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Uniqueness of compact ancient solutions to the
higher-dimensional Ricci flow

By Simon Brendle at New York, Panagiota Daskalopoulos at New York,
Keaton Naff at New York and Natasa Sesum at Pitscataway

Abstract. In dimensions n � 4, an ancient �-solution is a nonflat, complete, ancient
solution of the Ricci flow that is uniformly PIC and weakly PIC2; has bounded curvature;
and is �-noncollapsed. In this paper, we study the classification of ancient �-solutions to
n-dimensional Ricci flow on Sn, extending the result in [S. Brendle, P. Daskalopoulos and
N. Sesum, Uniqueness of compact ancient solutions to three-dimensional Ricci flow, Invent.
Math. 226 (2021), no. 2, 579–651] to higher dimensions. We prove that such a solution is either
isometric to a family of shrinking round spheres, or the Type II ancient solution constructed by
Perelman.
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1. Introduction

In this paper, we consider a solution to the Ricci flow 𝜕𝜕t g.t/ D �2Ricg.t/ on a compact
manifold which exists for all times t 2 .�1; T /. We call such a solution an ancient solu-
tion. The main focus of this paper is the classification of ancient solutions to Ricci flow in
dimensions n � 4, under natural isotropic curvature conditions that will be discussed below.
Ancient solutions play an important role in singularity formation in geometric flows since
these solutions occur as limits of sequences of rescalings in regions of high curvature. For
example, Perelman’s work on the Ricci flow [27] shows that high curvature regions in a three-
dimensional Ricci flow are modeled on ancient solutions with nonnegative curvature that are
�-noncollapsed. In the same paper, Perelman also showed that even in higher dimensions,
ancient solutions that occur as blow-up limits around points of high curvature are �-noncol-
lapsed. We will focus on these �-noncollapsed ancients solutions. Let us begin by briefly
reviewing what is known in dimensions two and three.

In dimension two, ancient solutions to the Ricci flow have been completely classified
through a combination of work by Chu, the second author, Hamilton, and the fourth author in
three papers [18, 20, 21]. In particular, there is actually a classification of both collapsed and
�-noncollapsed ancient solutions. Altogether, there are precisely three (nonflat, non-quotient)
ancient solutions: the family of shrinking round spheres, the King solution, and steady cigar
soliton. The King solution, independently discovered by King [25] and Rosenau [28], resem-
bles two steady cigar solitons which have been cut and glued together to form a compact
solution. Of course, the sphere is �-noncollapsed, while the cigar and, hence, the King solution
are both collapsed.

In dimension three, there are expected to be many more examples of collapsed ancient
solutions. For �-noncollapsed ancient solutions however, Perelman’s conjecture [27], and its
analogue in the compact setting, indicated a simple classification should exist. These conjec-
tures stood for a number of years until several recent breakthroughs made it possible to resolve
them in full. In dimension three, noncollapsed ancient solutions have now been completely
classified through a combination of results by Angenent, and the first, second, and fourth authors
in four papers [1, 7, 10, 13] (as well as a pinching result in [14]). See also [4]. Altogether, there
are precisely four (nonflat, non-quotient) �-noncollapsed ancient solutions: the family of shrink-
ing round spheres, the family of shrinking round cylinders, Perelman’s ancient oval solution
on S3, and the steady Bryant soliton. Perelman’s ancient oval is the higher-dimensional ana-
logue of the King solution: it resembles a gluing of two Bryant solitons at very negative times.

We now turn our attention to dimensions n � 4. We are interested in classifying ancient
solutions which model singularity formation. The question is: what class of singularity models
can we understand using the techniques developed in dimension three? The classification of
ancient �-solutions in dimension three relies on a number of ingredients. As we have men-
tioned, Perelman’s �-noncollapsing is crucial and holds in all dimensions. There are two ingre-
dients special to dimension three though, which do not apply in higher dimensions. The first
ingredient is the Hamilton–Ivey curvature pinching estimate, which ensures that all blow-up
limits have nonnegative curvature. Once one has nonnegative curvature, Hamilton’s Harnack
inequality [22] holds. The Harnack inequality then implies bounded curvature at bounded dis-
tance and, finally, an argument of Perelman upgrades this to bounded curvature. Therefore, in
dimension three, ancient �-solutions automatically have nonnegative and bounded curvature.
No general Hamilton–Ivey-type estimate holds in higher dimensions without an initial curva-
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ture positivity assumption. The second ingredient is that the cross section of a noncompact
singularity model in dimension three must be compact. Perelman used this property to estab-
lish an important “tube and cap” structure theorem for ancient �-solutions in dimension three.
When n � 4 however, there will be new singularity models, such as generalized cylinders,
which will require new arguments to classify.

The correct assumption on initial data, for the purpose of generalizing the singular-
ity model classification in dimension three to higher dimensions, turns out to be positive
isotropic curvature. It was Hamilton who first introduced positive isotropic curvature (PIC)
to the Ricci flow in dimension four [23]. Importantly, Hamilton established an analogue of the
Hamilton–Ivey pinching estimate for PIC initial data. Hamilton’s result showed singularities
must have nonnegative curvature and compact cross-section, whenever the models are noncom-
pact. In [9], the first author generalized Hamilton’s results for PIC initial data to dimensions
n � 12. In these dimensions, PIC initial data does not ensure singularity models have nonneg-
ative curvature, but rather they must satisfy a weaker curvature condition known as PIC2. See
Section 2 to recall the precise definitions of PIC and PIC2. Importantly, however, this latter
curvature condition is still strong enough to ensure Hamilton’s Harnack inequality holds [6].
Hamilton and the first author’s work justifies the following definition.

Definition 1.1. Suppose n � 4. An ancient �-solution is an n-dimensional, ancient,
complete, nonflat solution of the Ricci flow that is uniformly PIC and weakly PIC2; has
bounded curvature; and is �-noncollapsed on all scales.

To summarize, if the initial data of a Ricci flow is PIC and n D 4 or n � 12, then singu-
larity models must be ancient �-solutions in the sense above. We expect a similar result to be
true for 5 � n � 11.

Our present goal is to complete the classification of ancient �-solutions in the sense of
Definition 1.1, extending the classification in dimension three. Having identified the correct
curvature assumptions, the program is roughly the same. The first important step was accom-
plished in [7], where the first author showed uniqueness of the Bryant soliton in the class of
steady solitons with asymptotic cylindricality. Subsequently, the first author and the third author
used [7] and arguments in [10] to prove uniqueness of the Bryant soliton among noncompact
ancient �-solutions in higher dimensions in [15]. It remains to extend the result of [13] for com-
pact ancient solution to higher dimensions, which we complete here. As in [13], the proof is
accomplished in two steps. In the first step, we use arguments from [15] to prove the following
theorem:

Theorem 1.2. Let .Sn; g.t// be an ancient �-solution on Sn. Then .Sn; g.t// is rota-
tionally symmetric.

Next, we give a complete classification of all ancient �-solutions on Sn with rotational
symmetry:

Theorem 1.3. Let .Sn; g1.t// and .Sn; g2.t// be two ancient �-solutions on Sn which
are rotationally symmetric. Assume that neither .Sn; g1.t// nor .Sn; g2.t// is a family of
shrinking round spheres. Then .Sn; g1.t// and .Sn; g2.t// coincide up to a reparametrization
in space, a translation in time, and a parabolic rescaling.
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Combining Theorem 1.2 and Theorem 1.3, we can draw the following conclusion:

Theorem 1.4. Let .Sn; g.t// be an ancient �-solution on Sn which is not a family of
shrinking round spheres. Then .Sn; g.t// coincides with Perelman’s solution up to diffeomor-
phisms, translations in time, and parabolic rescalings.

Let us mention some related work in the mean curvature flow setting. In [19], the authors
classified compact, convex ancient solutions to the curve shortening flow. In [11, 12], the
authors proved that the bowl soliton is the only ancient solution which is noncompact, non-
collapsed, strictly convex, and uniformly two-convex. In [2], the authors showed that every
ancient solution which is compact, noncollapsed, strictly convex, and uniformly two-convex is
either the family of shrinking spheres or the ancient oval constructed by White (cf. [29]) and
Haslhofer and Hershkovits (cf. [24]). Finally, compact ancient solutions which are collapsed
were studied in [5].

The outline of the paper is as follows: In Section 2, we recall some qualitative properties
of ancient �-solutions on Sn. In particular, an ancient �-solution on Sn is either a family of
shrinking round spheres, or it has the structure of two caps joined by a tube (in which the
solution is nearly cylindrical). In Section 3, we give the proof of Theorem 1.2.

In Section 4, we derive a-priori estimates for rotationally symmetric solutions. In Sec-
tion 5, we introduce two weight functions �C.�; �/ and ��.�; �/ (one for each cap). These will
be used in Section 7 to prove weighted estimates for the linearized equation in each tip region.

In Section 6, we give an overview of the proof of Theorem 1.3. The proof relies in a cru-
cial way on estimates for the linearized equation in the tip region (Proposition 6.5) and in the
cylindrical region (Proposition 6.7). These estimates are proved in Section 7 and Section 8.

2. Preliminary results on structure of compact ancient �-solutions

In this section, we will record basic facts about the structure of ancient �-solutions as
in [13, Section 2]. We begin by recalling the definitions of uniformly PIC and weakly PIC2
Riemannian manifolds.

Definition 2.1. Suppose n � 4 and that .M; g/ is a Riemannian manifold of dimen-
sion n � 4.

� We say that .M; g/ is uniformly PIC if there exists a real number ˛ > 0 with the property
that R.'; N'/ � ˛ jRmjj'j2 for all complex two-vectors of the form

' D .e1 C ie2/ ^ .e3 C ie4/;

where ¹e1; e2; e3; e4º is an orthonormal four-frame.

� We say that .M; g/ is weakly PIC2 if R.'; N'/ � 0 for all complex two-vectors of the
form

' D .e1 C i�e2/ ^ .e3 C i�e4/;

where ¹e1; e2; e3; e4º is an orthonormal four-frame and �;� 2 Œ0; 1�. If the inequality is
always strict, we say that .M; g/ is strictly PIC2.
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Equivalently:

� The Riemannian manifold .M; g/ is uniformly PIC if there exists ˛ > 0 such that for
every p 2M and every orthonormal four-frame e1; e2; e3; e4 2 TpM , the curvature ten-
sor Rijkl satisfies

R1313 CR1414 CR2323 CR2424 � 2R1234 � ˛jRmj:

� The Riemannian manifold .M; g/ is weakly PIC2 if for every p 2M , every orthonormal
four-frame e1; e2; e3; e4 2 TpM , and every �;� 2 Œ0; 1�, the following holds:

R1313 C �
2R1414 C �

2R2323 C �
2�2R2424 � 2��R1234 � 0:

Four-dimensional ancient �-solutions in the sense of Definition 1.1 automatically satisfy
the restricted isotropic curvature pinching condition used to study four-dimensional ancient
solutions in [17]. For a proof and to recall the meaning of the pinching condition, we refer
to [15, Proposition A.2]. Note that the restricted isotropic curvature pinching condition implies
four-dimensional ancient �-solutions have nonnegative curvature operator. The restricted iso-
tropic curvature condition is the assumption under which the authors in [17] developed a theory
for ancient �-solutions in dimension four, following the work of Hamilton and Perelman.
Importantly, for each of the structure results established for ancient �-solutions in dimensions
n � 5 by the first author in [9] under the uniformly PIC and weakly PIC2 assumptions, there
is an analogous result for ancient �-solutions in dimension n D 4 under the restricted isotropic
curvature pinching condition, which can be found in [17]. In particular, we note that compact-
ness of ancient �-solutions in the sense above is established in [9] for n � 5 and follows from
work in [17] for n D 4.

From now on, we assume .M; g.t// is an ancient �-solution which is compact and sim-
ply connected. We also assume .M; g.t// is not a family of shrinking round spheres. Note that
because .M; g.t// is compact, the strong maximum principle ([9, Proposition 6.6]) implies
.M; g.t// is strictly PIC2. By the work of the first author and Schoen, this implies M is
diffeomorphic to Sn.

Proposition 2.2. The asymptotic shrinking soliton associated with the ancient �-solu-
tion .M; g.t// is a cylinder.

Proof. The only gradient shrinking Ricci solitons which are uniformly PIC and weakly
PIC2 are the round sphere Sn, the round cylinder Sn�1 �R, or a quotient of one of these two
by a discrete group of isometries (see [15, Theorem A.1]). If the asymptotic soliton has constant
curvature, then .M; g.t// would have constant curvature by the pinching result in [14]. This
would contradict our assumption that .M; g.t// is not a family of shrinking round spheres.
The asymptotic soliton cannot be a compact quotient of the cylinder for a number of rea-
sons. Perhaps the clearest is that these compact quotients of Sn�1 �R do not move self-
similarly under the Ricci flow. Alternatively, if the asymptotic soliton is compact, then by
smooth Cheeger–Gromov convergence M must be diffeomorphic to a compact quotient of the
cylinder, but M is diffeomorphic to Sn. Finally, if the asymptotic soliton is a noncompact
quotient of the cylinder, then by [8, Theorem A.1] the fundamental group of some nontrivial
quotient of Sn�1 would inject into the fundamental group ofM , which is trivial by assumption.
It follows the asymptotic soliton must be isometric to a round cylinder.
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Proposition 2.3. Let .xk; tk/ be an arbitrary sequence of points in space-time satisfying
limk!1 tk D �1. Consider the family of rescaled metrics

gk.t/ WD R.xk; tk/g
�
tk CR.xk; tk/

�1t
�
:

After passing to a subsequence, the sequence of pointed flows .M; gk.t/; xk/ converges in the
Cheeger–Gromov sense to either a family of shrinking cylinders or the Bryant soliton.

Proof. We have compactness of ancient �-solutions for n � 4 and a classification in the
noncompact case by [15]. Thus, the proof of [13, Proposition 2.2] works here.

We now fix a large numberL <1 and a small number "1 > 0 so that the Neck Improve-
ment Theorem in [15, Theorem 4.8] holds. Also, denoting by �1.x; t/ the smallest eigenvalue
of the Ricci tensor at .x; t/, we fix a small number � > 0 with the property that if .x; t/ is
a spacetime point satisfying �1.x; t/ � �R.x; t/, then the point .x; t/ lies at the center of an
evolving "1-neck. The existence of � is based on a standard contradiction argument which uses
compactness of ancient �-solutions in higher dimensions. See [15, Lemma A.2] for a proof in
the noncompact case. The proof in the compact case is nearly identical.

Definition 2.4. We say that a point p is a tip of .M; g.t// if �1.p; t/ > 1
2n
R.p; t/ and

rR.p; t/ D 0.

By work of Hamilton, every neck admits a canonical foliation by CMC spheres. This will
be referred to as Hamilton’s CMC foliation.

Proposition 2.5. Consider a sequence of times tk ! �1. If k is sufficiently large, then
we can find two disjoint compact domains �1;k and �2;k with the following properties:

� �1;k and �2;k are each diffeomorphic to Bn.

� For each x 2M n .�1;k[�2;k/, we have �1.x; tk/ < �R.x; tk/. In particular, the point
.x; tk/ lies at the center of an evolving "1-neck.

� For each x 2 �1;k [�2;k , we have �1.x; tk/ >
1
2
�R.x; tk/.

� 𝜕�1;k and 𝜕�2;k are leaves of Hamilton’s CMC foliation of .M; g.tk//.

� For each k, there exists a leaf †k of Hamilton’s CMC foliation with the property that
�1;k and �2;k lie in different connected components of M n†k , and

sup
x2†k

�1.x; tk/

R.x; tk/
! 0:

� The domains .�1;k; g.tk// and .�2;k; g.tk// each converge, after rescaling, to a corre-
sponding subset of the Bryant soliton.

Proof. The proof is the same as the proof of [13, Proposition 2.4].

Corollary 2.6. If k is sufficiently large, then the manifold .M; g.tk// has exactly two
tips. One of these points lies in �1;k and the other lies in �2;k . In particular, these points are
contained in different connected components of M n†k .
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Proof. The proof is the same as the proof of [13, Corollary 2.5]. We note that in higher
dimensions, at the tip of the n-dimensional Bryant soliton we have Ric D 1

n
Rg, rR D 0,

and r2R < 0. Moreover, the tip is the unique point on the Bryant soliton where rR D 0 and
�1 >

1
2n
R. The claim now follows from the previous proposition.

The following proposition is an immediate consequence of Proposition 2.3.

Proposition 2.7. Consider a sequence of times tk ! �1. Let p1;tk and p2;tk denote
the tips in .M; g.tk//. If we rescale the flow around .p1;tk ; tk/ or .p2;tk ; tk/ as in Proposi-
tion 2.3, then the rescaled flows subsequentially converge to the Bryant soliton in the Cheeger–
Gromov sense.

Proposition 2.8. Consider a sequence of times tk ! �1. Let p1;tk and p2;tk denote
the tips in .M; g.tk//. Then we have

R.p1;tk ; tk/dg.tk/.p1;tk ; p2;tk /
2
!1;

R.p2;tk ; tk/dg.tk/.p1;tk ; p2;tk /
2
!1:

Proof. We have Perelman’s long-range curvature estimate for n D 4 by [17, Proposition
3.6 ] and for n � 5 by [9, Theorem 6.13]. Thus, the proof of [13, Proposition 2.7] works
here.

Proposition 2.9. Consider a sequence of points .xk; tk/ in spacetime such that tk tends
to �1. Let p1;tk and p2;tk denote the tips of .M; g.tk//. If

R.p1;tk ; tk/dg.tk/.p1;tk ; xk/
2
!1;

R.p2;tk ; tk/dg.tk/.p2;tk ; xk/
2
!1;

then
�1.xk; tk/

R.xk; tk/
! 0:

Proof. The proof is the same as the proof of [13, Proposition 2.8].

