ty such that
72 4+ 21 z2

1 2
5 Fi +(n—2)t+(n—2)m =T T610a(—1)

whenever z > 4./—tg, F(z,t) > %«/—t, andt <T.
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Suppose now that (zg, o) is a point in spacetime satisfying
0
z0 > 44/—to, F(z0.10) = 200y for o= T.

We assume —7 is sufficiently large so that F(z,ty) < O for all z > 4,/—ty. By the above, we
have F(z,ty) > %«/—to forall z € [(1 — w)zo, (1 + u)zp]. Consequently,

2 2
‘%F(Z,lo)2+(”—2)104-(”—2)%(_2;00) S
forall z € [(1 — u)zo, (1 4+ w)zo]. This implies
. (n—=2)z 20
12 (P B+ 5 ZE ) <0
and
sup (F(Z, to) Fz(z,t0) + ﬂ) > —n Z—O.
z€[zo,(14 1) z0] 2log(—to) 2log(—10)
Define a function
1 1 1 — F,(z,1)?

S R PR G R FGE | FG PR

Since F(z,t9) > 4%./—to forall z € [(1 — p)zo, (1 + p)zo], we have F,(z,t9)?> < 1.1In par-
ticular, S(z,t9) > 0 if z € [(1 — w)zo, (1 + ®)zo]. Moreover, we may assume —t¢ is suffi-
ciently large, depending on 6 and 7, so that

_1
F(z,10)|Fz(z,10)| < S(z,10)"2 < (1 + n)F(z,10)|Fz(z, 10)].
Since F, < 0, this means
(1 + M F(z.10) F2(z.10) < —S(2.10)"2 < F(z.10) Fz(z.10).

We compute
2 2F;, 2F,

S, =— —
‘ F3F, F2F3 i

1 2 4
— —2—F3F3 (F? + FF.. — F})
zZ

_Q
F3(=F;)%
Since F; < 0 and by Proposition 4.10, Q < 0, the function S is monotone decreasing in the
variable z for z € [(1 — u)zo, (1 + ©)zo]. This means —S =2 is monotone decreasing as well.
So although the function FF; is1 not monotone decreasing in higher dimensions, it is very close
to the monotone function —S 2.

Now it follows from our estimates above that

n—-2)z ) Zo
2log(—10) 2log(—t0)

=2

(—S(z,ro)-% n

inf
z€[(1—)z0,20]

and

1 1 n—-2)z Z0
sup (——S(ZJO) 2 +—) >N
z€[zg,(14+u1)zo] +n 210g(_Z0) 210g(_t0)
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. _1. L . o
Since —S ™ 2 is monotone decreasing in the relevant region, this implies

L, =20z _ Zo
—5(z0.10)" 2log(—1o) 7 2log(—to)
and I (n—2)(1 — )
2 — — W)Zo - _ Z0
Tt ) T ) —  2los(—0)
Hence
(1 + 1) F (20, 10)Fi (20, 0) + - _( )[0) = (=20 ) ( to)
and 1 ( 2)z
—2)z0 Zo
T3 F oo t0) + 510 = 5 = = =2)p+m) 50— .

Since 11 € (0, 725) and evidently ﬁ <1 <1+ n, it follows that

(l’l — 2)20 - Zo
=N .
2log(—to) log(—10)
To summarize, we have verified the assertion for z > 44/—¢. An analogous argument show the

assertion holds for z < —4./—t. Finally, suppose |z| < 4+/—t. In dimension three, this case
follows from [1, Proposition 5.10]. An analogous result holds in higher dimensions; namely

F(zo,t0) Fz(z0,10) +

1
NG

in C2°. The assertion in the region |z| < 4+/—t (which is equivalent to |§| < 4) follows directly
from this result. This completes the proof of Proposition 4.12. O

(—0GE. 1) - - (-2

Corollary 4.13. Let us fix a small number 0 > 0. Then
C(0)
Vlog(=t)

if F(z,t) > 200 =t and —t is sufficiently large (depending on 0).

|FZ(th)| S

Proof. Given Theorem 4.6, the same reasoning as in [1] imply that

|z] = 2 + o(1)) v/ (=) log(=1).

Hence, the assertion follows from Proposition 4.12. O

Proposition 4.14. Let us fix a small number 6 > 0. Then

C)
log(—1)
if F(z,t) > 100 =t and —t is sufficiently large (depending on 0).

F(z,t)|Foz(z,0)| 4+ F(z,1)? |Fpz2(z,1)] <

Proof. The proof is analogous to the proof of [13, Proposition 4.11]. O
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Proposition 4.15. Let us fix a small number 6 > 0. Then

C(9)
vlog(=t)

0

whenever F > 1o5+/—t, and —t is sufficiently large (depending on 0).

|I’l—2+FFt| =

Proof. Using the evolution equation for F', we obtain

(n—=2)4+ F(z,t) Ft(z,t)
= F(z,t) Fy5(z.1) — F5(z,1)?
—1 z FZ(Z/vt)z /
+ (n — 1) F(Z,t) FZ(Z,I)[F(O,I) FZ(O,I) —/(; Wd i|

The same arguments in the proof of [13, Proposition 4.12] yield the proof in higher-dimensional
case as well. i

Proposition 4.16. Let ¢ > 0 be given. Then there exists a large number L (depending
on g) and a time T such that the following holds. If

(=1)
log(—1)

andt < T at some point in space-time, then that point lies at the center of an evolving e-neck.

Proof. This follows from the fact, that follows in an analogous way as in [1], that the

scalar curvature at each tip is comparable lofit_)t) . ]

Corollary 4.17. Let n > 0 be given. Then there exists a large number L (depending
on n)and a time T such that

|Fz|+F|Fzz|+F2|Fzzz|§n

whenever F > L lo(g?i)t) andt <T.

Proof. This follows directly from Proposition 4.16. ]

Proposition 4.18. Let n > 0 be given. Then there exist a large number L € (!

and a small number 0 € (0, n) (depending on 1), and a time T with the property that

, 00)

log(—1)
—-2)— | ———=F|F;]|| <
whenever L 1) < F <1000~—2tandt <T.

log(—1)

Proof. By Corollary 4.5, we can find a large number L € (™!, 00) such that

d
(1-2) = B() -B()| < 3
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for z > 5. Recall that the solution looks like the Bryant soliton near each tip, and the scalar
curvature at each tip equals (1 + o(1)) =¢ 1°g( t) . Consequently,

log(—1)
(—1)

if F=1L (( )) and —¢ is sufficiently large. Recall the function S(z, ¢) defined in Proposi-
tion 4.12:

‘(ﬂ—2)—

<
— 8

1 1
F(z,1)2F,(z,1)2  F(z,0)%
1}. The function

S(z,t) =

Let u = mln{4( =

z S(z,t)"2

(=1

is monotone decreasing. Moreover, whenever F > L Tog(=1)"

large, | F;| is small and hence

L is large, and —1 is sufficiently

FIF,| <872 <(1+ p)F|F.

Consequently,
log(—7) ,_1 log(—1)
(n—2)— STE=(m-2)—(1+p F|F;|
(=1 (=1 ’
log(—1) U
> —(1 -2)—|—— - -
= —(1+ u)‘(n e y
and
log(—t log(—t
(n—2— [ 5= < gy~ [
(=)
log(—1) U
- = Y FIF A
n ) (—0) |Fz|| + 1
whenever I > L 10(_1) and —¢ is sufficiently large. In other words,
g(—1)
log(=1) -1 log(—1) U
n—2)—|——=85"2(<2{(n-2)— + -
‘ (=1) (=1) 4
whenever FF > L lo(( )) and —¢ is sufficiently large. Similarly, we can show
log(=7) log(=1) 1|  n
-2)— F|F;|| < —-2)— N —.
‘(n ) D) |Fzl| < |(n —2) D) t5
In particular, from the first estimate in the proof, we obtain
log(—t
(n—2)— JOECED g4} 1
(=) T2

if F=1L ( ) and — is sufficiently large. On the other hand, for each 6 € (0

1
’ 1000)’
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Proposition 4.11 implies

=@+ 0(1))(1 - (2009)2

—t)loe(—t
) )( ) g( )
if F = 1000 A/ —2t. Using PrOpOSitiOH 4.12, we obtain

2]
F|F;|=((n-2 1) —
Fol = (=) o) 372
if F = 1000+/—2¢. Consequently,

log(—t) _ (1000)2
(=2 |7 F|FZ|_(n—2)(1—,/ — (1))
t.

if F = 10060+/—2¢. Therefore, if we choose 0 sufficiently small (depending on 7), then we
obtain

‘(n -2 - [ Fi

if F = 10060+/—2¢ and —t is sufficiently large. This implies

=

0|3

’

log(—1)
‘(n—Z)— ) S~ <5

if F = 10060+/—2t and —¢ is sufficiently large. Because S =2 is monotone, we conclude that

N

I\)

2 |10z

1 n
S72| < =,
(=0 T2
whenever L lo(gzi)t) < F < 1006 +/—2¢ and —¢ is sufficiently large. Finally, this implies
‘ n— log(—1)
eIl
whenever L /-0

log(—t) —

< F < 1000+/—2t and —t is sufficiently large. This completes the proof
of Proposition 4.18.

