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Uniqueness of entire graphs evolving by
mean curvature flow

By Panagiota Daskalopoulos at New York and Mariel Saez at Santiago

Abstract. In this paper we study the uniqueness of graphical mean curvature flow
with locally Lipschitz initial data. We first prove that rotationally symmetric entire graphs are
unique, without any further assumptions. Our methods also give an alternative simple proof
of uniqueness in the one-dimensional case. In the general case, we establish the uniqueness
of entire proper graphs that satisfy a uniform lower bound on the second fundamental form.
The latter result extends to initial conditions that are proper graphs over subdomains of R”.
A consequence of our result is the uniqueness of convex entire graphs, which allow us to
prove that Hamilton’s Harnack estimate holds for mean curvature flow solutions that are convex
entire graphs.

1. Introduction

The evolution under mean curvature flow studies a family of immersions
F(-,t) : M" >R 1re(0,7),

of n-dimensional hypersurfaces in R” ! such that

)
(1.1) 5 Fp.0)=H(p.w(p.1). pe M"

where H(p,t) and v(p,t) denote the mean curvature and upward pointing normal of the
surface M; := F(M™,t) at the point F(p,1).

We will assume in this work that My, t € (0, T] is a complete non-compact graph over
adomain Q; C R” (if 029 # @, then 0$2; will evolve by MCF, hence €2; is changing in time).
Then the solution M; can be written as M; = {(x,u(x,t)) : x € Q;} for a height function
u(x,t). In the case where 2 = R” we will say that M; is an entire graph.
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The height function u satisfies the following quasilinear parabolic initial value problem:

. DiuD/u
Uy = (811 — m)l)lju, ()C,[) S Qt X (0, T],

u(x,0) = ug(x), x € Qo,

where My := {(x,uo(x)) : x € Qo}. Here we sum over repeated indices. In what follows, we
will refer to this equation as graphical mean curvature flow.

Although the mean curvature flow (MCF) has extensively been studied in the compact
case from many points of view (such as existence and regularity, weak solutions, singularities,
the extension of the flow through the singularities, flow with surgery) not much has been done
in the non-compact case beyond the fundamental works by Ecker and Huisken [6,7] which deal
with graphs over R” and the more recent work by the second author and Schniirer [13] which
deals with graphs over domains.

The works by Ecker and Huisken [6,7] establish the existence and local a’priori estimates
of the graphical MCF over R”. Also, in [6] the uniqueness of graphical solutions is addressed
in some special cases. The results in [7] show that in some sense the MCF on entire graphs
behaves better than the heat equation on R”, namely an entire graph solution exists for all
times, independently from the growth of the initial surface at infinity. The initial entire graph is
assumed to be locally Lipschitz. Methods of similar spirit as in [7] are used by the second author
and Schniirer in [13] to establish the existence of MCF solutions which are complete non-
compact graphs over domains ©2; C R”. Note that if 029 # @, then 02, will evolve by MCF,
that is in general it will change in time.

While the works [6,7] and [13] completely address the existence of classical solutions to
the graphical MCF with Lipschitz continuous initial data (on R” or domains), the uniqueness
question in such generality has remained on open question. While the methods in [6, 7] imply
that polynomial growth at infinity is preserved by the flow, the question of uniqueness is not
addressed in those works. In [2] the authors address uniqueness of graphs in general ambi-
ent manifolds and high co-dimension. However, their result requires a uniform bound on the
second fundamental form for all times. Our goal in this work is to address the uniqueness of
classical solutions to (1.2) under minimal assumptions on the behavior of the initial data u¢(x)
as |x| = +o0, and under no assumptions on the behavior of the solutions at infinity.

We will first describe our results in the case of entire graphs, these are Theorems 1.1-1.3.
We will then state our result in the case of domains.

For the reader’s convenience let us state the following existence result for graphical MCF
over R” that follows from the Ecker and Huisken works [6, 7]:

Theorem. Assume that uy : R"™ — R is a locally Lipschitz continuous function. Then
there exists a solution u : R™ x (0, 00) — R of the initial value problem

. D'uD/u
Uy = (8”—m)DUH, (X,[)GRnX(O,T),

u(x,0) = ug(x), x € R,

(1.2)

with T = +o0 which is continuous up tot = 0 and C°°-smooth fort > 0.

The striking feature of the result above is that existence holds for any locally Lipschitz
entire graph initial data that is independently from the spatial growth of the initial data uo(x),
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as |x| = 4o0. This is in contrast with the heat equation on R”, where existence is guaranteed
only for initial data with at most quadratic exponential growth at infinity. The underlying reason
for this difference is that the diffusion coefficient in this non-linear problem, i.e.

DiuD/y
1+ [Du*
becomes small in a maximal direction of the gradient when |Du| — +o00. This behavior

can simply be observed in the one-dimensional case of an entire graph u : R x (0, 00) - R
evolving by curve shortening flow (CSF), where u(x, ¢) satisfies the equation

ij _ ¢ij
g’ =

Uxx
1.3 Ur =
(13 Tl 4u2
or in higher dimensions under rotational symmetry, where x,+1 = u(r,t), r = |x| evolves by
Upy n—1
1.4 = .

Note that a similar phenomenon has been observed for quasilinear equations of the form

(1.5) u; = Au™ onR” x (0, 00)

in the range of exponents % < m < 1 (see [5,10] and the references therein). In all cases
above the slow diffusion at spatial infinity when | Du| — +o0 in (1.3) and (1.4), or u — 400
in (1.5) prevents instant blow-up of solutions with large growing initial data as |x| — 4o0.
We will see that in the one-dimensional case of the CSF (equation (1.3)) or the rotation-
ally symmetric case of MCF (equation (1.4)) uniqueness holds for any entire graph solution
independently of its growth at infinity. This is in sharp contrast with the heat equation in
any dimension. More precisely, we will show the following two results. The first shows the

uniqueness of entire graph solutions to CSF:
Theorem 1.1 (Uniqueness of solutions to CSF). Let

up,uz :Rx (0, T]—- R, T >0,
be two smooth solutions of equation (1.3) with the same Lipschitz continuous initial data u,
that is
lim uy(-,¢) = lim ua(-,1) = up.
t—0 t—0
Thenu; = u on R x (0, T1].
The second result shows the uniqueness of rotationally symmetric entire graph solutions
of MCF:
Theorem 1.2 (Uniqueness of rotationally symmetric MCF solutions). Let
up,uy :R"x (0, T] - R, T >0,

be two entire graph rotationally symmetric smooth solutions of (1.2) with the same Lipschitz
continuous initial data uy(x), that is

lim uy(-,7) = lim ua(-,1) = up.
t—0 t—0

Thenuy = uz on R™ x (0, T].
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We remark that Theorem 1.1 is already covered by the results in [4]. However, we provide
here a simpler and more direct proof in the case of entire one-dimensional graphs, in particular
pointing out the similarity with fast-diffusion. Regarding the general case of proper entire
graphs, we establish the uniqueness under a suitable lower bound on the second fundamental
form which prevents large oscillations of the solution in different directions. We then extend
this result to proper graphs over subdomains €2 C R”. We begin by recalling the following
definition.

Definition 1.1 (Proper graphs over subdomains 2 C R™). A graph
M = {(x,u(x)):x € 2}

over a subdomain  C R” defined by the height function u : 2 — R is said to be proper if
u(x) = 400 as x — 0 or |x| — +oo (the latter is assumed if €2 is unbounded, in particular
when Q@ = R").