By combining Corollary 2.6, Proposition 2.7, Proposition 2.8, and Proposition 2.9, we
obtain the following analogue of [13, Corollary 2.9]:

Corollary 2.10. The following statements hold:

(i) If �t is sufficiently large, then the manifold .M; g.t// has exactly two tips p1;t and p2;t ,
and these points vary smoothly on M in t .

(ii) Suppose that a large number A is given. If �t is sufficiently large (depending on A), then
the two balls Bg.t/.p1;t ; AR.p1;t ; t /�

1
2 / and Bg.t/.p2;t ; AR.p2;t ; t /�

1
2 / are disjoint.

(iii) Suppose a large number A and a small number " > 0 are given. If �t is sufficiently
large (depending on A and "), then the solution in the ball Bg.t/.p1;t ; AR.p1;t ; t /�

1
2 / is

(after suitable rescaling) "-close to the corresponding piece of the Bryant soliton in the
Cheeger–Gromov sense. Similarly, the solution in the ball Bg.t/.p2;t ; AR.p2;t ; t /�

1
2 / is
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(after suitable rescaling) "-close to the corresponding piece of the Bryant soliton in the
Cheeger–Gromov sense.

(iv) Given " > 0, we can find a time T 2 .�1; 0� and a large constant A with the follow-
ing property. If t � T and x …Bg.t/.p1;t ; AR.p1;t ; t /�

1
2 /[Bg.t/.p2;t ; AR.p2;t ; t /

� 1
2 /,

then .x; t/ lies at the center of an evolving "-neck.

3. Rotational symmetry of compact ancient �-solutions in higher dimensions

In this section, we give a proof of rotational symmetry, extending [13, Section 3] to higher
dimensions. The arguments are essentially the same, except we will use results from [15], which
is the higher-dimensional analogue of part two of [10], where the first author first established
rotational symmetry of noncompact ancient �-solutions in dimension three. Throughout this
section, we assume n � 4 and .M; g.t// is an n-dimensional ancient �-solution which is com-
pact and simply connected. We also assume that .M; g.t// is not a family of shrinking round
spheres. The proof of rotational symmetry is by contradiction. Therefore:

We will assume throughout this section that .M;g.t// is not
rotationally symmetric.

As in the previous section, let us fix a large number L <1 and small number "1 > 0 so
that the Neck Improvement Theorem in [15] holds. Then let us choose a small number � > 0 so
that if �1.x; t/ � �R.x; t/, the spacetime point .x; t/ lies at the center of an evolving "1-neck.

We begin with a definition of "-symmetry of the caps based on the definition used in the
noncompact case in [15].

Definition 3.1 (Symmetry of caps). We will say the flow is "-symmetric at time Nt if
there exists a compact domain D �M and a family of time-independent vector fields

U D

´
U .a/ W 1 � a �

 
n

2

!µ
which are defined on an open subset containing D such that the following statements hold:

� The domain D is a disjoint union of two domains D1 and D2, each of which is diffeo-
morphic to Bn.

� �1.x; Nt / < �R. Nx; Nt / for all points x 2M nD.

� �1.x; Nt / >
1
2
�R.x; Nt / for all points x 2 D.

� 𝜕D1 and 𝜕D2 are leaves of Hamilton’s CMC foliation of .M; g.Nt //.

� For each x 2M nD, the point .x; Nt / is "-symmetric in the sense of [15, Definition 4.2].

� The Lie derivative LU .a/.g.t/// satisfies the estimate

sup
D1�ŒNt��

2
1;Nt�

2X
lD0

.n2/X
aD1

�2l1
ˇ̌
Dl.LU .a/.g.t///j

2
� "2;

where ��21 WD supx2D1 R.x; Nt /.
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� The Lie derivative LU .a/.g.t/// satisfies the estimate

sup
D2�ŒNt��

2
2;Nt�

2X
lD0

.n2/X
aD1

�2l2
ˇ̌
Dl.LU .a/.g.t///j

2
� "2;

where ��22 WD supx2D2 R.x; Nt /.
� If † � D1 is a leaf of Hamilton’s CMC foliation of .M; g.Nt // that has distance at most
50 rneck.𝜕D1/ from 𝜕D1, then

sup
†

.n2/X
aD1

��21 jhU
.a/; �ij2 � "2;

where � is the unit normal vector to † in .M; g.Nt // and rneck.𝜕D1/ is defined by the
identity areag.Nt/.𝜕D1/ D areag

Sn�1
.Sn�1/rneck.𝜕D1/n�1.

� If † � D2 is a leaf of Hamilton’s CMC foliation of .M; g.Nt // that has distance at most
50 rneck.𝜕D2/ from 𝜕D2, then

sup
†

.n2/X
aD1

��22 jhU
.a/; �ij2 � "2;

where � is the unit normal vector to † in .M; g.Nt // and rneck.𝜕D2/ is defined by the
identity areag.Nt/.𝜕D2/ D areag

Sn�1
.Sn�1/rneck.𝜕D2/n�1.

� If † � D1 is a leaf of Hamilton’s CMC foliation of .M; g.Nt // that has distance at most
50 rneck.𝜕D1/ from 𝜕D1, then

.n2/X
a;bD1

ˇ̌̌̌
ıab � areag.Nt/.†/

�
nC1
n�1

Z
†

hU .a/; U .b/ig.Nt/ d�g.Nt/

ˇ̌̌̌2
� "2:

� If † � D2 is a leaf of Hamilton’s CMC foliation of .M; g.Nt // that has distance at most
50 rneck.𝜕D2/ from 𝜕D2, then

.n2/X
a;bD1

ˇ̌̌̌
ıab � areag.Nt/.†/

�
nC1
n�1

Z
†

hU .a/; U .b/ig.Nt/ d�g.Nt/

ˇ̌̌̌2
� "2:

Remark 3.2. The tips of .M; g.Nt // are contained in different connected components
of the domain D. In particular, after relabeling D1 and D2 if necessary, we may assume
p1;Nt 2 D1 and p2;Nt 2 D2. In view of Corollary 2.10 and Definition 3.1, we have

diamg.Nt/.D1/ � CR.p1;Nt ; Nt /
� 1
2 and diamg.Nt/.D2/ � CR.p2;Nt ; Nt /

� 1
2

for some constant C , which depends only on our choice of � . By the long-range curvature
estimate, this implies

1

C
R.p1;Nt ; Nt / � R.x; Nt / � CR.p1;Nt ; Nt / for all x 2 D1

and
1

C
R.p2;Nt ; Nt / � R.x; Nt / � CR.p2;Nt ; Nt / for all x 2 D2.
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Recall by [10, Lemma 9.5] (cf. [15, Lemma 5.5]):

Lemma 3.3. Suppose that the flow is "-symmetric at time Nt . If zt is sufficiently close to Nt ,
then the flow is 2"-symmetric at time zt .

By Corollary 2.10, the solution is increasingly symmetric back in time.

Proposition 3.4. Let " > 0 be given. If �t is sufficiently large (depending on "), then
the flow is "-symmetric at time t .

Now to proceed with the proof by contradiction, consider an arbitrary sequence of posi-
tive real numbers "k ! 0. For k large, define

tk WD inf¹t 2 .�1; 0� W the flow is not "k-symmetric at time tº:

We must have lim supk!1 tk D�1 since otherwise the flow would be symmetric for�t
sufficiently large, in contradiction with our assumption.

For sufficiently negative times, we denote by p1;t and p2;t the tips of .M; g.t//. Since
tk ! �1, Proposition 2.7 implies that, if we rescale the flow about either .p1;tk ; tk/ by the
factor r�2

1;k
WD R.p1;tk ; tk/ or .p2;tk ; tk/ by the factor r�2

2;k
WD R.p2;tk ; tk/, then the sequence

subsequentially converges to the Bryant soliton in the pointed Cheeger–Gromov sense. This
gives us the analogue of Proposition 3.5 in [13].

Proposition 3.5. There exists a sequence of real numbers ık ! 0 such that the follow-
ing statements hold when k is sufficiently large:

� For each t 2 Œtk � ı�1k r2
1;k
; tk�, we have

dg.t/.p1;tk ; pt / � ıkr1;k and 1 � ık � r
2
1;kR.p1;t ; t / � 1C ık :

� The scalar curvature satisfies r2
1;k
R.x; t/ � 4 and

1

2K
.r�11;kdg.t/.p1;tk ; x/C 1/

�1
� r21;kR.x; t/ � 2K.r

�1
1;kdg.t/.p1;tk ; x/C 1/

�1

for all points .x; t/ 2 Bg.tk/.p1;tk ; ı
�1
k
r1;k/ � Œtk � ı

�1
k
r2
1;k
; tk�.

� There exists a nonnegative function

f1 WD f1;k W Bg.tk/.p1;tk ; ı
�1
k r1;k/ � Œtk � ı

�1
k r21;k; tk�! R

such that jRic�D2f1j � ıkr�21;k and

j�f1 C jrf1j
2
� r�21;kj � ıkr

�2
1;k and j

𝜕
𝜕t
f1 C jrf1j

2
j � ıkr

�2
1;k :

Moreover, the function f1 satisfies

1

2K
.r�11;kdg.t/.p1;tk ; x/C 1/ � f1.x; t/C 1 � 2K.r

�1
1;kdg.t/.p1;tk ; x/C 1/

for all points .x; t/ 2 Bg.tk/.p1;tk ; ı
�1
k
r1;k/ � Œtk � ı

�1
k
r2
1;k
; tk�.

Here, K WD K.n/ � 1 is a universal constant. Analogous statements also hold if we replace
p1;tk by p2;tk , r1;k by r2;k , and f1 by f2.
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The following three results are restatements of [13, Lemmas 3.6–3.8]. See also [15, Lem-
ma 5.14].

Lemma 3.6. By a suitable choice of ık , we can arrange the following holds. If

t 2 Œtk � ı
�1
k r21;k; tk� and dg.t/.p1;tk ; x/ � ı

�1
k r1;k;

then the time derivative of the distance function satisfies the estimate

0 � �
d

dt
dg.t/.p1;tk ; x/ � 2n r

�1
1;k :

Similarly, if
t 2 Œtk � ı

�1
k r22;k; tk� and dg.t/.p2;tk ; x/ � ı

�1
k r2;k;

then the time derivative of the distance function satisfies the estimate

0 � �
d

dt
dg.t/.p2;tk ; x/ � 2n r

�1
2;k :

Lemma 3.7. By a suitable choice of ık , we can arrange so that the following holds:
the two balls Bg.t/.p1;t ; ı�2k R.p1;t ; t /

� 1
2 / and Bg.t/.p2;t ; ı�2k R.p2;t ; t /

� 1
2 / are disjoint for

t 2 .�1; tk�.

Lemma 3.8. If t 2 .�1; tk/, then the flow is "k-symmetric at time t . In particular, if
.x; t/ 2M � .�1; tk/ is a spacetime point satisfying �1.x; t/ < 1

2
�R.x; t/, then the point

.x; t/ is "k-symmetric in the sense of [15, Definition 4.2].

By Corollary 2.10, we can find a time T 2 .�1; 0� and a large constant ƒ with the
following properties:

� L

q
4n3K
ƒ
� 10�6.

� If . Nx; Nt / 2M � .�1; T � satisfies

dg.Nt/.p1;Nt ; Nx/ �
ƒ

2
R.p1;Nt ; Nt /

� 1
2 and dg.Nt/.p2;Nt ; Nx/ �

ƒ

2
R.p2;Nt ; Nt /

� 1
2 ;

then
�1.x; t/ <

1

2
�R.x; t/

for all points .x; t/ 2 Bg.Nt/. Nx;Lrneck. Nx; Nt // � ŒNt � Lrneck. Nx; Nt /
2; Nt �, where

rneck. Nx; Nt /
�2
D

1

.n � 1/.n � 2/
R. Nx; Nt /:

The next two results are extensions of [13, Lemma 3.9 and Lemma 3.10] to higher
dimensions. The proofs are exactly the same.

Lemma 3.9. If . Nx; Nt / 2M � .�1; tk� satisfies

dg.Nt/.p1;Nt ; Nx/ �
ƒ

2
R.p1;Nt ; Nt /

� 1
2 and dg.Nt/.p2;Nt ; Nx/ �

ƒ

2
R.p2;Nt ; Nt /

� 1
2 ;

then . Nx; Nt / is "k
2

-symmetric.
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Lemma 3.10. If . Nx; Nt / 2M � Œtk � ı�1k r2
1;k
; tk� satisfies

ƒr1;k � dg.Nt/.p1;tk ; Nx/ � ı
�1
k r1;k;

then
dg.Nt/.p1;Nt ; Nx/ �

ƒ

2
R.p1;Nt ; Nt /

� 1
2 and dg.Nt/.p2;Nt ; Nx/ �

ƒ

2
R.p2;Nt ; Nt /

� 1
2 :

Similarly, if . Nx; Nt / 2M � Œtk � ı�1k r2
2;k
; tk� satisfies

ƒr2;k � dg.Nt/.p2;tk ; Nx/ � ı
�1
k r2;k;

then
dg.Nt/.p1;Nt ; Nx/ �

ƒ

2
R.p1;Nt ; Nt /

� 1
2 and dg.Nt/.p2;Nt ; Nx/ �

ƒ

2
R.p2;Nt ; Nt /

� 1
2 :

The proof of the following proposition is the same as the proof of [13, Proposition 3.11],
except for minor difference with how we define the scale of a neck in higher dimensions. Recall
that if . Nx; Nt / lies at the center of an evolving neck, then we define

rneck. Nx; Nt /
�2
WD

1

.n � 1/.n � 2/
R. Nx; Nt /:

For the convenience of the reader, we verify this minor difference here.

Proposition 3.11. If . Nx; Nt / 2M � Œtk � 2�j ı�1k r2
1;k
; tk� satisfies

2
j
400ƒr1;k � dg.Nt/.p1;tk ; Nx/ � .400n

3KL/�j ı�1k r1;k;

then . Nx; Nt / is 2�j�1"k-symmetric. Similarly, if . Nx; Nt / 2M � Œtk � 2�j ı�1k r2
2;k
; tk� satisfies

2
j
400ƒr2;k � dg.Nt/.p2;tk ; Nx/ � .400n

3KL/�j ı�1k r2;k;

then . Nx; Nt / is 2�j�1"k-symmetric.

Proof. The proof is by induction on j . The assertion for j D 0 follows from the previ-
ous two lemmas.

Assume j � 1 and that the assertion holds for j � 1. Suppose

. Nx; Nt / 2M � Œtk � 2
�j ı�1k r21;k; tk�

such that
2
j
400ƒr1;k � dg.Nt/.p1;tk ; Nx/ � .400n

3KL/�j ı�1k r1;k :

By Lemma 3.10, this implies �1. Nx; Nt / < 1
2
�R. Nx; Nt / and so . Nx; Nt / lies at the center of an "1-neck.

By Lemma 3.5,

rneck. Nx; Nt /
2
D .n � 1/.n � 2/R. Nx; Nt /�1 � 4Kn2r1;kdg.Nt/.p1;tk ; Nx/:

Therefore,
Nt � Lrneck. Nx; Nt /

2
� Nt � 4KLn2r1;kdg.Nt/.p1;tk ; Nx/

� Nt � 4KLn2.400n3KL/�j ı�1k r21;k

� Nt � 2�j ı�1k r21;k

� tk � 2
�jC1ı�1k r21;k :
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Since rneck. Nx; Nt /
2 � 4Kn2r1;kdg.Nt/.p1;tk ; Nx/ �

4Kn2

ƒ
dg.Nt/.p1;tk ; Nx/

2 and L
q
4n3K
ƒ
� 10�6,

we obtain
Lrneck. Nx; Nt / � 10

�6dg.Nt/.p1;tk ; Nx/:

Consequently, if x 2 Bg.Nt/. Nx;L rneck. Nx; Nt //, then

dg.Nt/.p1;tk ; x/ � dg.Nt/.p1;tk ; Nx/ � Lrneck. Nx; Nt /

� .1 � 10�6/dg.Nt/.p1;tk ; Nx/

� .1 � 10�6/2
j
400ƒr1;k

� 2
j�1
400 ƒr1;k :

Now on the other hand, 1
2
r1;k � R. Nx; Nt /

� 1
2 � rneck. Nx; Nt /. Putting this together with

rneck. Nx; Nt /
2
� 4Kn2r1;kdg.Nt/.p1;tk ; Nx/;

we obtain

dg.Nt/.p1;tk ; x/C 2nL rneck. Nx; Nt /
2r�11;k

� dg.Nt/.p1;tk ; Nx/C Lrneck. Nx; Nt /C 2nL rneck. Nx; Nt /
2r�11;k

� dg.Nt/.p1;tk ; Nx/C .2nC 2/L rneck. Nx; Nt /
2r�11;k

� 400n3KLdg.Nt/.p1;tk ; Nx/

� .400n3KL/�jC1ı�1k r1;k

for all x 2 Bg.Nt/. Nx;L rneck. Nx; Nt //. Since by Lemma 3.6

dg.Nt/.p1;tk ; x/ � dg.t/.p1;tk ; x/ � dg.Nt/.p1;tk ; x/C 2nL rneck. Nx; Nt /
2r�11;k;

we conclude
2
j�1
400 ƒr1;k � dg.Nt/.p1;tk ; x/ � .400n

3KL/�jC1ı�1k r1;k

for all .x; t/ 2 Bg.Nt/. Nx;L rneck. Nx; Nt // � ŒNt � Lrneck. Nx; Nt /
2; Nt �. It follows by the induction hypo-

thesis and the Neck Improvement Theorem that the point . Nx; Nt / is 2�j�1"k-symmetric.