O
In the remainder of this section, we define functions UL (r, ) and U_(r,t) so that

5 2

Ui(r,t) = (—F(Z,t))
0z

forr = F(z,t) and z > 24/—t and

0 2
U_(r,t) = (gF(Z,l))

forr = F(z,t) and z < —24/—t. Let us consider the rescaled functions
Vi(p.7) 1= \/U+(€_%P, —e™),

V_(p, 1) := \/U_(e_%p, —e™ 7).

For each p € (0, 1), we denote by &4 (p, T) the unique positive solution of the equation

Fle72g, —e %) = e 2p;
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moreover, we denote by £_(p, t) the unique negative solution of the equation
F(e"2&,—e ) = e 2p.

Each of the remaining results in this section are stated for the “plus” tip, but of course
completely analogous results hold for the “minus” tip if one replaces V4 by V_ and &4 by &_.

Proposition 4.19. Llet us fix a small number 6 > lO. If —7 is sufficiently large (depend-
ing on 0), then % (=) 2 < Vy(p, 1) <C(O)(—1)" 2 and ‘%V+(p, ‘[)| < C(0) for every
p € [155.1000].

Proof.  Similarly to [13, Proposition 4.16]. D

Proposition 4.20. Fix a small number 1 > 0. Then we can find a small number 0 € (0, n)
(depending on n) such that, for —t sufficiently large, we have

— 1 _
Vi(o, )2 = d((—1)2p) ' < n(Va(p, 1) 2 = 1)
in the region {p < 1000}. Here, ® denotes the profile of the Bryant soliton.

Proof. Similarly to [13, Proposition 4.17]. O

Proposition 4.21. Fix a small number n > 0. Then we can find a large number L
(depending on n) such that, for —t sufficiently large, we have

<np ' Vi(p. 1)

0
Vi(p,7) <1, ‘%I@(p, T)

and X
‘WVJF(/O, 0| <np 2 Vi(p,1)73
in the region {L (—71)72 < p < %}.
Proof. Similarly to [13, Proposition 4.18]. O

Corollary 4.22. Fix a small number n > 0. Then, for —t sufficiently large, we have

0
—Vi(p. )| =np > (Va(p, )™ = 1)

ot

in the region {p < %}
Proof. Similarly to [13, Proposition 4.19]. m]

Proposition 4.23.  Fix a small number n > 0. Then we can find a small number 6 € (0, n)
(depending on n) such that, for —t sufficiently large, we have

0 2
a_p(#) + =20 Ve(p, ) 2 =D <np ' (Ve(p, 1) 2= 1)

in the region {% < p <26}

Proof.  Similarly to [13, Proposition 4.20]. O
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Proposition 4.24. Fix a small number 6 > 0. Then, for —t large, we have

9 E'i‘ (IO7 ,L,)Z
2 7 < C(0) (-
S () <cwrn
and 2t (p.0)
+(o, T 3
—|—)| = CO)(—1)2
() e
in the region {% <p <20}
Proof. Similarly to [13, Proposition 4.21]. ]

Proposition 4.25. Fix a small number 6 > 0. Then, for —t large, we have

o (80 r)Z)
ot 4

Proof.  Similarly to [13, Proposition 4.22]. |

<o) (=7)

in the region {% <p <20}

5. The tip region weights 4+ (p, 7) and u—(p, 7)

In this section, we define weights w4 (p, ) and w—(p, t) which will be needed in the
analysis of the linearized equation in the tip region. Let 6§ > 0 be a small positive number, and
let ¢ : R — [0, 1] be a smooth, monotone increasing cutoff function satisfying ¢(p) = 0 for
p < % and ¢(p) = 1 for p > % We define the weight p+(p, T) by

E+(p.7)? o E(E0)?
s = — —_— —d
p+(p, ) ¢(p) 2 /p ¢ (p) 2 o

0 1
-2 / (-5 (@0 p —1)dp.
0

where © denotes the profile of the Bryant soliton. We can define a weight ;—(p, T) in analogous
fashion. Of course, the cutoff function ¢ and the weights w4 (p, t) and u—(p, t) depend on the
choice of the parameter 6, but we suppress that dependence in our notation.

2
Lemma 5.1. The weight 1+ (p, T) satisfies L+ (p, T) = —Mforp > %. Moreover,
pt(p,v) < 0forall p < §.
Proof. This follows immediately from the definition of 4 (p, 7). |

Lemma 5.2. Fix a small number n > 0. Then we can find a small number 6 € (0, n)
(depending on n) such that, for —t sufficiently large, we have

0
aLp*(p, D= m=2p Vi) 2= D <np (Vi(p. 02— 1)

in the tip region {p < 20}.
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Proof. The assertion follows from Proposition 4.20 and Proposition 4.23 (see [13, Lem-
ma 5.2] for details). O

Lemma 5.3. [f we choose 6 > 0 sufficiently small, then the following holds. If —t is
sufficiently large (depending on 0), then

0% 114 1 (opy 2 Ke
302 (p,7) = 1 (W(ﬁ)’ T)) + 7P

in the tip region {p < 20}. Here, K« is a constant which depends on the dimension, but is
independent of 6.

Proof. 'We compute
Puy R (E(0, D2\ ., 0 (Er(p.T)
00 =20 s (HE) = v 5 ()
— =21 =L(p) + pL' (P p 2 (B(—1)7 p) ' = 1)
—(n=2)(1=£(p)) (=1)? p~' B((=7)2 p) 2 ¥ ((=7)? p).

Recall that 0 < ¢ < 1 and ¢’ > 0. Moreover, we have

1
o)t -1> e r?2 and |®(r)2d'(r)| < Kr

forall r € [0, 00), where K is a universal constant depending only on dimension 7. This implies
0%y 0> (E+(p. D)\ ,, 0 (E4(p,7)?
< _ 2 ) = 2
o0 ==t 5 (FE ) v o ()
+ K (1 —=2(p) (7).

where K is a constant depending on the dimension n but is independent of 6. Using Proposi-
tion 4.24, we obtain

a2
5z (P D) = 0(D) ()
in the region {% < p <26}, and
0%y
(p,7) = K(-7)
0p?

in the region {p < %}. On the other hand, we can apply Lemma 5.2 with n = %, keeping in
mind that n — 2 > 1 for all n > 4. If 0 is sufficiently small, then

0 1
BL;(p, D=2 (Velp, )" = 1)
1 1
=P (@((=1)2p) 7 = 1)
=

e

in the region {p < 260}, where again K is a constant depending on dimension but is independent
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of 6. Hence, if —7 is sufficiently large (depending on ), then we have

0% 114 1 (opy 2 4 -2
7)< — [ =—(p, 16K™ p~
apz(pf)_4(ap(pf))+ P
in the region {p < 26}. This completes the proof of Lemma 5.3. ]

Lemma 5.4. Let us fix a small number 6 > 0. Then, for —t large, we have

<o) (=7)

‘—(p, 7)
in the tip region {p < 20}.
Proof. It follows from Proposition 4.25, similarly to Proposition 5.3 in [13]. m|
We finish this section with the following weighted Poincaré inequality.

Proposition 5.5. If we choose 0 > 0 sufficiently small, then the following holds. If —t
is sufficiently large (depending on 0), then

20 2 20 2 20
[ () pemae [T () s [ e
0 1Y 0 Y 0

for every smooth function f which is supported in the region {p < 20}. Here, K is the constant
in Lemma 5.3; in particular, K« depends only on the dimension and is independent of 0. Note
that the right-hand side is infinite unless f(0) = 0.

