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Uniqueness of entire graphs evolving by
mean curvature flow

By Panagiota Daskalopoulos at New York and Mariel Saez at Santiago

Abstract. In this paper we study the uniqueness of graphical mean curvature flow
with locally Lipschitz initial data. We first prove that rotationally symmetric entire graphs are
unique, without any further assumptions. Our methods also give an alternative simple proof
of uniqueness in the one-dimensional case. In the general case, we establish the uniqueness
of entire proper graphs that satisfy a uniform lower bound on the second fundamental form.
The latter result extends to initial conditions that are proper graphs over subdomains of Rn.
A consequence of our result is the uniqueness of convex entire graphs, which allow us to
prove that Hamilton’s Harnack estimate holds for mean curvature flow solutions that are convex
entire graphs.

1. Introduction

The evolution under mean curvature flow studies a family of immersions

F. � ; t / WM n
! RnC1; t 2 .0; T /;

of n-dimensional hypersurfaces in RnC1 such that

(1.1)
𝜕
𝜕t
F .p; t/ D H.p; t/�.p; t/; p 2M n

where H.p; t/ and �.p; t/ denote the mean curvature and upward pointing normal of the
surface Mt WD F.M

n; t / at the point F.p; t/.
We will assume in this work that Mt ; t 2 .0; T � is a complete non-compact graph over

a domain�t � Rn (if 𝜕�0 ¤ ;, then 𝜕�t will evolve by MCF, hence�t is changing in time).
Then the solution Mt can be written as Mt D ¹.x; u.x; t// W x 2 �tº for a height function
u.x; t/. In the case where � D Rn we will say that Mt is an entire graph.
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The height function u satisfies the following quasilinear parabolic initial value problem:8̂<̂
: ut D

�
ıij �

DiuDju

1C jDuj2

�
Diju; .x; t/ 2 �t � .0; T �;

u.x; 0/ D u0.x/; x 2 �0;

where M0 WD ¹.x; u0.x// W x 2 �0º. Here we sum over repeated indices. In what follows, we
will refer to this equation as graphical mean curvature flow.

Although the mean curvature flow (MCF) has extensively been studied in the compact
case from many points of view (such as existence and regularity, weak solutions, singularities,
the extension of the flow through the singularities, flow with surgery) not much has been done
in the non-compact case beyond the fundamental works by Ecker and Huisken [6,7] which deal
with graphs over Rn and the more recent work by the second author and Schnürer [13] which
deals with graphs over domains.

The works by Ecker and Huisken [6,7] establish the existence and local a’priori estimates
of the graphical MCF over Rn. Also, in [6] the uniqueness of graphical solutions is addressed
in some special cases. The results in [7] show that in some sense the MCF on entire graphs
behaves better than the heat equation on Rn, namely an entire graph solution exists for all
times, independently from the growth of the initial surface at infinity. The initial entire graph is
assumed to be locally Lipschitz. Methods of similar spirit as in [7] are used by the second author
and Schnürer in [13] to establish the existence of MCF solutions which are complete non-
compact graphs over domains �t � Rn. Note that if 𝜕�0 ¤ ;, then 𝜕�t will evolve by MCF,
that is in general it will change in time.

While the works [6,7] and [13] completely address the existence of classical solutions to
the graphical MCF with Lipschitz continuous initial data (on Rn or domains), the uniqueness
question in such generality has remained on open question. While the methods in [6, 7] imply
that polynomial growth at infinity is preserved by the flow, the question of uniqueness is not
addressed in those works. In [2] the authors address uniqueness of graphs in general ambi-
ent manifolds and high co-dimension. However, their result requires a uniform bound on the
second fundamental form for all times. Our goal in this work is to address the uniqueness of
classical solutions to (1.2) under minimal assumptions on the behavior of the initial data u0.x/
as jxj ! C1, and under no assumptions on the behavior of the solutions at infinity.

We will first describe our results in the case of entire graphs, these are Theorems 1.1–1.3.
We will then state our result in the case of domains.

For the reader’s convenience let us state the following existence result for graphical MCF
over Rn that follows from the Ecker and Huisken works [6, 7]:

Theorem. Assume that u0 W Rn ! R is a locally Lipschitz continuous function. Then
there exists a solution u W Rn � .0;1/! R of the initial value problem

(1.2)

8̂<̂
: ut D

�
ıij �

DiuDju

1C jDuj2

�
Diju; .x; t/ 2 Rn � .0; T /;

u.x; 0/ D u0.x/; x 2 Rn;

with T D C1 which is continuous up to t D 0 and C1-smooth for t > 0.

The striking feature of the result above is that existence holds for any locally Lipschitz
entire graph initial data that is independently from the spatial growth of the initial data u0.x/,
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as jxj ! C1. This is in contrast with the heat equation on Rn, where existence is guaranteed
only for initial data with at most quadratic exponential growth at infinity. The underlying reason
for this difference is that the diffusion coefficient in this non-linear problem, i.e.

gij D ıij �
DiuDju

1C jDuj2
;

becomes small in a maximal direction of the gradient when jDuj ! C1. This behavior
can simply be observed in the one-dimensional case of an entire graph u W R � .0;1/! R
evolving by curve shortening flow (CSF), where u.x; t/ satisfies the equation

(1.3) ut D
uxx

1C u2x

or in higher dimensions under rotational symmetry, where xnC1 D u.r; t/, r D jxj evolves by

(1.4) ut D
urr

1C u2r
C
n � 1

r
ur :

Note that a similar phenomenon has been observed for quasilinear equations of the form

(1.5) ut D �u
m on Rn � .0;1/

in the range of exponents .n�2/C
n

< m < 1 (see [5, 10] and the references therein). In all cases
above the slow diffusion at spatial infinity when jDuj ! C1 in (1.3) and (1.4), or u!C1
in (1.5) prevents instant blow-up of solutions with large growing initial data as jxj ! C1.

We will see that in the one-dimensional case of the CSF (equation (1.3)) or the rotation-
ally symmetric case of MCF (equation (1.4)) uniqueness holds for any entire graph solution
independently of its growth at infinity. This is in sharp contrast with the heat equation in
any dimension. More precisely, we will show the following two results. The first shows the
uniqueness of entire graph solutions to CSF:

Theorem 1.1 (Uniqueness of solutions to CSF). Let

u1; u2 W R � .0; T �! R; T > 0;

be two smooth solutions of equation (1.3) with the same Lipschitz continuous initial data u0,
that is

lim
t!0

u1. � ; t / D lim
t!0

u2. � ; t / D u0:

Then u1 D u2 on R � .0; T �.

The second result shows the uniqueness of rotationally symmetric entire graph solutions
of MCF:

Theorem 1.2 (Uniqueness of rotationally symmetric MCF solutions). Let

u1; u2 W R
n
� .0; T �! R; T > 0;

be two entire graph rotationally symmetric smooth solutions of (1.2) with the same Lipschitz
continuous initial data u0.x/, that is

lim
t!0

u1. � ; t / D lim
t!0

u2. � ; t / D u0:

Then u1 D u2 on Rn � .0; T �.
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We remark that Theorem 1.1 is already covered by the results in [4]. However, we provide
here a simpler and more direct proof in the case of entire one-dimensional graphs, in particular
pointing out the similarity with fast-diffusion. Regarding the general case of proper entire
graphs, we establish the uniqueness under a suitable lower bound on the second fundamental
form which prevents large oscillations of the solution in different directions. We then extend
this result to proper graphs over subdomains � � Rn. We begin by recalling the following
definition.

Definition 1.1 (Proper graphs over subdomains � � Rn). A graph

M WD ¹.x; u.x// W x 2 �º

over a subdomain � � Rn defined by the height function u W �! R is said to be proper if
u.x/!C1 as x ! 𝜕� or jxj ! C1 (the latter is assumed if � is unbounded, in particular
when � D Rn/.