The remaining arguments in the proof of rotational symmetry in Section 5 of [15], go
through without change to give us the following final proposition.

Proposition 3.12. If k is sufficiently large, then the flow is "k
2

-symmetric at time tk .

The proposition above contradicts the definition of tk in view of Lemma 3.3. This com-
pletes the proof of rotational symmetry.

4. A priori estimates for compact ancient �-solutions with
rotational symmetry

We begin by recalling some basic facts about the Bryant soliton in higher dimensions.
For the convenience of the reader we include some further discussion in Appendix A.
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Proposition 4.1 (R. Bryant [16]). Consider the n-dimensional Bryant soliton, normal-
ized so that the scalar curvature at the tip is equal to 1. Then the metric can be written in the
form ˆ.r/�1 dr ˝ dr C r2 gSn�1 , where ˆ.r/ satisfies the ODE

ˆ.r/ˆ00.r/ �
1

2
ˆ0.r/2 C

n � 2 �ˆ.r/

r
ˆ0.r/C

2.n � 2/

r2
ˆ.r/.1 �ˆ.r// D 0:

Moroever,

ˆ.r/ D

8̂<̂
:1 �

r2

n.n � 1/
CO.r4/ as r ! 0;

.n � 2/2 r�2 � .n � 5/.n � 2/3 r�4 CO.r�6/ as r !1.

Proof. See [16, Theorem 1 on p. 17].

Proposition 4.2. Let � > 0 be given. If s is sufficiently small (depending on �), thenˇ̌
ˆ..1C s/r/�1 �ˆ.r/�1

ˇ̌
� �

�
ˆ.r/�1 � 1

�
for all r � 0.

Proof. See [13, Proposition 4.2].

Lemma 4.3. Consider the Bryant soliton, normalized so that the scalar curvature at the
tip is equal to 1. Then

r ˆr C 2ˆ D 2.n � 5/.n � 2/
3r�4 CO.r�6/ for r � 1:

As a result we have
1

2
r ˆr Cˆ �ˆ

2
D �3.n � 2/3r�4 CO.r�6/:

Proof. According to Proposition 4.1, we have

ˆ.r/ D .n � 2/2 r�2 � .n � 5/.n � 2/3r�4 CO.r�6/

implying that

r ˆ0.r/ D �2.n � 2/2 r�2 C 4.n � 5/.n � 2/3r�4 CO.r�6/

as r !1. Hence
rˆr C 2ˆ D 2.n � 5/.n � 2/

3r�4 CO.r�6/

as r !1. This proves the first formula. The second one follows from the first and the fact that
ˆ.r/2 D .n � 2/4 r�4 CO.r�6/ as r !1.

Corollary 4.4. Consider the n-dimensional Bryant soliton, normalized so that the sca-
lar curvature at the tip is equal to 1. Let us write the metric in the form dz˝dz C B.z/2 gSn�1 .
Then, there exists a large constant L0 and such that

d2

dz2

�
B.z/2

2

�
�

�
d

dz
B.z/

�4
< 0

holds if B.z/2 � L20
4

.
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Proof. The functions B.z/ and ˆ.r/ are related through the identity�
d

dz
B.z/

�2
D ˆ.B.z//:

This implies

d2

dz2

�
B.z/2

2

�
�

�
d

dz
B.z/

�4
D
1

2
B.z/ˆ0.B.z//Cˆ.B.z// �ˆ.B.z//2:

By Lemma 4.3, 1
2
rˆ0.r/Cˆ.r/ �ˆ.r/2 < 0 if r is sufficiently large. This completes the

proof of the lemma.

Corollary 4.5. Consider the Bryant soliton, normalized so that the scalar curvature
at the tip is equal to 1. Let us write the metric in the form dz ˝ dz C B.z/2 gSn�1 . Then
B.z/ d

dz
B.z/! n � 2 as z !1.

Proof. Note that r ˆ.r/
1
2 ! n � 2 as r !1. Using the identity�

d

dz
B.z/

�2
D ˆ.B.z//;

we obtain B.z/ d
dz
B.z/ D B.z/ˆ.B.z//

1
2 ! n � 2 as z !1.

We now assume that .Sn; g.t// is an ancient �-solution which is not a family of shrinking
round spheres. Let q 2 Sn be a reference point chosen as in [1]. The same proof as the one in [1]
implies that if tj ! �1 and if we dilate the flow around the point .q; tj / by the factor .�tj /�

1
2 ,

then the rescaled manifolds converge to a cylinder of radius
p
2.n � 2/. Let F.z; t/ denote the

radius of a sphere of symmetry in .Sn; g.t// which has signed distance z from the point q. The
function F.z; t/ satisfies the PDE

Ft .z; t/ � Fzz.z; t/ D �
n � 2

F.z; t/
.1 � Fz.z; t/

2/ � .n � 1/ Fz.z; t/

Z z

0

Fzz.z
0; t /

F .z0; t /
dz0:

Furthermore, if

G.�; �/ D e
�
2F.e�

�
2 �;�e�� / �

p
2.n � 2/

straightforward computation shows that

G� D G�� �
�

2
G� CG C .n � 2/

G2
�p

2.n � 2/CG
�

G2

2.
p
2.n � 2/CG/

� .n � 1/G�

Z �

0

G2
��
.� 0; �/p

2.n � 2/CG.� 0; �/
d� 0;

or, equivalently,

G� D G�� �
�

2
G� CG �

G2
�p

2.n � 2/CG
�

G2

2.
p
2.n � 2/CG/

C .n � 1/G�

�
G�.0; �/p

2.n � 2/CG.0; �/
�

Z �

0

G2
�
.� 0; �/

.
p
2.n � 2/CG.� 0; �//2

d� 0
�
:
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We can write this equation as

G� D LG �
G2
�p

2.n � 2/
�

G2

2
p
2.n � 2/

CE.�; �/;

where E.�; �/ is the error term and LG D G�� �
�
2
G� CG. As in [1], let PC, P0 and P�

be orthogonal projections associated with the direct sum H D HC ˚H0 ˚H�, where HC,
H0 and H� are the positive, zero and negative eigenspaces with respect to operator L, respec-
tively. Exactly the same reasoning and arguments as in [1] yield that for � sufficiently small the
positive mode, i.e. the projection onto H0 dominates and thatZ

j�j<ı.�/
� 1
100

e�
�2

4 E.�; �/ .�2 � 2/ d� D O.A.�/2/;

whereA.�/ is the norm of the orthogonal projection of yG.�; �/DG.�; �/�.ı.�/
1
100 �/ onto H0.

Note that � is a cut off function with the support in a parabolic region and lim�!�1 ı.�/ D 0,
where both, � and ı.�/ are defined in the same way as in [1]. Having the equation for G and
the integral estimate above, the same arguments as in [1] imply the following asymptotics:

Theorem 4.6. Let .Sn; g.t// be a rotationally symmetric ancient �-solution which is
not isometric to a family of shrinking spheres. Then we can find a reference point q 2 Sn

such that the following holds. Let F.z; t/ denote the radius of the sphere of symmetry in
.Sn; g.t// which has signed distance z from the reference point q. Then the profile F.z; t/
has the following asymptotic expansions:

(i) Fix a large number L. Then, as t ! �1, we have

1

2
F.z; t/2 D .n � 2/

�
.�t / �

z2 C 2t

4 log.�t /

�
C o

�
.�t /

log.�t /

�
for jzj � L

p
�t

(ii) Fix a small number � > 0. Then as t ! �1, we have

1

2
F.z; t/2 D .n � 2/

�
.�t / �

z2 C 2t

4 log.�t /

�
C o.�t /

for jzj � 2
p
.1 � �2/

p
.�t / log.�t /.

(iii) The reference point q has distance .2C o.1//
p
.�t / log.�t / from each tip. The scalar

curvature at each tip is given by

.1C o.1//
log.�t /
.�t /

:

Finally, if we rescale the solution around one of the tips, then the rescaled solutions
converge to the Bryant soliton as t ! �1.

We next let
H.z; t/ WD

1

2
F.z; t/2 C .n � 2/t;

K.z; t/ WD Fz.z; t/
4;

Q.z; t/ WD Hzz.z; t/ �K.z; t/:
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Lemma 4.7. Let L0 be the constant in Corollary 4.4. There exists a time T0 < 0 with
the following property. If t � T0 and F.z; t/2 D L20

.�t/
log.�t/ , then Q.z; t/ < 0.

Proof. The proof of this is identical to the proof of [13, Lemma 4.5] once we use
Corollary 4.4.

Lemma 4.8. The function H.z; t/ satisfies the equation

Ht .z; t/ �Hzz.z; t/ D .n � 3/
Hz.z; t/

2

F 2.z; t/
� .n � 1/Hz

Z z

0

Fzz.z
0; t /

F .z0; t /
dz0:

Proof. We have Ht D FFt , Hz D FFz , Hzz D FFzz C F 2z . Hence,

Ht �Hzz D �F
2
z � .n � 2/.1 � F

2
z /C .n � 2/ � .n � 1/ FFz

Z z

0

Fzz.z
0; t /

F .z0; t /
dz0

which gives

Ht �Hzz D .n � 3/
H 2
z

F 2
� .n � 1/Hz

Z z

0

Fzz.z
0; t /

F .z0; t /
dz0:

Lemma 4.9. The function Hzz.z; t/ satisfies the evolution equation

Hzzt .z; t/ �Hzzzz.z; t/

D

�
.n � 5/

Fz.z; t/

F.z; t/
� .n � 1/

Z z

0

Fzz.z
0; t /

F .z0; t /
dz0

�
Hzzz.z; t/

� 4.n � 4/
Fz.z; t/

2Fzz.z; t/

F.z; t/
� 4Fzz.z; t/

2:

Moreover, the function K.z; t/ satisfies the evolution equation

Kt .z; t/ �Kzz.z; t/

D

�
.n � 5/

Fz.z; t/

F.z; t/
� .n � 1/

Z z

0

Fzz.z
0; t /

F .z0; t /
dz0

�
Kz.z; t/

C 8
Fz.z; t/

4Fzz.z; t/

F.z; t/
� 12Fz.z; t/

2Fzz.z; t/
2

C 4.n � 2/
1 � Fz.z; t/

2

F.z; t/2
Fz.z; t/

4:

Proof. We differentiate twice the equation of H to find

Hzzt �Hzzzz D .n � 3/

�
H 2
z

F 2

�
zz

� .n � 1/Hzzz

Z z

0

Fzz.z
0; t /

F .z0; t /
dz0

� 2.n � 1/
HzzFzz

F
� .n � 1/Hz

�
Fzz

F

�
z

:

Next we use Hz D FFz , Hzz D FFzz C F 2z and Hzzz D FFzzz C 3FzFzz to compute

Hz
�Fzz
F

�
z
D FFz

FFzzz � FzzFz

F 2
D Hzzz

Fz

F
� 4

F 2z Fzz

F
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and also use �
H 2
z

F 2

�
zz

D .F 2z /zz D 2.FzFzz/z D 2FzFzzz C 2F
2
zz

D 2
Fz

F
Hzzz � 6

F 2z Fzz

F
C 2F 2zz :

Combining the above yields

Hzzt �Hzzzz D Hzzz

�
�.n � 1/

Z z

0

Fzz.z
0; t /

F .z0; t /
dz0 C .n � 5/

Fz

F

�
� 6.n � 3/

F 2z Fzz

F
C 2.n � 3/F 2zz � 2.n � 1/F

2
zz

� 2.n � 1/
F 2z Fzz

F
C 4.n � 1/

F 2z Fzz

F

D Hzzz

�
�.n � 1/

Z z

0

Fzz.z
0; t /

F .z0; t /
dz0 C .n � 5/

Fz

F

�
� 4.n � 4/

F 2z Fzz

F
� 4F 2zz :

Next, a simple computation shows that Fz satisfies the equation

Fzt D Fzzz C

�
.n � 3/

Fz

F
� .n � 1/

Z z

0

Fzz.z
0; t /

F .z0; t /
dz0

�
Fzz C .n � 2/.1 � F

2
z /
Fz

F 2
:

Set K D F 4z . Using the previous equation, along with the identities

Kt D 4F
3
z Fzt ; Kz D 4F

3
z Fzz; Kzz D 4F

3
z Fzzz C 12F

2
z F

2
zz;

we find that K satisfies

Kt �Kzz D �12F
2
z F

2
zz C 4F

3
z

�
.n � 3/

Fz

F
� .n � 1/

Z z

0

Fzz.z
0; t /

F .z0; t /
dz0

�
Fzz

C 4.n � 2/.1 � F 2z /
F 4z
F 2

D

�
.n � 5/

Fz

F
� .n � 1/

Z z

0

Fzz.z
0; t /

F .z0; t /
dz0

�
Kz

C 8F 4z
Fzz

F
� 12F 2z F

2
zz C 4.n � 2/.1 � F

2
z /
F 4z
F 2

This completes the proof of the lemma.

Combining evolution equations for Hzz and K, we obtain that Q D Hzz �K satisfies

Qt �Qzz D

�
.n � 5/

Fz

F
� .n � 1/

Z z

0

Fzz.z
0; t /

F .z0; t /2
dz0

�
Qz � 4.n � 4/

F 2z Fzz

F

� 4F 2zz � 8
F 4z Fzz

F
C 12F 2z F

2
zz � 4.n � 2/.1 � F

2
z /
F 4z
F 2

D

�
.n � 5/

Fz

F
� .n � 1/

Z z

0

Fzz.z
0; t /

F .z0; t /2
dz0

�
Qz

� .4.n � 4/C 8F 2z /
F 2z Fzz

F
� .4 � 12F 2z /F

2
zz � 4.n � 2/

1 � F 2z
F 2

F 4z :
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The definition of Q implies

F 2z Fzz

F
D
F 2zQ � F

4
z C F

6
z

F 2
D
F 2z
F 2
Q �

1 � F 2z
F 2

F 4z :

Therefore

Qt �Qzz D

�
.n � 5/

Fz

F
� .n � 1/

Z z

0

Fzz.z
0; t /

F .z0; t /2
dz0

�
Qz

� .4.n � 4/C 8F 2z /
F 2z
F 2
Q � .4 � 12F 2z /F

2
zz � 8

.1 � F 2z /
2

F 2
F 4z :

We will use this equation, Lemma 4.7 and the maximum principle to prove the following
lemma, which is the analogue of [13, Proposition 4.7].

Proposition 4.10. We can find constants L0 and �T0, large enough so that Corol-
lary 4.4 and Lemma 4.7 are satisfied, so that the following holds. If t � T0 and

F.z; t/2 � L20
.�t /

log.�t /
;

then Q.z; t/ � 0.

Proof. Consider the spacetime region consisting of points .z; t/ such that t � T0 and

F.z; t/ � L0

s
.�t /

log.�t /
:

By Theorem 4.6, part (iii), if L0 and �T0 are sufficiently large, then jFzj � 1
100

whenever
t � T0 and

F.z; t/ � L0

s
.�t /

log.�t /
:

In particular, in the region t � T0 and F.z; t/ � L0
q

.�t/
log.�t/ , the function Q satisfies

Qt �Qzz �

�
.n � 5/

Fz

F
� .n � 1/

Z z

0

Fzz.z
0; t /

F .z0; t /2
dz0

�
Qz

� .4.n � 4/C 8F 2z /
F 2z
F 2
Q:

Moreover, by Lemma 4.7, Q < 0 when t � T0 and

F.z; t/ D L0

s
.�t /

log.�t /
:

Now suppose the assertion of the lemma is false. Then we can find a point .z0; t0/ such
that t0 � T0, F.z0; t0/2 � L20

.�t0/
log.�t0/

, andQ.z0; t0/ > 0. By the maximum principle, we have

sup
F.z;t/2�L20

.�t/
log.�t/

Q.z; t/ � Q.z0; t0/ > 0
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for each t � t0. Let us consider a sequence tj ! �1. For j large, we can find a point zj such
that

F.zj ; tj /
2
� L20

.�tj /

log.�tj /
and Q.zj ; tj / � Q.z0; t0/ > 0:

Using the inequality Fzz � 0, we obtain Fz.zj ; tj /2 � Q.zj ; tj / � Q.z0; t0/ > 0 for j large.
Hence, if we rescale around the points .zj ; tj / and pass to the limit, then the limit cannot be
a cylinder. Consequently, the limit of these rescalings must be the Bryant soliton. Hence, after
passing to the limit, we obtain a point z1 on the Bryant soliton such that B.z1/2 � L20 and

d2

dz2

�
B.z/2

2

�
�

�
d

dz
B.z/

�4
� 0 at z1:

This contradicts Corollary 4.4.

We next recall a crucial estimate from [1].

Proposition 4.11 (cf. [1]). Fix a small number � > 0 and a small number � > 0. Thenˇ̌̌̌
1

2
F.z; t/2 C .n � 2/ t C .n � 2/

z2 C 2t

4 log.�t /

ˇ̌̌̌
� �

z2 � t

log.�t /

if F.z; t/ � �
400

p
�t and �t is sufficiently large (depending on � and � ).

Proof. The proof is analogous to the proof of [13, Proposition 4.8] and is based on
the asymptotics of the ancient solution in radially symmetric setting. In [1] we showed pre-
cise asymptotics in the case n D 3, but the proof carries over without any changes to higher
dimensions due to new results in [15] and [26].

Proposition 4.12. Let us fix a small number � > 0 and a small number � > 0. Thenˇ̌̌̌
F.z; t/ Fz.z; t/C

.n � 2/ z

2 log.�t /

ˇ̌̌̌
� �
jzj C

p
�t

log.�t /

if F.z; t/ � �
200

p
�t and �t is sufficiently large (depending on � and � ).