Proof. We compute
2 2

0 (9ny Freht ) = Gl M;‘ FreH+ +28M+ fye_‘“r— Op+ Femht,

dp \ 0p ap dap dap dap

Using Young’s inequality, we obtain
0 (Ot o ) o Pt o - Of\° e Lo+ o -
— — < K+ 4 2 n+ 22T Kt
ap(apfe =52 12 G, ) ¢ W\ ) 1e

Hence, Lemma 5.3 gives

2
0 a/’L+ f2 —U4 < 2 af e—l,L+ _l a/,L+ f2 —Ut " K —2 fz —M+
ap ap 4 ap 4
From this, the assertion follows. O

6. Overview of the proof of Theorem 1.3

In this section, we state the four main estimates needed for the proof of Theorem 1.3,
generalizing [13, Section 6]. At the end of this section, we give the proof of Theorem 1.3
assuming these key results. To that end, we consider two ancient x-solutions, (S”, g1(¢)) and
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(S, g2()) such that neither solution is a family of shrinking round spheres. By the main result
of the previous section, we know both solutions are rotationally symmetric. We first choose
reference points g1, g2 € S™ such that
limsup (=) Rg, (r)(g1) < 50(n — 1) and limsup (—1)Rg,)(g2) < 50(n —1).
—>—00 t—>—00
The existence of these points is ensured by the Neck Stability Theorem of Kleiner and Lott.
See [1, Proposition 3.1] for a proof in dimension three, which also works in higher dimensions.
Since (S, g1(¢)) is rotationally symmetric, we can define a profile function Fy(z,t) to
be the radius of the sphere of symmetry that has signed distance z from the reference point ¢; .
Similarly we can define F,(z,t) on (S", g2(2)) with respect to ¢g». These functions, Fi(z,?)
and F5(z,t), satisfy the PDE

Fi(z,1) = Foz(z,0) = (n =2)F(2,0) ' (1 = Fz(2,1)%)

ZFZZ /’
—m—nn@ﬁ[;7é%$

Our goal is to show that the profile functions F; and F, will agree after a reparametriza-
tion in space a translation in time, and a parabolic rescaling. We thus will now define a new
function F y(z t) obtained from F5(z,t) through a spatial reparametrization, a time trans-
lation, and a parabolic rescaling. Here, («, 8, y) is a triplet of real numbers satisfying the
following admissibility condition previously defined in [13]:

Definition 6.1. Given areal number ¢ € (0, %), the triplet (o, B, y) is said to be e-admis-
sible with respect to time 7 if

—ly
ol <ev=hm. 1Bl <e—C" ] < elog(—ta).
log(—7x)

Consider a time ¢, < 0 so that —¢4 is very large. Suppose («, 8, y) is a triplet of real num-
bers satisfying the criteria of e-admissibility with respect to the time 4, for some ¢ € (0, %).
For each t < 14, we define a time-translated and parabolically-rescaled metric by

g2 (1) == e ga(eV (1 — B)).

Of course, (S, gzy(t)) is again a rotationally symmetric anc1ent k-solution. We define the
time-translated and parabolically-rescaled profile function £, y(z t) on the ancient x-solution
(S” gzy(t)) to be the radius of the sphere of symmetry w1th signed distance z from the
reference point g,. Evidently,

Fzﬁy(z, t) = e%Fz(e_%z,e_y(t - B)).

Even after a time translation and a parabolic rescaling, it is possible for the profile func-
tions to differ by a translation in space. To account for this, we define a new reference point
qgﬂ ¥ with the property that qgﬂ ¥ has signed distance « from the original reference point g,
with respect to the metric g, Y(t4). Fort < t., we define a function s*A7 (¢) to be the signed dis-
tance between the sphere of symmetry through qg A7 and the point g, with respect to gg Y(1).
The function s*8Y (¢) is the unique solution of the ODE

J s*BY (1) FﬂV 2t
5Bty = (n— 1)/ (7 ) s*PY (1) = a,
di Fﬂy(z z)
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for ¢t < t«. This ODE, of course, is just the usual evolution of distance along the Ricci flow

and the integrand is the radial component of the Ricci curvature. Now for t < t«, we define
a y(z t) to be the radius of the sphere of symmetry in (S, gzy(t)) which has signed

dlstance z from the point qzﬂ ¥ The three profile functions are related by the equation

FEPY(z,0) = FEY (2 + %87 (1), 1) = e Fa(e 2 (z + sV (1)), ¢ 77 (1 — B)).
In particular, at time ¢ = ., we have
anﬂy(z,t*) = Fzﬂy(z +a,t) = e%Fz(e_%(z +a),e V(- ,3))

In the next lemma, we show that for an e-admissible triplet (o, B, y) at t«, we expect
the new reference point qgﬁ ¥ to remain suitably close to the original point g, for all earlier
times ¢ < fx.

Lemma 6.2. [f —t. is sufficiently large, then the following holds. Suppose the triplet
(o, B, y) is e-admissible with respect to time ty, where ¢ € (0, %) Let s%BY (1) be the solution
of the ODE

saﬁy(,) Fﬂ)’ (Z Z)

“ aB _ _ 2,2z
7S Y(t) = (n 1)/0 Fﬂy(z t)

with terminal condition s*PY (1) = . Then |s*PY (t)| < e~/—=1 for all t < ts.

Proof. The proof is essentially the same as the proof of [13, Lemma 6.2]. Recall that if
we rescale the ancient «-solution (S, g2 (¢)) around the reference point g, by the factor (—t),
then the solution converges to a round cylinder in pointed Cheeger—Gromov sense at t — —o0.
In particular, in the region |z| < /=2, the radial component of the Ricci curvature tends to
zero. Consequently, if —z, is sufficiently large, then we will have

Fs 2z (z,1) - 1
Fa(z, 1) — (=4(n—1)1)
whenever ¢t < ——«/—t* and |z| < +/—2t. The first inequality follows from nonnegativity of

the RICCI curvature. For the profile function FAY(z,1) we replace t by e ¥ (¢t — ) and z by
e~ % z. This implies

0<-—

B
O < _ F2 ;/Z (Za t) S 1 ‘
FF¥ 1) ~ (H4n =Dt = B))
whenever t — 8 < —%e”a/—t* and |z]| < /—2(t — B). By the definition of admissibility, the
condition |y| < elog(—tx) < %log(—z*) implies

te < —e¥ /1.

ies (=t+) 1_(=ts) 1
Moreover, the condition || < € og(=12) < 2 Tog(—1,) ensures that 2t <t —f < 51 whenever
t < tx. Consequently,
By
F 2,2z (Z ol ) 1

< .
CFPeay T (20- D)
whenever ¢ < 1, and |z| < +/—. Plugging this estimate into the ODE for s*#7 (¢), we obtain

1587 (1)]

2 ap
‘ ’ y()—(zz)
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whenever ¢ < t, and |s*8Y ()| < «/=t. This gives
%((—t)‘l(s“ﬂy(r»z) = (072 0 + 2(—t>‘ls“ﬂy(t)%s°‘ﬁy<r) >0
whenever ¢ < t, and |[s?BY (t)| < «/—=t. At time #,, we have
()7 PV (10))? = (1) a® < 2.
Since ¢ € (0, %), the differential inequality above implies |s%8Y (t)| < e+/—t. This completes

the proof of Lemma 6.2. O

Using the admissibility conditions for («, 8, ) and the previous lemma, we can estimate
: afy.
the profile function F," " :

Proposition 6.3. Fix a small number 8 > 0 and a small number 1 > 0. Then there exists
a small number & > 0 (depending on 0 and n) with the following property. If the triplet (o, 8, V)
is e-admissible with respect to time ty. and —ty is sufficiently large, then

72 421t 72—t
=7
4log(—t) log(—t)

'% FEPY (2. 1) + (0 —2)t + (n —2)

and

—-2)z
F2PY (2, 1) F2%7 (2.t =2z _
2 (z,1) 2z (z )+210g(_[) =

lz| + /—t
log(—1)

whenever F;’By(z,t) > 1% —t and t < t4.
Proof. The proof is essentially the same as the proof of [13, Proposition 6.3]. Using
Proposition 4.11 and Proposition 4.12, we obtain

22 4+ 2t T 22—t
4log(—t)| — 4 log(—t)

‘% Fro(z,t)> + (n —2)t + (n —2)

and
=2z | _nlzl+v=t
2log(—t)| — 4 log(—t)
whenever F»(z,t) > %\/—_t and — is sufficiently large.