Let M; = {(x,u(x,t)) : x € R"},t € (0, T), be a proper entire graph solution to mean
curvature flow (1.1) starting at My, which is defined by the height function u : R” x (0,7) — R.
We denote by v = (e,+1,v) ! the gradient function of M;, where v denotes the inward point-
ing unit normal on M;. Since M;, t € (0, T), is assumed to be an entire graph, it follows that
(en+1, v) has always the same sign. Furthermore, our assumption that M; is proper, guarantees
that

v = {eps1.v) ' >0 onM;tel0T],

in which case v = /1 + | Du|. In our result below we will further assume that M; satisfies the
lower bound curvature condition

(1.6) vhj- > —08; on My, t € (0,T],

for some uniform constant ¢ > 0. Here hj. is the second fundamental form and in the particular
case of graphs corresponds to

/ L+ |Dul?) \/T+|Dul?

Our uniqueness result states as follows:
Theorem 1.3 (General uniqueness result for entire graphs). Assume that ug : R* — R
is a locally Lipschitz function defining a proper entire graph
My = {(x,up(x)) : x e R"} c R"*1

Letuq,uz : R" x (0, T] — R be two smooth solutions of (1.2) defining two entire graph solu-
tions M} = {(x,u1(x,1)) : x € R"}y and M? = {(x,uz(x,1)) : x € R"} of MCF (1.1) which
both satisfy condition (1.6) and have the same initial data ug, that is

limwuy(-,¢) = limuz (-, 1) = up.
t—0 =0

Thenuy = up on R™ x (0, T), thatis M} = M2 forallt € (0, T).

Remark 1.1. (i) Theorem 1.3 implies that uniqueness holds under convexity with no
other growth conditions on the initial data (see in Section 5). As a consequence Hamilton’s
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differential Harnack inequality holds for convex graphs evolving under mean curvature flow
(see Corollary 5.3 in Section 5). A related result was recently discussed in [1] in the context of
translating solutions.

(i1) Theorem 1.3 shows that uniqueness holds for initial data uy(x) which has arbitrarily
large growth as |x| — 400, as long as the lower curvature bound (1.6) holds.

(iii) Theorem 1.3 only assumes the lower bound (1.6) in comparison with the results in [2]
which assume upper and lower bounds on the second fundamental form.

At last we will discuss the uniqueness for graphs over subdomains of R”. In that context,
the result in [13] guarantees the existence of smooth solutions:

Theorem. Let Qg C R*T! be a bounded open set and ug : Q9 — R a locally Lipschitz
continuous function with uy(x) — oo for x — xg € 00. Then there exists (D, u), where
D c R™ 1 x [0, 00) is relatively open, such that u is a solutions of the graphical mean curva-
ture flow

.. D:;uDiu
yy — (5” _ M)D”“’ (r.1) € D\ (Qo x {0)).

u(x,0) = up(x), x € Q.

(1.7)

The function u is smooth for t > 0 and continuous up to t =0, u(-,0) = ugy in Qo and
u(x,t) — oo as (x,t) — 0D, where 0D is the relative boundary of D in R"T1 x [0, 00).

It is relevant to remark that in this theorem the domain of definition for the function u
changes in time and it is given by the mean curvature flow evolution of 02 (see the discussion
in [13]). More precisely, u(x, t) is a graph over Q;, where Q; x {t} = D N (R" x {t}) and 02
agrees with the evolution by mean curvature flow of 02 at time ¢, provided that this evolution
is smooth. In addition, it is possible to see from the proof in [13] that if (xj, ;) — (X,7) € 0D
and |X| < R for some R > 0, then u(xy, tx) — o0.

Our uniqueness result for graphs over subdomains states as follows:

Theorem 1.4 (General uniqueness result for subdomains). Let 29 C R” be an open
set such that 02y has a unique smooth evolution by mean curvature flow in (0, T| and let Q;
be such that 02; agrees with the evolution of 0Q2¢y at time t. Assume that uy : Q9 — R is a
locally Lipschitz function defining a proper graph Mo = {(x,uo(x)) : x € Qo} C R*T1. Let
U, up : Q2 X (0, T] = R be two smooth solutions of (1.7) defining two proper graph solu-
tions M} = {(x,u1(x,1)) : x € Q¢} and M? = {(x,u2(x,1)) : x € Q} of MCF (1.1), both
satisfying condition (1.6), and having the same initial data u, that is

limuy(-,2) = limuz(-,1) = up.
t—0 t—0

Assume, in addition, that if (x,t;) — (X,f) € 0D and |X| < R for some R > 0, we have
ui (Xg, 1) — 00. Thenuy = uz on D =J,eqo, 17 e x {1}, that is M} = M2 forallt €(0,T).

The organization of this paper is as follows: In Sections 2 and 3 we give the proofs of
Theorems 1.1 and 1.2, respectively. Section 4 is devoted to the proofs of Theorems 1.3 and 1.4.
Finally, Section 5 is devoted to the proof of Hamilton’s differential Harnack inequality.
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We conclude this section with the following remarks.

Remark 1.2. In Theorem 1.4, if the evolution of 0€2¢ is not unique, it follows from the
proof of the result that for each evolution €2; there is at most one proper graphical solution
satisfying assumption (1.6).

Remark 1.3. Uniqueness for other non-compact flows has been discussed in other
works. For instance, uniqueness results for complete Ricci flow are discussed in [3] and [15].
The uniqueness for complete Yamabe flow in hyperbolic space is discussed in [14].

Acknowledgement. We would like to thank S. Lynch and Jingze Zhu for their helpful
remarks, also M. Langford for bringing to our attention the question of a differential Harnack
inequality in this setting.

2. Curve shortening flow — Theorem 1.1

In this section we will show that entire graph smooth solutions to Curve Shortening Flow
(that is (1.2) for n = 1 and Q2 = R) are unique without any growth assumptions at spatial
infinity. This result is in contrast with the case of the heat equation where at most quadratic
exponential growth at infinity is required for uniqueness. As mentioned in the introduction
Theorem 1.1 is already covered by the results in [4]. We provide here a simpler and more direct
proof in the case of entire graphs.

The evolution of a curve y = u(x, t) on the plane is given by

"y = XX
1+u2
which can be also written in divergence form as
uy = (arctan(uy))x.
Differentiating in x we see that v := uy satisfies the equation

2.1) vy = (arctan v)xy.

The proof of Theorem 1.1 will be based on the following simple observation which we
prove next.

Lemma 2.1. Forany y € (0, 1], the following holds:

(arctan v; — arctan vp)+ < 2(vy — vz)y+ forall vy, vy € [0, +00).

Proof. Fix anumber y € (0, 1]. We may assume that vy > v, and write
V1 1

T2

(arctan vy — arctan vp) 4 = /
v2

Assume first that v1 > v, > 1. In this case, for any number y € (0, 1] we have

v1 > (v — )77,
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so that the above gives

v ] V1 — VU2
(arctan v; — arctan vp) 4+ < — ds =
vy S v1V2
V] — v V] — v
P Sl 1 21
V1 (v1 —v2)! 7Y
y
< (v1 —v2)}.

In the case that 0 < vy, < 1 < v1 we have

1 V1 1
(arctanv; — arctan vp) 4+ < / ds + / — ds
vy 1 s

—1
<(1—vp) + 2

U1
<2(vi — )}

since for any y € (0, 1] we have
1—vy <(I-v2)" < (v1 —v2)

and |
U1 — U1 — V2
< < (v1 —vp)Y.