Proof. The beginning of the proof is similar to the proof of [13, Proposition 4.9]. The
difference comes from the fact that FFz is not necessarily monotone decreasing in higher
dimensions, but instead one needs to use Proposition 4.10.

Let � 2 .0; 1
2
/ and � 2 .0; 1

2
/ be given. We can find a small positive number � 2 .0; �

n�2
/

and time T0 with the property that

F..1C �/z; t/ �
�

400

p
�t

whenever F.z; t/ � �
200

p
�t and t � T0. Moreover, by Proposition 4.11, we can find a time

T � T0 such thatˇ̌̌̌
1

2
F.z; t/2 C .n � 2/ t C .n � 2/

z2 C 2t

4 log.�t /

ˇ̌̌̌
� ��

z2

16 log.�t /

whenever z � 4
p
�t0, F.z; t/ � �

400

p
�t , and t � T .
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Suppose now that .z0; t0/ is a point in spacetime satisfying

z0 � 4
p
�t0; F .z0; t0/ �

�

200

p
�t0; t0 � T :

We assume �T is sufficiently large so that Fz.z; t0/ < 0 for all z � 4
p
�t0. By the above, we

have F.z; t0/ � �
400

p
�t0 for all z 2 Œ.1 � �/z0; .1C �/z0�. Consequently,ˇ̌̌̌

1

2
F.z; t0/

2
C .n � 2/ t0 C .n � 2/

z2 C 2t0

4 log.�t0/

ˇ̌̌̌
� ��

z20
4 log.�t0/

for all z 2 Œ.1 � �/z0; .1C �/z0�. This implies

inf
z2Œ.1��/z0;z0�

�
F.z; t0/ Fz.z; t0/C

.n � 2/ z

2 log.�t0/

�
� �

z0

2 log.�t0/

and

sup
z2Œz0;.1C�/z0�

�
F.z; t0/ Fz.z; t0/C

.n � 2/ z

2 log.�t0/

�
� ��

z0

2 log.�t0/
:

Define a function

S.z; t/ WD
1

F.z; t/2Fz.z; t/2
�

1

F.z; t/2
D

1 � Fz.z; t/
2

F.z; t/2Fz.z; t/2
:

Since F.z; t0/ � �
400

p
�t0 for all z 2 Œ.1 � �/z0; .1C �/z0�, we have Fz.z; t0/2 � 1. In par-

ticular, S.z; t0/ > 0 if z 2 Œ.1 � �/z0; .1C �/z0�. Moreover, we may assume �t0 is suffi-
ciently large, depending on � and �, so that

F.z; t0/jFz.z; t0/j � S.z; t0/
� 1
2 � .1C �/F.z; t0/jFz.z; t0/j:

Since Fz < 0, this means

.1C �/F.z; t0/Fz.z; t0/ � �S.z; t0/
� 1
2 � F.z; t0/Fz.z; t0/:

We compute

Sz D �
2

F 3Fz
�
2Fzz

F 2F 3z
C
2Fz

F 3

D �2
1

F 3F 3z

�
F 2z C FFzz � F

4
z

�
D 2

Q

F 3.�Fz/3
:

Since Fz < 0 and by Proposition 4.10, Q � 0, the function S is monotone decreasing in the
variable z for z 2 Œ.1 � �/z0; .1C �/z0�. This means �S�

1
2 is monotone decreasing as well.

So although the function FFz is not monotone decreasing in higher dimensions, it is very close
to the monotone function �S�

1
2 .

Now it follows from our estimates above that

inf
z2Œ.1��/z0;z0�

�
�S.z; t0/

� 1
2 C

.n � 2/ z

2 log.�t0/

�
� �

z0

2 log.�t0/

and

sup
z2Œz0;.1C�/z0�

�
�

1

1C �
S.z; t0/

� 1
2 C

.n � 2/ z

2 log.�t0/

�
� ��

z0

2 log.�t0/
:
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Since �S�
1
2 is monotone decreasing in the relevant region, this implies

�S.z0; t0/
� 1
2 C

.n � 2/.1 � �/z0

2 log.�t0/
� �

z0

2 log.�t0/

and

�
1

1C �
S.z0; t0/

� 1
2 C

.n � 2/.1 � �/z0

2 log.�t0/
� ��

z0

2 log.�t0/
:

Hence

.1C �/F.z0; t0/Fz.z0; t0/C
.n � 2/z0

2 log.�t0/
� ..n � 2/�C �/

z0

2 log.�t0/

and
1

1C �
F.z0; t0/Fz.z0; t0/C

.n � 2/z0

2 log.�t0/
� �..n � 2/�C �/

z0

2 log.�t0/
:

Since � 2 .0; �
n�2

/ and evidently 1
1C�

< 1 < 1C �, it follows thatˇ̌̌̌
F.z0; t0/Fz.z0; t0/C

.n � 2/z0

2 log.�t0/

ˇ̌̌̌
� �

z0

log.�t0/
:

To summarize, we have verified the assertion for z � 4
p
�t . An analogous argument show the

assertion holds for z � �4
p
�t . Finally, suppose jzj � 4

p
�t . In dimension three, this case

follows from [1, Proposition 5.10]. An analogous result holds in higher dimensions; namely

.��/G.�; �/! �
1

4
p
2.n � 2/

.�2 � 2/

inC1loc . The assertion in the region jzj � 4
p
�t (which is equivalent to j�j � 4) follows directly

from this result. This completes the proof of Proposition 4.12.

Corollary 4.13. Let us fix a small number � > 0. Then

jFz.z; t/j �
C.�/p
log.�t /

if F.z; t/ � �
200

p
�t and �t is sufficiently large (depending on � ).

Proof. Given Theorem 4.6, the same reasoning as in [1] imply that

jzj � .2C o.1//
p
.�t / log.�t /:

Hence, the assertion follows from Proposition 4.12.

Proposition 4.14. Let us fix a small number � > 0. Then

F.z; t/ jFzz.z; t/j C F.z; t/
2
jFzzz.z; t/j �

C.�/p
log.�t /

if F.z; t/ � �
100

p
�t and �t is sufficiently large (depending on � ).

Proof. The proof is analogous to the proof of [13, Proposition 4.11].
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Proposition 4.15. Let us fix a small number � > 0. Then

jn � 2C FFt j �
C.�/p
log.�t /

whenever F � �
100

p
�t , and �t is sufficiently large (depending on � ).

Proof. Using the evolution equation for F , we obtain

.n � 2/C F.z; t/ Ft .z; t/

D F.z; t/ Fzz.z; t/ � Fz.z; t/
2

C .n � 1/ F.z; t/ Fz.z; t/

�
F.0; t/�1 Fz.0; t/ �

Z z

0

Fz.z
0; t /2

F.z0; t /2
dz0

�
:

The same arguments in the proof of [13, Proposition 4.12] yield the proof in higher-dimensional
case as well.

Proposition 4.16. Let " > 0 be given. Then there exists a large number L (depending
on ") and a time T such that the following holds. If

F � L

s
.�t /

log.�t /

and t � T at some point in space-time, then that point lies at the center of an evolving "-neck.

Proof. This follows from the fact, that follows in an analogous way as in [1], that the
scalar curvature at each tip is comparable log.�t/

.�t/
.

Corollary 4.17. Let � > 0 be given. Then there exists a large number L (depending
on �) and a time T such that

jFzj C F jFzzj C F
2
jFzzzj � �

whenever F � L
q

.�t/
log.�t/ and t � T .

Proof. This follows directly from Proposition 4.16.

Proposition 4.18. Let � > 0 be given. Then there exist a large number L 2 .��1;1/
and a small number � 2 .0; �/ (depending on �), and a time T with the property thatˇ̌̌̌

.n � 2/ �

s
log.�t /
.�t /

F jFzj

ˇ̌̌̌
� �

whenever L
q

.�t/
log.�t/ � F � 100�

p
�2t and t � T .

Proof. By Corollary 4.5, we can find a large number L 2 .��1;1/ such thatˇ̌̌̌
.n � 2/ � B.z/

d

dz
B.z/

ˇ̌̌̌
�
�

2
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for z � L
2

. Recall that the solution looks like the Bryant soliton near each tip, and the scalar
curvature at each tip equals .1C o.1// log.�t/

.�t/
. Consequently,ˇ̌̌̌

.n � 2/ �

s
log.�t /
.�t /

F jFzj

ˇ̌̌̌
�
�

8
;

if F D L
q

.�t/
log.�t/ and �t is sufficiently large. Recall the function S.z; t/ defined in Proposi-

tion 4.12:
S.z; t/ WD

1

F.z; t/2Fz.z; t/2
�

1

F.z; t/2
:

Let � D min¹ �
4.n�2/

; 1º. The function

z 7! S.z; t/�
1
2

is monotone decreasing. Moreover, whenever F � L
q

.�t/
log.�t/ ,L is large, and�t is sufficiently

large, jFzj is small and hence

F jFzj � S
� 1
2 � .1C �/F jFzj:

Consequently,

.n � 2/ �

s
log.�t /
.�t /

S�
1
2 � .n � 2/ � .1C �/

s
log.�t /
.�t /

F jFzj

� �.1C �/

ˇ̌̌̌
.n � 2/ �

s
log.�t /
.�t /

F jFzj

ˇ̌̌̌
�
�

4

and

.n � 2/ �

s
log.�t /
.�t /

S�
1
2 � .n � 2/ �

s
log.�t /
.�t /

F jFzj

� .1C �/

ˇ̌̌̌
.n � 2/ �

s
log.�t /
.�t /

F jFzj

ˇ̌̌̌
C
�

4

whenever F � L
q

.�t/
log.�t/ and �t is sufficiently large. In other words,ˇ̌̌̌

.n � 2/ �

s
log.�t /
.�t /

S�
1
2

ˇ̌̌̌
� 2

ˇ̌̌̌
.n � 2/ �

s
log.�t /
.�t /

F jFzj

ˇ̌̌̌
C
�

4

whenever F � L
q

.�t/
log.�t/ and �t is sufficiently large. Similarly, we can showˇ̌̌̌

.n � 2/ �

s
log.�t /
.�t /

F jFzj

ˇ̌̌̌
�

ˇ̌̌̌
.n � 2/ �

s
log.�t /
.�t /

S�
1
2

ˇ̌̌̌
C
�

2
:

In particular, from the first estimate in the proof, we obtainˇ̌̌̌
.n � 2/ �

s
log.�t /
.�t /

S�
1
2

ˇ̌̌̌
�
�

2

if F D L
q

.�t/
log.�t/ and �t is sufficiently large. On the other hand, for each � 2 .0; 1

1000
/,
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Proposition 4.11 implies

z2 D .4C o.1//

�
1 �

.100�/2

n � 2

�
.�t / log.�t /

if F D 100�
p
�2t . Using Proposition 4.12, we obtain

F jFzj D ..n � 2/C o.1//
jzj

2 log.�t /

if F D 100�
p
�2t . Consequently,

.n � 2/ �

s
log.�t /
.�t /

F jFzj D .n � 2/

�
1 �

s
1 �

.100�/2

n � 2
C o.1/

�
if F D 100�

p
�2t . Therefore, if we choose � sufficiently small (depending on �), then we

obtain ˇ̌̌̌
.n � 2/ �

s
log.�t /
.�t /

F jFzj

ˇ̌̌̌
�
�

8
;

if F D 100�
p
�2t and �t is sufficiently large. This impliesˇ̌̌̌

.n � 2/ �

s
log.�t /
.�t /

S�
1
2

ˇ̌̌̌
�
�

2
;

if F D 100�
p
�2t and �t is sufficiently large. Because S�

1
2 is monotone, we conclude thatˇ̌̌̌

.n � 2/ �

s
log.�t /
.�t /

S�
1
2

ˇ̌̌̌
�
�

2
;

whenever L
q

.�t/
log.�t/ � F � 100�

p
�2t and �t is sufficiently large. Finally, this impliesˇ̌̌̌

.n � 2/ �

s
log.�t /
.�t /

F jFzj

ˇ̌̌̌
� �

wheneverL
q

.�t/
log.�t/ � F � 100�

p
�2t and�t is sufficiently large. This completes the proof

of Proposition 4.18.

In the remainder of this section, we define functions UC.r; t/ and U�.r; t/ so that

UC.r; t/ D

�
𝜕
𝜕z
F.z; t/

�2
for r D F.z; t/ and z � 2

p
�t and

U�.r; t/ D

�
𝜕
𝜕z
F.z; t/

�2
for r D F.z; t/ and z � �2

p
�t . Let us consider the rescaled functions

VC.�; �/ WD

q
UC.e

� �
2 �;�e�� /;

V�.�; �/ WD

q
U�.e

� �
2 �;�e�� /:

For each � 2 .0; 1/, we denote by �C.�; �/ the unique positive solution of the equation

F.e�
�
2 �;�e�� / D e�

�
2 �I
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moreover, we denote by ��.�; �/ the unique negative solution of the equation

F.e�
�
2 �;�e�� / D e�

�
2 �:

Each of the remaining results in this section are stated for the “plus” tip, but of course
completely analogous results hold for the “minus” tip if one replaces VC by V� and �C by ��.

Proposition 4.19. Let us fix a small number � > 0. If �� is sufficiently large (depend-
ing on � ), then 1

C.�/
.��/�

1
2 � VC.�; �/ � C.�/ .��/

� 1
2 and

ˇ̌ 𝜕
𝜕�VC.�; �/

ˇ̌
� C.�/ for every

� 2 Œ �
100
; 100��.

Proof. Similarly to [13, Proposition 4.16].

Proposition 4.20. Fix a small number �> 0. Then we can find a small number � 2 .0; �/
(depending on �) such that, for �� sufficiently large, we have

jVC.�; �/
�2
�ˆ..��/

1
2�/�1j � � .VC.�; �/

�2
� 1/

in the region ¹� � 100�º. Here, ˆ denotes the profile of the Bryant soliton.

Proof. Similarly to [13, Proposition 4.17].

Proposition 4.21. Fix a small number � > 0. Then we can find a large number L
(depending on �) such that, for �� sufficiently large, we have

VC.�; �/ � �;

ˇ̌̌̌
𝜕
𝜕�
VC.�; �/

ˇ̌̌̌
� � ��1 VC.�; �/

�1

and ˇ̌̌̌
𝜕2

𝜕�2
VC.�; �/

ˇ̌̌̌
� � ��2 VC.�; �/

�3

in the region ¹L .��/�
1
2 � � � 1

4
º.

Proof. Similarly to [13, Proposition 4.18].

Corollary 4.22. Fix a small number � > 0. Then, for �� sufficiently large, we haveˇ̌̌̌
𝜕
𝜕�
VC.�; �/

ˇ̌̌̌
� � ��2 .VC.�; �/

�1
� 1/

in the region ¹� � 1
4
º.

Proof. Similarly to [13, Proposition 4.19].

Proposition 4.23. Fix a small number �> 0. Then we can find a small number � 2 .0; �/
(depending on �) such that, for �� sufficiently large, we haveˇ̌̌̌

𝜕
𝜕�

�
�C.�; �/

2

4

�
C .n � 2/��1 .VC.�; �/

�2
� 1/

ˇ̌̌̌
� � ��1 .VC.�; �/

�2
� 1/

in the region ¹�
8
� � � 2�º.

Proof. Similarly to [13, Proposition 4.20].
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Proposition 4.24. Fix a small number � > 0. Then, for �� large, we haveˇ̌̌̌
𝜕
𝜕�

�
�C.�; �/

2

4

�ˇ̌̌̌
� C.�/ .��/

and ˇ̌̌̌
𝜕2

𝜕�2

�
�C.�; �/

2

4

�ˇ̌̌̌
� C.�/ .��/

3
2

in the region ¹�
8
� � � 2�º.

Proof. Similarly to [13, Proposition 4.21].

Proposition 4.25. Fix a small number � > 0. Then, for �� large, we haveˇ̌̌̌
𝜕
𝜕�

�
�C.�; �/

2

4

�ˇ̌̌̌
� o.1/ .��/

in the region ¹�
8
� � � 2�º.

Proof. Similarly to [13, Proposition 4.22].

5. The tip region weights �C.�; �/ and ��.�; �/

In this section, we define weights �C.�; �/ and ��.�; �/ which will be needed in the
analysis of the linearized equation in the tip region. Let � > 0 be a small positive number, and
let � W R! Œ0; 1� be a smooth, monotone increasing cutoff function satisfying �.�/ D 0 for
� � �

8
and �.�/ D 1 for � � �

4
. We define the weight �C.�; �/ by

�C.�; �/ D ��.�/
�C.�; �/

2

4
�

Z �

�

�0.z�/
�C.z�; �/

2

4
d z�

� .n � 2/

Z �

�

.1 � �.z�// z��1
�
ˆ..��/

1
2 z�/�1 � 1

�
d z�;

whereˆ denotes the profile of the Bryant soliton. We can define a weight��.�; �/ in analogous
fashion. Of course, the cutoff function � and the weights �C.�; �/ and ��.�; �/ depend on the
choice of the parameter � , but we suppress that dependence in our notation.

Lemma 5.1. The weight�C.�; �/ satisfies�C.�; �/ D �
�C.�;�/

2

4
for � � �

4
. Moreover,

�C.�; �/ � 0 for all � � �
4

.

Proof. This follows immediately from the definition of �C.�; �/.

Lemma 5.2. Fix a small number � > 0. Then we can find a small number � 2 .0; �/
(depending on �) such that, for �� sufficiently large, we haveˇ̌̌̌

𝜕�C
𝜕�

.�; �/ � .n � 2/��1 .VC.�; �/
�2
� 1/

ˇ̌̌̌
� � ��1 .VC.�; �/

�2
� 1/

in the tip region ¹� � 2�º.
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Proof. The assertion follows from Proposition 4.20 and Proposition 4.23 (see [13, Lem-
ma 5.2] for details).