Let Mt D ¹.x; u.x; t// W x 2 Rnº, t 2 .0; T /, be a proper entire graph solution to mean
curvature flow (1.1) starting atM0, which is defined by the height function u WRn � .0;T /!R.
We denote by v D henC1; �i�1 the gradient function ofMt , where � denotes the inward point-
ing unit normal on Mt . Since Mt , t 2 .0; T /, is assumed to be an entire graph, it follows that
henC1; �i has always the same sign. Furthermore, our assumption thatMt is proper, guarantees
that

v D henC1; �i
�1 > 0 on Mt ; t 2 Œ0; T �;

in which case v D
p
1C jDuj. In our result below we will further assume thatMt satisfies the

lower bound curvature condition

(1.6) vhij � �cı
i
j on Mt ; t 2 .0; T �;

for some uniform constant c > 0. Here hij is the second fundamental form and in the particular
case of graphs corresponds to

hij D

�
ıil �

DiuDlu

1C jDuj2

�
Dljup
1C jDuj2

:

Our uniqueness result states as follows:

Theorem 1.3 (General uniqueness result for entire graphs). Assume that u0 W Rn ! R
is a locally Lipschitz function defining a proper entire graph

M0 D ¹.x; u0.x// W x 2 Rnº � RnC1:

Let u1; u2 W Rn � .0; T �! R be two smooth solutions of (1.2) defining two entire graph solu-
tions M 1

t D ¹.x; u1.x; t// W x 2 Rnº and M 2
t D ¹.x; u2.x; t// W x 2 Rnº of MCF (1.1) which

both satisfy condition (1.6) and have the same initial data u0, that is

lim
t!0

u1. � ; t / D lim
t!0

u2. � ; t / D u0:

Then u1 D u2 on Rn � .0; T �, that is M 1
t DM

2
t for all t 2 .0; T �.

Remark 1.1. (i) Theorem 1.3 implies that uniqueness holds under convexity with no
other growth conditions on the initial data (see in Section 5). As a consequence Hamilton’s
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differential Harnack inequality holds for convex graphs evolving under mean curvature flow
(see Corollary 5.3 in Section 5). A related result was recently discussed in [1] in the context of
translating solutions.

(ii) Theorem 1.3 shows that uniqueness holds for initial data u0.x/ which has arbitrarily
large growth as jxj ! C1, as long as the lower curvature bound (1.6) holds.

(iii) Theorem 1.3 only assumes the lower bound (1.6) in comparison with the results in [2]
which assume upper and lower bounds on the second fundamental form.

At last we will discuss the uniqueness for graphs over subdomains of Rn. In that context,
the result in [13] guarantees the existence of smooth solutions:

Theorem. Let�0 � RnC1 be a bounded open set and u0 W �0 ! R a locally Lipschitz
continuous function with u0.x/!1 for x ! x0 2 𝜕�0. Then there exists .D ; u/, where
D � RnC1 � Œ0;1/ is relatively open, such that u is a solutions of the graphical mean curva-
ture flow

(1.7)

8̂<̂
: ut D

�
ıij �

DiuDju

1C jDuj2

�
Diju; .x; t/ 2 D n .�0 � ¹0º/;

u.x; 0/ D u0.x/; x 2 �0:

The function u is smooth for t > 0 and continuous up to t D 0, u. � ; 0/ D u0 in �0 and
u.x; t/!1 as .x; t/! 𝜕D , where 𝜕D is the relative boundary of D in RnC1 � Œ0;1/.

It is relevant to remark that in this theorem the domain of definition for the function u
changes in time and it is given by the mean curvature flow evolution of 𝜕�0 (see the discussion
in [13]). More precisely, u.x; t/ is a graph over�t , where�t � ¹tº DD \ .Rn � ¹tº/ and 𝜕�t
agrees with the evolution by mean curvature flow of 𝜕�0 at time t , provided that this evolution
is smooth. In addition, it is possible to see from the proof in [13] that if .xk; tk/! . Nx; Nt / 2 𝜕D
and j Nxj � R for some R > 0, then u.xk; tk/!1.

Our uniqueness result for graphs over subdomains states as follows:

Theorem 1.4 (General uniqueness result for subdomains). Let �0 � Rn be an open
set such that 𝜕�0 has a unique smooth evolution by mean curvature flow in .0; T � and let �t
be such that 𝜕�t agrees with the evolution of 𝜕�0 at time t . Assume that u0 W �0 ! R is a
locally Lipschitz function defining a proper graph M0 D ¹.x; u0.x// W x 2 �0º � RnC1. Let
u1; u2 W �t � .0; T �! R be two smooth solutions of (1.7) defining two proper graph solu-
tions M 1

t D ¹.x; u1.x; t// W x 2 �tº and M 2
t D ¹.x; u2.x; t// W x 2 �tº of MCF (1.1), both

satisfying condition (1.6), and having the same initial data u0, that is

lim
t!0

u1. � ; t / D lim
t!0

u2. � ; t / D u0:

Assume, in addition, that if .xk; tk/! . Nx; Nt / 2 𝜕D and j Nxj � R for some R > 0, we have
ui .xk; tk/!1. Then u1D u2 on D D

S
t2Œ0;T ��t �¹tº, that isM 1

t DM
2
t for all t 2 .0; T �.

The organization of this paper is as follows: In Sections 2 and 3 we give the proofs of
Theorems 1.1 and 1.2, respectively. Section 4 is devoted to the proofs of Theorems 1.3 and 1.4.
Finally, Section 5 is devoted to the proof of Hamilton’s differential Harnack inequality.
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We conclude this section with the following remarks.

Remark 1.2. In Theorem 1.4, if the evolution of 𝜕�0 is not unique, it follows from the
proof of the result that for each evolution �t there is at most one proper graphical solution
satisfying assumption (1.6).

Remark 1.3. Uniqueness for other non-compact flows has been discussed in other
works. For instance, uniqueness results for complete Ricci flow are discussed in [3] and [15].
The uniqueness for complete Yamabe flow in hyperbolic space is discussed in [14].

Acknowledgement. We would like to thank S. Lynch and Jingze Zhu for their helpful
remarks, also M. Langford for bringing to our attention the question of a differential Harnack
inequality in this setting.

2. Curve shortening flow – Theorem 1.1

In this section we will show that entire graph smooth solutions to Curve Shortening Flow
(that is (1.2) for n D 1 and � D R) are unique without any growth assumptions at spatial
infinity. This result is in contrast with the case of the heat equation where at most quadratic
exponential growth at infinity is required for uniqueness. As mentioned in the introduction
Theorem 1.1 is already covered by the results in [4]. We provide here a simpler and more direct
proof in the case of entire graphs.

The evolution of a curve y D u.x; t/ on the plane is given by

ut D
uxx

1C u2x

which can be also written in divergence form as

ut D .arctan.ux//x :

Differentiating in x we see that v WD ux satisfies the equation

(2.1) vt D .arctan v/xx :

The proof of Theorem 1.1 will be based on the following simple observation which we
prove next.

Lemma 2.1. For any 
 2 .0; 1�, the following holds:

.arctan v1 � arctan v2/C � 2.v1 � v2/


C

for all v1; v2 2 Œ0;C1/:

Proof. Fix a number 
 2 .0; 1�. We may assume that v1 > v2 and write

.arctan v1 � arctan v2/C D
Z v1

v2

1

1C s2
ds:

Assume first that v1 > v2 � 1. In this case, for any number 
 2 .0; 1� we have

v1 � .v1 � v2/
1�
 ;
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so that the above gives

.arctan v1 � arctan v2/C �
Z v1

v2

1

s2
ds D

v1 � v2

v1v2

�
v1 � v2

v1
�

v1 � v2

.v1 � v2/1�


� .v1 � v2/


C
:

In the case that 0 < v2 < 1 < v1 we have

.arctan v1 � arctan v2/C �
Z 1

v2

ds C

Z v1

1

1

s2
ds

� .1 � v2/C
v1 � 1

v1

� 2.v1 � v2/


C

since for any 
 2 .0; 1� we have

1 � v2 < .1 � v2/

 < .v1 � v2/




and
v1 � 1

v1
<
v1 � v2

v1
< .v1 � v2/


 :

The last inequality follows from v1 > .v1 � v2/
1�
 which holds in this case. Finally, for

0 < v2 < v1 � 1, we have

.arctan v1 � arctan v2/C � .v1 � v2/C � .v1 � v2/


C
:

Proof of Theorem 1.1. The proof follows the method by Herrero and Pierre in [10]. Let
v1 D u1x and v2 D u2x . We will first show that v1 � v2 on R � Œ0; T /. To this end, we set
w D .v1 � v2/C. Since v1; v2 satisfy equation (2.1), Kato’s inequality implies that w satisfies
the differential inequality