U1 U1
The last inequality follows from v{ > (vi — v2)!™7 which holds in this case. Finally, for
0 < vy < w1 <1, we have

(arctanv; — arctan vp)+ < (v; —v2)4 < (V1 — vz)’jr. ]

Proof of Theorem 1.1.  The proof follows the method by Herrero and Pierre in [10]. Let
v1 = u1x and vy = upy. We will first show that v = v, on R x [0, T'). To this end, we set
w = (v1 — v2)+. Since vy, vy satisfy equation (2.1), Kato’s inequality implies that w satisfies
the differential inequality

(2.2) wr < (aw)xx onR x (0,7)

in the sense of distributions, where

o (arctan vy — arctan vp)+
(vi —v2)+

Our observation in Lemma 2.1 shows that for any y € (0, 1) we have
0<a<2w 17,

We will use that momentarily.

Consider the test function ¢(x) = ¥ (%), where ¥(p) is a smooth cut-off function sup-
ported in (—2,2) such that 0 < < 1, ¥(p) = 1 for x € [—1, 1]. Integrating the differential
inequality (2.2) against ¢, we obtain

%/w(-,t)go dx < /(aw)(-,t)cp"dx, te(0,7).
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For any number y € (0, 1) (to be fixed at the end of our proof) we use the inequality
0 <a < 2w~ 7 to conclude

d 14 . Y I-y
E/w<pdx§2[wy|<p”|dx§C(/w(pdx) (/ |<p”|1—y(p_l—vdx) .

Since |¢”(x)| < CR™2|¥/"(p)|, x = Rp, and ¥ is supported in the interval [—2, 2], we have
[0 ax < cR [y dp,
For any y € (0, 1) we can choose cutoff ¥ = vr,, such that

[T ap < .
We conclude that 1(r) := [w(-.1)¢ dx satisfies
I'(t) < C, 1(z)Y R=HY),

Integrating the last inequality on [0, 7] for any ¢ € (0, T') while using that lim;—¢ I(¢) = 0 (this
follows from the fact that v{(-,0) = v2(-,0) a.e.), we obtain
- - _ 1+
IO < CiR™HY) — () < Cui 77 R T
Finally, recalling that ¢ = 1 on [—R, R], we get

1+y

R
/ (v1 —v2)+(x,t)dx < Cnt_ﬁR_l—V.
—R
Letting R — 400 and using monotone convergence we conclude that
o0
/ (v1 —v2)+(x,t)dx =0 forallt € [0, T).
0

Therefore, we conclude that (vy — v2)+ = 0 on [0, 00) X [0, #o], i.e. (U1)x(-,7) < (U2)x(-,1)
in R. Similarly, we get (12)x(-,1) < (u1)x(-,¢) in R implying that for any ¢ € [0, T), we
have (u1)x(-,t) = (u2)x(-,t) in R. This and the fact that u; = u, at time ¢ = 0 easily give
us that 1 = u,, finishing our proof. O

3. Rotationally symmetric solutions — Theorem 1.2

In this section we will consider the uniqueness of rotationally symmetric solutions of the
initial value problem (1.2) on R” x (0, 7). On a radial solution u(r, t) the evolution equation
in (1.2) becomes

Urr n—1

:1—|—u$+ r

3.1 Uy Up.

Differentiating (3.1) with respect to r we find that the derivative v := u, of any solution u
of (1.4) satisfies the equation

n—1
(3.2) vy = (arctanv),, + ( v) .
r r
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Proof of Theorem 1.2. The proof follows the method by Herrero and Pierre in [10] and
is a generalization of the one-dimensional case with the necessary adaptations. We simply
denote by u(r, 1), ua(r, t) the rotational symmetric profiles we let vy = u1, and vo = uy,. Set
w = (v1 — v2)+. Since v; and v, both satisfy (3.2), Kato’s inequality implies that w satisfies

_l(aw)r+(n_lw)
r r

_ (arctan vy — arctan vp) 4

(vi —v2)+

(3.3) wy < Alaw) —

in the sense of distributions, where

Similar to the one-dimensional case, the crucial observation is that for any y € (0, 1) we have
0<a<2w 17,
Consider the test function

2 _
PR, 1) = w(r“;—’;”’)

where ¥ (p) is a smooth cut-off function defined on [0, +00) such that 0 < ¢ < 1, ¥ (p) = 1
for0 < p < 1land y(p) =0 for p > 2. Then

2(n—1) 2r n—1
(prR): = TW’ (pR)r = ﬁlﬁ/ = (¢r): = T(wR)r
and 5 )
4r 2 4r 2n
(PR)rr = FW” + ﬁlﬁ, = Ay¢r = FW” ﬁlﬂ/~

”:1 (¢R)r, we obtain

Hence, using (¢Rr); =

d

dt/wer” Lar —/w,<pRr”_1dr+/w((pR), rdr

< /awAgoRr”_ldr—/n_
;
—1 —1
+/(n . w) (pRr"_l dr—l—/—n . w(ch)rr”_ldr.
r

Performing integration by parts on the second and third terms, using that
/ n ;

we obtain (after cancellations) that

1
(aw)r¢an_l dr

aw(er),r"™ Lar

l(au))r(,oRr”_1 dr = —/ "
/ (n— 2)(” —1)

aw(pan_1 dr,

d ~1
G4 E/w‘pR dp = /awM)an_ldr+[n aw(pr)rr" " dr

/ (n —2)(n -1

— awerr™ldr

—1)?
_/—(n 2) werr™ldr.
.
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Next notice that
(arctan v; — arctan vy) + 1

(v1 —v2)+ S 1+92
for some v between v and v,, hence a < 1. It follows that

-2)(n—1 —1)2
[—(n )gn )aw(pan_ldr—/ (n 5 ) worr™tdr
r

—1
5—/n werr™ tdr <0.
2

Let y € (0, 1) be any number (to be chosen at the end of our proof) and use the inequality
0 <a < 2w~ 7 shown in Lemma 2.1 to bound the first two terms on the right-hand side
of (3.4). We conclude that

d /wgoRr” Lar

dt
<c / w” (|Agr| + (1 — Dr~ (pr), )"~V dr

’ D U 1—y
) C(/ w(pan_ldr) (/(|A¢R| T |r_1(90R)r|)'_yﬁﬂRl_"r”_ldr) :

Observing that for 0 <7 < t9 and R > 1 large we have

|A@R(r D) + 1" @r)r (0] < CuRT2([Y" ()] + ¥ (p))

r2+2(n—1)t

where p 1= R2

, we get
1—-y
{/(mmr Ol + 1 (or)r (D) 7 pr() T ldr}

1-y
< R_Z{/(IW”(,O)I + 19 (p)T T (p) T P 1(;O)dV(p)} ,

where 72(p) = R?p — 2(n — 1)t, which in particular implies r dr = RTZ dp. Thus,

/ (19" + W' @) ™ ¥ (o) ™7 =1 (p) dr(p)

R? 1 b4 n—2
= 5 [0 @+ W @) v (R - 200 - 1) T
=GR [ (07 0)+ 10 ) 7w 0) T dp

where we have used the fact that on the support of ¥' and " where p < 2, and for 0 < ¢ < ¢
and R > max(1,¢y), one has

(R2 _2 o % n—2
p—2(n l)t) <Cy,R"™~.