Lemma 5.3. If we choose � > 0 sufficiently small, then the following holds. If �� is
sufficiently large (depending on � ), then

𝜕2�C
𝜕�2

.�; �/ �
1

4

�
𝜕�C
𝜕�

.�; �/

�2
C
K�

4
��2

in the tip region ¹� � 2�º. Here, K� is a constant which depends on the dimension, but is
independent of � .

Proof. We compute

𝜕2�C
𝜕�2

.�; �/ D ��.�/
𝜕2

𝜕�2

�
�C.�; �/

2

4

�
� �0.�/

𝜕
𝜕�

�
�C.�; �/

2

4

�
� .n � 2/Œ1 � �.�/C � �0.�/� ��2

�
ˆ..��/

1
2 �/�1 � 1

�
� .n � 2/.1 � �.�// .��/

1
2 ��1ˆ..��/

1
2 �/�2ˆ0..��/

1
2 �/:

Recall that 0 � � � 1 and �0 � 0. Moreover, we have

ˆ.r/�1 � 1 �
1

K
r2 and jˆ.r/�2ˆ0.r/j � Kr

for all r 2 Œ0;1/, whereK is a universal constant depending only on dimension n. This implies

𝜕2�C
𝜕�2

.�; �/ � ��.�/
𝜕2

𝜕�2

�
�C.�; �/

2

4

�
� �0.�/

𝜕
𝜕�

�
�C.�; �/

2

4

�
CK .1 � �.�// .��/;

where K is a constant depending on the dimension n but is independent of � . Using Proposi-
tion 4.24, we obtain

𝜕2�C
𝜕�2

.�; �/ � o.1/ .��/2

in the region ¹�
8
� � � 2�º, and

𝜕2�C
𝜕�2

.�; �/ � K .��/

in the region ¹� � �
8
º. On the other hand, we can apply Lemma 5.2 with � D 1

2
, keeping in

mind that n � 2 � 1 for all n � 4. If � is sufficiently small, then

𝜕�C
𝜕�

.�; �/ �
1

2
��1 .VC.�; �/

�2
� 1/

�
1

4
��1 .ˆ..��/

1
2�/�1 � 1/

�
1

4K
.��/ �

in the region ¹� � 2�º, where againK is a constant depending on dimension but is independent
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of � . Hence, if �� is sufficiently large (depending on � ), then we have

𝜕2�C
𝜕�2

.�; �/ �
1

4

�
𝜕�C
𝜕�

.�; �/

�2
C 16K4 ��2

in the region ¹� � 2�º. This completes the proof of Lemma 5.3.

Lemma 5.4. Let us fix a small number � > 0. Then, for �� large, we haveˇ̌̌̌
𝜕�C
𝜕�

.�; �/

ˇ̌̌̌
� o.1/ .��/

in the tip region ¹� � 2�º.

Proof. It follows from Proposition 4.25, similarly to Proposition 5.3 in [13].

We finish this section with the following weighted Poincaré inequality.

Proposition 5.5. If we choose � > 0 sufficiently small, then the following holds. If ��
is sufficiently large (depending on � ), thenZ 2�

0

�
𝜕�C
𝜕�

�2
f 2 e��C d� � 8

Z 2�

0

�
𝜕f
𝜕�

�2
e��C d�CK�

Z 2�

0

��2 f 2 e��C d�

for every smooth function f which is supported in the region ¹� � 2�º. Here,K� is the constant
in Lemma 5.3; in particular, K� depends only on the dimension and is independent of � . Note
that the right-hand side is infinite unless f .0/ D 0.

Proof. We compute

𝜕
𝜕�

�
𝜕�C
𝜕�

f 2 e��C
�
D
𝜕2�C
𝜕�2

f 2 e��C C 2
𝜕�C
𝜕�

f
𝜕f
𝜕�

e��C �

�
𝜕�C
𝜕�

�2
f 2 e��C :

Using Young’s inequality, we obtain

𝜕
𝜕�

�
𝜕�C
𝜕�

f 2 e��C
�
�
𝜕2�C
𝜕�2

f 2 e��C C 2

�
𝜕f
𝜕�

�2
e��C �

1

2

�
𝜕�C
𝜕�

�2
f 2 e��C :

Hence, Lemma 5.3 gives

𝜕
𝜕�

�
𝜕�C
𝜕�

f 2 e��C
�
� 2

�
𝜕f
𝜕�

�2
e��C �

1

4

�
𝜕�C
𝜕�

�2
f 2 e��C C

K�

4
��2 f 2 e��C :

From this, the assertion follows.

6. Overview of the proof of Theorem 1.3

In this section, we state the four main estimates needed for the proof of Theorem 1.3,
generalizing [13, Section 6]. At the end of this section, we give the proof of Theorem 1.3
assuming these key results. To that end, we consider two ancient �-solutions, .Sn; g1.t// and
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.Sn; g2.t// such that neither solution is a family of shrinking round spheres. By the main result
of the previous section, we know both solutions are rotationally symmetric. We first choose
reference points q1; q2 2 Sn such that

lim sup
t!�1

.�t /Rg1.t/.q1/ � 50.n � 1/ and lim sup
t!�1

.�t /Rg2.t/.q2/ � 50.n � 1/:

The existence of these points is ensured by the Neck Stability Theorem of Kleiner and Lott.
See [1, Proposition 3.1] for a proof in dimension three, which also works in higher dimensions.

Since .Sn; g1.t// is rotationally symmetric, we can define a profile function F1.z; t/ to
be the radius of the sphere of symmetry that has signed distance z from the reference point q1.
Similarly we can define F2.z; t/ on .Sn; g2.t// with respect to q2. These functions, F1.z; t/
and F2.z; t/, satisfy the PDE

Ft .z; t/ D Fzz.z; t/ � .n � 2/F.z; t/
�1 .1 � Fz.z; t/

2/

� .n � 1/ Fz.z; t/

Z z

0

Fzz.z
0; t /

F .z0; t /
dz0:

Our goal is to show that the profile functions F1 and F2 will agree after a reparametriza-
tion in space, a translation in time, and a parabolic rescaling. We thus will now define a new
function F ˛ˇ
2 .z; t/ obtained from F2.z; t/ through a spatial reparametrization, a time trans-
lation, and a parabolic rescaling. Here, .˛; ˇ; 
/ is a triplet of real numbers satisfying the
following admissibility condition previously defined in [13]:

Definition 6.1. Given a real number " 2 .0; 1
2
/, the triplet .˛; ˇ; 
/ is said to be "-admis-

sible with respect to time t� if

j˛j � "
p
�t�; jˇj � "

.�t�/

log.�t�/
; j
 j � " log.�t�/:

Consider a time t� < 0 so that�t� is very large. Suppose .˛; ˇ; 
/ is a triplet of real num-
bers satisfying the criteria of "-admissibility with respect to the time t�, for some " 2 .0; 1

2
/.

For each t � t�, we define a time-translated and parabolically-rescaled metric by

g
ˇ

2 .t/ WD e
g2.e

�
 .t � ˇ//:

Of course, .Sn; gˇ
2 .t// is again a rotationally symmetric ancient �-solution. We define the
time-translated and parabolically-rescaled profile function F ˇ
2 .z; t/ on the ancient �-solution
.Sn; g

ˇ

2 .t// to be the radius of the sphere of symmetry with signed distance z from the

reference point q2. Evidently,

F
ˇ

2 .z; t/ D e



2F2

�
e�



2 z; e�
 .t � ˇ/

�
:

Even after a time translation and a parabolic rescaling, it is possible for the profile func-
tions to differ by a translation in space. To account for this, we define a new reference point
q
˛ˇ

2 with the property that q˛ˇ
2 has signed distance ˛ from the original reference point q2

with respect to the metric gˇ
2 .t�/. For t � t�, we define a function s˛ˇ
 .t/ to be the signed dis-
tance between the sphere of symmetry through q˛ˇ
2 and the point q2, with respect to gˇ
2 .t/.
The function s˛ˇ
 .t/ is the unique solution of the ODE

d

dt
s˛ˇ
 .t/ D .n � 1/

Z s˛ˇ
 .t/

0

F
ˇ

2;zz.z

0; t /

F
ˇ

2 .z0; t /

dz0; s˛ˇ
 .t�/ D ˛;
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for t � t�. This ODE, of course, is just the usual evolution of distance along the Ricci flow
and the integrand is the radial component of the Ricci curvature. Now, for t � t�, we define
F
˛ˇ

2 .z; t/ to be the radius of the sphere of symmetry in .Sn; gˇ
2 .t// which has signed

distance z from the point q˛ˇ
2 . The three profile functions are related by the equation

F
˛ˇ

2 .z; t/ D F

ˇ

2 .z C s˛ˇ
 .t/; t/ D e



2F2

�
e�



2 .z C s˛ˇ
 .t//; e�
 .t � ˇ/

�
:

In particular, at time t D t�, we have

F
˛ˇ

2 .z; t�/ D F

ˇ

2 .z C ˛; t/ D e



2F2

�
e�



2 .z C ˛/; e�
 .t � ˇ/

�
:

In the next lemma, we show that for an "-admissible triplet .˛; ˇ; 
/ at t�, we expect
the new reference point q˛ˇ
2 to remain suitably close to the original point q2 for all earlier
times t � t�.

Lemma 6.2. If �t� is sufficiently large, then the following holds. Suppose the triplet
.˛; ˇ; 
/ is "-admissible with respect to time t�, where " 2 .0; 1

2
/. Let s˛ˇ
 .t/ be the solution

of the ODE

d

dt
s˛ˇ
 .t/ D .n � 1/

Z s˛ˇ
 .t/

0

F
ˇ

2;zz.z

0; t /

F
ˇ

2 .z0; t /

dz0

with terminal condition s˛ˇ
 .t�/ D ˛. Then js˛ˇ
 .t/j � "
p
�t for all t � t�.

Proof. The proof is essentially the same as the proof of [13, Lemma 6.2]. Recall that if
we rescale the ancient �-solution .Sn; g2.t// around the reference point q2 by the factor .�t /,
then the solution converges to a round cylinder in pointed Cheeger–Gromov sense at t ! �1.
In particular, in the region jzj �

p
�2t , the radial component of the Ricci curvature tends to

zero. Consequently, if �t� is sufficiently large, then we will have

0 � �
F2;zz.z; t/

F2.z; t/
�

1

.�4.n � 1/t/

whenever t � �1
2

p
�t� and jzj �

p
�2t . The first inequality follows from nonnegativity of

the Ricci curvature. For the profile function F ˇ
 .z; t/ we replace t by e�
 .t � ˇ/ and z by
e�



2 z. This implies

0 � �
F
ˇ

2;zz.z; t/

F
ˇ

2 .z; t/

�
1

.�4.n � 1/.t � ˇ//
:

whenever t � ˇ � �1
2
e

p
�t� and jzj �

p
�2.t � ˇ/. By the definition of admissibility, the

condition j
 j � " log.�t�/ � 1
2

log.�t�/ implies

t� � �e


p
�t�:

Moreover, the condition jˇj � " .�t�/
log.�t�/

�
1
2
.�t�/

log.�t�/
ensures that 2t � t � ˇ � 1

2
t whenever

t � t�. Consequently,

0 � �
F
ˇ

2;zz.z; t/

F
ˇ

2 .z; t/

�
1

.�2.n � 1/t/
:

whenever t � t� and jzj �
p
�t . Plugging this estimate into the ODE for s˛ˇ
 .t/, we obtainˇ̌̌̌
d

dt
s˛ˇ
 .t/

ˇ̌̌̌
�

1

.�2t/
js˛ˇ
 .t/j
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whenever t � t� and js˛ˇ
 .t/j �
p
�t . This gives

d

dt

�
.�t /�1.s˛ˇ
 .t//2

�
D .�t /�2.s˛ˇ
 .t//2 C 2.�t /�1s˛ˇ
 .t/

d

dt
s˛ˇ
 .t/ � 0

whenever t � t� and js˛ˇ
 .t/j �
p
�t . At time t�, we have

.�t�/
�1.s˛ˇ
 .t�//

2
D .�t�/

�1˛2 � "2:

Since " 2 .0; 1
2
/, the differential inequality above implies js˛ˇ
 .t/j � "

p
�t . This completes

the proof of Lemma 6.2.

Using the admissibility conditions for .˛; ˇ; 
/ and the previous lemma, we can estimate
the profile function F ˛ˇ
2 :

Proposition 6.3. Fix a small number � > 0 and a small number � > 0. Then there exists
a small number " > 0 (depending on � and �) with the following property. If the triplet .˛; ˇ; 
/
is "-admissible with respect to time t� and �t� is sufficiently large, thenˇ̌̌̌

1

2
F
˛ˇ

2 .z; t/2 C .n � 2/t C .n � 2/

z2 C 2t

4 log.�t /

ˇ̌̌̌
� �

z2 � t

log.�t /

and ˇ̌̌̌
F
˛ˇ

2 .z; t/ F

˛ˇ

2z .z; t/C

.n � 2/z

2 log.�t /

ˇ̌̌̌
� �
jzj C

p
�t

log.�t /
whenever F ˛ˇ
2 .z; t/ � �

10

p
�t and t � t�.

Proof. The proof is essentially the same as the proof of [13, Proposition 6.3]. Using
Proposition 4.11 and Proposition 4.12, we obtainˇ̌̌̌

1

2
F2.z; t/

2
C .n � 2/t C .n � 2/

z2 C 2t

4 log.�t /

ˇ̌̌̌
�
�

4

z2 � t

log.�t /

and ˇ̌̌̌
F2.z; t/ F2z.z; t/C

.n � 2/z

2 log.�t /

ˇ̌̌̌
�
�

4

jzj C
p
�t

log.�t /
whenever F2.z; t/ � �

20

p
�t and �t is sufficiently large.

To estimate F ˇ
 , we replace t by e�
 .t � ˇ/ and z by e�


2 z. This givesˇ̌̌̌

1

2
F
ˇ

2 .z; t/2 C .n � 2/.t � ˇ/C .n � 2/

z2 C 2.t � ˇ/

4 log.�.t � ˇ// � 4


ˇ̌̌̌
�
�

4

z2 � .t � ˇ/

log.�.t � ˇ// � 


and ˇ̌̌̌
F
ˇ

2 .z; t/ F

ˇ

2z .z; t/C

.n � 2/z

2 log.�.t � ˇ// � 2


ˇ̌̌̌
�
�

4

jzj C
p
�.t � ˇ/

log.�.t � ˇ// � 


whenever F ˇ
2 .z; t/ � �
20

p
�.t �ˇ/ and�e�
 .t �ˇ/ is sufficiently large. The "-admissibility

assumptions on .˛; ˇ; 
/ at time t� ensure that jˇj � " .�t/
log.�t/ and 
 � " log.�t / for t � t�. If

" is sufficiently small (depending on � and �) and �t� is sufficiently large (depending on �
and �), then we obtainˇ̌̌̌

1

2
F
ˇ

2 .z; t/2 C .n � 2/t C .n � 2/

z2 C 2t

4 log.�t /

ˇ̌̌̌
�
�

2

z2 � t

log.�t /
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and ˇ̌̌̌
F
ˇ

2 .z; t/ F

ˇ

2z .z; t/C

.n � 2/z

2 log.�t /

ˇ̌̌̌
�
�

2

jzj C
p
�t

log.�t /
whenever F ˇ
2 .z; t/ � �

10

p
�t and t � t�. By Lemma 6.2,

js˛ˇ
 .t/j � "
p
�t

for t � t�. Replacing z by z C s˛ˇ
 .t/ and using this estimate, we obtainˇ̌̌̌
1

2
F
˛ˇ

2 .z; t/2 C .n � 2/t C .n � 2/

z2 C 2t

4 log.�t /

ˇ̌̌̌
� �

z2 � t

log.�t /

and ˇ̌̌̌
F
˛ˇ

2 .z; t/ F

˛ˇ

2z .z; t/C

.n � 2/z

2 log.�t /

ˇ̌̌̌
� �
jzj C

p
�t

log.�t /
whenever F ˛ˇ
2 .z; t/ � �

10

p
�t and t � t�. This completes the proof of Proposition 6.3.

As in [13], we need to use different functions to describe our solutions and establish
estimates in the tip regions. These functions labeled by U are analogous to the profile function
ˆ used to describe the Bryant soliton. As in [13], we define functions U1C.r; t/ and U1�.r; t/
by

U1C.r; t/ D

�
𝜕
𝜕z
F1.z; t/

�2
for r D F1.z; t/ and z � 2

p
�t and

U1�.r; t/ D

�
𝜕
𝜕z
F1.z; t/

�2
for r D F1.z; t/ and z � �2

p
�t . We similarly define functions U2C.r; t/ and U2�.r; t/. Then

we define
U
ˇ

2˙ .r; t/ WD U2˙.e

�


2 r; e�
 .t � ˇ//:

Recalling that F ˛ˇ
 .z; t/ D F ˇ
 .z C s˛ˇ
 .t/; t/, observe that

U
ˇ

2C .r; t/ D

�
𝜕
𝜕z
F
˛ˇ

2 .z; t/

�2
for r D F ˛ˇ
2 .z; t/, z � 4

p
�t , and t � t�, and

U
ˇ

2� .r; t/ D

�
𝜕
𝜕z
F
˛ˇ

2 .z; t/

�2
for r D F ˛ˇ
2 .z; t/, z � �4

p
�t , and t � t�.