(2.2) wt � .aw/xx on R � .0; T /

in the sense of distributions, where

a WD
.arctan v1 � arctan v2/C

.v1 � v2/C
:

Our observation in Lemma 2.1 shows that for any 
 2 .0; 1/ we have

0 � a � 2w�1C
 :

We will use that momentarily.
Consider the test function '.x/ D  . x

R
/, where  .�/ is a smooth cut-off function sup-

ported in .�2; 2/ such that 0 �  � 1,  .�/ D 1 for x 2 Œ�1; 1�. Integrating the differential
inequality (2.2) against ', we obtain

d

dt

Z
w. � ; t /' dx �

Z
.aw/. � ; t /'00 dx; t 2 .0; T /:
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For any number 
 2 .0; 1/ (to be fixed at the end of our proof) we use the inequality
0 � a � 2w�1C
 to conclude

d

dt

Z
w' dx � 2

Z
w
 j'00j dx � C

�Z
w' dx

�
�Z
j'00j

1
1�
 '�



1�
 dx

�1�

:

Since j'00.x/j � CR�2j 00.�/j, x D R�, and  is supported in the interval Œ�2; 2�, we haveZ
j'00j

1
1�
 '�



1�
 dx � CR1�

2
1�


Z
j 00j

1
1�
 �



1�
 d�:

For any 
 2 .0; 1/ we can choose cutoff  D  
 such thatZ
j 00j

1
1�
 �



1�
 d� � C
 :

We conclude that I.t/ WD
R
w. � ; t /' dx satisfies

I 0.t/ � C
I.t/

R�.1C
/:

Integrating the last inequality on Œ0; Nt � for any Nt 2 .0; T /while using that limt!0 I.t/ D 0 (this
follows from the fact that v1. � ; 0/ D v2. � ; 0/ a.e.), we obtain

I.Nt /1�
 � C
 NtR
�.1C
/

H) I.Nt / � Cn Nt
1
1�
R�

1C

1�
 :

Finally, recalling that ' � 1 on Œ�R;R�, we getZ R

�R

.v1 � v2/C.x; t/ dx � Cn Nt
1
1�
R�

1C

1�
 :

Letting R!C1 and using monotone convergence we conclude thatZ 1
0

.v1 � v2/C.x; t/ dx D 0 for all t 2 Œ0; T /.

Therefore, we conclude that .v1 � v2/C � 0 on Œ0;1/ � Œ0; t0�, i.e. .u1/x. � ; t / � .u2/x. � ; t /
in R. Similarly, we get .u2/x. � ; t / � .u1/x. � ; t / in R implying that for any t 2 Œ0; T /, we
have .u1/x. � ; t / D .u2/x. � ; t / in R. This and the fact that u1 D u2 at time t D 0 easily give
us that u1 � u2, finishing our proof.

3. Rotationally symmetric solutions – Theorem 1.2

In this section we will consider the uniqueness of rotationally symmetric solutions of the
initial value problem (1.2) on Rn � .0; T /. On a radial solution u.r; t/ the evolution equation
in (1.2) becomes

(3.1) ut D
urr

1C u2r
C
n � 1

r
ur :

Differentiating (3.1) with respect to r we find that the derivative v WD ur of any solution u
of (1.4) satisfies the equation

(3.2) vt D .arctan v/rr C
�
n � 1

r
v

�
r

:
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Proof of Theorem 1.2. The proof follows the method by Herrero and Pierre in [10] and
is a generalization of the one-dimensional case with the necessary adaptations. We simply
denote by u1.r; t/; u2.r; t/ the rotational symmetric profiles we let v1 D u1r and v2 D u2r . Set
w D .v1 � v2/C. Since v1 and v2 both satisfy (3.2), Kato’s inequality implies that w satisfies

(3.3) wt � �.aw/ �
n � 1

r
.aw/r C

�
n � 1

r
w

�
r

in the sense of distributions, where

a WD
.arctan v1 � arctan v2/C

.v1 � v2/C
:

Similar to the one-dimensional case, the crucial observation is that for any 
 2 .0; 1/ we have
0 � a � 2w�1C
 .

Consider the test function

'R.r; t/ D  

�
r2 C 2.n � 1/t

R2

�
;

where  .�/ is a smooth cut-off function defined on Œ0;C1/ such that 0 �  � 1,  .�/ D 1
for 0 � � � 1 and  .�/ � 0 for � � 2. Then

.'R/t D
2.n � 1/

R2
 0; .'R/r D

2r

R2
 0 H) .'R/t D

n � 1

r
.'R/r

and

.'R/rr D
4r2

R4
 00 C

2

R2
 0 H) �'R D

4r2

R4
 00 C

2n

R2
 0:

Hence, using .'R/t D n�1
r
.'R/r , we obtain

d

dt

Z
w'Rr

n�1 dr D

Z
wt'R r

n�1 dr C

Z
w.'R/t r

n�1 dr

�

Z
aw�'Rr

n�1 dr �

Z
n � 1

r
.aw/r'Rr

n�1 dr

C

Z �
n � 1

r
w

�
r

'Rr
n�1 dr C

Z
n � 1

r
w.'R/rr

n�1 dr:

Performing integration by parts on the second and third terms, using thatZ
n � 1

r
.aw/r'Rr

n�1 dr D �

Z
n � 1

r
aw.'R/rr

n�1 dr

�

Z
.n � 2/.n � 1/

r2
aw'Rr

n�1 dr;

we obtain (after cancellations) that

d

dt

Z
w'R d� �

Z
aw�'Rr

n�1 dr C

Z
n � 1

r
aw.'R/rr

n�1 dr

C

Z
.n � 2/.n � 1/

r2
aw'Rr

n�1 dr

�

Z
.n � 1/2

r2
w'Rr

n�1 dr:

(3.4)
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Next notice that

a WD
.arctan v1 � arctan v2/C

.v1 � v2/C
D

1

1C Nv2

for some Nv between v1 and v2, hence a � 1. It follows thatZ
.n � 2/.n � 1/

r2
aw'Rr

n�1 dr �

Z
.n � 1/2

r2
w'Rr

n�1 dr

� �

Z
n � 1

r2
w'Rr

n�1 dr � 0:

Let 
 2 .0; 1/ be any number (to be chosen at the end of our proof) and use the inequality
0 � a � 2w�1C
 shown in Lemma 2.1 to bound the first two terms on the right-hand side
of (3.4). We conclude that

d

dt

Z
w'Rr

n�1 dr

� C

Z
w

�
j�'Rj C j.n � 1/r

�1.'R/r j
�
rn�1 dr

� C

�Z
w'Rr

n�1 dr

�
�Z �
j�'Rj C jr

�1.'R/r j
� 1
1�
 '

�


1�


R rn�1 dr

�1�

:

Observing that for 0 � t � t0 and R� 1 large we have

j�'R.r; t/j C jr
�1.'R/r.r; t/j � CnR

�2
�
j 00.�/j C j 0.�/

�
;

where � WD r2C2.n�1/t

R2
, we get²Z �

j�'R.r; t/j C jr
�1.'R/r.r; t/j

� 1
1�
 'R.r/

�


1�
 rn�1 dr

³1�

� R�2

²Z �
j 00.�/j C j 0.�/

� 1
1�
 .�/�



1�
 rn�1.�/ dr.�/

³1�

;

where r2.�/ D R2� � 2.n � 1/t , which in particular implies r dr D R2

2
d�. Thus,Z �

j 00.�/C j 0.�/j
� 1
1�
 .�/�



1�
 rn�1.�/ dr.�/

D
R2

2

Z �
j 00.�/C j 0.�/j

� 1
1�
 .�/�



1�


�
R2� � 2.n � 1/t

�n�2
2 d�

� CnR
n

Z �
j 00.�/C j 0.�/j

� 1
1�
 .�/�



1�
 d�

where we have used the fact that on the support of  0 and  00 where � � 2, and for 0 � t � t0
and R� max.1; t0/, one has�

R2� � 2.n � 1/t
�n�2
2 � CnR

n�2:

For any 
 2 .0; 1/ we can choose cutoff  D  
 for which the support of  0 and  00 lies
in Œ1; 2� such that Z 2

1

�
j 00.�/C j 0.�/j

� 1
1�
 .�/�



1�
 d� � C.n; 
/:
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We then conclude from the above discussion that I.t/ WD
R
w'Rr

n�1 dr satisfies

I 0.t/ � C.n; 
/I.t/
R�2Cn.1�
/:

Since 
 2 .0; 1/ can be any number, we may choose 
 D 
.n/ 2 .0; 1� so that n.1 � 
/ < 2,
and integrating the last inequality on Œ0; Nt � for any Nt 2 .0; T / while using that I.0/ D 0, we
obtain

I.Nt /1�
 � Cn NtR
�2Cn.1�
/

H) I.Nt / � Cn Nt
1
1�
Rn�

2
1�
 :

Finally, recalling that 'R � 1 on Œ0; R�, we getZ R

0

.v1 � v2/C.r; t/r
n�1 dr � Rn�

2
1�
 :

Letting R!C1, using that n � 2
1�


< 0, and monotone convergence yieldsZ R

0

.v1 � v2/C. � ; t /r
n�1 dr D 0 for all t 2 Œ0; T /.