For any y € (0, 1) we can choose cutoff ¢ = v, for which the support of ¢ and " lies
n [1, 2] such that

/(|w"(p)+|w )7 ()" dp < Cln. y).
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We then conclude from the above discussion that 1(z) := [‘wegrr™ ™! dr satisfies
I'(t) < Cn. ) 1(@) 72107,

Since y € (0, 1) can be any number, we may choose y = y(n) € (0, 1] so that n(1 —y) < 2,
and integrating the last inequality on [0, 7] for any 7 € (0, T') while using that 7(0) = 0, we
obtain

()Y < CuiR2H=Y) — [(7) < Cpi 77 RV o7,

Finally, recalling that o = 1 on [0, R], we get

R 2
/‘(vl—vzhintﬁ”_ldrsz"_'V.
0

Letting R — +o00, using that n — % < 0, and monotone convergence yields

R
/ (1 —v2) 4 (-.)r" Ydr =0 forallt €0, 7).
0

Therefore, we conclude that (vi —v2)y =0 on R” x [0,7), i.e. (u1)r < (u2)r. Similarly,
(u2)r < (u1)r a.e.in R” x [0, T) implying that (42), = (u1),. This and the fact that u; = u,
attime ¢ = 0 easily give us thatu; = up on R” x [0, tp] forall zg < T, finishing our proof. O

4. The general case

Our goal in this section is to give the proof of our general uniqueness results, Theorem 1.3
and Theorem 1.4. We will see that the proof of the latter theorem is almost identical to the
proof of the former. Hence, we will omit most of the proof of Theorem 1.4, pointing out only
the minor differences.

For the sake of completeness we show next that for entire graphs the condition ug > C is
preserved under the flow, which implies that if the initial condition is a proper entire graph, then
the solution is proper as well, uniformly in time. Both facts will be used our proofs. Because
we are dealing with non-compact solutions, we will use the localization techniques developed
in [7].

Lemma 4.1. Let u be a solution to (1.2) on R" x (0, T') and assume that ug(x) > C on
|x —xo| < R, x = (x,uq(x)), for some fixed point xo € R"T! and some number R > 1. Then
we have

10
1) >C ——t
u(x,r) = R

on the parabolic ball |x — Xg|* + 2nt < R72, x = (x,u(x,t)) (provided it is non-empty). In
particular, if ug > C on R", then for everyt € (0, T) we have u(-,t) > C on R".

Proof. We will do all calculations in geometric coordinates, that is we assume that our
solutions are given by the embedding x = F(p,t) asin (1.1) and we define

X —Xo|% + 2nt 5
Ur(p. 1) := (u—C)(l——| ol ) + 2,
+ R

RZ
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where u := (F,eu4+1) and x = F(p, t). Our assumption ug > C in Bgr(xg) gives Ug > 0 at
t = 0. Furthermore,
x—x9)7 5 4 5
Ur) —AUR =2Vu - 2———+ — > —— 4+ — > 0.
(Ur): R u Rz + R- R + R
The maximum principle implies that Ur does not have any interior minima and Ug > 0. In
particular, if |x — xo|? + 2n¢ < 5 R?, then

and the first result follows.

In the case where uy > C globally on R”, then for any xo € R”, ¢ € (0,T), we apply
the above result taking Xo = (xo, uo(x)) and choosing R >> 1 so that |x — x¢|? + 2nt < %Rz
if x = (xg, u(xop, t)). We readily conclude that u(xg,?) > C — %l and by taking R — oo, we
obtain u(xg,?) > C. Since xg € R" and ¢ € (0, T') are arbitrary, the second result follows. O

Corollary 4.2. Let u be a solution to (1.2) on R" x (0, T| and assume that

lim  ug(x) = +o0.
|x|—+o00
Then we have

lim  u(x,t) = 400 uniformlyint € (0, T].
|x]—+o00

Proof. 'We begin by observing that our assumption limy|_, 4 o #o(Xx) = +00 implies
that ug > C for some C € R and hence by the previous lemma, u > C as well.

Now, for every k > 1 let R > k be a sufficiently large number so that ug(x) > k for
|x| > Ry. For any xo € R” such that |xo| > 4Ry, let xo = (x¢,0). Then

uo(x) =k on|x —xo| < 2Ri. x = (x,uo(x))

and hence, by the previous lemma, for any ¢ € (0, T'), we have
5
u(x,r) >k — R—t on |x —xo|? + 2nt < 4Ry, x = (x,u(x,1)).
k

We may choose k, Ry > 1 sothat 2nT < Ri and RikT < 1. Evaluating the above estimate at
X = (xo, u(xp,1)), forany ¢t € (0, T), it gives us that

u(xo,7) >k —1 provided |x — xo| = [u(x0.1)| < Ry.

We conclude that for any |xg| > 4R} and ¢ € (0, T) we either have that u(xo,7) >k — 1 or
|u(xo,t)| = Ry. Since u > C (be our initial observation) and R; > k, we conclude that in
either case u(xg,t) > k — 1, forall ¢ € (0, T) and all |xg| > 4R}. Since Ry, is independent of
t, the result readily follows. O

One may ask whether condition (1.6) is preserved in time, namely if vhlj > —c8ij at time
t = 0 implies that vh{ > —CS{ for ¢ > 0. Although this is easy to verify for the evolution of
compact manifolds, in the non-compact setting it becomes challenging. Actually, even the case
where ¢ = 0 is not known to hold in the general graphical non-compact setting. In the lemma
below we show that the condition is preserved under a suitable polynomial growth condition
on the solution (which is expected to be preserved by the flow from the results in [6]).
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Lemma4.3. Assume that v h;; > —cg;; attime t = 0 for some constant ¢ > 0 and that
for all times we have (|h;;§'§/ | v)(x) < C|x|? for any unit vector field & and that IVv_v\ < Clx|.
Then condition (1.6) holds for every t > 0.

Proof. Lety =|x|?> +2nt + land p > g (forinstance p = ¢ + 1) and define the tensor
fij = e Ky TP (hij v + cgi),

where K is a constant that will be chosen later. From our assumption f;; — 0 as [x| — oo
(in the sense that F;; & &7 — 0 for every unit vector field £). Note in addition that the tensor
fij = 0ifand only if f;; v +cg;; > 0.

We will use the tensorial maximum principle to prove the results (see [8] for example),
hence the equations below are stated in the tensorial sense.

Following [6] and [11], we compute the evolution of f;;. We obtain

d 2 Im
@D\ oA | fiy ==V fij. Vo) = 2Hhyy g fij
— fij[K + p(p + DT Py + 207y THx T V).

Let € > 0 and define f: i = fij + €gij. From our assumption at infinity, we have, for

every € > 0 and |x| sufficiently large, f; jéi g > 5. In addition, from (4.1) we have

d S Y _
(4.2) (E - AMz)fij == (Vfij. Vv) = 2Hhi1g"™ fij
— fii[K + p(p + DIxTPy=2 + 207y 1T v

Assume that there is a first time 7 such infyegn gern ﬁlg &£/ = 0. Form our assumption
at infinity, this implies that there is a X such that the tensor f;; has a null-eigenvector, that we
denote by &. Following [8], we may extend & in a neighborhood of X such that £ is indepen-
dent of ¢, D;E™(X) = 0 and f;;&/ = —e£' . Then at ¥ it holds 0 = Vﬁj = (Vfij)E'€/ and
0<Apy, (f?,-g,-g/’) = (Apm, f;j)E'E7. Note in addition that f;;£'&/ (with £ as above) attains
a minimum at X. Combined with (4.2) we have, at X, that

0> e[K+p(p+ DIx" Py + 207y 1", Vo).
From our definition of y and our growth assumption we have
p(p+ DX Py + 207y T, Vo) < p(p + 1) +2€,
where C is the constant of our assumption on Vv. Hence, by choosing K large enough, we get
K+ p(p+ 1)|xT|2y_2 + 2v_1y_1(xT, Vv) > 0,

which is a contradiction. O

Remark 4.1. Note that @ < |A|v. Then the results in [6, 7] imply that if |A|v < |x]
holds at# = 0, then this is preserved in time and the condition of our lemma is met withg = 1.