To estimate FA7, we replace t by e™7 (t — ) and z by ¢~ Zz. This gives

22 42(t — B) 22— (t - B)
log(—(t — B)) — 4y log(—=(t —B)) —v

(n—2)z lzZ| + V=@ = B)
2log(—(t — B)) — 2y log(—=(t = B)) —vy

whenever F2’3 Y(z,t) > % v —(t—pB)and —e 7 (¢t — B) is sufficiently large. The e-admissibility
assumptions on (¢, B, y) at time 74 ensure that |B| < elofgzg) and y < elog(—t) fort < t,. If
¢ is sufficiently small (depending on 6 and 1) and —1, is sufficiently large (depending on 6

and 7), then we obtain

Fz(Z,l‘) FzZ(Z,l) +

SE R -2~ P+ (-2

=
— 4
and

FPv.n FPY .0 +

<
4

2 _
ot
~ 2 log(—t)

72 42t

1
'5 FYV (2,02 + (n = 2)t + (n R E)
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and
-2 —t
FBY (o) BB (o) 4 L= D2 | cm el vt
2log(—t) 2 log(—t)
whenever Fzﬁy(z, t) > % —t and t < t«. By Lemma 6.2,

1s°BY (1)] < e/t

for t < t«. Replacing z by z + s*BY (1) and using this estimate, we obtain

- F N — 2t -2 <
‘2 2 @07+ (1 =2+ n )410g(—t) =1 log(—t)
and
-2 N —t
anﬂy(Z,l‘) anzﬂy(Z,l) + (l’l )Z < |Z| +
2 log(—t) log(—t)

whenever an p Y(z,t) > 1% /—t and ¢t < t,. This completes the proof of Proposition 6.3. O

As in [13], we need to use different functions to describe our solutions and establish
estimates in the tip regions. These functions labeled by U are analogous to the profile function
® used to describe the Bryant soliton. As in [13], we define functions U (r, ¢) and U;—_(r, t)
by

9 2
Ui (r,t) = (a—Fl(Z,l))
z

forr = Fi(z,t) and z > 24/—t and

a 2
U (1) = (EFl(z,m)

forr = Fi(z,t)and z < —2+/—t. We similarly define functions U,y (r, t) and Up—(r,t). Then
we define

ULY(r, 1) .= Uss(e™ 57,77 (e — B)).
Recalling that F28Y (z,1) = FBY (z + s*P7 (1), 1), observe that

5 2
Uzﬂi’(r, t) = (EF;M(Z,I))
forr = anﬂy(z,t), z > 44/—t,and t < t4, and
2
UPY(r,1) = iF"‘ﬂy(z )
2= oz 2 '

forr = anﬂy(z,t), z < —4y—t,and t < t,.

For each of the functions above, we will define a function V' in the usual rescaled coordi-
nates. For scaling reasons, it is convenient to define the functions labeled by V to be the
square-root of the corresponding functions labeled by U. As usual, define coordinates 7 and p
by the identities 1 = —e™ " and r = e 3 p. Then we define:

Vit(p.) = | UrleEp.—e0),
Vai(p. 7) 1= \/Urs(e=3p, —e~),

VE (0.7) = UL (3 p—e).




118 Brendle, Daskalopoulos, Naff and Sesum, Uniqueness of compact ancient solutions

Y

By solving —e™F = ¢ ¥(—e " — ) and e~ 3 p —e¢ 2e73 p for T and p, you can confirm that

V’sy(p, T) = T+ y —log(l + ,Ber)).

Vot (—,0 :
JiTper
In the following proposition, we recover a version of the estimates established in Propo-
sition 4.20 and Corollary 4.22 for the modified profile functions Vzﬂ + and Vﬂ Y. As before,
we only state the proposition for V2ﬂ _f_’ , but an analogous result holds for Vz_y (Similarly for
Proposition 6.5.)

Proposition 6.4. Fix a small number n > 0. Then we can find a small number 6 € (0, n)
(depending on n) and a small number & > 0 (depending on 6 and n) with the following property.
If the triplet (a, B, y) is e-admissible with respect to time t« = —e™ ™ and —1« is sufficiently
large, then

_ 1 _
VE (0.2 = (=02 | = n (B (.02 = 1)
for p <100 and © < 14, and
0 _ _
s VI (0.0 <0 (B (e =)

forp < % and © < t«. Here, ® denotes the profile of the Bryant soliton.

Proof. The proof is identical to the proof of [13, Proposition 6.4]. O

We next consider the difference between the two solutions near each of the tips:
WE (o, ) = Vi (p. 1) = VI (p. ).
WA (p.7) := Vi_(p.1) — VY (p. 7).

For each 7, we have ny(p, 7) = O(p?) and W_ﬂy(p, 7) = O(p?) as p — 0. Moreover, let
U+(p,7) and p—(p, t) denote the weights associated with the solution (S”, g1(¢)). The fol-
lowing proposition is the first of four key estimates.

Proposition 6.5. We can choose 60 > 0 and ¢ > 0 sufficiently small so that the following
holds. If —t« is sufficiently large (depending on 0) and the triplet («, B, v) is e-admissible with
respect to time t, = —e” ™, then

T 0
sup (—1’)_% / / V2 (ny)2 ett+dpdr’
—1J0

T<Tx
20
< CO) (=) ! sup (—1)~ z/ / V2 WE2etvapar.
T<Tx 7—1

An analogous estimate holds for whv.

We will give the proof of Proposition 6.5 in Section 7.
From this point on, we fix # small enough so that the conclusion of Proposition 6.5 holds.
Let ye denote a smooth, even cutoff function satisfying

02
1oon [0, \/4— 55

02
0 on |:‘/4—m,00>
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Having fixed 6 as in Proposition 6.5, the factor of (n — 2) in higher dimensions ensures there
is overlap between the tip region and the collar region where estimates can be played off one
another. Moreover, we may assume that ye is monotone decreasing on [0, 00).

We define the rescaled profile functions

Gi(5.7) =2 Fi(e” 2§, — ") — 2(n —2),
Gy(E.7) = e2 Fy(e 28, —e ) — /2(n — 2),
Ggﬂy(g, 1) = e2 anﬁy(e_%g, —e ") —/2(n-2).

Then we consider the difference of the rescaled profile functions in the collar region via
H*Y (6,7) = Gi(¢.1) = G537V (6. 0)
and 1
HIPY (& 7) = ge((—0)726) HP (&, 0).

Using the PDEs for G and G‘;B Y. we can derive a PDE for the function H*#7 . As in three
dimensions, the leading term in that PDE is given by the operator

£f = fig—5Efit ]

2
We will analyze this operator as in [13]. We consider the Hilbert space # = L?(R, e~ T d £)
and recall that the Hilbert space # has a natural direct sum decomposition

= @ Ho® .

Furthermore, we recall that 4 is a two-dimensional subspace spanned by the functions 1
and £; Ho is a one-dimensional subspace spanned by the function £2 — 2; and #_ is the ortho-
gonal complement of J4 @ . Finally, let P4, Py, and P_ denote the projection operators
associated to the direct sum decomposition H = H ® Ho D H—_.

With these conventions, we write

PoHEPY (£,7) = 2(n — 2)a®P7 (v) (€2 - 2),

where

a7 () = T (62— 2) HEP (6, 0) dE.

1 _
164/2(n —2)x /]Re

HaBy afy afy
Hgo"" = PyHeo " + P_He

Moreover, we let

denote the sum of projections onto the spaces of positive and negative modes.

In the following proposition, we use our freedom of choice in the parameters (¢, 8, ) to
ensure the projections our solution Py Hgﬂ Y and P4 Hgﬂ ¥ (i.e. the projections onto the spaces
of non-decaying modes of the operator &£) vanish at a particular time .

Proposition 6.6. Fix 6 > 0 and & > 0 small enough so that the conclusion of Proposi-
tion 6.5 holds. Let § € (0, €) be given. If —t« is sufficiently large (depending on §), then we can
find a triplet («, B, y) (depending on t4) such that Py Hgﬁ Y = 0and Py Hgﬂ Y = 0 at time t«.
Moreover, if —t4 is sufficiently large (depending on §), then the triplet (o, B, y) is 8-admissible
with respect to time t, = —e™ ™,
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Proof. By definition, s*7 (t,) = «. Hence
F3P (2.t) = €5 Fa(e3 (2 + 0).¢ 77 (tx — B)).

It follows by a straightforward computation that
+oe?
Ggﬂy(é, Tx) = /1 + Be™ Gz(jﬁ, . + y —log(1l + ﬂer*))
e *
+ V2 —2) (/1 + Be™ —1).

The proof of Proposition 6.6 now proceeds as in [3]. This argument relies only on the asymp-
totics of our solution in the cylindrical region. Since the asymptotics of our ancient solutions
to Ricci flow in the cylindrical region are very similar to the cylindrical region asymptotics of
ancient solutions to mean curvature flow, the proof of Proposition 6.6 is identical to the proof
of the corresponding [3, Proposition 4.1]. O

From this point on, we assume that the triplet (¢, 8, ) is chosen as in Proposition 6.6,
pending our choice of 7. (which we have not yet fixed). In particular, this will ensure that
a®fY () = 0.

We can now state the remaining three key estimates used in completing the proof of Theo-
rem 1.3. The first estimate is an estimate for the difference of the solutions in the cylindrical
region.

Proposition 6.7. Fix 6 > 0 small enough so that the conclusion of Proposition 6.5
holds. Suppose that —ty is sufficiently large, and that the triplet («, B,y) is chosen as in
Proposition 6.6. Then

T 2 ~ ~
(—Tx) sup / 1 /ﬂ;{ T (Hg/fg(g, o) + AV (&, 7)) dsd
T—

T<Tx

T
< C(6) sup / a®Pr (" d+'

T<Tx J1—1

&-2

T
+ C(0) sup/ / e
<t Joo1 J{ a5 220 (w3 <ltl= a5 82s (—o) 3 )

CH®Y (£, )2 dEdT.