Therefore, we conclude that .v1 � v2/C � 0 on Rn � Œ0; T /, i.e. .u1/r � .u2/r . Similarly,
.u2/r � .u1/r a.e. in Rn � Œ0; T / implying that .u2/r � .u1/r . This and the fact that u1 � u2
at time t D 0 easily give us that u1 � u2 on Rn � Œ0; t0� for all t0 < T , finishing our proof.

4. The general case

Our goal in this section is to give the proof of our general uniqueness results, Theorem 1.3
and Theorem 1.4. We will see that the proof of the latter theorem is almost identical to the
proof of the former. Hence, we will omit most of the proof of Theorem 1.4, pointing out only
the minor differences.

For the sake of completeness we show next that for entire graphs the condition u0 � C is
preserved under the flow, which implies that if the initial condition is a proper entire graph, then
the solution is proper as well, uniformly in time. Both facts will be used our proofs. Because
we are dealing with non-compact solutions, we will use the localization techniques developed
in [7].

Lemma 4.1. Let u be a solution to (1.2) on Rn � .0; T / and assume that u0.x/ � C on
jx � x0j � R, x D .x; u0.x//, for some fixed point x0 2 RnC1 and some number R > 1. Then
we have

u.x; t/ � C �
10

R
t

on the parabolic ball jx � x0j2 C 2nt � R2

2
, x D .x; u.x; t// (provided it is non-empty). In

particular, if u0 � C on Rn, then for every t 2 .0; T / we have u. � ; t / � C on Rn.

Proof. We will do all calculations in geometric coordinates, that is we assume that our
solutions are given by the embedding x D F.p; t/ as in (1.1) and we define

UR.p; t/ WD .u � C/

�
1 �
jx � x0j2 C 2nt

R2

�
C

C
5

R
t;
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where u WD hF; enC1i and x D F.p; t/. Our assumption u0 � C in BR.x0/ gives UR � 0 at
t D 0. Furthermore,

.UR/t ��UR D 2ru � 2
.x � x0/T

R2
C
5

R
� �

4

R
C
5

R
> 0:

The maximum principle implies that UR does not have any interior minima and UR � 0. In
particular, if jx � x0j2 C 2nt � 1

2
R2, then

0 �
u � C

2
C
5

R
t;

and the first result follows.
In the case where u0 � C globally on Rn, then for any x0 2 Rn, t 2 .0; T /, we apply

the above result taking x0 D .x0; u0.x// and choosing R� 1 so that jx � x0j2 C 2nt � 1
2
R2

if x D .x0; u.x0; t //. We readily conclude that u.x0; t / � C � 10
R
t and by taking R!1, we

obtain u.x0; t / � C . Since x0 2 Rn and t 2 .0; T / are arbitrary, the second result follows.

Corollary 4.2. Let u be a solution to (1.2) on Rn � .0; T � and assume that

lim
jxj!C1

u0.x/ D C1:

Then we have
lim

jxj!C1
u.x; t/ D C1 uniformly in t 2 .0; T �:

Proof. We begin by observing that our assumption limjxj!C1 u0.x/ D C1 implies
that u0 � C for some C 2 R and hence by the previous lemma, u � C as well.

Now, for every k � 1 let Rk > k be a sufficiently large number so that u0.x/ � k for
jxj � Rk . For any x0 2 Rn such that jx0j > 4Rk , let x0 D .x0; 0/. Then

u0.x/ � k on jx � x0j � 2Rk; x D .x; u0.x//

and hence, by the previous lemma, for any t 2 .0; T /, we have

u.x; t/ � k �
5

Rk
t on jx � x0j2 C 2nt � 4R2k; x D .x; u.x; t//:

We may choose k;Rk � 1 so that 2nT < R2
k

and 5
Rk
T < 1. Evaluating the above estimate at

x D .x0; u.x0; t //, for any t 2 .0; T /, it gives us that

u.x0; t / � k � 1 provided jx � x0j D ju.x0; t /j � Rk :

We conclude that for any jx0j � 4Rk and t 2 .0; T / we either have that u.x0; t / � k � 1 or
ju.x0; t /j � Rk . Since u � C (be our initial observation) and Rk � k, we conclude that in
either case u.x0; t / � k � 1, for all t 2 .0; T / and all jx0j � 4Rk . Since Rk is independent of
t , the result readily follows.

One may ask whether condition (1.6) is preserved in time, namely if vhji � �cı
j
i at time

t D 0 implies that vhji � �cı
j
i for t > 0. Although this is easy to verify for the evolution of

compact manifolds, in the non-compact setting it becomes challenging. Actually, even the case
where c D 0 is not known to hold in the general graphical non-compact setting. In the lemma
below we show that the condition is preserved under a suitable polynomial growth condition
on the solution (which is expected to be preserved by the flow from the results in [6]).
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Lemma 4.3. Assume that v hij � �cgij at time t D 0 for some constant c > 0 and that
for all times we have .jhij � i�j j v/.x/ � C jxjq for any unit vector field � and that jrvj

v
� C jxj.

Then condition (1.6) holds for every t � 0.

Proof. Let 
 Djxj2C 2nt C 1 and p > q (for instance p D q C 1) and define the tensor

fij D e
�Kt 
�p.hij v C cgij /;

where K is a constant that will be chosen later. From our assumption fij ! 0 as jxj ! 1
(in the sense that Fij � i�j ! 0 for every unit vector field �). Note in addition that the tensor
fij � 0 if and only if fij v C cgij � 0.

We will use the tensorial maximum principle to prove the results (see [8] for example),
hence the equations below are stated in the tensorial sense.

Following [6] and [11], we compute the evolution of fij . We obtain�
d

dt
��Mt

�
fij D �

2

v
hrfij ;rvi � 2Hhilg

lmfij

� fij ŒK C p.p C 1/jx
T
j
2
�2 C 2v�1
�1hxT ;rvi:

(4.1)

Let � > 0 and define zfij D fij C �gij . From our assumption at infinity, we have, for
every � > 0 and jxj sufficiently large, zfij � i�j > �

2
. In addition, from (4.1) we have�

d

dt
��Mt

�
zfij D �

2

v
hr zfij ;rvi � 2Hhilg

lm zfij

� fij ŒK C p.p C 1/jx
T
j
2
�2 C 2v�1
�1hxT ;rvi�:

(4.2)

Assume that there is a first time Nt such infx2Rn;�2Rn
zfij �

i�j D 0. Form our assumption
at infinity, this implies that there is a Nx such that the tensor zfij has a null-eigenvector, that we
denote by �. Following [8], we may extend � in a neighborhood of Nx such that �m is indepen-
dent of t , Dl�m. Nx/ D 0 and fij �j D ��� i . Then at Nx it holds 0 D r zfij D .rfij /� i�j and
0 � �Mt

. zfij �i�
j / D .�Mt

fij /�
i�j . Note in addition that fij � i�j (with � as above) attains

a minimum at Nx. Combined with (4.2) we have, at Nx, that

0 � �ŒK C p.p C 1/jxT j2
�2 C 2v�1
�1hxT ;rvi�:

From our definition of 
 and our growth assumption we haveˇ̌
p.p C 1/jxT j2
�2 C 2v�1
�1hxT ;rvi

ˇ̌
� p.p C 1/C 2C;

where C is the constant of our assumption on rv. Hence, by choosingK large enough, we get

K C p.p C 1/jxT j2
�2 C 2v�1
�1hxT ;rvi > 0;

which is a contradiction.