For each of the functions above, we will define a function V in the usual rescaled coordi-
nates. For scaling reasons, it is convenient to define the functions labeled by V to be the
square-root of the corresponding functions labeled by U . As usual, define coordinates � and �
by the identities t D �e�� and r D e�

�
2 �. Then we define:

V1˙.�; �/ WD

q
U1˙.e

� �
2 �;�e�� /;

V2˙.�; �/ WD

q
U2˙.e

� �
2 �;�e�� /;

V
ˇ

2˙ .�; �/ WD

q
U
ˇ

2˙ .e

� �
2 �;�e�� /:
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By solving �e�z� D e�
 .�e�� � ˇ/ and e�
z�
2 z� D e�



2 e�

�
2 � for z� and z�, you can confirm that

V
ˇ

2˙ .�; �/ D V2˙

�
�p

1C ˇe�
; � C 
 � log.1C ˇe� /

�
:

In the following proposition, we recover a version of the estimates established in Propo-
sition 4.20 and Corollary 4.22 for the modified profile functions V ˇ
2C and V ˇ
2� . As before,
we only state the proposition for V ˇ
2C , but an analogous result holds for V ˇ
2� . (Similarly for
Proposition 6.5.)

Proposition 6.4. Fix a small number � > 0. Then we can find a small number � 2 .0; �/
(depending on �) and a small number " > 0 (depending on � and �) with the following property.
If the triplet .˛; ˇ; 
/ is "-admissible with respect to time t� D �e��� and ��� is sufficiently
large, then

jV
ˇ

2C .�; �/

�2
�ˆ..��/

1
2�/�1j � � .V

ˇ

2C .�; �/

�2
� 1/

for � � 10� and � � ��, andˇ̌̌̌
𝜕
𝜕�
V
ˇ

2C .�; �/

�2

ˇ̌̌̌
� � ��2 .V

ˇ

2C .�; �/

�1
� 1/

for � � 1
8

and � � ��. Here, ˆ denotes the profile of the Bryant soliton.

Proof. The proof is identical to the proof of [13, Proposition 6.4].

We next consider the difference between the two solutions near each of the tips:

W
ˇ

C
.�; �/ WD V1C.�; �/ � V

ˇ

2C .�; �/;

W ˇ

� .�; �/ WD V1�.�; �/ � V

ˇ

2� .�; �/:

For each � , we have W ˇ

C
.�; �/ D O.�2/ and W ˇ


� .�; �/ D O.�2/ as �! 0. Moreover, let
�C.�; �/ and ��.�; �/ denote the weights associated with the solution .Sn; g1.t//. The fol-
lowing proposition is the first of four key estimates.

Proposition 6.5. We can choose � > 0 and " > 0 sufficiently small so that the following
holds. If ��� is sufficiently large (depending on � ) and the triplet .˛; ˇ; 
/ is "-admissible with
respect to time t� D �e��� , then

sup
����

.��/�
1
2

Z �

��1

Z �

0

V �21C .W
ˇ

C
/2 e�Cd� d� 0

� C.�/ .���/
�1 sup

����

.��/�
1
2

Z �

��1

Z 2�

�

V �21C .W
ˇ

C
/2 e�Cd� d� 0:

An analogous estimate holds for W ˇ

� .

We will give the proof of Proposition 6.5 in Section 7.
From this point on, we fix � small enough so that the conclusion of Proposition 6.5 holds.

Let �C denote a smooth, even cutoff function satisfying

�C D

8<:1 on
h
0;
q
4 � �2

2.n�2/

i
;

0 on
hq
4 � �2

4.n�2/
;1

�
.
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Having fixed � as in Proposition 6.5, the factor of .n � 2/ in higher dimensions ensures there
is overlap between the tip region and the collar region where estimates can be played off one
another. Moreover, we may assume that �C is monotone decreasing on Œ0;1/.

We define the rescaled profile functions

G1.�; �/ WD e
�
2 F1.e

� �
2 �;�e�� / �

p
2.n � 2/;

G2.�; �/ WD e
�
2 F2.e

� �
2 �;�e�� / �

p
2.n � 2/;

G
˛ˇ

2 .�; �/ WD e

�
2 F

˛ˇ

2 .e�

�
2 �;�e�� / �

p
2.n � 2/:

Then we consider the difference of the rescaled profile functions in the collar region via

H˛ˇ
 .�; �/ WD G1.�; �/ �G
˛ˇ

2 .�; �/

and
H
˛ˇ

C

.�; �/ WD �C ..��/
� 1
2 �/H˛ˇ
 .�; �/:

Using the PDEs for G1 and G˛ˇ
2 , we can derive a PDE for the function H˛ˇ
 . As in three
dimensions, the leading term in that PDE is given by the operator

Lf WD f�� �
1

2
� f� C f:

We will analyze this operator as in [13]. We consider the Hilbert space H D L2.R; e�
�2

4 d�/

and recall that the Hilbert space H has a natural direct sum decomposition

H D HC ˚H0 ˚H�:

Furthermore, we recall that HC is a two-dimensional subspace spanned by the functions 1
and �; H0 is a one-dimensional subspace spanned by the function �2 � 2; and H� is the ortho-
gonal complement of HC ˚H0. Finally, let PC, P0, and P� denote the projection operators
associated to the direct sum decomposition H D HC ˚H0 ˚H�.

With these conventions, we write

P0H
˛ˇ

C

.�; �/ D
p
2.n � 2/ a˛ˇ
 .�/ .�2 � 2/;

where
a˛ˇ
 .�/ WD

1

16
p
2.n � 2/�

Z
R
e�

�2

4 .�2 � 2/H
˛ˇ

C

.�; �/ d�:

Moreover, we let
yH
˛ˇ

C
D PCH

˛ˇ

C
C P�H

˛ˇ

C

denote the sum of projections onto the spaces of positive and negative modes.
In the following proposition, we use our freedom of choice in the parameters .˛; ˇ; 
/ to

ensure the projections our solution P0H
˛ˇ

C

and PCH
˛ˇ

C

(i.e. the projections onto the spaces
of non-decaying modes of the operator L) vanish at a particular time ��.

Proposition 6.6. Fix � > 0 and " > 0 small enough so that the conclusion of Proposi-
tion 6.5 holds. Let ı 2 .0; "/ be given. If ��� is sufficiently large (depending on ı), then we can
find a triplet .˛; ˇ; 
/ (depending on ��) such that PCH

˛ˇ

C
D 0 and P0H

˛ˇ

C
D 0 at time ��.

Moreover, if ��� is sufficiently large (depending on ı), then the triplet .˛; ˇ; 
/ is ı-admissible
with respect to time t� D �e��� .
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Proof. By definition, s˛ˇ
 .t�/ D ˛. Hence

F
˛ˇ

2 .z; t�/ D e



2 F2.e

�


2 .z C ˛/; e�
 .t� � ˇ//:

It follows by a straightforward computation that

G
˛ˇ

2 .�; ��/ D

p
1C ˇe�� G2

�
� C ˛e

��
2p

1C ˇe��
; �� C 
 � log.1C ˇe��/

�
C
p
2.n � 2/ .

p
1C ˇe�� � 1/:

The proof of Proposition 6.6 now proceeds as in [3]. This argument relies only on the asymp-
totics of our solution in the cylindrical region. Since the asymptotics of our ancient solutions
to Ricci flow in the cylindrical region are very similar to the cylindrical region asymptotics of
ancient solutions to mean curvature flow, the proof of Proposition 6.6 is identical to the proof
of the corresponding [3, Proposition 4.1].

From this point on, we assume that the triplet .˛; ˇ; 
/ is chosen as in Proposition 6.6,
pending our choice of �� (which we have not yet fixed). In particular, this will ensure that
a˛ˇ
 .��/ D 0.

We can now state the remaining three key estimates used in completing the proof of Theo-
rem 1.3. The first estimate is an estimate for the difference of the solutions in the cylindrical
region.

Proposition 6.7. Fix � > 0 small enough so that the conclusion of Proposition 6.5
holds. Suppose that ��� is sufficiently large, and that the triplet .˛; ˇ; 
/ is chosen as in
Proposition 6.6. Then

.���/ sup
����

Z �

��1

Z
R
e�

�2

4 . yH
˛ˇ


C ;�
.�; � 0/2 C yH

˛ˇ

C

.�; � 0/2/ d� d� 0

� C.�/ sup
����

Z �

��1

a˛ˇ
 .� 0/2 d� 0

C C.�/ sup
����

Z �

��1

Z®q
4� �2

2.n�2/
.�� 0/

1
2�j�j�

q
4� �2

4.n�2/
.�� 0/

1
2

¯ e� �24
�H˛ˇ
 .�; � 0/2 d� d� 0:

We will give the proof of Proposition 6.7 in Section 8.
Next, by combining Proposition 6.5 and Proposition 6.7, we can show that in the cylin-

drical region the norm of P0H
˛ˇ

C

dominates over the norm of yH˛ˇ

C

. More precisely, we have
the following result:

Proposition 6.8. Fix � > 0 small enough so that the conclusion of Proposition 6.5
holds. Suppose that ��� is sufficiently large, and that the triplet .˛; ˇ; 
/ is chosen as in
Proposition 6.6. Then

.���/ sup
����

Z �

��1

Z
R
e�

�2

4 . yH
˛ˇ


C ;�
.�; � 0/2 C yH

˛ˇ

C

.�; � 0/2/ d� d� 0

� C.�/ sup
����

Z �

��1

a˛ˇ
 .� 0/2 d� 0:
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The proof of Proposition 6.8 will be given in Section 9.
Using Proposition 6.8, we are able to derive an ODE for the function a˛ˇ
 .�/:

Proposition 6.9. Fix � > 0 small enough so that the conclusion of Proposition 6.5
holds. Let ı > 0 be given. Suppose that ��� is sufficiently large (depending on ı), and the
triplet .˛; ˇ; 
/ is chosen as in Proposition 6.6. Let

Q˛ˇ
 .�/ WD
d

d�
a˛ˇ
 .�/ � 2 .��/�1 a˛ˇ
 .�/:

Then

sup
����

.��/

Z �

��1

jQ˛ˇ
 .� 0/j d� 0 � ı sup
����

�Z �

��1

a˛ˇ
 .� 0/2 d� 0
� 1
2

:

The proof of Proposition 6.9 will be given in Section 10.
We can now finish the proof of Theorem 1.3, exactly as in [13] in dimension three. For

the convenience of the reader, we include a copy of the proof here.
Using the ODE

d

d�
a˛ˇ
 .�/ D 2 .��/�1 a˛ˇ
 .�/CQ˛ˇ
 .�/

together with the fact that a˛ˇ
 .��/ D 0, we obtain

.��/2 a˛ˇ
 .�/ D �

Z ��

�

.�� 0/2Q˛ˇ
 .� 0/ d� 0:

This implies

.��/ ja˛ˇ
 .�/j �

Z ��

�

.�� 0/ jQ˛ˇ
 .� 0/j d� 0

�

Œ�����X
jD0

Z ���j

���j�1

.�� 0/ jQ˛ˇ
 .� 0/j d� 0

� .��/ max
0�j�Œ�����

Z ���j

���j�1

.�� 0/ jQ˛ˇ
 .� 0/j d� 0:

We now divide by �� , and take the supremum over all � � ��. This implies

sup
����

ja˛ˇ
 .�/j � sup
����

Z �

��1

.�� 0/ jQ˛ˇ
 .� 0/j d� 0:

On the other hand, Proposition 6.9 gives the following estimate for Q˛ˇ
 :

sup
����

.��/

Z �

��1

jQ˛ˇ
 .� 0/j d� 0 � ı sup
����

ja˛ˇ
 .�/j:

Hence, if we choose ı sufficiently small, and ��� sufficiently large (depending on ı), then

sup
����

ja˛ˇ
 .�/j D 0:
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Thus, a˛ˇ
 .�/ D 0 for all � � ��. Proposition 6.8 then implies

yH
˛ˇ

C

.�; �/ D 0 for all � � ��.

Putting these facts together, we obtain H˛ˇ

C

.�; �/ D 0 for all � � ��. From this, we deduce
that W ˇ


C
.�; �/ D 0 for � 2 Œ�; 2�� and � � ��. Proposition 6.5 yields W ˇ


C
.�; �/ D 0 for

� 2 Œ0; 2�� and � � ��. Thus, we conclude that F1.z; t/ D F
˛ˇ

2 .z; t/ for all t � t� D �e��� .

In other words, the two ancient solutions coincide for t � t�.

7. Energy estimates in the tip region and proof of Proposition 6.5

In this section, we give the proof of Proposition 6.5. Let !T denote a nonnegative smooth
cutoff function satisfying !T .�/ D 1 for � � � and !T .�/ D 0 for � � 2� . We define

W
ˇ

TC.�; �/ WD !T .�/W

ˇ

C
.�; �/:

To simplify the notation, we will write WC and WTC instead of W ˇ

C

and W ˇ

TC.

Proposition 7.1. The function WC.�; �/ satisfies the equation

V �21C

�
𝜕WC
𝜕�
C
�

2

𝜕WC
𝜕�

�
D
𝜕2WC
𝜕�2

C
𝜕
𝜕�
�
��1 .n � 2/ .V �21C � 1/WC

�
(7.1)

C .n � 3/��1
𝜕WC
𝜕�
� 2.n � 2/ ��2WC

C V �21C BCWC:

where

BC WD .n � 2/ �
�2
�
1 � V1C .V

ˇ

2C /
�1
�

C .n � 2/ ��1
�
2 V �11C
𝜕V1C
𝜕�
� .V

ˇ

2C /
�2 .V1C C V

ˇ

2C /
𝜕V ˇ
2C
𝜕�

�
C .V

ˇ

2C /
�2 .V1C C V

ˇ

2C /

�𝜕V ˇ
2C
𝜕�
C
�

2

𝜕V ˇ
2C
𝜕�

�
:

Proof. The functions U1C.r; t/, U1�.r; t/, U
ˇ

2C .r; t/, and U ˇ
2� .r; t/ all satisfy the same

PDE:

U�1
𝜕U
𝜕t
D
𝜕2U
𝜕r2
�
1

2
U�1

�
𝜕U
𝜕r

�2
C
.n � 2/

r2
.U�1 � 1/

�
r
𝜕U
𝜕r
C 2U

�
C
.n � 3/

r

𝜕U
𝜕r
:

Consequently, the functions V1C.�; �/, V1�.�; �/, V
ˇ

2C .�; �/, and V ˇ
2� .�; �/ satisfy the fol-

lowing PDE:

V �2
�
𝜕V
𝜕�
C
�

2

𝜕V
𝜕�

�
D
𝜕2V
𝜕�2
C
.n � 2/

�2
.V �2 � 1/

�
�
𝜕V
𝜕�
C V

�
C
.n � 3/

�

𝜕V
𝜕�
:

The assertion now follows by a straightforward calculation.
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Proposition 7.2. The function WTC.�; �/ satisfies

1

2

𝜕
𝜕�
�
V �21CW

2
TCe

�C
�
�
𝜕
𝜕�

��
𝜕WTC
𝜕�

C .n � 2/��1
�
V �21C � 1

�
WTC

�
WTC e

�C

�
C
𝜕
𝜕�
�
W 2
C !
0
T !T e

�C
�
�
1

2

𝜕
𝜕�
�
.n � 3/��1W 2

TCe
�C
�

� �
1

2

�
𝜕WTC
𝜕�

C
𝜕�C
𝜕�

WTC

�2
e�C �

1

2
.3n � 5/ ��2W 2

TC e
�C

C V �21C

�
1

2

𝜕�C
𝜕�
� V �11C
𝜕V1C
𝜕�
C
�

2

𝜕�C
𝜕�
CBC

�
W 2
TC e

�C

C
1

2

�
𝜕�C
𝜕�
� .n � 2/��1

�
V �21C � 1

�
�
�

2
V �21C

�2
W 2
TC e

�C

C

�
𝜕�C
𝜕�
� .n � 2/��1

�
V �21C � 1

�
C
�

2
V �21C � .n � 3/ �

�1

�
W 2
C!
0
T !T e

�C

C .!0T /
2W 2
Ce

�C �
1

2
.n � 3/��1W 2

TC

𝜕�C
𝜕�

e�C :

Proof. Using Proposition 7.1, we obtain

V �21C

�
𝜕WTC
𝜕�

C
�

2

𝜕WTC
𝜕�

�
D
𝜕2WTC
𝜕�2

C
𝜕
𝜕�
�
��1.n � 2/.V �21C � 1/WTC

�
� 2.n � 2/��2WTC C V

�2
1C BCWTC

C

�
�2!0T
𝜕WC
𝜕�
� !00T WC � .n � 2/�

�1 .V �21C � 1/WC!
0
T C

�

2
!0T V

�2
1C WC

�
C .n � 3/��1

�
𝜕WTC
𝜕�

�WC !
0
T

�
:

We next bring in the weight �C.�; �/. A straightforward calculation gives

1

2

𝜕
𝜕�
�
V �21C W

2
TC e

�C
�
�
𝜕
𝜕�

��
𝜕WTC
𝜕�

C ��1.n � 2/.V �21C � 1/WTC

�
WTC e

�C

�
C
𝜕
𝜕�
�
W 2
C !
0
T !T e

�C
�
�
1

2

𝜕
𝜕�
�
.n � 3/��1W 2

TCe
�C
�

D �

�
𝜕WTC
𝜕�

C
𝜕�C
𝜕�

WTC

�2
e�C �

1

2
.3n � 5/��2W 2

TC e
�C

C V �21C

�
1

2

𝜕�C
𝜕�
� V �11C
𝜕V1C
𝜕�
C
�

2

𝜕�C
𝜕�
CBC

�
W 2
TC e

�C

C

�
𝜕�C
𝜕�
� .n � 2/��1.V �21C � 1/ �

�

2
V �21C

��
𝜕WTC
𝜕�

C
𝜕�C
𝜕�

WTC

�
WTC e

�C

C

�
𝜕�C
𝜕�
� .n � 2/��1.V �21C � 1/C

�

2
V �21C

�
W 2
C !
0
T !T e

�C C .!0T /
2W 2
C e

�C

� .n � 3/ ��1W 2
C !T !