We will give the proof of Proposition 6.7 in Section 8.

Next, by combining Proposition 6.5 and Proposition 6.7, we can show that in the cylin-
drical region the norm of Py Hgﬂ ¥ dominates over the norm of I-Algﬂ Y More precisely, we have
the following result:

Proposition 6.8. Fix 6 > 0 small enough so that the conclusion of Proposition 6.5
holds. Suppose that —t« is sufficiently large, and that the triplet (a, B, y) is chosen as in
Proposition 6.6. Then

T 2 ~ ~
(=7«) sup / 1 /R e~ (Hg?;(g,r/)erHgﬂy(s, 7)) dEdr’
—

T<Tx«

T
< C(6) sup / a®Pr (2 d+'.
7—1

T<Tx
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The proof of Proposition 6.8 will be given in Section 9.
Using Proposition 6.8, we are able to derive an ODE for the function a®8? (7):

Proposition 6.9. Fix 6 > 0 small enough so that the conclusion of Proposition 6.5
holds. Let § > 0 be given. Suppose that —t« is sufficiently large (depending on §), and the
triplet («, B, y) is chosen as in Proposition 6.6. Let

0% (1) := “ﬂy(n 2(—t) 1 a7 (v).

Then

T T 2
sup (—‘L’)/ 10%BY (/)| d7' < § sup (/ a“ﬂy(r/)zdr’)
—1 T

T<T« T<Tx -1

The proof of Proposition 6.9 will be given in Section 10.

We can now finish the proof of Theorem 1.3, exactly as in [13] in dimension three. For
the convenience of the reader, we include a copy of the proof here.

Using the ODE

—a®? (1) = 2 (=) a7V (v) + Q%P7 (v)
dt

together with the fact that a®#? () = 0, we obtain
T
02 (0 = - [0 @ () v
T
This implies

(=) a7 (0)] < / C(—e) 0% ()] d’

[t—1]

< Z/ 1( )10 ()| dv’
Te—J—

| 10 (@) dr

0<j=<[tx—7] Jg,—j—1
We now divide by —7, and take the supremum over all T < . This implies
T
sup a7 (0) < sup [ (=)0 ()]
T<T« T<T« J1—1

On the other hand, Proposition 6.9 gives the following estimate for Q“ﬂV:
T

sup (—1) IQ“ﬂy(f)ldf <& sup [a®P7 (7).

T<Tx T— T<Tx

Hence, if we choose ¢ sufficiently small, and —t, sufficiently large (depending on §), then

sup |a®fY (7)| = 0.

T<Tx
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Thus, a®fY (r) = 0 for all T < 74. Proposition 6.8 then implies
I-Alaﬁy(é, 1) =0 forall T < 4.

Puttlng these facts together, we obtain H, op Y&, 1v) =0 for all T < 4. From this, we deduce
that W’ y(p, 7) =0 for p € [0,260] and © < 7«. Proposition 6.5 yields W V(p, 7) = 0 for
p €10, 29] and 7 < 74. Thus, we conclude that F(z,t) = aﬂy(z t) for allz <ty = —e ",
In other words, the two ancient solutions coincide for ¢ < z.

7. Energy estimates in the tip region and proof of Proposition 6.5

In this section, we give the proof of Proposition 6.5. Let w7 denote a nonnegative smooth
cutoff function satisfying wr (p) = 1 for p < 6 and w7 (p) = 0 for p > 26. We define

WEY (p.7) = wr(p) WE (p. 7).

To simplify the notation, we will write W4 and Wr 4 instead of Wf Y and Wf_{

Proposition 7.1. The function W4 (p, t) satisfies the equation

a0 VP (aam:r + g a;/:) = a;;z* + %(,o_l (n—2) (V72— 1) Wy)
F-307 0 o) 02wy
+ Vi By Wy
where

= (=2p (1=Vip. (VE) )

ﬂy
oV
o " V2 Vs + VD) )

+(n—2)p" (2 Viy

+ VI iy + VI ( +3 a

Proof. The functions Uy (r, t), Ui—(r, 1), Uﬂy(r t), and Uﬂy(r t) all satisfy the same
PDE:

oU 92U 1 oU \? ( 2) oU (n —3)oU
—1_=___ -1 7= 1 _ -
U e T Y (ar) + w- 1)( or +2U) F o

Consequently, the functions Vi (p, 7), Vi—(p, 1), Vﬂy(p, 7), and Vﬂy(p, 7) satisfy the fol-
lowing PDE:

L (V. pdV\ 2V (n-2) _ oV (n—3)0V
V2 —+Z— ) === V2D p=—+V —.
(az+2ap) apz+ p? ( )( ap+ )+ P Op

The assertion now follows by a straightforward calculation. m)
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Proposition 7.2. The function Wr 4 (p, T) satisfies

19, _ 3 [(oWr o
2 a_r(VlﬁWY%JreM) B %[( ap+ + 1 =2)p (V7 = 1) WT+)WT+ e”*}
2 19 -
+ g(Wf opor e't) = oo ((1=3)p TWE eh)
1 aWT+ aﬂ+ 2 1 2 2
<—z — W K+ _ —_(Bn—-5 w. Mt
= 2( 30 + p T+ | e 2(n )p e
oflouy 1 0Vig  pOouy
id\s 5 - Vi PO 1 By | WE, et
LEE: (2 ot o +2 op B )W

1 (op+ —1(7/—2 Py—2 2 2
+§($_(”_2)P (V1+_1)_§V1+ Wiy et

0
+ (aL; —(n— 2),0_1(V1_+2 — 1) + g V1_+2 —(n—3) p_l)Wfa/T wr ettt

1 0
+ (wf)* WiEeh+ — E(n — 3)p_1W72~+%e“+.
Ji

Proof. Using Proposition 7.1, we obtain
o (Wry  poWry
V2= +=%
1+ ( Jt * 2 0p

*Wr J, _ _ ~ ~
- ap2+ + 5, (07 0 =D = D Wr) =200 =297 W + Vi B4 W

ow.
+ (—2a/T a_p+ —0f Wy —(n=2)p ' (Vi — 1) Wyoh + ga)’T Vi W+)

We next bring in the weight 4 (p, ). A straightforward calculation gives

10

. ar(oWry )
5 g(VHZ Wiy elt) - %[(T +p =27 -1 WT+) Wr 4 eu+}

+ — (W2 f or e"+) ((n —3),0_1W7%+e“+)

- 3%
oWry | Opy 1 2 2
—( 3 a_WT+ e“+—§(3n—5)p Wi, el+
oflop+ 1 0Viy  pouy
V22— BT L B | WAL et
LRt (2 ot o +2 op B ) e

0 oW, 0
+ (—g; —(n— 2),0_1(1/1_+2 —1)— L V1—+2)( ;+ + SRS WT+) Wry ettt
+ (a— —(n— 2),0_1(1/1_+2 —1)+ g V1_+2) Wf ol or et + (c:)§~)2 Wf ettt
0
1 0
—(n=3)p "W} or ofpelt — E(n - 3)p_1W7%+ﬁe“+.

op

The assertion follows now from Young’s inequality and combining terms. |
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Corollary 7.3. Fix a small number nn > 0. Then we can find a small number 6 € (0, n)
and a small number ¢ € (0,n) (both depending on n) with the following property. If —ty is
sufficiently large (depending on 1 and 0) and the triplet («, B, y) is e-admissible with respect
to time ty« = —e” ¥, then we have

1 0 o[ [oWr, _ _
ViZWE, eltt) — — Yn—2)(Vi? — \)Wry |Wriel+
3 3¢ —— (Vi Wy e't) ap[( 3p +p (=2 (Vi 1) T+) T+¢€ }
0 10 _
+%(Wfa)/TwTe“+)—§a—p((n—3)p 1W7g+e“+)

1 (oWry  Ous 2 1 —27372

+np P VIE W et 1 p 2 V2 WE el 1ig<peany

for p <260 and t < 4.

Proof. By Propositions 4.20, 4.21, and 6.4, we can choose 6 € (0, 1) (depending on 7)
sufficiently small and —z, sufficiently large (depending on 7 and 6) such that
1By <np 2 Vi
for p <26 and 7 < 14. By Corollary 4.22, Lemma 5.2, and Lemma 5.4, we can choose 6 € (0, 1)
sufficiently small (depending on 1) and —t, sufficiently large (depending on 7 and ) such that
lopy 1 0Vig | pOug
Vg w5 +5 5
2 ot ot 2 dp

_ _ J—— _ _
n=2)p (Vi =)= 2V < Vi

<np 2V

‘alhr

Ot
0p
for p <26 and t < 7. Note also that for any n > 0 there exists a 6 € (0, n) so that

—n=)p ' VF-D+5% V1+ <np ' Vi{

[(n — 3)P_10)/T(1)T| = 77P_2V1_+2 1{95p529}.