Remark 4.1. Note that jrvj
v
� jAjv. Then the results in [6, 7] imply that if jAjv � jxj

holds at t D 0, then this is preserved in time and the condition of our lemma is met with q D 1.

Remark 4.2. The previous lemma implies that lower bounds on the mean curvature are
also preserved under the growth conditions of Lemma 4.3.
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4.1. Proof of Theorem 1.3.

Proof. To simplify the notation in this proof, we denote u D u1 and Nu D u2, that is
we assume that u; Nu W Rn � .0; T �! R are the two smooth solutions to (1.2) with initial data
u0 as in the statement of Theorem 1.3. Since u0 is proper we have u0 � �C for some con-
stant C > 0. Hence, by adding on u0 the constant C C 1, we may assume without out loss of
generality that u0 � 1. Lemma 4.1 implies that

u; Nu � 1 on Rn � .0; T �:

To show that Nu D u, it is sufficient to prove that Nu � u, since the same argument will also imply
that u � Nu, thus showing that u D Nu.

The solutions u; Nu satisfy the equations

ut D

�
ıij �

DiuDju

1C jDuj2

�
Diju; Nut D

�
ıij �

Di NuDj Nu

1C jD Nuj2

�
Dij Nu:

Set
aij WD ı

ij
�
DiuDju

1C jDuj2
; Naij WD ı

ij
�
Di NuDj Nu

1C jD Nuj2

and define
w WD u � Nu:

Then, subtracting the above equations, we find that the function w satisfies the equation

(4.3) wt � aijDijw D .aij � Naij /Dij Nu

The main idea in the proof is to introduce the supersolution

�.x; t/ WD �.t C �/u2.x; t/

for any given � > 0 small. At the end we will let � ! 0. First, we use ut � aijDiju D 0 and
find that � satisfies

�t � aijDij � D �2�.t C �/aijDjuDiuC �u
2;

where

aijDjuDiu D

�
ıij �

DiuDju

1C jDuj2

�
DiuDju D ı

ijDiuDju �
.Diu/

2.Dju/
2

1C jDuj2

D jDuj2
�
1 �

jDuj2

1C jDuj2

�
D

jDuj2

1C jDuj2
:

Combining the above gives

�t � aijDij � D �2�.t C �/
jDuj2

1C jDuj2
C �u2 � �.u2 � 2.t C �//:

Since u � 1, we conclude that for t � 1
4

and � < 1
10

, we have

(4.4) �t � aijDij � >
�

2
u2:
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Set next
W WD w � � D u � Nu � �.t C �/u2:

By (4.3) and (4.4) we find that W satisfies

(4.5) Wt � aijDijW < .aij � Naij /Dij Nu �
�

2
u2:

Our assumption that u D Nu at t D 0 (in the sense that limt!0Œu. � ; t / � Nu. � ; t /� D 0) yields

(4.6) lim
t!0

W.x; t/ D ��2u.x; 0/ � ��2 < 0 uniformly on any K � Rn compact:

(The uniform convergence on compact sets follows from the bounds in [7] which give us local
bounds on the second fundamental form jAj � Cp

t
for both solutions u; Nu where C depends on

the initial data.)
Let

T � D min
�
T;
1

4
;
1

10c

�
;

where c is the constant in (1.6). We will use (4.5)–(4.6) and the maximum principle to conclude
that W � 0 for all t 2 Œ0; T ��. To this end, observe first that u; Nu � 1 implies that for every
fixed � > 0 and for all t 2 .0; T /,

(4.7) m� WD sup
.x;t/2Rn�.0;T ��

W.x; t/ �
1

�2
:

Indeed, notice that if there is a point .x; t/2Rn� .0; T �� whereW.x; t/� 0, then since Nu � 1,
at such a point we have u � NuC �.t C �/u2 � �2u2, that is u.x; t/ � ��2. Hence, we obtain
W.x; t/ � u.x; t/ � ��2 and the same holds for the supremum m�.

Claim 4.1. We have

m� WD sup
.x;t/2Rn�.0;T ��

W.x; t/ � 0

provided that � is sufficiently small.

Once this claim is shown, the theorem will follow by simply letting � ! 0 to show that
u � Nu and then switching the roles of u and Nu.

Proof of Claim 4.1. To prove the claim, we assume by contradiction that

m� > 0:

Since limjxj!C1 u.x; t/ D C1 uniformly in Œ0; T � and Nu � 1, the supremum m� cannot be
attained at infinity. Hence, we have

m� D W.xmax.t0/; t0/

for some point t0 2 .0; T �� and xmax.t0/ 2 Rn. Then at such point

(4.8) .1 � �.t0 C �/u/u D NuCm
� and .1 � 2�.t0 C �/u/Diu D Di Nu
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Note that the first equality, m� > 0 and u; Nu � 1 imply that 1 � �.t0 C �/u > 0 at the maxi-
mum point, which will be used below. We will now use the second equality in (4.8) to evaluate
the right-hand side of (4.5) at the maximum point. First, we have

aij � Naij D
Di NuDj Nu

1C jD Nuj2
�
DiuDju

1C jDuj2

D .1 � 2�.t0 C �/u/
2 DiuDju

1C jD Nuj2
�
DiuDju

1C jDuj2

D
DiuDju

.1C jDuj2/.1C jD Nuj2/

� Œ.1 � 2�.t0 C �/ u/
2.1C jDuj2/ � .1C jD Nuj2/�

D �4�.t0 C �/u.1 � �.t0 C �/u/
DiuDju

.1C jDuj2/.1C jD Nuj2/
:

(4.9)

To derive the last equality we used .1 � 2�.t0 C �/ u/2 jDuj2 D jD Nuj2 which gave us

.1 � 2�.t0 C �/u/
2.1C jDuj2/ � .1C jD Nuj2/ D .1 � 2�.t0 C �/u/

2
� 1

D �4�.t0 C �/u
�
1 � �.t0 C �/u

�
:

Combining the above with (4.5), we find that at the point .xmax.t0/; t0/ we have

0 � Wt � aijDijW

< �4�.t0 C �/u.1 � �.t0 C �/u/
Dij NuDiuDju

.1C jDuj2/.1C jD Nuj2/
�
�

2
u2:

(4.10)

We next use the lower bound on the second fundamental form in (1.6) which implies that

Nv NhijDiuDju � �cjDuj
2:

On the other hand, since

Nhij D
Dij Nup
1C jD Nuj2

�
Dlj NuDl NuDi Nu

.1C jD Nuj2/
3
2

;

it follows that at the maximum point .xmax.t0/; t0/ we have

Nv NhijDiuDju D

�
Dij Nu �

Dlj NuDl NuDi Nu

1C jD Nuj2

�
DiuDju

D Dij NuDiuDju � hD Nu;Dui
Dij Nu

1C jD Nuj2
Di NuDju

D
�
1C jD Nuj2 � .1 � 2�.t0 C �/ u/

2
jDuj2

� Dij Nu

1C jD Nuj2
DiuDju

D
Dij NuDiuDju

1C jD Nuj2
:

Combining the last two formula gives

Dij NuDiuDju

1C jD Nuj2
D Nhij NvDiuDju � �cjDuj

2:
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Inserting this bound in (4.10) implies that at the point .xmax.t0/; t0/ we have

0 � Wt � aijDijW < 4�c.t0 C �/u.1 � �.t0 C �/u/
jDuj2

1C jDuj2
�
�

2
u2

� 4�c.t0 C �/u.1 � �.t0 C �/u/ �
�

2
u2:

(4.11)

We conclude from (4.11) that at the maximum point .xmax.t0/; t0/,

4�c.t0 C �/u.1 � �.t0 C �/u/ �
�

2
u2 > 0;

that is
u < 8c.t0 C �/.1 � �.t0 C �/u/ < 8c.t0 C �/;

since u > 0. Then u � 1 yields that t0 C � > 1
8c

, where c is the constant from equation (1.6).
Since we have assumed that t0 2 .0; T �� and T � � 1

10c
, we derive a contradiction by choosing

� sufficiently small. This shows that, contrary to our assumption, W �.t0/ < 0, finishing the
proof of the claim.