Remark 4.2. The previous lemma implies that lower bounds on the mean curvature are
also preserved under the growth conditions of Lemma 4.3.
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4.1. Proof of Theorem 1.3.

Proof. To simplify the notation in this proof, we denote ¥ = u; and u = u», that is
we assume that u, % : R” x (0, T] — R are the two smooth solutions to (1.2) with initial data
Ug as in the statement of Theorem 1.3. Since ug is proper we have uy > —C for some con-
stant C > 0. Hence, by adding on u¢ the constant C + 1, we may assume without out loss of
generality that ug > 1. Lemma 4.1 implies that

u,u>1 onR" x(0,T].

To show that u = u, it is sufficient to prove that # < u, since the same argument will also imply
that u < u, thus showing that u = u.
The solutions u, u satisfy the equations

. DiuD; . D:uD i
up = (8” et kit Ll )Diju, up = (8” et ket Ll )Dijﬁ.

1+ [Dul? 1+ |Dul|?
Set oo
v 1+ |Dul2” "V~ 1+ |Dii|?
and define
wi=u—u.

Then, subtracting the above equations, we find that the function w satisfies the equation
4.3) wy —ajjDijw = (a;j —ai;)Diju
The main idea in the proof is to introduce the supersolution
E(x,t) == €(t + )u?(x, 1)

for any given € > 0 small. At the end we will let € — 0. First, we use u; —a;; D;jju = 0 and
find that ¢ satisfies

$t —aijD;ij¢ = =2e(t +€)a;jjDjuDju + cu?,

where
n DiuDju iy (D;u)*>(Dju)?
@y bebie = (5” - W)me = 8 DiuDju = =
|Duf? |Duf?

= |Dul?(1

_1+|Du|2) "1+ [Du?

Combining the above gives

| Du?

m =+ €M2 Z €(M2 —2(t +E))

{t —aijDij§ = —2€(t +¢€)

Since u > 1, we conclude that for ¢ < % and € < 1L0’ we have

€
(4.4) & —aij Dije > Su?.
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Set next
Wi=w—C=u—i—e(t+eu’
By (4.3) and (4.4) we find that W satisfies

_ _ €
(4.5) Wt —aijDijW < (a,-j —al-j)Diju — Euz.

Our assumption that u = u at ¢t = 0 (in the sense that lim;—o[u(-,7) —u(-,1)] = 0) yields
(4.6) lirr(l) W(x,t) = —€®u(x,0) < —e?> < 0 uniformly on any K C R” compact.
t—

(The uniform convergence on compact sets follows from the bounds in [7] which give us local
bounds on the second fundamental form | 4| < % for both solutions u, # where C depends on
the initial data.)

Let

" ) 1 1
T" " =min|T,—-,— ),
4 10c

where c is the constant in (1.6). We will use (4.5)—(4.6) and the maximum principle to conclude
that W < 0 for all ¢ € [0, T*]. To this end, observe first that u, % > 1 implies that for every
fixede > O and forallz € (0,7),

1
4.7 m* = sup W(x,t) < —.
(x,1)eR"x(0,T*] €

Indeed, notice that if there is a point (x,7) € R” x (0, T*] where W(x,t) > 0, then since > 1,
at such a point we have u > it + (¢t 4+ €)u? > €%u?, that is u(x, ) < €~2. Hence, we obtain
W(x,t) <u(x,t) < e 2 and the same holds for the supremum m*.

Claim 4.1. We have

m* = sup W(x,t) <0
(x,1)eR"x(0,T*]

provided that € is sufficiently small.

Once this claim is shown, the theorem will follow by simply letting ¢ — 0 to show that
u < u and then switching the roles of u and u.

Proof of Claim 4.1.  To prove the claim, we assume by contradiction that
m* > 0.

Since limy|— oo u(x, 1) = +o00 uniformly in [0, 7] and & > 1, the supremum m™ cannot be
attained at infinity. Hence, we have

m* = W (Xmax(t0). o)
for some point 79 € (0, T*] and xpmax(f9) € R”. Then at such point

(4.8) (I1—€(to+u)yu=u+m* and (1—2e(tg+ €)u)D;ju = D;u
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Note that the first equality, m* > 0 and u, # > 1 imply that 1 — €(¢9 + €)u > 0 at the maxi-
mum point, which will be used below. We will now use the second equality in (4.8) to evaluate
the right-hand side of (4.5) at the maximum point. First, we have

D;jiDji  DjuDju
1+ |Dial> 1+ |Duf?

DiuDju DiuDju
1+ |Dal>? 1+ |Duf?

(4.9) aij —ag =

(1 —2¢(tg + €)u)?
_ DiuDju
~ (1+ [Dul?)(1 + |Dul?)
(1 =2€e(to + €)u)*(1 + |Dul?) — (1 + | Dit|?)]
Dl-uDju
(1 + |Dul?)(1 + |Di|?)’

= —4e(ty + u(l — ety + €)u)

To derive the last equality we used (1 — 2¢(tg + €) u)? |Du|?> = | Dii|? which gave us
(1 —2¢(to + ©u)>(1 + |Dul?) — (1 + | Dit]?) = (1 — 2e(tg + €)u)> — 1
= —de(to + €)u(1l — e(to + €)u).
Combining the above with (4.5), we find that at the point (xmax(Z0), o) We have

(4.10) 0< Wt—al’jDijW

D,-jﬁDl-uDju € 5
- — —u-.
(14 |Dul?>)(1 + |Dul?) 2

< —de(to + €)u(l —e(to + €)u)

We next use the lower bound on the second fundamental form in (1.6) which implies that
ﬁﬁj-D,-uDju > —c|Du|?.
On the other hand, since
i Djju B DjjuDjuDiu

YT+ [Dal? (1 + |Dial2)?

it follows that at the maximum point (xmax (o), fo) we have

_ Dy ;i Dyt D;ii
ok DiuDju = (Dija——” it )

1+ |Dul?

= Dj;ju DiuDju — (Du, Du) DijuDju

1 + |Dul?
= (1 + |Dui|* — (1 — 2¢(to + €) u)*| Du/?)

_ DijuDijuD;u
1+ |Duf?

Combining the last two formula gives

DijuDijuD;u

|+ [Da]? = ﬁ;ﬁDiuDju > —c|Dul?.
u
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Inserting this bound in (4.10) implies that at the point (xmax(f0), fo) we have

Dul? €
(4.11) 0<W;—aijDijW < 4ec(to + €)u(l —e(to + e)u)ﬁ — 5“2

<dec(tg + €)u(l —e(ty + €)u) — guz.
We conclude from (4.11) that at the maximum point (xXmax(f0), Z0),
dec(to + €)u(l —e(to + €)u) — %uz >0,

that is
u < 8c(to + €)(1 —e(to + €)u) < 8c(ty + ¢),

since ¥ > 0. Then u > 1 yields that 7y + € > %, where c is the constant from equation (1.6).
1

Since we have assumed that zo € (0, 7*] and T* < 5=, we derive a contradiction by choosing
¢ sufficiently small. This shows that, contrary to our assumption, W*(fg) < 0, finishing the

proof of the claim. |

We have just seen that W :=u —ii —e(t + €)u? <0 on R” x (0,T*]. Let ¢ — 0 to
obtain that ¥ < # on R” x (0, T*]. Similarly, # < u on the same interval, which means that
u = u. By repeating the same proof starting at 1 = T*, we conclude after finite many steps
that v = 4 on R” x (0, T'), finishing the proof of the theorem. o

4.2. Proof of Theorem 1.4.

Proof. The proof of Theorem 1.4 is very similar to that of Theorem 1.3. We briefly out-
line it in what follows. As before, let u, 1 : D := Ute(O,T](Qt x {t}) — R be the two smooth
solutions to (1.7) with initial data u¢ as in the statement of Theorem 1.4 (as above, we simplify
the notation by calling ¥ = u; and u = u3). Our assumption that ug is proper implies that
ug > —C for some constant C > 0 and hence Lemma 4.1 implies that u,u > —C, for t > 0
(possibly for a different constant C > 0 which is uniform in ¢ for # < min(1, 7"), where T is
the maximal existence time). By adding on both solutions the constant C + 1, we may assume
that u, u > 1. As in the proof of Theorem 1.3, we take

Wi=w—-C—e=u—il—e(t +eu’.