Finally, recall by Lemma 5.2 a“—p+ > 0, s0

- Op+
——(n—=3)p w2 ettt <0.
( ) T+ ap
Hence, the assertion follows from Proposition 7.2. O
We now finalize our choice of 6.

Proposition 7.4. We can find sufficiently small numbers 8 > 0, A > 0, and ¢ > 0 with
the following property. If —tx is sufficiently large (depending on 0) and the triplet (a, B, V) is
e-admissible with respect to time ty = —e™ ™, then

1 d

260 260
- — / Vi? W%+ ettdp) <—-A(-1) / V2 W%+ et dp
2dt 0 0

20
+ / YA WE et dp
[%

for T < Ty4.
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Proof. Fix a small number n > 0. In the following, we choose 6 and ¢ sufficiently
small (depending on 1), and we choose —t, sufficiently large (depending on 7 and 6). Recall
Wr (20, 1) = 0 and, for each 7, Wi (p, ) = O(p?) as p — 0, hence Wr (p, ) = O(p?) as
p — 0. Moreover, we can see from the definition of p4 that uy (p, t) is bounded as p — 0.
In particular, if we integrate the differential inequality of Corollary 7.3, the divergence terms
vanish. Using Corollary 7.3, we obtain

1 d 20 —2 172
EE(/{; Vl+ WT+€M+d,O)
1 (2 (oWr, Oug 2 1 20
< - =T w Htdp——-(Bn—5 W2, et d
—2/0(ap+ap T+)e pz(n )/Op T+e" Tdp

260 260
+ 77/0 p 2 Vit WTZJr e+ dp + 77/9 p 2 ViZWEelt dp,

for t < 4.
We will next estimate the terms on the right-hand side of the above inequality to deduce
the statement of the proposition. First, applying Proposition 5.5 to the function f := e#*+Wr4

gives
20 oW, 0 2
058/ (i_,_ﬁWTJF) el dp
0 op op
26 26 alu+ 2
—|—K*/ p_2W72~+e“+dp—/ —_— W72~+e’“°+dp
0 ] ap
for t < 74. Using Lemma 5.2, we obtain Ot )2 >1 p_2 V2 —1)2 for 0 < 260, hence
oo 1 1+
20 oW, 0 2
0< 1287;/ (i 4 Bt WT+) e+ dp
0 op op
26 26
+ 169K« /(; 02 W%Jr et dp — 477/0 02 (V1_+2 —1)2 W72~+ et dp
for v < 7.

Adding the two inequalities above, we obtain

1d (> ., ,

1 20 oW, 0 2
<—(=-1289 / T LB ) et dp
2 0 op dp

— (%(311 —5)—4n— 1617K*) /029 p 2 Wi, ettdp
260
— n/o PPEAVE =D +4—-ViH Wi, et dp
20
+ 17/0 p 2 VIZEWE et dp
for t < 74«. We now choose 1 > 0 sufficiently small so that

1 3n—>5
5= 1287>0 and == —dy— 167K > 0.
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(Here, it is crucial that the constant K, in the weighted Poincaré inequality does not depend
on 6.) This ensures that the first two terms on the right-hand side of the last estimate have a
favorable sign. To estimate the third term on the right-hand side, we observe that

p 2[4V =P+ 4=V = p PV

Finally, in view of Proposition 4.20, we can bound p~2 Vl__ifl from below by a small positive
multiple of (—1) V1_+2. This completes the proof of Proposition 7.4. O

We now complete the proof of Proposition 6.5. Let 6, A, and ¢ be chosen as in Proposi-

tion 7.4. Let
T 20
I(z) := / / Vi Wi, et
—1J0
and
T 260
J(z) = / / V2 WZelt.
—1J6
If we choose —1tx sufficiently large, then Proposition 7.4 gives
1
3 I't) + A (=) I(r) < 672 J(1),

hence J
d—(e—Arz I(7)) < 2072747 J(7)
T

for T < 4. Clearly, lim; s A (r) = 0. Consequently,

AT I(r) < 20_2/

—00

T

oA J(tdt

529_2(sup(—r/)_1 J(r')) / D e Loy ar

<t —00

<0221 e qup (=o)L J(7)

<t
for T < 7. This finally gives
(—1) 72 I(x) < 67227 (=1) 77 sup (—7) 7 J(7)
<t
<0727~ sup (=) 2 I()
<t
for t < 74. Taking the supremum over t < 7, gives
sup (—r)_% I(1) <0247 (=) 7! sup (—r)_% J (7).
T<Tx T<Tx

From this, the conclusion of Proposition 6.5 follows immediately. O

8. Energy estimates in the cylindrical region and proof of Proposition 6.7

In this section, we give the proof of Proposition 6.7. Throughout this section, we assume
that 6 is chosen as in Proposition 6.5. To simplify the notation, we will write H, He, He, and
a instead of H*PY Hgﬂy, Hgﬂy, and a®? .
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Our goal is to study the evolution equation satisfied by the function H. The linearized
operator

£ = o3k fit S

is the same as in [3], and hence the linear theory from [3] carries over to the Ricci flow case as
well. In order for this article to be self-contained, we will state the results from [3] that we will
use later, but for the proofs of the same we refer the reader to [3].

As in [3], we consider the Hilbert space

H =L*R, e 7 dE).
The norm on # is given by
2 —£ 2
1/ I5e := L f¢)"ds.

Moreover, we denote by O C H the Hilbert space of all functions f such that f € J and
f’ € J¢. The norm on P is given by

115 = /Re_gf (f'(®)* + f(§)?) dé.

Let D* denote the dual space of D. Clearly, the dual space J¢* is a subspace of D*. After iden-
tifying #* with J in the standard way, we can view J¢ as a subspace of D*. The restriction
of | - | o+ to H is given by

_&
1/ o+ = sup { [ ros@ e el < 1}.
For later reference, we collect some basic facts from [3].

Proposition 8.1. The following statements hold:
(i) The operators f & f, [+ f', fr—>—f"+ %Efare bounded from D to H.
(ii) The operators f & f, [+ [/, f > —f'+ %Sf are bounded from ¥ to D*.
(iii) The operators f +— E2 f, f € f', f + f" are bounded from D to D*.
(iv) The operator [ foé f is bounded from ¥ to D.
Proof. Statements (i), (ii), and (iii) were proved in [3]. To prove statement (iv), let us

consider a function f € J#, and let g(§) := f§ f(E')dE' . Then g(§)? < Efoé f(E)?dE for
& > 0. Using Fubini’s theorem, we obtain

[T erass [Tt ( / ey dé/) at
= ([T ear) e ar

_ oo_¥ N2 gel
—2/0 T FE) dE.
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An analogous argument gives

0 2 0 72
/ T g(6)?de < 2/ e fE)*dE.

—o0 —0o0

Therefore, || g|lg¢e < C || f|lge- Since g’ = f,itfollowsthat |g|lp < C || f| s, asclaimed. O

For a time-dependent function f, we introduce the following norms:

T
1/ 12 o s, = sUD [ £ 3 dt,

T<Tx JT1—1

T
1F12) 0 n. 1= sup / 1f )2 de,

T<tx JT1—1

T
1/ 13 aoe, = sup [ 1) d.

T<tx J1—1

The following energy estimate was proved in [3]:

Proposition 8.2. Let g: (—00, T«] — D™ be a bounded function. Let [ : (—o00, Tx] — D
be a bounded function which satisfies the linear equation

0
5./ (O - L/ =2g().
T
Then the function f ;= Py f + P_f satisfies the estimate

sup ||/ (@)llge + AT f 9,000 < 1P+ f (@) llge + Allg 0% 00,7,

T<Tx

where A is a universal constant.
Proof. See [3, Lemma 6.6]. D

We continue with the proof of Proposition 6.7. The functions G1 (&, t) and Ggﬂ V(& 1)
satisfy the equation

Gelt. ™) = Ggg(6. 1) — 3 £ G (6. )
5 (V20D + G D)~ (1-2) (V20— 2) + GlE. )
— (V21 =2) + G(£. 7)) Ge(€.1)°
+ (1~ 1) Gg(€.7) [ 0.0

V2(n—=2)+ G(0,7)
_ /5 Ge(§'. 1)? J s/}
o (V2 -2)+G@E. )2 1

Note that the two terms on the second line above can be written

% (V2 —=2)+G) —(n—2)(V2(n—=2) +G)™' =G — %(‘/2(;1 —2)+G) G~
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Consequently, the difference H (¢, 1) = G1(€, 1) — Ggﬂ Y(&, 7) satisfies