We have just seen that W WD u � Nu � �.t C �/u2 � 0 on Rn � .0; T ��. Let � ! 0 to
obtain that u � Nu on Rn � .0; T ��. Similarly, Nu � u on the same interval, which means that
u D Nu. By repeating the same proof starting at t D T �, we conclude after finite many steps
that u � Nu on Rn � .0; T /, finishing the proof of the theorem.

4.2. Proof of Theorem 1.4.

Proof. The proof of Theorem 1.4 is very similar to that of Theorem 1.3. We briefly out-
line it in what follows. As before, let u; Nu W D WD

S
t2.0;T �.�t � ¹tº/! R be the two smooth

solutions to (1.7) with initial data u0 as in the statement of Theorem 1.4 (as above, we simplify
the notation by calling u D u1 and Nu D u2). Our assumption that u0 is proper implies that
u0 � �C for some constant C > 0 and hence Lemma 4.1 implies that u; Nu � �C , for t > 0
(possibly for a different constant C > 0 which is uniform in t for t < min.1; T /, where T is
the maximal existence time). By adding on both solutions the constant C C 1, we may assume
that u; Nu � 1. As in the proof of Theorem 1.3, we take

W WD w � � � � D u � Nu � �.t C �/u2:

Let m� WD sup.x;t/2D W.x; t/ and assume that m� > 0.
We first remark that Lemma 4.1 and Corollary 4.2 can directly be extended to estimate the

infimum of u in D \ BR.x0/ (instead of Rn \ BR.x0/ ). Hence we have that if u0 is proper,
then u.x; t/!1 uniformly in t as jxj ! 1.

Let .xk; tk/ be a sequence of points in D such that W.xk; tk/! m�. Note that from our
definition and the previous remark we have that if tk ! Nt and either xk ! 𝜕�Nt or jxkj ! C1,
then u.xk; tk/!1 and W ! �1. Hence, we may assume that the supremum of W is
attained in the interior of �Nt . Now we conclude the desired result by following the proof of
Theorem 1.3.

4.3. Extension of uniqueness for entire graphs (not necessarily proper). In this
subsection we provide extensions to our result in Theorem 1.3. We will consider graphical
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solutions that are not necessarily proper, but their initial height function u0 and its gradient
function v0 satisfy the following assumption:

(4.12) for every M there is a constant c.M/ such that sup
¹xWu0.x//<M º

v0 � c.M/:

This condition can be understood as excluding oscillatory behavior in the set where the
height function u0 is bounded at the initial time. Then our result states as follows:

Theorem 4.4. Assume that u0 W Rn ! R is a locally Lipschitz function (not necessarily
proper) defining an entire graph hypersurface M0 D ¹.x; u0.x// W x 2 Rnº � RnC1 whose
height function u0 is bounded from below and also satisfies condition (4.12). Let

u1; u2 W R
n
� .0; T �! R

be two smooth solutions of (1.2) defining two entire graph solutions

M 1
t D ¹.x; u1.x; t// W x 2 Rnº and M 2

t D ¹.x; u2.x; t// W x 2 Rnº

of MCF (1.1) satisfying condition (1.6) and having the same initial data u0, that is

lim
t!0

u1. � ; t / D lim
t!0

u2. � ; t / D u0:

Then u1 D u2 on Rn � .0; T �, that is M 1
t DM

2
t for all t 2 .0; T �.

We will first show that condition (4.12) is preserved in time and that implies uniform local
bounds for the second fundamental form on the set where ¹u �M º (these bounds depend only
on M ).

Proposition 4.5. Assume that u � 0 is a smooth solution of (1.2) with initial data u0
and that (4.12) holds. Then:

(i) .M � u/2
C
v �M 2 c.M/ holds for all t 2 .0; T �.

(ii) If we further assume that jAj2.x; 0/ � c.M/ in the set ¹x W u0.x/ �M º (without loss of
generality we can take c.M/ to be the same as in (4.12)), then

(4.13) jAj2.M � u/2C � max¹c.M/M 2; k�1.3C k�1/M º;

where k D 1
2M2c.M/

.

(iii) Without any assumption on the second fundamental form at the initial time, we have
instead

(4.14) t jAj2.M � u/2.x; t/ � k�1.3C k�1v�2/T .2M C 1/2 CM 2

if 0 � t � T , u.x; t/ �M and k D 1
2M2c.M/

.

Proof. (i) Consider the cut-off function (in terms of both u and x) given by

(4.15) �R.x; t/ D

�
.M � u/C

�
1 �
jxj2 C 2nt

R2

�
C

�
4

R
t

�
C

:
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A direct calculation shows that

(4.16) .�R/t ���R D
2

R2
hru;rjxj2i �

4

R
� 0:

In the last line we used that jrjxj2j D 2jxT j � 2R in the set that 1 � jxj
2C2nt

R2
� 0 and that

jruj � 1. Recalling also that

vt ��v D �jAj
2v � 2

jrvj2

v

and defining VR D v�2R, we have

.VR/t ��VR D �
2
R

�
�jAj2v � 2

jrvj2

v

�
� 2vjr�Rj

2
� 4�hrv;r�Ri

� �2R

�
�jAj2v � 2

jrvj2

v

�
� 2vjr�Rj

2
C 2�2R

jrvj2

v
C 2jr�Rj

2v

D ��2RjAj
2v < 0:

A standard application of the maximum principle shows that VR does not have any interior
maximum and hence

VR � maxVR. � ; 0/ �M 2c.M/:

The result follows by taking R!1.
(ii) We follow the proof of [7, Theorem 3.1] replacing the localization function in that

paper by �2R (where �R is defined by (4.15)). The proof is analogous and we only point out
the main steps and differences. Following [7], we define k such that kv2 � 1

2
in the set that

�R 6D 0 and define the function

g D
v2jAj2

1 � kv2
:

Then

gt ��g � �2kg
2
�

2k

.1 � kv2/2
jrvj2g � 2

v�1

1 � kv2
hrv;rgi:

A similar calculation as in [7] where we use (4.16) gives that

.�2R g/t ��.�
2
R g/ � �2k�

2
Rg

2
�

2k

.1 � kv2/2
jrvj2�2Rg � 2�

2
R

v�1

1 � kv2
hrv;rgi

� 2gjr�Rj
2
� 4�Rhr�R;rgi:

Following again [7], we can find a vector function b (that can be explicitly computed, but it is
not important) such that

.�2R g/t ��.�
2
R g/ � �2k�

2
Rg

2
C .6C 2k�1v�2/gjr�Rj

2
C hr.g�2R/; bi:

Then, observing that for R > it holds jr�Rj2 � .2M C 1/2, we conclude that if �2R g has an
interior maximum, then

0 � �2k�2Rg
2
C .6C 2k�1v�2/gjr�Rj

2

� �2k�2Rg
2
C .6C 2k�1v�2/g.2M C 1/2

or equivalently,
�2Rg � k

�1.3C k�1v�2/M:

Taking R to infinity (4.13) follows since v � 1.
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(iii) Finally, consider t�2R g. Then we have

.t�2R g/t ��.t�
2
R g/ � �2k�

2
Rtg

2
C .6C 2k�1v�2/tgjr�Rj

2

C hr.tg�2R/; bi C �
2
R g:

At a maximum it holds

t�2Rg � k
�1.3C k�1v�2/t.2M C 1/2 CM 2;

and we conclude (4.14) by taking R!1.