0
T e
�C �

1

2
.n � 3/��1W 2

TC

𝜕�C
𝜕�

e�C :

The assertion follows now from Young’s inequality and combining terms.
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Corollary 7.3. Fix a small number � > 0. Then we can find a small number � 2 .0; �/
and a small number " 2 .0; �/ (both depending on �) with the following property. If ��� is
sufficiently large (depending on � and � ) and the triplet .˛; ˇ; 
/ is "-admissible with respect
to time t� D �e��� , then we have

1

2

𝜕
𝜕�
�
V �21C W

2
TC e

�C
�
�
𝜕
𝜕�

��
𝜕WTC
𝜕�

C ��1.n � 2/
�
V �21C � 1

�
WTC

�
WTCe

�C

�
C
𝜕
𝜕�
�
W 2
C !
0
T !T e

�C
�
�
1

2

𝜕
𝜕�
�
.n � 3/��1W 2

TCe
�C
�

� �
1

2

�
𝜕WTC
𝜕�

C
𝜕�C
𝜕�

WTC

�2
e�C �

1

2
.3n � 5/ ��2W 2

TC e
�C

C � ��2 V �41C W
2
TC e

�C C � ��2 V �21C W
2
C e

�C 1¹����2�º

for � � 2� and � � ��.

Proof. By Propositions 4.20, 4.21, and 6.4, we can choose � 2 .0; �/ (depending on �)
sufficiently small and ��� sufficiently large (depending on � and � ) such that

jBCj � � �
�2 V �21C

for �� 2� and � � ��. By Corollary 4.22, Lemma 5.2, and Lemma 5.4, we can choose � 2 .0;�/
sufficiently small (depending on �) and ��� sufficiently large (depending on � and � ) such thatˇ̌̌̌

1

2

𝜕�C
𝜕�
� V �11C
𝜕V1C
𝜕�
C
�

2

𝜕�C
𝜕�

ˇ̌̌̌
� � ��2 V �21C ;ˇ̌̌̌

𝜕�C
𝜕�
� .n � 2/ ��1 .V �21C � 1/ �

�

2
V �21C

ˇ̌̌̌
� � ��1 V �21C ;ˇ̌̌̌

𝜕�C
𝜕�
� .n � 2/ ��1 .V �21C � 1/C

�

2
V �21C

ˇ̌̌̌
� � ��1 V �21C

for � � 2� and � � ��. Note also that for any � > 0 there exists a � 2 .0; �/ so that

j.n � 3/��1!0T!T j � � �
�2V �21C 1¹����2�º:

Finally, recall by Lemma 5.2 𝜕�C𝜕� � 0, so

�
1

2
.n � 3/��1W 2

TC

𝜕�C
𝜕�

e�C � 0:

Hence, the assertion follows from Proposition 7.2.

We now finalize our choice of � .

Proposition 7.4. We can find sufficiently small numbers � > 0, � > 0, and " > 0 with
the following property. If ��� is sufficiently large (depending on � ) and the triplet .˛; ˇ; 
/ is
"-admissible with respect to time t� D �e��� , then

1

2

d

d�

�Z 2�

0

V �21C W
2
TC e

�C d�

�
� �� .��/

Z 2�

0

V �21C W
2
TC e

�C d�

C

Z 2�

�

��2 V �21C W
2
C e

�C d�

for � � ��.
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Proof. Fix a small number � > 0. In the following, we choose � and " sufficiently
small (depending on �), and we choose ��� sufficiently large (depending on � and � ). Recall
WTC.2�; �/ D 0 and, for each � ,WC.�; �/ D O.�2/ as �! 0, henceWTC.�; �/ D O.�2/ as
�! 0. Moreover, we can see from the definition of �C that �C.�; �/ is bounded as �! 0.
In particular, if we integrate the differential inequality of Corollary 7.3, the divergence terms
vanish. Using Corollary 7.3, we obtain

1

2

d

d�

�Z 2�

0

V �21C W
2
TC e

�C d�

�
� �

1

2

Z 2�

0

�
𝜕WTC
𝜕�

C
𝜕�C
𝜕�

WTC

�2
e�C d� �

1

2
.3n � 5/

Z 2�

0

��2W 2
TC e

�C d�

C �

Z 2�

0

��2 V �41C W
2
TC e

�C d�C �

Z 2�

�

��2 V �21C W
2
C e

�C d�;

for � � ��.
We will next estimate the terms on the right-hand side of the above inequality to deduce

the statement of the proposition. First, applying Proposition 5.5 to the function f WD e�CWTC
gives

0 � 8

Z 2�

0

�
𝜕WTC
𝜕�

C
𝜕�C
𝜕�

WTC

�2
e�C d�

CK�

Z 2�

0

��2W 2
TC e

�C d� �

Z 2�

0

�
𝜕�C
𝜕�

�2
W 2
TC e

�C d�

for � � ��. Using Lemma 5.2, we obtain .𝜕�C𝜕� /
2 �

1
4
��2 .V �21C � 1/

2 for � � 2� , hence

0 � 128�

Z 2�

0

�
𝜕WTC
𝜕�

C
𝜕�C
𝜕�

WTC

�2
e�C d�

C 16�K�

Z 2�

0

��2W 2
TC e

�C d� � 4�

Z 2�

0

��2 .V �21C � 1/
2W 2

TC e
�C d�

for � � ��.
Adding the two inequalities above, we obtain

1

2

d

d�

�Z 2�

0

V �21C W
2
TC e

�C d�

�
� �

�
1

2
� 128�

�Z 2�

0

�
𝜕WTC
𝜕�

C
𝜕�C
𝜕�

WTC

�2
e�C d�

�

�
1

2
.3n � 5/ � 4� � 16�K�

�Z 2�

0

��2W 2
TC e

�C d�

� �

Z 2�

0

��2 .4.V �21C � 1/
2
C 4 � V �41C /W

2
TC e

�C d�

C �

Z 2�

�

��2 V �21C W
2
C e

�C d�

for � � ��. We now choose � > 0 sufficiently small so that

1

2
� 128� > 0 and

3n � 5

2
� 4� � 16�K� > 0:
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(Here, it is crucial that the constant K� in the weighted Poincaré inequality does not depend
on � .) This ensures that the first two terms on the right-hand side of the last estimate have a
favorable sign. To estimate the third term on the right-hand side, we observe that

��2
�
4.V �21C � 1/

2
C 4 � V �41C

�
� ��2V �41C :

Finally, in view of Proposition 4.20, we can bound ��2V �41C from below by a small positive
multiple of .��/ V �21C . This completes the proof of Proposition 7.4.

We now complete the proof of Proposition 6.5. Let � , �, and " be chosen as in Proposi-
tion 7.4. Let

I.�/ WD

Z �

��1

Z 2�

0

V �21C W
2
TC e

�C

and

J.�/ WD

Z �

��1

Z 2�

�

V �21C W
2
C e

�C :

If we choose ��� sufficiently large, then Proposition 7.4 gives

1

2
I 0.�/C � .��/ I.�/ � ��2 J.�/;

hence
d

d�
.e���

2

I.�// � 2��2 e���
2

J.�/

for � � ��. Clearly, lim�!�1 e���
2

I.�/ D 0. Consequently,

e���
2

I.�/ � 2��2
Z �

�1

e���
02

J.� 0/ d� 0

� 2��2
�

sup
� 0��

.�� 0/�1 J.� 0/
� Z �

�1

e���
02

.�� 0/ d� 0

� ��2��1 e���
2

sup
� 0��

.�� 0/�1 J.� 0/

for � � ��. This finally gives

.��/�
1
2 I.�/ � ��2��1 .��/�

1
2 sup
� 0��

.�� 0/�1 J.� 0/

� ��2��1 .��/�1 sup
� 0��

.�� 0/�
1
2 J.� 0/

for � � ��. Taking the supremum over � � �� gives

sup
����

.��/�
1
2 I.�/ � ��2��1 .���/

�1 sup
����

.��/�
1
2 J.�/:

From this, the conclusion of Proposition 6.5 follows immediately.

8. Energy estimates in the cylindrical region and proof of Proposition 6.7

In this section, we give the proof of Proposition 6.7. Throughout this section, we assume
that � is chosen as in Proposition 6.5. To simplify the notation, we will write H , HC , yHC , and
a instead of H˛ˇ
 , H˛ˇ


C
, yH˛ˇ


C
, and a˛ˇ
 .
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Our goal is to study the evolution equation satisfied by the function H . The linearized
operator

Lf WD f�� �
1

2
� f� C f

is the same as in [3], and hence the linear theory from [3] carries over to the Ricci flow case as
well. In order for this article to be self-contained, we will state the results from [3] that we will
use later, but for the proofs of the same we refer the reader to [3].

As in [3], we consider the Hilbert space

H D L2
�
R; e�

�2

4 d�
�
:

The norm on H is given by

kf k2H WD

Z
R
e�

�2

4 f .�/2 d�:

Moreover, we denote by D � H the Hilbert space of all functions f such that f 2 H and
f 0 2 H . The norm on D is given by

kf k2D WD

Z
R
e�

�2

4 .f 0.�/2 C f .�/2/ d�:

Let D� denote the dual space of D . Clearly, the dual space H� is a subspace of D�. After iden-
tifying H� with H in the standard way, we can view H as a subspace of D�. The restriction
of k � kD� to H is given by

kf kD� WD sup
²Z

R
e�

�2

4 f .�/ g.�/ d� W kgkD � 1

³
:

For later reference, we collect some basic facts from [3].

Proposition 8.1. The following statements hold:

(i) The operators f 7! � f , f 7! f 0, f 7! �f 0 C 1
2
� f are bounded from D to H .

(ii) The operators f 7! � f , f 7! f 0, f 7! �f 0 C 1
2
� f are bounded from H to D�.

(iii) The operators f 7! �2 f , f 7! � f 0, f 7! f 00 are bounded from D to D�.

(iv) The operator f 7!
R �
0 f is bounded from H to D .

Proof. Statements (i), (ii), and (iii) were proved in [3]. To prove statement (iv), let us
consider a function f 2 H , and let g.�/ WD

R �
0 f .�

0/ d� 0. Then g.�/2 � �
R �
0 f .�

0/2 d� 0 for
� � 0. Using Fubini’s theorem, we obtainZ 1

0

e�
�2

4 g.�/2 d� �

Z 1
0

e�
�2

4 �

�Z �

0

f .� 0/2 d� 0
�
d�

D

Z 1
0

�Z 1
�0

e�
�2

4 � d�

�
f .� 0/2 d� 0

D 2

Z 1
0

e�
�02

4 f .� 0/2 d� 0:
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An analogous argument givesZ 0

�1

e�
�2

4 g.�/2 d� � 2

Z 0

�1

e�
�02

4 f .� 0/2 d� 0:

Therefore, kgkH � C kf kH . Since g0 D f , it follows that kgkD � C kf kH , as claimed.

For a time-dependent function f , we introduce the following norms:

kf k2H ;1;��
WD sup

����

Z �

��1

kf .�; � 0/k2H d� 0;

kf k2D;1;�� WD sup
����

Z �

��1

kf .�; � 0/k2D d� 0;

kf k2D�;1;�� WD sup
����

Z �

��1

kf .�; � 0/k2D� d�
0:

The following energy estimate was proved in [3]:

Proposition 8.2. Let g W .�1; ���!D� be a bounded function. Let f W .�1; ���!D

be a bounded function which satisfies the linear equation

𝜕
𝜕�
f .�/ �Lf .�/ D g.�/:

Then the function yf WD PCf C P�f satisfies the estimate

sup
����

k yf .�/kH Cƒ
�1
k yf kD;1;�� � kPCf .��/kH Cƒ kgkD�;1;�� ;

where ƒ is a universal constant.

Proof. See [3, Lemma 6.6].

We continue with the proof of Proposition 6.7. The functions G1.�; �/ and G˛ˇ
2 .�; �/

satisfy the equation

G� .�; �/ D G��.�; �/ �
1

2
� G�.�; �/

C
1

2
.
p
2.n � 2/CG.�; �// � .n � 2/ .

p
2.n � 2/CG.�; �//�1

� .
p
2.n � 2/CG.�; �//�1G�.�; �/

2

C .n � 1/G�.�; �/

�
G�.0; �/p

2.n � 2/CG.0; �/

�

Z �

0

G�.�
0; �/2

.
p
2.n � 2/CG.� 0; �//2

d� 0
�
:

Note that the two terms on the second line above can be written

1

2
.
p
2.n � 2/CG/ � .n � 2/ .

p
2.n � 2/CG/�1 D G �

1

2
.
p
2.n � 2/CG/�1G2:
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Consequently, the difference H.�; �/ D G1.�; �/ �G
˛ˇ

2 .�; �/ satisfies

H� .�; �/ D H��.�; �/ �
1

2
� H�.�; �/CH.�; �/C

6X
kD1

Ek.�; �/;

where

E1.�; �/ D

�
.n � 2/ .

p
2.n � 2/CG1.�; �//

�1.
p
2.n � 2/CG

˛ˇ

2 .�; �//�1 �

1

2

�
H.�; �/;

E2.�; �/ D .
p
2.n � 2/CG1.�; �//

�1.
p
2.n � 2/CG

˛ˇ

2 .�; �//�1G1�.�; �/

2H.�; �/;

E3.�; �/ D �.
p
2.n � 2/CG

˛ˇ

2 .�; �//�1 .G1�.�; �/CG

˛ˇ


2�
.�; �//H�.�; �/

E4.�; �/ D .n � 1/

�
G1�.0; �/p

2.n � 2/CG1.0; �/
�

Z �

0

G1�.�
0; �/2

.
p
2.n � 2/CG1.� 0; �//2

d� 0
�
H�.�; �/;

E5.�; �/ D .n � 1/G
˛ˇ


2�
.�; �/

H�.0; �/p
2.n � 2/CG1.0; �/

� .n � 1/G
˛ˇ


2�
.�; �/

G
˛ˇ


2�
.0; �/H.0; �/

.
p
2.n � 2/CG1.0//.

p
2.n � 2/CG

˛ˇ

2 .0; �//

;

E6.�; �/ D .n � 1/G
˛ˇ


2�
.�; �/

�
�

Z �

0

.G1�.�
0; �/CG

˛ˇ


2�
.� 0; �//H�.�

0; �/

.
p
2.n � 2/CG

˛ˇ

2 .� 0; �//2

d� 0

C

Z �

0

.2
p
2.n � 2/CG1.�

0; �/CG
˛ˇ

2 .� 0; �//H.� 0; �/G1�.�

0; �/2

.
p
2.n � 2/CG1.� 0; �//2.

p
2.n � 2/CG

˛ˇ

2 .� 0; �//2

d� 0
�
:

Consequently, the function HC .�; �/ D �C ..��/
� 1
2 �/H.�; �/ satisfies

HC ;� .�; �/ D HC ;��.�; �/ �
1

2
� HC ;�.�; �/CHC .�; �/C

10X
kD1

EC ;k.�; �/;

where

EC ;1.�; �/ D

�
.n � 2/.

p
2.n � 2/CG1.�; �//

�1.
p
2.n � 2/

CG
˛ˇ

2 .�; �//�1 �

1

2

�
HC .�; �/;

EC ;2.�; �/ D
�p
2.n � 2/CG1.�; �/

��1�p
2.n � 2/

CG
˛ˇ

2 .�; �/

��1
G1�.�; �/

2HC .�; �/;

EC ;3.�; �/ D �
�p
2.n � 2/CG

˛ˇ

2 .�; �/

��1
.G1�.�; �/CG

˛ˇ


2�
.�; �//HC ;�.�; �/;

EC ;4.�; �/ D .n � 1/

�
G1�.0; �/p

2.n � 2/CG1.0; �/

�

Z �

0

G1�.�
0; �/2

.
p
2.n � 2/CG1.� 0; �//2

d� 0
�
HC ;�.�; �/;
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EC ;5.�; �/ D .n � 1/ �C ..��/
� 1
2 �/G

˛ˇ


2�
.�; �/

H�.0; �/p
2.n � 2/CG1.0; �/

� .n � 1/ �C ..��/
� 1
2 �/G

˛ˇ


2�
.�; �/

�

G
˛ˇ


2�
.0; �/H.0; �/

.
p
2.n � 2/CG1.0//.

p
2.n � 2/CG

˛ˇ

2 .0; �//

;

EC ;6.�; �/ D .n � 1/ �C ..��/
� 1
2 �/G

˛ˇ


2�
.�; �/

�

�
�

Z �

0

.G1�.�
0; �/CG

˛ˇ


2�
.� 0; �//H�.�

0; �/

.
p
2.n � 2/CG

˛ˇ

2 .� 0; �//2

d� 0

C

Z �

0

.2
p
2.n�2/CG1.�

0; �/CG
˛ˇ

2 .� 0; �//H.� 0; �/G1�.�

0; �/2

.
p
2.n�2/CG1.� 0; �//2.

p
2.n�2/CG

˛ˇ

2 .� 0; �//2

d� 0
�
;

EC ;7.�; �/ D .
p
2.n � 2/CG

˛ˇ

2 .�; �//�1 .G1�.�; �/CG

˛ˇ


2�
.�; �//

� .��/�
1
2 �0C ..��/

� 1
2 �/H.�; �/;

EC ;8.�; �/ D �.n � 1/

�
G1�.0; �/p

2.n � 2/CG1.0; �/
�

Z �

0

G1�.�
0; �/2

.
p
2.n � 2/CG1.� 0; �//2

d� 0
�

� .��/�
1
2 �0C ..��/

� 1
2 �/H.�; �/;

EC ;9.�; �/ D .��/
�1 �00C ..��/

� 1
2 �/H.�; �/C

1

2
.��/�

3
2 � �0C ..��/

� 1
2 �/H.�; �/;

EC ;10.�; �/ D �2 .��/
� 1
2
𝜕
𝜕�
�
�0C ..��/

� 1
2 �/H.�; �/

�
C
1

2
.��/�

1
2 � �0C ..��/

� 1
2 �/H.�; �/:

In the following, we will estimate the terms
6X
kD1

kEC ;kkH ;1;�� and
10X
kD7

kEC ;kkD�;1;�� :

To that end, we need the following estimates for the functions G1.�; �/ and G˛ˇ
2 .�; �/:

Proposition 8.3. Fix a small number � > 0 and a small number � > 0. Then there exists
a small number " > 0 (depending on � and �) with the following property. If the triplet .˛; ˇ; 
/
is "-admissible with respect to time t� D �e��� and ��� is sufficiently large, thenˇ̌̌̌�p

2.n � 2/CG1.�; �/
�2
� 2.n � 2/C .n � 2/

�2 � 2

2.��/

ˇ̌̌̌
� �

�2 C 1

.��/
;ˇ̌̌̌�p

2.n � 2/CG
˛ˇ

2 .�; �/

�2
� 2.n � 2/C .n � 2/

�2 � 2

2.��/

ˇ̌̌̌
� �

�2 C 1

.��/

and ˇ̌̌̌�p
2.n � 2/CG1.�; �/

�
G1�.�; �/C

.n � 2/ �

2.��/

ˇ̌̌̌
� �
j�j C 1

.��/
;ˇ̌̌̌�p

2.n � 2/CG
˛ˇ

2 .�; �/

�
G
˛ˇ


2�
.�; �/C

.n � 2/ �

2.��/

ˇ̌̌̌
� �
j�j C 1

.��/

for j�j �
q
4 � �2

8.n�2/
.��/

1
2 and � � ��.
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Proof. This follows directly from Propositions 4.11, 4.12, and 6.3.