6
He(6, 1) = Heg(6.0) — 3 § He(6.0) + HED + Y Ex(E. ),

k=1

where

FrEn) = [0-2) (V=) + i) (VA=) + 657 oy - 3 | e,

Ex(6,1) = (V2(n —2) + G1(5, 1) " (V201 —2) + GZPV (6, 0)) ' G e (€, 1)? HE 1),
Es(t.7) = —(v2(n1 —2) + G577 (£.0)) 1 (Gig . 1) + GSE7 (€. 7)) Hy (6. 7)

_ _ GIE(O» ‘L') B £ Glé(gl’ _[)2 /]
D= 1)[M+Gl<o, 5 V22 + Gz EED

HE(O, ‘L')

V21 —2) + G1(0, 1)

— (=1 G (6. 7)

Es(t,7) = (n— 1) G3L" (€. 7)

“ﬂy(o 7) H(0, 7)
(V201 —2) + G1(0)(y2(n —2) + G577 (0. 7))’
£ (Gre(8.1) + G5V (', 1)) He(&', 2
(V2 —2) + G5V (5. 1))
. /f (24201 —2) + G1 (€. 1) + G5V (6. 1)) H(E'. 1) Gg(¢. 0)° é}
0 (V201 —2) + G1(E. 0)2(2(n —2) + G5 (/. 1))

Consequently, the function He (€, 7) = ye ((—t)_ié) H (&, 7) satisfies

/

Ee(e.0) = 1 — 1) G €. )[[O

10

He (&, 7) = He g (8, T)——éHes(é ) + He(£.7) + ) Ee (€. 7).
k=1

where

Bea(€.0) = |- D(/20 =2 + G1(6.0) " (V20 2
#6760y - 3 | Heteo)

Ee(€1) = (V201 —2) + G1(5. 1) (V201 - 2)
+G3P7(6.0) ! Gre6.0)? He (&, 0).
Ees(E.7) = —(vV201 —2) + GPV (. 1)) (Gre(6.1) + G527 (. 7)) He g(£. 7).
G1£(0,7)
V21 =2) + G1(0, 7)
_/E Glg(glvf)z
0 (201 —2) + Gi(£. 1))

Eealt.t) = (n—1) [

dé/] He (8, 7),
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Ees(E1)=m—1) ye((— 072) G“ﬂy(E )\/Z(T_H;)(O_;Tél(o’f)
— (1= 1) xe((-0)726) GV (5. 7)
G327 (0.7) H(0.7)
'(W +G1O)(/2(1—2) + G2 (0.7))
Ees(6.0) = (1 —1) ye((—1)726) GI7 (£.7)
. [_ /s (Gre(E 1) + G5 (€ o) He (€ )
0 (V2 -2+ G E )2
. /f (2y2(1—2)+G1(E'. 1)+ G5V (€. 1)) H(E'. 1) G (¢, 7)° g],
0 (V20— +GiE. )22 —2) + G5 (. 1))
Ee7(E.7) = (V201 —2) + G3P7 (. 1) 7! (Gre(E. 1) + G327 (£.7)
(D)7 (D) TE) HE 1),

o GIE(O’ T) _ § Glé(é/’ .L.)Z d /j|
Eeg(§,1) = —-(n—1) [\/W+ G1(0, 1) fo (v2(n—2) + G1(&,1))? :

(=) 72 Yp((—T)T2E) HE, 1),
Eeo.1) = (—0) ! (-0 36 HE o) + » S (1 _%Ex%((—r 36 H(E 1),

Ee10(§.7) = -2(= f)_f%[xe(( 7)726) HG. f)]+ (~0)7 28 A (—0)726) H(&. 1),

In the following, we will estimate the terms
10

Z”E‘(?k”%oor* and Y | Eekllo*c0.r.-
k=1 k=7

To that end, we need the following estimates for the functions G (&, t) and Ggﬂ V(& 1)

Proposition 8.3. Fix a small number 8 > 0 and a small number 1 > 0. Then there exists
a small number & > 0 (depending on 0 and n) with the following property. If the triplet (o, 8, y)
is e-admissible with respect to time t« = —e ™ ™* and —1 is sufficiently large, then

‘(\/Z(n—2)+G1(§,r))2—2(n—2)+(n—2) )‘ EZH
« 2 +1
‘(\/2(11 -2)+ Gzﬂy(é, r))2 —2n—=2)+ (n— 2) EYa— ‘ <n S(—r)
and
‘(Jz(n "D+ Gi(E 1) Greer) + ‘2)5‘ < "3‘(' j)l,

'(er GZPY (£, 1)) "‘ﬂy(g )+ )5‘ |E|+1

for|&| < S(n 2)( r)2 and T < 1.
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Proof. This follows directly from Propositions 4.11, 4.12, and 6.3. ]
In order to estimate the term || Ee 6| 3¢,00,7,» We need the following pointwise estimate:
Lemma 8.4. We have

|Ee(t.0) < C(6) (—1) |G (&.7)| ‘ /0 He (@ ol g’

+C(0) (~0)72 G2 (6. 1) (| He (6. 0] + |HO. D)]).

Proof. The proof is analogous to the proof of [13, Lemma 8.4]. |
In order to estimate the term || E'e 5| #¢, 00,7, » We need the following estimate for Hg (0, 7):

Lemma 8.5. We have
T 3 6
sup (/ 1 HEg (0, r’)2 dz/) <C ||Hell#.cor. +C Z 1 Ee x|l 5.00.7, -
—

TS k=1

Proof. In the region {|&| < 1}, we have

0

6
—He =%H Ee .
5, 1€ € +1§1 e.k

Using standard interior estimates for linear parabolic equations and the embedding of the
Sobolev space H?([—1, 1]) into C([—1, 1]), we obtain

1 6
T 2
sup ([ Heg.07d7 )" < C I Helmos, +C Y IFeilitns.
T<Tx 7—1 k=1
Since He (0, ) = Hg(0, 7), the assertion follows. |
Lemma 8.6. We have
6 1
D I Ee ikl com = CO) (1) | Hellp,co,z.-
k=1
Proof.  The proof is analogous to the proof of [13, Lemma 8.6]. O

Lemma 8.7. We have

9
Y IEe k.00 + 1 Ee.10ll 0% 00.m.
k=7

< C(O) (—ta) "2

p— .
(o= (002 <ltl< 4= 320 (-0 } | 5,00,

Proof. Using Proposition 8.1, we obtain

_1 _1
”E‘C’,IOHJD*,oo,r* <C(—t4) 2 ”X{C((_T 25) H”Jf,oo,t*-
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This gives the desired estimate for Ee 19. The estimates for Ee 7, Ee g, and E¢ 9 follow
directly from the respective definitions. This completes the proof of Lemma 8.7. O

We now complete the proof of Proposition 6.7. To that end, we apply Proposition 8.2 to
the function He. Since P4 He(t+) = 0, we obtain
10

sup [|He(Dllse + A7 | Hellpooe <A DY [ Ee i Dl D+ 00,z

<
TSt k=1

by Proposition 8.2. We use Lemma 8.6 and Lemma 8.7 to estimate the terms on the right-hand
side. This gives

sup || He()llge + A7 | Hell 9oz,

T<Tx

1A _1
= C(0) (=) 2 [|Hellp,o0,e. + C(0) (1) 2 [PoHe | D,00,z.

+C(6) (—te) 2

H1
{

T G L ENFECSCLS ‘m
If —7. is sufficiently large, the first term on the right-hand side can be absorbed into the left-

hand side. This completes the proof of Proposition 6.7. O

9. Analysis of the overlap region and proof of Proposition 6.8

In this section, we give the proof of Proposition 6.8. In the following, results stated with-
out proof have been proven in [13]. We remind the reader that 6 is chosen as in Proposition 6.5.
We also recall that ye is a smooth cutoff, which satisfies

02
1 on [o, Ja— —z(n_z)],
02
0 on |:‘/4—m,00>

We also assume ye is monotone decreasing on [0, 00). As before, we write H, He, I‘?‘e, and
a instead of H*PY H.gﬁ v, H.g’g Y. and a®BY. We begin by recalling the following elementary
lemma from [13]:

Xe =

Lemma 9.1 (Lemma 9.1 in [13]). Assume that4 < L1 < L, < L3. Then

_g2 _g
12 / 5 fEPdE<C / 5 B2 de
{Lr<&<L3} {L1<&<L3}

L C(La—L1)2 / 5 £@)7 de,

{L1=<£<L>}
where C is a numerical constant that is independent of Ly, Lo, L3, and f.

The following lemma relates the function H (&, 7) to the function W4 (p, 7):

Lemma 9.2. If we choose —tx sufficiently large (depending on 0), then
|He(£.1) + Wi (V2(n —2) + G1(5, 1), )| < C(0) |H(E, 1)

provided that /4 — 400 % (—‘E)% <&<.4- #j—z) (—r)% and T < 1.
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Proof. The proof of this lemma is analogous to the proof of Lemma 9.2 in [13]. Replac-
ing 6 by 6/+/n — 2 in higher dimensions accounts for the minor changes in Proposition 4.11
and Proposition 6.3 in higher dimensions. The details are left to the reader. |

Lemma 9.3. We have

2
(=) / T HE D dE
s (—0? <k <[4 (-0}

0
<CO) ()2 /9 Vie(p. 1) 2 Wa(p, 1)2 e+ gp

4

+C(0)/{ — L e HE D d

1 2 1
o (D2 sS4y (1))

provided that T < 14« and —t« is sufficiently large.