We will now prove Theorem 4.4:

Proof of Theorem 4.4. As in the proof of Theorem 1.3, we set u D u1, Nu D u2 and
assume without loss of generality that u0 � 1 in which case u; Nu � 1 (this follows from u0 � 1

and Lemma 4.1). We define as before

W WD w � � D u � Nu � �.t C �/u2

and set

T � D min
�
T;
1

4
;
1

10 Nc

�
;

where Nc is a uniform constant (to be determined later) and depends on the constant c in (1.6).
We proceed as in the proof of Theorem 1.3, but we need to consider an additional case:

the supremum m� is attained at infinity. This means there exist a sequence of points yk 2 Rn

with jykj ! C1 and a sequence of times sk 2 .0; T �� with sk ! t0 such that

W.yk; sk/ >
m�

2
> 0:

Applying the maximum principle, we will deduce that t0 > 1
8c

deriving a contradiction
to the definition of T �. Notice that since our initial data is complete non-compact and the
convergence of our solutions to the initial data is assumed to be uniform only on compact
subsets of Rn, it is not a priori guaranteed that t0 > 0, that is at this point we assume that
sk ! t0 2 Œ0; T

��.
To apply the maximum principle, we employ a parabolic version of the Omori–Yau

maximum principle (see for example in [12]). We define the functions

Wk.x; t/ D W.x; t/ � t
jxj2

C 2
k

for Ck D max¹jykj
2; kº

and we look at the supremum of Wk in Rn � .0; sk�. If this supremum is less than m�

4
, then

W.yk; sk/ �
m�

4
C t
jykj

2

C 2
k

and from our choice of Ck we have

W.yk; sk/ �
3m�

8
<
m�

2
for k � 1,

contradicting our assumption.
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We deduce that

mk WD sup
Rn�.0;sk�

Wk >
m�

4
> 0:

Since W is uniformly bounded (see (4.7)), this supremum is attained in the interior at a point
.xk; tk/ 2 Rn � .0; sk�. At this point necessarily we have

W.xk; tk/ � tk
jxkj

2

C 2
k

> 0; Wt .xk; tk/ D .Wk/t .xk; tk/C
jxkj

2

C 2
k

� 0;(4.17)

DW.xk; tk/ D
2tkxk

C 2
k

; DijW.xk; tk/ �
2tkıij

C 2
k

�
2tkıij

k2
;

where the last inequality is understood in the sense of quadratic forms, that is

DijW.xk; t /�i�j <
2tk

k2
j�j2 for all � 2 Rn n ¹0º:

Furthermore, notice that since .xk; tk/ is the maximum for Wk on Rn � .0; sk�, we have

W.xk; tk/ � tk
jxkj

2

C 2
k

� W.0; 0/;

and because W � ��2, we have

tk jxkj
2

C 2
k

� W.xk; tk/ �W.0; 0/ � �
�2
�W.0; 0/ D ��2 C �2u2.0; 0/ DWM�:

Then

(4.18) jDW.xk; tk/j D
2tkjxkj

C 2
k

�
2
p
tkM�

Ck
�
2
p
tkM�

k
D O

�p
tk

k

�
:

Moreover, since Wk.xk; tk/ D m�k >
m�

4
> 0, we have

W.xk; tk/ D Wk.xk; tk/C tk
jxkj

2

C 2
k

>
m�

4
> 0:

Combining these with (4.17), we conclude the following:

W.xk; tk/ >
m�

4
> 0; Wt .xk; tk/ � 0;(4.19)

jDW.xk; tk/j � O

�p
tk

k

�
; DijW.xk; tk/ �

2ıij

k2
:

Hence, we deduce from (4.3), (4.4), (4.19) and the uniform ellipticity of the matrix aij
that

(4.20) �
C

k2
� Wt � aijDijW < .aij � Naij /Dij Nu �

�

2
u2

holds at each point .xk; tk/. Furthermore, from W.xk; tk/ > 0 we have

.1 � �.tk C �/u.xk; tk//u.xk; tk/ > Nu.xk; tk/:
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Next, observe that the fact that W.xk; tk/ > 0 implies that u.xk; tk/ is bounded (other-
wise if u.xkl ; tkl /!C1 for some subsequence, then liml!C1W.xkl ; tkl /! �1). Fur-
thermore, u.xk; tk/ bounded and u; Nu � 1 imply that Nu.xk; tk/ is bounded as well. Hence, we
may assume without loss of generality that

u.xk; tk/! u� Nu.xk; tk/! Nu
� and 1 � u.xk; tk/; Nu.xk; tk/ � u

�
C 1:

Therefore, our assumption that u; Nu satisfy condition (4.12) and the first assertion in Proposi-
tion 4.5 applied to M D u� C 2 yield

jDu.xk; tk/j � C.u
�/ and jD Nu.xk; tk/j � C.u

�/:

Furthermore, by the third assertion in Proposition 4.5 we have

tkjAj
2.xk; tk/ � C.u

�/ and tkj NAj
2.xk; tk/ � C.u

�/:

It follows that at the points .xk; tk/ we have for every i; j 2 ¹1; : : : ; nº that
p
tkvjh

j
i j.xk; tk/ � C.u

�/ and
p
tkvj Nh

j
i j.xk; tk/ � C.u

�/

and also

(4.21)
p
tk

jDijujp
1C jDuj2

� C.u�/ and
p
tk

jDij Nujp
1C jD Nuj2

� C.u�/:

These bounds will be used momentarily.
We will next analyze the main term on right-hand side of (4.20). From the definition ofW

we have D Nu.xk; tk/ D .1 � 2�.tk C �/ u/Du �DW . Then, similarly to (4.9) (the computa-
tion here has more terms since DW ¤ 0), we get

aij � Naij D
Di NuDj Nu

1C jD Nuj2
�
DiuDju

1C jDuj2

D .1 � 2�.t0 C �/u/
2 DiuDju

1C jD Nuj2
�
DiuDju

1C jDuj2

C
DiWDjW � .1 � 2�.tk C �/ u/.DiuDjW CDiWDju/

1C jD Nuj2

D
�
�4�.t0 C �/u.1 � �.t0 C �/u/C hDW; bi

� DiuDju

.1C jDuj2/.1C jD Nuj2/

C
DiWDjW � .1 � 2�.tk C �/ u/.DiuDjW CDiWDju/

1C jD Nuj2
;

where b D 2.1 � 2�.tk C �/ u/Du �DW . Denoting

Bij D hDW; bi
DiuDju

.1C jDuj2/.1C jD Nuj2/

C
DiWDjW � .1 � 2�.tk C �/ u/.DiuDjW CDiWDju/

1C jD Nuj2
;

we can then express the main term .aij � Naij /Dij Nu on right-hand side of (4.20) as

.aij � Naij /Dij Nu D �4�.t0 C �/u.1 � �.t0 C �/u/
Dij NuDiuDju

.1C jDuj2/.1C jD Nuj2/

C BijDij Nu:

(4.22)
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Next observe that from (4.18) at .xk; tk/, we have

jBij j � C.u
�/

p
tk

k
;

which combined with (4.21) yields

(4.23) jBijDij Nuj � C

p
tk

k
.
p
tk/ D O

�
1

k

�
:

To bound the first term on the right-hand side of (4.22), we use (1.6) which in particular
implies that

(4.24) Nv NhijDiuDju � �cjDuj
2:

On the other hand,

DW D .1 � 2�.tk C �/ u/Du �D Nu and Nhij D
Dij Nup
1C jD Nuj2

�
Dlj NuDl NuDi Nu

.1C jD Nuj2/
3
2

imply

Nv NhijDiuDju D

�
Dij Nu �

Dlj NuDl NuDi Nu

1C jD Nuj2

�
DiuDju

D Dij NuDiuDju � hD Nu;Dui
Dlj Nu

1C jD Nuj2
Dl NuDju

D

�
1C jD Nuj2 � .1 � 2�.tk C �/ u/

2
jDuj2

�
Dij Nu

1C jD Nuj2
DiuDju

C .1 � 2�.tk C �/ u/
jDuj2

1C jD Nuj2
DijuDjuDiW

C .1 � 2�.tk C �/ u/
hDW;Dui

1C jD Nuj2
DijuDjuDiu

�
hDW;Dui

1C jD Nuj2
DijuDiWDju

D
�
1C jD Nuj2 � .1 � 2�.tk C �/ u/

2
jDuj2

� Dij Nu

1C jD Nuj2
DiuDjuCO

�
1

k

�
;

where to derive the last line we combined (4.18) and (4.21) (following a similar estimate as the
one we did for BijDij Nu).

To further estimate the last line above, we use

jD Nuj2 � .1 � 2�.tk C �/ u/
2
jDuj2 D hDW;D NuC .1 � 2�.tk C �/ u/Dui

D O

�p
tk

k

�
concluding that

Nv NhijDiuDju D
Dij Nu

1C jD Nuj2
DiuDjuCO

�
1

k

�
which in turn combined with (4.24) yields

(4.25)
Dij Nu

1C jD Nuj2
DiuDju � �cjDuj

2
CO

�
1

k

�
:
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Finally, (4.20), (4.22), (4.23) and (4.25) together imply that as k !1

0 � 4 Nc�.t0 C �/u
�.1 � �.t0 C �/u

�/ �
�

2
.u�/2:

We now use the same argument as in the proof of Theorem 1.3 to conclude that this is not
possible provided that t0 C � > 1

8c
, where c is the constant from (1.6). Since we have assumed

that t0 2 .0; T �� and T � � 1
10 Nc

, we derive a contradiction by choosing � sufficiently small.
This shows that, contrary to our assumption, W �.t0/ < 0, finishing the proof of the claim.