Letm™ := sup(y syep W(x, 1) and assume that m* > 0.

We first remark that Lemma 4.1 and Corollary 4.2 can directly be extended to estimate the
infimum of u in O N Br(xg) (instead of R” N Br(xp) ). Hence we have that if u¢ is proper,
then u(x, 1) — oo uniformly in ¢ as |x| — oo.

Let (xg, ;) be a sequence of points in D such that W(xy, t) — m™. Note that from our
definition and the previous remark we have that if 7 — 7 and either x; — 0Q; or |xg| — 400,
then u(xg,t;) — oo and W — —oo. Hence, we may assume that the supremum of W is
attained in the interior of 27. Now we conclude the desired result by following the proof of
Theorem 1.3. |

4.3. Extension of uniqueness for entire graphs (not necessarily proper). In this
subsection we provide extensions to our result in Theorem 1.3. We will consider graphical
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solutions that are not necessarily proper, but their initial height function u and its gradient
function vg satisfy the following assumption:

(4.12) for every M there is a constant ¢(M) such that sup vg < c(M).
{xuo(x))<M}

This condition can be understood as excluding oscillatory behavior in the set where the
height function u¢ is bounded at the initial time. Then our result states as follows:

Theorem 4.4. Assume that ug : R" — R is a locally Lipschitz function (not necessarily
proper) defining an entire graph hypersurface My = {(x,ug(x)) : x € R"} C R**1 whose
height function ug is bounded from below and also satisfies condition (4.12). Let

up,uz  R" x (0, 7] > R
be two smooth solutions of (1.2) defining two entire graph solutions
M} = {(x,u;(x,1)) i x € R"} and M? = {(x,uz(x,t)) : x € R"}
of MCF (1.1) satisfying condition (1.6) and having the same initial data ug, that is
tli_r)l})ul(-,t) = tli_I}})uz(',f) = uo.
Thenuy = uz on R™ x (0, T, thatis M} = M? forallt € (0, T].

We will first show that condition (4.12) is preserved in time and that implies uniform local
bounds for the second fundamental form on the set where {u < M } (these bounds depend only
on M).

Proposition 4.5. Assume that u > 0 is a smooth solution of (1.2) with initial data ug
and that (4.12) holds. Then:

(i) (M —u)?v < M?c(M) holds forall t € (0,T].

(i) If we further assume that |A|?(x,0) < c(M) in the set {x : ug(x) < M} (without loss of
generality we can take ¢ (M) to be the same as in (4.12)), then

(4.13) |AP(M —u)% < max{c(M)M? k'3 +k~")M},
_ 1
where k = m
(iii) Without any assumption on the second fundamental form at the initial time, we have
instead

(4.14) HAPM —u)?(x,t) <k '@+ kW) TQeM + 1)? + M?

ifO<t =T u(x.t)<Mandk = 535 55

Proof. (i) Consider the cut-off function (in terms of both u and x) given by

2 4 2nt 4
(4.15) nR(x.1) = ((M—u)+(1—|X|Tn)+—Et)+.
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A direct calculation shows that

2 4
(4.16) (nR): = Ang = — (Vit, VIx[?) = — < 0.
In the last line we used that [V[x|| = 2|x”| < 2R in the set that 1 — X421 > 0 and hat
|Vu| < 1. Recalling also that
\V4 2
v, — Av = —|A]%v —2| vl
and defining Vg = viﬁe, we have
2 2 [Vu|? 2
(VR)t = AVR = ng| —[A["v = 27— | = 20|Vg[~ — 4n(Vv. Vi)
Vou|? Vou|?
<% (—|A|2v SPis v' ) —20[Vigl? + 27)?;' v' +2|Vngl?v

= —n%{|A|2v < 0.

A standard application of the maximum principle shows that Vg does not have any interior
maximum and hence
Vg < max Vg(-,0) < M2c(M).

The result follows by taking R — oo.

(i) We follow the proof of [7, Theorem 3.1] replacing the localization function in that
paper by iﬁz (where npg is defined by (4.15)). The proof is analogous and we only point out
the main steps and differences. Following [7], we define k such that kv? < % in the set that
nr # 0 and define the function

21412
_ vl4]
ET 1 ke

Then . .
2 v
— __|Vv]?’g —2———(Vv, Vg).

A similar calculation as in [7] where we use (4.16) gives that

gr — Ag < —2kg” —

|

v
Nk 8¢ — Ak &) < —2kng” — mlvvlzn%g - 27ﬁzm(VU, Vg)

—2g|Vng|* — 4nr(VnR. Vg).

Following again [7], we can find a vector function b (that can be explicitly computed, but it is
not important) such that

(1% &)t — ANk ) < —2kngg* + (6 + 2k v 2)g|Vir[> + (V(gnk). b).

Then, observing that for R > it holds |[Vng|?> < (2M + 1)2, we conclude that if ’ﬁe g has an
interior maximum, then

0 < —2kngg® + (6 + 2k~ 'v?)g|Vng|?
< 2knng® + (6 + 2k ) g(2M + 1)?

or equivalently,
r]%g <k '@+ kM.

Taking R to infinity (4.13) follows since v > 1.
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(iii) Finally, consider tiﬁ2 g. Then we have

Nk &)t — Atk §) < —2kngtg? + (6 + 2k v 2)ig|Vng|?
+ (V(tgng).b) + nk &

At a maximum it holds
trg <k '@+ kv eM + 1) + M2,

and we conclude (4.14) by taking R — oo. D
We will now prove Theorem 4.4:

Proof of Theorem 4.4.  As in the proof of Theorem 1.3, we set u = uy, u = up and
assume without loss of generality that ug > 1 in which case u, u > 1 (this follows from ug > 1
and Lemma 4.1). We define as before

Wi=w—C=u—i—e(t+eu?

and set

" i 1 1
T"=min|{T,-,— ),
4 10c
where ¢ is a uniform constant (to be determined later) and depends on the constant ¢ in (1.6).
We proceed as in the proof of Theorem 1.3, but we need to consider an additional case:
the supremum m* is attained at infinity. This means there exist a sequence of points y; € R”
with |y| — +o00 and a sequence of times s € (0, T*] with s, — fo such that

*

m
W(yk,Sk) > 7 > 0.

Applying the maximum principle, we will deduce that 79 > % deriving a contradiction
to the definition of 7*. Notice that since our initial data is complete non-compact and the
convergence of our solutions to the initial data is assumed to be uniform only on compact
subsets of R”, it is not a priori guaranteed that ¢y > 0, that is at this point we assume that
S — to € [0, T*].