In order to estimate the term kEC ;6kH ;1;�� , we need the following pointwise estimate:

Lemma 8.4. We have

jEC ;6.�; �/j � C.�/ .��/
� 1
2 jG

˛ˇ


2�
.�; �/j

ˇ̌̌̌ Z �

0

jHC .�
0; �/j d� 0

ˇ̌̌̌
C C.�/ .��/�

1
2 jG

˛ˇ


2�
.�; �/j .jHC .�; �/j C jH.0; �/j/:

Proof. The proof is analogous to the proof of [13, Lemma 8.4].

In order to estimate the term kEC ;5kH ;1;�� , we need the following estimate forH�.0; �/:

Lemma 8.5. We have

sup
����

�Z �

��1

H�.0; �
0/2 d� 0

� 1
2

� C kHCkH ;1;�� C C

6X
kD1

kEC ;kkH ;1;�� :

Proof. In the region ¹j�j � 1º, we have

𝜕
𝜕�
HC D LHC C

6X
kD1

EC ;k :

Using standard interior estimates for linear parabolic equations and the embedding of the
Sobolev space H 2.Œ�1; 1�/ into C 1.Œ�1; 1�/, we obtain

sup
����

�Z �

��1

HC ;�.0; �
0/2 d� 0

� 1
2

� C kHCkH ;1;�� C C

6X
kD1

kEC ;kkH ;1;�� :

Since HC ;�.0; �/ D H�.0; �/, the assertion follows.

Lemma 8.6. We have
6X
kD1

kEC ;kkH ;1;�� � C.�/ .���/
� 1
2 kHCkD;1;�� :

Proof. The proof is analogous to the proof of [13, Lemma 8.6].

Lemma 8.7. We have
9X
kD7

kEC ;kkH ;1;�� C kEC ;10kD�;1;��

� C.�/ .���/
� 1
2




H 1®q
4� �2

2.n�2/
.��/

1
2�j�j�

q
4� �2

4.n�2/
.��/

1
2

¯



H ;1;��

:

Proof. Using Proposition 8.1, we obtain

kEC ;10kD�;1;�� � C .���/
� 1
2 k�0C ..��/

� 1
2 �/HkH ;1;�� :
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This gives the desired estimate for EC ;10. The estimates for EC ;7, EC ;8, and EC ;9 follow
directly from the respective definitions. This completes the proof of Lemma 8.7.

We now complete the proof of Proposition 6.7. To that end, we apply Proposition 8.2 to
the function HC . Since PCHC .��/ D 0, we obtain

sup
����

k yHC .�/kH Cƒ
�1
k yHCkD;1;�� � ƒ

10X
kD1

kEC ;k.�; �/kD�;1;��

by Proposition 8.2. We use Lemma 8.6 and Lemma 8.7 to estimate the terms on the right-hand
side. This gives

sup
����

k yHC .�/kH Cƒ
�1
k yHCkD;1;��

� C.�/ .���/
� 1
2 k yHCkD;1;�� C C.�/ .���/

� 1
2 kP0HCkD;1;��

C C.�/ .���/
� 1
2





H 1
¹

q
4� �2

2.n�2/
.��/

1
2�j�j�

q
4� �2

4.n�2/
.��/

1
2 º






H ;1;��

:

If ��� is sufficiently large, the first term on the right-hand side can be absorbed into the left-
hand side. This completes the proof of Proposition 6.7.

9. Analysis of the overlap region and proof of Proposition 6.8

In this section, we give the proof of Proposition 6.8. In the following, results stated with-
out proof have been proven in [13]. We remind the reader that � is chosen as in Proposition 6.5.
We also recall that �C is a smooth cutoff, which satisfies

�C D

8<:1 on
h
0;
q
4 � �2

2.n�2/

i
;

0 on
hq
4 � �2

4.n�2/
;1

�
.

We also assume �C is monotone decreasing on Œ0;1/. As before, we write H , HC , yHC , and
a instead of H˛ˇ
 , H˛ˇ


C
, yH˛ˇ


C
, and a˛ˇ
 . We begin by recalling the following elementary

lemma from [13]:

Lemma 9.1 (Lemma 9.1 in [13]). Assume that 4 � L1 < L2 < L3. Then

L22

Z
¹L2���L3º

e�
�2

4 f .�/2 d� � C

Z
¹L1���L3º

e�
�2

4 f 0.�/2 d�

C C .L2 � L1/
�2

Z
¹L1���L2º

e�
�2

4 f .�/2 d�;

where C is a numerical constant that is independent of L1, L2, L3, and f .

The following lemma relates the function H.�; �/ to the function WC.�; �/:

Lemma 9.2. If we choose ��� sufficiently large (depending on � ), thenˇ̌
H�.�; �/CWC.

p
2.n � 2/CG1.�; �/; �/

ˇ̌
� C.�/ jH.�; �/j

provided that
q
4 � 400 �2

n�2
.��/

1
2 � � �

q
4 � �2

100.n�2/
.��/

1
2 and � � ��.
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Proof. The proof of this lemma is analogous to the proof of Lemma 9.2 in [13]. Replac-
ing � by �=

p
n � 2 in higher dimensions accounts for the minor changes in Proposition 4.11

and Proposition 6.3 in higher dimensions. The details are left to the reader.

Lemma 9.3. We have

.��/

Z®q
4� �2

2.n�2/
.��/

1
2���

q
4� �2

4.n�2/
.��/

1
2

¯ e� �24 H.�; �/2 d�
� C.�/ .��/�

1
2

Z �

�
4

V1C.�; �/
�2WC.�; �/

2 e�C.�;�/ d�

C C.�/

Z®q
4� �2

n�2
.��/

1
2���

q
4� �2

2.n�2/
.��/

1
2

¯ e� �24 H.�; �/2 d�
provided that � � �� and ��� is sufficiently large.

Proof. The proof of this lemma is analogous to the proof of [13, Lemma 9.3]. The first
step, as in [13] is to apply Lemma 9.1 with

L1 D

s
4 �

�2

n � 2
.��/

1
2 ; L2 D

s
4 �

�2

2.n � 2/
.��/

1
2 ; L3 D

s
4 �

�2

4.n � 2/
.��/

1
2 ;

and f .�/ D H.�; �/. Besides replacing � by �p
n�2

, the remainder of the proof goes through
unchanged.

Lemma 9.4 ([13, Lemma 9.4]). We have

.��/�
1
2

Z 2�

�

V1C.�; �/
�2WC.�; �/

2 e�C.�;�/ d�

� C.�/

Z®q
4� 16�

2

n�2
.��/

1
2���

q
4� �2

n�2
.��/

1
2

¯ e� �24 .H�.�; �/2 CH.�; �/2/ d�
provided that � � �� and ��� is sufficiently large.

Proposition 9.5 ([13, Proposition 9.5]). We have

sup
����

.��/

Z �

��1

Z®q
4� �2

2.n�2/
.�� 0/

1
2�j�j�

q
4� �2

4.n�2/
.�� 0/

1
2

¯ e� �24 H.�; � 0/2 d� d� 0
� C.�/ sup

����

Z �

��1

Z
R
e�

�2

4 .HC ;�.�; �
0/2 CHC .�; �

0/2/ d� d� 0:

After these preparations, we now finish the proof of Proposition 6.8. Using Proposi-
tion 9.5, we obtain

sup
����

.��/

Z �

��1

Z®q
4� �2

2.n�2/
.�� 0/

1
2�j�j�

q
4� �2

4.n�2/
.�� 0/

1
2

¯ e� �24 H.�; � 0/2 d� d� 0
� C.�/ sup

����

Z �

��1

a.� 0/2 d� 0

C C.�/ sup
����

Z �

��1

Z
R
e�

�2

4 . yHC ;�.�; �
0/2 C yHC .�; �

0/2/ d� d� 0:
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Combining this estimate with Proposition 6.7 gives

.���/ sup
����

Z �

��1

Z
R
e�

�2

4 . yHC ;�.�; �
0/2 C yHC .�; �

0/2/ d� d� 0

� C.�/ sup
����

Z �

��1

a.� 0/2 d� 0

C C.�/.���/
�1 sup

����

Z �

��1

Z
R
e�

�2

4 . yHC ;�.�; �
0/2 C yHC .�; �

0/2/ d� d� 0:

If ��� is chosen sufficiently large (depending on � ), then the last term on the right-hand side
can be absorbed into the left-hand side. This completes the proof of Proposition 6.8.

10. Analysis of the neutral mode and proof of Proposition 6.9

In this final section, we give the proof of Proposition 6.9. In the following, results stated
without proof have been proven in [13].

Lemma 10.1. We have

sup
����

.��/

Z �

��1

Z®q
4� �2

2.n�2/
.�� 0/

1
2�j�j�

q
4� �2

4.n�2/
.�� 0/

1
2

¯ e� �24 H.�; � 0/2 d� d� 0
� C.�/ sup

����

Z �

��1

a.� 0/2 d� 0:

Proof. This follows by combining Proposition 6.8 and Proposition 9.5.

We next establish an improved version of Lemma 8.5:

Lemma 10.2 ([13, Lemma 10.2]). We have

.���/ sup
����

Z �

��1

H�.0; �
0/2 d� 0 � C.�/ sup

����

Z �

��1

a.� 0/2 d� 0:

After these preparations, we now study the evolution of the function a.�/. Using the
evolution equation

𝜕
𝜕�
HC D LHC C

10X
kD1

EC ;k;

we obtain
d

d�
a.�/ D

10X
kD1

Ik.�/;

where
Ik.�/ D

1

16
p
2.n � 2/�

Z
R
e�

�2

4 .�2 � 2/EC ;k.�; �/ d�:

In the remainder of this section, we estimate the terms Ik.�/.
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Lemma 10.3 ([13, Lemma 10.3]). Let ı > 0 be given. If the constant ��� is sufficiently
large (depending on ı), then

sup
����

.��/

Z �

��1

jI1.�
0/ � .�� 0/�1 a.� 0/j d� 0 � ı sup

����

�Z �

��1

a.� 0/2 d� 0
� 1
2

:

Lemma 10.4 ([13, Lemma 10.4]). Let ı > 0 be given. If the constant ��� is sufficiently
large (depending on ı), then

sup
����

.��/

Z �

��1

jI2.�
0/j d� 0 � ı sup

����

�Z �

��1

a.� 0/2 d� 0
� 1
2

:

Lemma 10.5 ([13, Lemma 10.5]). Let ı > 0 be given. If the constant ��� is sufficiently
large (depending on ı), then

sup
����

.��/

Z �

��1

jI3.�
0/ � .�� 0/�1 a.� 0/j d� 0 � ı sup

����

�Z �

��1

a.� 0/2 d� 0
� 1
2

:

Lemma 10.6 ([13, Lemma 10.6]). Let ı > 0 be given. If the constant ��� is sufficiently
large (depending on ı), then

sup
����

.��/

Z �

��1

jI4.�
0/j d� 0 � ı sup

����

�Z �

��1

a.� 0/2 d� 0
� 1
2

:

Lemma 10.7 ([13, Lemma 10.7]). Let ı > 0 be given. If the constant ��� is sufficiently
large (depending on ı), then

sup
����

.��/

Z �

��1

jI5.�
0/j d� 0 � ı sup

����

�Z �

��1

a.� 0/2 d� 0
� 1
2

:

Lemma 10.8 ([13, Lemma 10.8]). Let ı > 0 be given. If the constant ��� is sufficiently
large (depending on ı), then

sup
����

.��/

Z �

��1

jI6.�
0/j d� 0 � ı sup

����

�Z �

��1

a.� 0/2 d� 0
� 1
2

:

Lemma 10.9 ([13, Lemma 10.9]). Let ı > 0 be given. If the constant ��� is sufficiently
large (depending on ı), then

sup
����

.��/

Z �

��1

10X
kD7

jIk.�
0/j d� 0 � ı sup

����

�Z �

��1

a.� 0/2 d� 0
� 1
2

:

Proposition 6.9 follows immediately from Lemma 10.3 – Lemma 10.9 together with the
identity

d

d�
a.�/ D

10X
kD1

Ik.�/:
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A. The Bryant soliton

In [16] Bryant showed that up to constant multiples, there is only one complete, steady,
rotationally symmetric soliton in dimension three that is not flat. It has positive sectional cur-
vature. The maximum scalar curvature is equal to 1, and is attained at the center of rotation.
The complete soliton can be written in the form g D dz ˝ dz C B.z/2 gSn�1 , where z is the
distance from the center of rotation. For large z, the metric has the following asymptotics: the
aperature B.z/ has leading order term

p
2.n � 2/z, the orbital sectional curvature Korb has

leading order term 1
2.n�2/z

, and the radial sectional curvature Krad has leading order term 1
4z2

.
Sometimes it is more convenient to write the metric in the formˆ.r/�1 dr2 C r2 gSn�1 ,

where the function ˆ.r/ is defined by

ˆ.B.z// D

�
d

dz
B.z/

�2
:

The function ˆ.r/ is known to satisfy the equation

ˆ.r/ˆ00.r/ �
1

2
ˆ0.r/2 C

n � 2 �ˆ.r/

r
ˆ0.r/C

2.n � 2/

r2
ˆ.r/.1 �ˆ.r// D 0:

The orbital and radial sectional curvatures are given by

Korb D
1

r2
.1 �ˆ.r// and Krad D �

1

2r
ˆ0.r/:

It is known that ˆ.r/ has the following asymptotics. Near r D 0, ˆ is smooth and has the
asymptotic expansion

ˆ.r/ D 1C b0 r
2
C o.r2/;

where b0 is a negative constant (since the curvature is positive). As r !1, ˆ is smooth and
has the asymptotic expansion

ˆ.r/ D c0 r
�2
C
5 � n

n � 2
c20 r
�4
C o.r�4/;

where c0 is a positive constant.
We will next find (for the convenience of the reader) the exact values of the constants b0

and c0 in the above asymptotics for the Bryant soliton of maximal scalar curvature one.
Recall that the scalar curvature is given byR D .n � 1/.n � 2/Korb C 2.n � 1/Krad. The

maximal scalar curvature is attained at z D 0, at which pointKorb D Krad. The maximal scalar
curvature being equal to 1 is equivalent to Korb D Krad D

1
n.n�1/

at z D 0. On the other hand,
the asymptotic expansion of ˆ.r/ gives

Korb D
1

r2
.1 �ˆ.r// D �b0 C o.1/ as r ! 0.

Consequently, b0 D � 1
n.n�1/

.
Bryant’s asymptotics imply that for z sufficiently large, the aperture satisfies

r D .1C o.1//
p
2.n � 2/z;

implying that 2.n � 2/z D .1C o.1// r2. The radial sectional curvature satisfies

Krad D .1C o.1//
1

4z2
D .1C o.1//

.n � 2/2

r4
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for r large. On the other hand, the asymptotic expansion of ˆ.r/ implies

Krad D �
1

2r
ˆ0.r/ D .1C o.1// c0 r

�4

for r large. Comparing the two formulae, we conclude that c0 D .n � 2/2.
Summarizing the above discussion we conclude the following asymptotics for the Bryant

soliton with maximal scalar curvature equal to one:

ˆ.r/ D

8̂<̂
:1 �

r2

n.n � 1/
C o.r2/ as r ! 0,

.n � 2/2 r�2 C .n � 2/3.5 � n/r�4 C o.r�4/ as r !1.
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