5. The convex case and Harnack inequality

In this final section we will state the existence and uniqueness result for convex, proper,
non-compact entire graphs mean curvature flow solutions and show that Hamilton’s Harnack
inequality (proved in [9]) holds.

Theorem 5.1 (Uniqueness of convex entire graph solutions). Assume that u0 W Rn ! R
is a convex function defining a proper entire graph convex hypersurface

M0 D ¹.x; u0.x// W x 2 Rnº � RnC1:

Let u1; u2 W Rn � .0; T /! R be two solutions of (1.2) defining two proper smooth convex
entire graph solutions M 1

t D ¹.x; u1.x; t// W x 2 Rnº and M 2
t D ¹.x; u2.x; t// W x 2 Rnº of

MCF (1.1) with the same initial data u0, that is

lim
t!0

u1. � ; t / D lim
t!0

u2. � ; t / D u0:

Then u1 D u2 on Rn � .0; T /, that is M 1
t DM

2
t for all t 2 .0; T /.

Proof. Since our initial data is a convex proper entire graph over Rn, we may assume
that it lies above the enC1 D 0 plane, that is u0.x/ � 0 for all x 2 Rn. Furthermore, we
have limx!C1 u0.x/ D C1 and the same holds for both solutions ui .x; t/, i D 1; 2, namely
ui . � ; t / � 0 and limx!C1 ui .x; t/ D C1 for all t > 0. Then one can apply the maximum
principle argument in Theorem 1.3 (actually in the convex case the computation is simpler) to
show that for any small number � > 0, one has

u1 � u2 � �tu
2
1 C �

and, similarly,
u2 � u1 � �tu

2
2 C �

for all t 2 .0; T /. Taking � ! 0 readily gives that u1 D u2 for all t 2 .0; T /.

An immediate consequence of the previous result is that convex graphical MCF solutions
can be smoothly approximated by compact ones. For any two compact convex hypersurfaces
†1 and †2 we write that †1 � †2 if †2 encloses †1 (allowing †1 \†2 ¤ ;).

Corollary 5.2. Let Mt D ¹.x; u.x; t// W x 2 Rnº � RnC1, t 2 .0;C1/, be a smooth
entire graph mean curvature flow solution with initial dataM0D¹.x; u0.x// W x 2Rnº �RnC1

which is a proper convex entire graph, normalized in such a way that

u.0/ D min
x2Rn

u0.x/ D 0:
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Then Mt can be approximated by a sequence M i
t of compact convex mean curvature flow

solutions. More precisely, the surfaces †it are reflection symmetric with respect to the hyper-
plane ¹xnC1 D iº and their lower parts y†it defined by y†it WD †

i
t \ ¹xnC1 < iº converge,

as i !C1, to Mt , smoothly on compact subsets of RnC1 � .0;C1/.

Proof. From our assumptions we have Mt D¹.x; u.x; t// W x 2Rnº for all t 2 .0;C1/
and that u. � ; t / � 0 for all t � 0, since we have normalized our initial data so that

u.0/ D min
x2Rn

u0.x/ D 0:

Furthermore, since u0.x/ is assumed to be proper we have

lim
x!C1

u.x; t/ D C1 for all t � 0.

For each integer i � 1, we define the Lipschitz domains

D i
0 D ¹.x; xnC1/ 2 RnC1 W u0.x/ � xnC1 � 2i � u0.x/º

and we let †i0 D 𝜕D
i
0. Our assumption that u.0/ D 0 guarantees D i

0 ¤ ; for all i � 1. Note
that†i0 � RnC1 is just the closed hypersurface that consists ofM0 \ ¹xnC1 � iº and its reflec-
tion with respect to the hyperplane xnC1 D i . Furthermore, each †i0 is convex and Lipschitz
continuous.

Standard MCF theory shows that for any i � 1, there exists a unique smooth mean cur-
vature flow †it starting at †i0. The solutions †it exists up to times T i , they satisfy †it � †

iC1
t

(†iC1t encloses†it ), and limi!C1 T i D C1. The strong maximum principle guarantees that
each †it , 0 < t < T

i , is strictly convex. Furthermore, †it is reflection symmetric with respect
to the hyperplane ¹xnC1 D iº, since †i0 is by construction.

Denote by y†it to be the lower half of †i , that is

y†it WD †
i
t \ ¹xnC1 < iº:

Also, for any point x0 2 RnC1 let us denote by BnC1R .x0/ the ball in RnC1 of radiusR centered
at x0.

Claim 5.1. Fix T > 0. For anyR > 1, there exists an integer iR such as long as i � iR,
the lower part of y†it \ B

nC1
2R .0/, t 2 Œ0; T �, can be written as a graph ¹.x; ui .x; t// W jxj � Rº

and satisfies a uniform gradient bound which is independent of i and depends only on R
and M0.

Proof. Fix T > 0 and assume that i is chosen sufficiently large so that T i > T . Given
any R > 1, we may choose iR sufficiently large so that T � R and if x0

i D .0; i/ 2 RnC1,
then BnC14R .x0

i / � †it for all i � iR and all t 2 Œ0; T �. The convexity and symmetry of the
solutions †it then imply that for any i � iR, y†it \ B

nC1
3R .0/, t 2 Œ0; T �, can be written as

a graph
¹.x; ui .x; t// W jxj � 3Rº:

So it remains to show the uniform gradient bound of y†it \ B
nC1
2R .0/, t 2 Œ0; T �, for all i � iR.

This readily follows from the local gradient bound in [7] and the fact that ui .x; 0/ D u0.x/ for
all i � iR, which implies that †i0 \ B

nC1
3R .0/, i � iR, satisfy a uniform gradient bound.
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The results in [7] then imply that y†it \ B
nC1
R .0/, t 2 Œ0; T �, i � iR, have uniformly

bounded second fundamental forms. More precisely, there exists a constant CR;T that is inde-
pendent of i such that the second fundamental form jAi j of †i satisfies the bound

sup
y†it\B

nC1
R .0/

jAi j � CR;T t
� 1
2 ; t 2 .0; T �;

provided that i � iR.
One can then pass to the limit (over a subsequence ik !C1) and obtain a smooth entire

graph mean curvature flow solution yMt , t 2 .0; T / whose second fundamental form satisfies
the bound

sup
yMt\B

nC1
R .0/

jAj � CR;T t
� 1
2 ; t 2 .0; T �:

Standard arguments then imply that if yMt D ¹.x; yu.x; t// W x 2 Rnº, then

lim
t!0
yu.x; t/ D u0.x/:

Since xnC1 D u0.x/ is proper, it follows that xnC1 D yu.x; t/ is proper as well. Hence, Theo-
rem 5.1 guarantees that u D yu on Rn � .0; T /. Since T > 0 was arbitrary, we conclude that
u D yu on Rn � .0;C1/ finishing the proof of the corollary.

Remark 5.1. Our methods can be applied to study the uniqueness of the (convex)
solutions that are analyzed by X.-J. Wang in [16]. More precisely, in that paper, the author
studies convex translating solutions to mean curvature flow via a level set method. In the non-
compact case, those solutions are obtained via taking limits and our techniques can be used
as an alternative proof of the uniqueness of such limits. We leave the details to the interested
reader.

An immediate consequence of Corollary 5.2 is that Hamilton’s Harnack inequality holds
for entire convex graphs.

Corollary 5.3 (Hamilton’s Harnack estimate). Any smooth convex proper entire graph
solution Mt , t 2 .0;C1/, of mean curvature flow satisfies Hamilton’s Harnack differential
inequality, namely for any tangent vector field V ,

(5.1)
𝜕H
𝜕t
C 2hrH;V i C h.V; V /C

H

2t
� 0:

Proof. Let †ti be approximating sequence of compact convex solutions which were
constructed in Corollary 5.2. Each of them satisfy the Harnack differential inequality (5.1).
Passing to the smooth limit on compact sets, we conclude that (5.1) also holds for our complete
non-compact solution Mt , for all t 2 .0;C1/.
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