To apply the maximum principle, we employ a parabolic version of the Omori—Yau
maximum principle (see for example in [12]). We define the functions

Wi (x,t) = W(x,1) —zlg—lzz for Cy = max{|yx|?, k}
k

and we look at the supremum of W in R” x (0, sg]. If this supremum is less than mT*, then

*

m lvkl?
Wy, < — 4+t
(VksSk) < Sl c?

and from our choice of Cj, we have

*

3m
W(yk,sk) <

m*
< — fork 1,
g > >

contradicting our assumption.
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We deduce that

m*
mg:= sup Wip>—>0.
R7x(0,s%] 4
Since W is uniformly bounded (see (4.7)), this supremum is attained in the interior at a point
(xk, 1) € R™ x (0, s ]. At this point necessarily we have

2 2
Xk Xk
417 Wixg.tx) = tk' 2| >0, Wi (X, ti) = (Wi e (g 1) + | 2| >0,
Ck Ck
2t Xk 2t168i 2t1:68i;
C? cz =k

where the last inequality is understood in the sense of quadratic forms, that is
DijW(xk,l)EiEj < k—2|§'| forall £ € R" \ {0}.

Furthermore, notice that since (xg, ) is the maximum for Wy on R” x (0, s¢], we have

2
W) — e X > w(0.0).
Cr
and because W < €72, we have
1 |xk|? ) _ 2 2.2 _.
A S Wl ) = W(0,0) < €2 = W(0.0) = €77 + A2(0.0) =: Me.
k
Then
2p|xk]l 2/t Me 23/t Me Vi
4.18 DWi(xy,ty)| = < < =0 .
(4.18) |IDW (x, t)| cZ ST Tk 3
m*

Moreover, since Wy (xg, t;) = m}: > 7 > 0, we have

2 *
X m
¥k | > — > 0.

W(xk,te) = Wi (xg, t t
(XK 1) (X, 1) + 1 c? 2

Combining these with (4.17), we conclude the following:

*

(4.19) Weneto) > > 0, Wilwet) = 0.
t 26;;
| DW (X tr)| = (9(\/7;) DijW(xg. tx) < k;/'
Hence, we deduce from (4.3), (4.4), (4.19) and the uniform ellipticity of the matrix a;;
that
C _ _ _ € ,
(4.20) _k_2 = Wt—al‘le'jW< (aij—aij)D,-ju—Eu

holds at each point (xg, fz ). Furthermore, from W (xg, ;) > 0 we have

(1 —e(tr + Qulxp, ) u(xg, tg) > ulxg, tr).
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Next, observe that the fact that W(xy, t) > 0 implies that u(xy, fz) is bounded (other-
wise if u(xg,,x,) — +oo for some subsequence, then lim;_, ;oo W(xg,,fx,) — —0o0). Fur-
thermore, u(xg, 1) bounded and u, u > 1 imply that 7 (xg, 7 ) is bounded as well. Hence, we
may assume without loss of generality that

u(xg, tx) = u* ulxg,tx) —u* and 1 <u(xg,tg) u(xg, tx) <u* +1.

Therefore, our assumption that u, u satisfy condition (4.12) and the first assertion in Proposi-
tion 4.5 applied to M = u™* + 2 yield

|Du(xg,tr)| < C(u™) and |Du(xg,tx)] < Cu®).
Furthermore, by the third assertion in Proposition 4.5 we have
el AP (xg. 1) < C®) and 1| AP (g, 1) < CQu™®).
It follows that at the points (xg, f;) we have for every i, j € {1,...,n} that
Vicolh] | i) < C@®)and - Vigulh (e 1) < C®)

and also
|Dijul
(4.21) Vig————
V1 + |Dul?
These bounds will be used momentarily.

We will next analyze the main term on right-hand side of (4.20). From the definition of W
we have Du(xg, tr) = (1 —2e(tx + €) u)Du — DW. Then, similarly to (4.9) (the computa-
tion here has more terms since DW = 0), we get

DiuDjii  DjuDju

|D;jul

1+ |Duf?

<C®w*) and /1 < C®u").

= T DalE 1+ |Dul?
DiuDju DiuDju
— (1 —2¢(t 2 Piulbju - DUl
(1=2e(to + )" 502 ~ T+ [Dul?
DiWD;W — (1 =2e(ty +e€)u)(DijuD;W + D;WDju)
+ -
1+ |Dul?
DiuD~u
= (—4e(tog + €)u(l —e(to + €)u) + (DW, b J -
(~etto + pu(l = o + p) +(DW.)) (i
DiWD;W — (1 =2¢e(ty +€)u)(DjuD;W + D;WDju)
+ = )
1+ |Dul?
where b = 2(1 — 2¢(t;, + €) u) Du — DWW . Denoting
DiuD;
Bi; = (DW.b) et

(1 + |Du|?)(1 + |Du|?)

D,'WD/'W — (1 =2e(ty +¢€) u)(Dl-uDjW + D,-WD,-u)
+ - - 2 - 9
1+ |Du|

we can then express the main term (a;; — a;;) D;;u on right-hand side of (4.20) as
DijuDjuD;u
(1 + |Dul?)(1 + |Dul?)

(4.22)  (ajj —aij)Djju = —4e(to + €)u(l —e(tp + €)u)

+ BijDj;u.
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Next observe that from (4.18) at (xg, f% ), we have

t
|Bij| < C(u*)%,
which combined with (4.21) yields
t 1
(4.23) |Bij Dijit| < C\/T?(«/@ = (9(%)-

To bound the first term on the right-hand side of (4.22), we use (1.6) which in particular
implies that

(4.24) ﬁﬁj-DiuDju > —c|Dul?.
On the other hand,
Diju DjjuDjuDju

VI+[Dul?> (1+|Dif?)>

DW = (1 —2¢(ty +€)u)Du — Du and ﬁj- =

imply
_ _ DjjuDjuDiu
vthiuDju = (Diju — W)DWD/'M
_ _ Dyju _
= D;ju DiuDju — (Du, Du)leuDju
- (1 + Dt — (1 = 2e(ty + e)u)2|Du|2)L”_D,-uDju
1 + |Du|?
+ (1 —2e(ty + €) u)MDi~uD-uD~W
1+ D)2V 7/
+ (1 —2e(ty + €) u)%DijuDjuDiu
_(DW. D) DWDu
1+ |Da2 7t

Diju 1
————D;uD; ol -1,
[+ Dap o (k)
where to derive the last line we combined (4.18) and (4.21) (following a similar estimate as the
one we did for B;; Dj;u).

To further estimate the last line above, we use

|Dit|? — (1 — 2e(tx + €)u)?|Dul?> = (DW, Dii + (1 — 2¢(t + €) u)Du)

-o()

= (14D = (1 - 2€(tx + € u)| Duf)

concluding that
- D::u 1
vh;DiuDju = MDZMDJ‘M + (9(%)

which in turn combined with (4.24) yields
Diju

4.25 U
(4.25) 1+ |Di?

1
DiuDju > —c|Du|* + (9(%)
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Finally, (4.20), (4.22), (4.23) and (4.25) together imply that as k — oo
0 < d4ce(to + e)u™(1 —e(tg + €)u™) — g(u*)z.