Proof. The proof of this lemma is analogous to the proof of [13, Lemma 9.3]. The first
step, as in [13] is to apply Lemma 9.1 with

62 [2p 1 02 1
R R T ANl e R

and f(¢§) = H(§, t). Besides replacing 6 by J%, the remainder of the proof goes through
unchanged.

O

Lemma 9.4 ([13, Lemma 9.4]). We have

26
(—0)~ / Vig (0. 1) Wi (0, 7)2 60 dp

0
Ez
<C(0 TT (Hg(5, 1)+ HE 1)) d
<) /{ b o) € IR 0P 08

provided that T < 4 and —14 is sufficiently large.

Proposition 9.5 ([13, Proposition 9.5]). We have

sup (—1) 5 HE ) dedT

T
o<z, /t_lf{ 4= 32y (—T) D <l Jam 2y (—1) 2 )
T 2
< C(0) sup / / T (He £(€,7)* + He(E, 7)) dEdT.
—1JR

T<Tx

After these preparations, we now finish the proof of Proposition 6.8. Using Proposi-
tion 9.5, we obtain

sup (—7) /;/{ . . e‘¥ H(E 7)) dEdT

<7 45y (—0) 2 <ltl= a1y (-2 )

< C(0) sup /f a(t)?dt

T<Tx JT—1

+ C(0) sup /_1 fRe—iZ (He g(&,7)2 4+ He(5, 7)) dEd7.

T<Tx
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Combining this estimate with Proposition 6.7 gives

(—7+) sup /_I/Re—i (He g(£,7)* + He(5, 7)) dEd7’

T<Tx

T
< C(0) sup / a(t)?dt
—1

T<Tx

+ C(0) (=)~ sup /_I/Re—gf (He g(£,7) 4+ He(t,7)?) dEd7.

T<Tx

If —7, is chosen sufficiently large (depending on 8), then the last term on the right-hand side
can be absorbed into the left-hand side. This completes the proof of Proposition 6.8. O

10. Analysis of the neutral mode and proof of Proposition 6.9

In this final section, we give the proof of Proposition 6.9. In the following, results stated
without proof have been proven in [13].

Lemma 10.1. We have

sup (—7) 5 HE o) dedd

2 1 2 1
T=Tx —1 { 4—%(—‘“)25%5 4‘%(—‘5’)2}

< C(0) sup / ' a(t)?dr’.

T<Tx JT—1

Proof. This follows by combining Proposition 6.8 and Proposition 9.5. O
We next establish an improved version of Lemma 8.5:

Lemma 10.2 ([13, Lemma 10.2]). We have

(—7«) sup H(0,7))*d7’ < C(0) sup / a(t)?dv’.

T<tx JT1—1 T<tx JT1—1

After these preparations, we now study the evolution of the function a(t). Using the
evolution equation

2 10

—He = £H E
5, 11e e+ Z ks
k=1
we obtain
J 10
——a(®) =) I(0),
k=1
where

Ie(r) = 5 (€ —2) Fe (€. 1) dE.

1
16/2(n —2)m Ae

In the remainder of this section, we estimate the terms [ (7).
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Lemma 10.3 ([13, Lemma 10.3]). Let § > 0 be given. If the constant —tx is sufficiently
large (depending on §), then

sup (—7) [; II1(z)) — (=) Ya(@)|dt’ < § sup (/tla(r/)zdr/)z.

T<Tx T<Tx

Lemma 10.4 ([13, Lemma 10.4]). Let 6 > 0 be given. If the constant —tx is sufficiently
large (depending on §), then

1
T T 3
sup (—1) [Ir(z")|dt’ < § sup (/ a(f’)zdr/) )
1 T—1

T=Tx T— T=Tx

Lemma 10.5 ([13, Lemma 10.5]). Let § > 0 be given. If the constant —tx is sufficiently
large (depending on §), then

sup (—7) [; |I3(z") — (=t) " Ya(d)|dt’ < § sup (/tla(r/)zdr/)z.

T<Tx T<Tx

Lemma 10.6 ([13, Lemma 10.6]). Let § > 0 be given. If the constant —tx is sufficiently
large (depending on §), then

1
T T 3
sup (—1) [14(z")|dt’ < § sup (/ a(f’)zdr’) )
1 —1

T=Tx T— T=Tx

Lemma 10.7 ([13, Lemma 10.7]). Let § > 0 be given. If the constant —tx is sufficiently
large (depending on §), then

T T 2
sup (—7) |Is(z)|dt' <§ sup ( / a(f’)zdr/) .
T<Tx 7—1 T<Tx 7—1

Lemma 10.8 ([13, Lemma 10.8]). Let 6 > 0 be given. If the constant —tx is sufficiently
large (depending on §), then

1
T T 3
sup (—1) [I6(z")| dt’ < § sup (/ a(f’)zdr') )
1 T—1

T<Tx T— T<Tx

Lemma 10.9 ([13, Lemma 10.9]). Let § > 0 be given. If the constant —tx is sufficiently
large (depending on §), then

: 10 . 1
sup (—r)/ Z I ()| dt’ <8 sup (/ a(r’)zdt') )
—1 k=7 —1

T<Tx T<T«

Proposition 6.9 follows immediately from Lemma 10.3 — Lemma 10.9 together with the
identity

d 10
Sa(n) = I; I (7).
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A. The Bryant soliton

In [16] Bryant showed that up to constant multiples, there is only one complete, steady,
rotationally symmetric soliton in dimension three that is not flat. It has positive sectional cur-
vature. The maximum scalar curvature is equal to 1, and is attained at the center of rotation.
The complete soliton can be written in the form ¢ = dz ® dz + B(z)? ggn—1, where z is the
distance from the center of rotation. For large z, the metric has the following asymptotics: the
aperature B(z) has leading order term ./2(n — 2)z, the orbital sectional curvature K has
leading order term -2z 2) = and the radial sectional curvature K,q has leading order term 41

Sometimes it is more convenient to write the metric in the form ®(r)~! dr? + r? ggn—1,
where the function ®(r) is defined by

d 2
®(B(2)) = (EB(Z)) .

The function ®(r) is known to satisfy the equation

—2-9() 2( 2)
f

(r)®"(r) — cI>/( )? + Y (r) + ——5—@(r)(1 = 2(r)) = 0.

The orbital and radial sectional curvatures are given by
1 1
Koo = 3 (1—=®(r)) and Kpg= 5, @' (r).

It is known that ®(r) has the following asymptotics. Near » = 0, ® is smooth and has the
asymptotic expansion
O(r) =1+ bor? +o(r?),

where by is a negative constant (since the curvature is positive). As r — oo, ® is smooth and
has the asymptotic expansion

5 —
O(r) =cor 2 + n—’;cg Tt o(rY,

where cg is a positive constant.
We will next find (for the convenience of the reader) the exact values of the constants b
and cg in the above asymptotics for the Bryant soliton of maximal scalar curvature one.
Recall that the scalar curvature is givenby R = (n — 1)(n — 2) Koy + 2(n — 1) Kiaq. The
maximal scalar curvature is attained at z = 0, at which point Korb = Ki.4. The maximal scalar
curvature being equal to 1 is equivalent to Koy = Kpaq = at z = 0. On the other hand,
the asymptotic expansion of ®(r) gives

n(n 1)

1
Koy = — (1 = ®@(r)) = —=bg +o(1) asr — 0.
r

Consequently, by = —n(n;_l).
Bryant’s asymptotics imply that for z sufficiently large, the aperture satisfies

r=(14o0(1)+/2(n—-2)z,

implying that 2(n — 2)z = (1 4 o(1)) r2. The radial sectional curvature satisfies

( - )2
Krng=(1+o() = =0+o) —7—
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for r large. On the other hand, the asymptotic expansion of ®(r) implies

1
Keaa = == ®'(r) = (1 + () cor™

for r large. Comparing the two formulae, we conclude that co = (n — 2)2.

Summarizing the above discussion we conclude the following asymptotics for the Bryant

soliton with maximal scalar curvature equal to one:

(1]
(2]
(3]
(4]
(]
(6]
(7]

(8]
(9]

[10]
(11]

[12]
[13]
[14]
[15]
[16]
[17]
(18]
[19]
[20]

[21]

2
r
l———— +0(r? asr — 0,
®(r) = n(n—1) U

n—=22r24+m=2>3G-nr 40 asr— oo.
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