We now use the same argument as in the proof of Theorem 1.3 to conclude that this is not
possible provided that 79 + € > %, where c is the constant from (1.6). Since we have assumed
that 7o € (0, T*] and T™* < ﬁ, we derive a contradiction by choosing € sufficiently small.
This shows that, contrary to our assumption, W* () < 0, finishing the proof of the claim. O

5. The convex case and Harnack inequality

In this final section we will state the existence and uniqueness result for convex, proper,
non-compact entire graphs mean curvature flow solutions and show that Hamilton’s Harnack
inequality (proved in [9]) holds.

Theorem 5.1 (Uniqueness of convex entire graph solutions). Assume that ug : R” — R
is a convex function defining a proper entire graph convex hypersurface

Mo = {(x,uo(x)) : x € R"} € R1+1,
Let ui,up : R" x (0, T) — R be two solutions of (1.2) defining two proper smooth convex

entire graph solutions M} = {(x,u1(x,1)) : x € R"} and M? = {(x,u2(x,1)) : x € R"} of
MCF (1.1) with the same initial data u, that is

limuy(-,¢) = limuz(-, 1) = up.
t—0 t—>0

Then uy = uz on R" x (0, T), thatis M} = M2 forallt € (0,T).

Proof.  Since our initial data is a convex proper entire graph over R”, we may assume
that it lies above the e,4+1 = 0 plane, that is ug(x) > 0 for all x € R”. Furthermore, we
have limy—, 40 g (x) = +00 and the same holds for both solutions u; (x, ), i = 1,2, namely
ui(-,t) >0 and limy_ 4 oo u;j (x,1) = 400 for all £ > 0. Then one can apply the maximum
principle argument in Theorem 1.3 (actually in the convex case the computation is simpler) to
show that for any small number € > 0, one has

Uy — Uy EG[M%-f-é
and, similarly,
Uy — Ul fetu%-l—e

forall ¢ € (0, T). Taking € — O readily gives that u; = u, forall ¢ € (0, T). m)

An immediate consequence of the previous result is that convex graphical MCF solutions
can be smoothly approximated by compact ones. For any two compact convex hypersurfaces
31 and X, we write that X1 < X5 if X5 encloses X (allowing X1 N Xy # 0).

Corollary 5.2. Let M, = {(x,u(x,t)) : x € R*} C R"T1 ¢ € (0, +00), be a smooth
entire graph mean curvature flow solution with initial data Mo = {(x,uo(x)) : x € R"} c R*+1
which is a proper convex entire graph, normalized in such a way that

u(0) = min ug(x) = 0.
xeR”
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Then M; can be approximated by a sequence M zl of compact convex mean curvature flow
solutions. More precisely, the surfaces X', are reflection syin_metric With respect to the hyper-
plane {x,4+1 =i} and their lower parts ¥, defined by X', := X} N {x,41 < i} converge,
asi — +0o, to My, smoothly on compact subsets of R"t1 x (0, +00).

Proof. From our assumptions we have M; = {(x,u(x,t)):x € R"} for all ¢ € (0, +00)
and that u(-,¢) > 0 for all # > 0, since we have normalized our initial data so that

u(0) = min ug(x) = 0.
(0) = min o (x)
Furthermore, since uo(x) is assumed to be proper we have

lim wu(x,t) = 4oo forallz > 0.
xX—>+00

For each integer i > 1, we define the Lipschitz domains
Dy = {(x. xn41) € R 1ug(x) < xpq1 <20 —ug(x)}

and we let Zf) = ai)é. Our assumption that #(0) = 0 guarantees @6 # () for all i > 1. Note
that Zf) C R™*1 s just the closed hypersurface that consists of Mg N {x,+1 < i} and its reflec-
tion with respect to the hyperplane x,4+1 = i. Furthermore, each Ef) is convex and Lipschitz
continuous.

Standard MCF theory shows that for any i > 1, there exists a unique smooth mean cur-
vature flow 2 starting at Xi. The solutions X} exists up to times 7, they satisfy £} < xi+l
(E’frl encloses Z’;), and lim; 1 oo T/ = +00. The strong maximum principle guarantees that
each E’,;, 0 <t < T, is strictly convex. Furthermore, E‘; is reflection symmetric with respect
to the hyperplaneA{an =1}, since Ef) is by construction.

Denote by X/ to be the lower half of X', that is

S =% N {xppr < i)

Also, for any point xg € R"*! let us denote by BZH (o) the ball in R” 1 of radius R centered
at x¢.

Claim 5.1. Fix T > 0. For any R > 1, there exists an integer ig such as long asi > ig,
the lower part of ¥ N B;’I}H (0), t € [0, T, can be written as a graph {(x,u' (x,1)) : |x| < R}
and satisfies a uniform gradient bound which is independent of i and depends only on R
and M.

Proof. Fix T > 0 and assume that i is chosen sufficiently large so that 7/ > T. Given
any R > 1, we may choose ig sufficiently large so that T < R and if xo/ = (0,i) € R**+1,
then BZ;I(XOi) < E’,; for all i > ig and all ¢ € [0, T]. The convexity and symmetry of the
solutions Z’; then imply that for any i > ip, i’t N Bg’;{ 1(0), t € [0,T], can be written as
a graph

{(x.u'(x,1)) : x| < 3R}
So it remains to show the uniform gradient bound of f)’t N B;IJ{I (0),z €[0,T], foralli > ig.

This readily follows from the local gradient bound in [7] and the fact that u’ (x, 0) = uo(x) for
all i > ig, which implies that Ef) N Bg’ 1—5 1 (0),i > iR, satisty a uniform gradient bound. O
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The results in [7] then imply that f]’, N B;’fl(()), t €[0,T], i > iR, have uniformly
bounded second fundamental forms. More precisely, there exists a constant Cg 7 that is inde-
pendent of i such that the second fundamental form |A?| of X' satisfies the bound

D=

sup  |A'| < Crrt™2, te€(0,T)
SinB%T(0)
provided thati > ig.
One can then pass to the limit (over a subsequence iz — +4-00) and obtain a smooth entire
graph mean curvature flow solution M, 1€ (0, T') whose second fundamental form satisfies
the bound

(Sl

sup |A| < Crrt™2, te(0,T].
M, NB%T(0)

Standard arguments then imply that if M, = {(x,u(x,1)) : x € R"}, then
lim % (x, 1) = ugp(x).
t—0

Since x,4+1 = ug(x) is proper, it follows that x,4+1 = #(x, t) is proper as well. Hence, Theo-
rem 5.1 guarantees that ¥ = # on R” x (0, T'). Since T > 0 was arbitrary, we conclude that
u = 1 on R” x (0, +00) finishing the proof of the corollary. m]

Remark 5.1. Our methods can be applied to study the uniqueness of the (convex)
solutions that are analyzed by X.-J. Wang in [16]. More precisely, in that paper, the author
studies convex translating solutions to mean curvature flow via a level set method. In the non-
compact case, those solutions are obtained via taking limits and our techniques can be used
as an alternative proof of the uniqueness of such limits. We leave the details to the interested
reader.

An immediate consequence of Corollary 5.2 is that Hamilton’s Harnack inequality holds
for entire convex graphs.

Corollary 5.3 (Hamilton’s Harnack estimate). Any smooth convex proper entire graph
solution My, t € (0, +00), of mean curvature flow satisfies Hamilton’s Harnack differential
inequality, namely for any tangent vector field V,

oH H
6.1 - +2AVH.V) +h(V.V) + > 0.

Proof. Let E; be approximating sequence of compact convex solutions which were
constructed in Corollary 5.2. Each of them satisfy the Harnack differential inequality (5.1).
Passing to the smooth limit on compact sets, we conclude that (5.1) also holds for our complete
non-compact solution M, for all ¢ € (0, +00). m|
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