
Multi-Priority Graph Sparsification⋆

Reyan Ahmed, Keaton Hamm, Stephen Kobourov, Mohammad Javad Latifi
Jebelli, Faryad Darabi Sahneh, and Richard Spence

Abstract. A sparsification of a given graph G is a sparser graph (typi-
cally a subgraph) which aims to approximate or preserve some property
of G. Examples of sparsifications include but are not limited to span-
ning trees, Steiner trees, spanners, emulators, and distance preservers.
Each vertex has the same priority in all of these problems. However,
real-world graphs typically assign different “priorities” or “levels” to
different vertices, in which higher-priority vertices require higher-quality
connectivity between them. Multi-priority variants of the Steiner tree
problem have been studied in prior literature but this generalization is
much less studied for other sparsification problems. In this paper, we
define a generalized multi-priority problem and present a rounding-up
approach that can be used for a variety of graph sparsifications. Our
analysis provides a systematic way to compute approximate solutions to
multi-priority variants of a wide range of graph sparsification problems
given access to a single-priority subroutine.

Keywords: graph spanners · sparsification · approximation algorithms

1 Introduction

A sparsification of a graph G is a graph H which preserves some property of
G. Examples of sparsifications include spanning trees, Steiner trees, spanners,
emulators, distance preservers, t–connected subgraphs, and spectral sparsifiers.
Many sparsification problems are defined with respect to a given subset of vertices
T ⊆ V which we call terminals: e.g., a Steiner tree over (G, T) requires a tree
in G which spans T . Most of the corresponding optimization problems of these
sparsifications are NP-hard to compute optimally, so we often seek approximation
algorithms or other algorithms which yield good solutions in practice.

Different sparsifications can play a significant role in tackling real-world
network design problems containing a large number of nodes and edges. For
example, networks arising in real-world applications can be of vast scale, and often
contain millions of vertices and even more edges (social networks, epidemiological
networks, road networks, etc.). Visualizing such large networks at once with all
important information is impossible, hence it is desirable to have a multi-priority
structure for the network, in which low priority vertices and edges capture finer

⋆ Supported in part by NSF grants CCF-1740858, CCF-1712119, and DMS-1839274.

a
rX

iv
:2

3
0
1
.1

2
5
6
3
v
1

[c

s.
D

S
]

 2
9
 J

a
n
 2

0
2
3

2 R. Ahmed et al.

detail, while higher priority vertices and edges form a significantly sparser network,
which nonetheless still represents the underlying structure.

In this paper, we are interested in generalizations of sparsification problems
where each vertex possesses one of k + 1 different priorities (between 0 and
k, where k is the highest), in which the goal is to construct a graph H such
that (i) every edge in H has a rate between 1 and k inclusive, and (ii) For all
i ∈ {1, . . . , k}, the edges in H of rate ≥ i constitute a given type of sparsifier over
the vertices whose priority is at least i. Throughout, we assume a vertex with
priority 0 need not be included. This multi-priority problem has been studied
in the context of Steiner or multicast trees [10,14,17], where the objective is
to connect a source to a set of heterogeneous receivers, each with a certain
priority request. However, this generalization is far less studied for other types
of sparsifications. We investigate multi-priority generalizations of other graph
problems and provide approximation algorithms for these problems.

1.1 Problem definition

Here, we will consider a general range of sparsification problems. A sparsifica-
tion H is valid if it satisfies a set of constraints that depends on the type of
sparsification. Given G and a set of terminals T , let F be the set of all valid
sparsifications H of G over T . Throughout, we will assume that F satisfies the
following general constraints that must hold for all types of sparsification we
consider in this article: for all H ∈ F :

– H contains all terminals T in the same connected component, and
– H is a subgraph of G.

Besides these general constraints, there are additional constraints that depend on
the specific type of sparsification as described below. Note that |F| is usually too
large to enumerate, but in many cases F can be implicitly stated via constraints,
and we will assume that checking if H ∈ F can be done in polynomial-time.
Several such sparsification problems we focus on include:

Steiner trees: A Steiner tree over (G, T) is a subtree that spans T . In this case,
we may let F be the set of all Steiner trees over (G, T). The specific constraint
for this problem is the sparsification H which is a Steiner tree over (G, T); we
denote this constraint by tree constraint.
Subset spanners and distance preservers: A spanner is a subgraph which approxi-
mately preserves pairwise distances in the original graph G. A subset spanner
needs only approximately preserve distances between a subset T ⊆ V of vertices.
Two common types of spanners include multiplicative α-spanners, which preserve
distances in G up to a multiplicative α factor, and additive +β spanners, which
preserve distances up to additive +β error. A distance preserver is a special case
of the spanner where distances are preserved exactly. The specific constraints
are basically the distance constraints applied from the problem definition. For
example, for multiplicative α-spanners the constraints are that the distance in
H between any pair of vertices is no more than α times the distance in G. We
denote these types of constraints by distance constraints .

Multi-Priority Graph Sparsification 3

The above problems are widely studied in literature; see surveys [5,21]. An
example sparsification which we will not consider in the above framework is the
emulator, which approximates distances but is not necessarily a subgraph.

In a standard weighted graph G = (V,E), given a set of edges E′ ⊆ E, the
weight of the induced subgraph just depends on the weight of edges in E′. In this
paper we study a problem where the weight not only depends on the edge weights
but also on the rate of the edges. We denote the weight of the edge e having rate
r by w(e, r). Different strategies can be used to increase the weight of the edge as
the rate increases. One natural setting is the linear increment: w(e, r) = r w(e, 1).
We can set w(e, 1) = w(e), the input weight of e. It is also possible to consider
w(e, 1) = 1 if the graph is unweighted. We assess the quality of a sparsification
H by weight(H) :=

∑
e∈E(H) w(e,R(e)). We define a k-priority sparsification as

follows, where [k] := {1, 2, . . . , k}.

Definition 1 (k-priority sparsification). Let G(V,E) be a graph, where each
vertex v ∈ V has priority ℓ(v) ∈ [k] ∪ {0}. Let Ti := {v ∈ V | ℓ(v) ≥ i}.
Let w(e) be the edge weight of edge e. The weight of an edge having rate i is
denoted by w(e, i) = i w(e, 1) = i w(e). For i ∈ [k], let Fi denote the set of
all valid sparsifications over Ti. A subgraph H with edge rates R : E(H) → [k]
is a k-priority sparsification if for all i ∈ [k], the subgraph of H induced by all
edges of rate ≥ i belongs to Fi. We assess the quality of a sparsification H by
weight(H) :=

∑
e∈E(H) w(e,R(e)).

Note that H induces a nested sequence of k subgraphs, and can also be
interpreted as a multi-level graph sparsification [3]. A road map serves as a good
analogy of a multi-level sparsification, as zooming out only displays highways
and other major roads (Figure 1). Figure 2 shows an example of 2-priority
sparsification with distance constraints where Fi is the set of all subset +2
spanners over Ti; that is, the vertex pairs of Ti is connected by a path in Hi

at most 2 edges longer than the corresponding shortest path in G. Similarly,
Figure 3 shows an example of 2-priority sparsification with a tree constraint.

Fig. 1: Three different zoom levels of a map of New York (Map data: Google).

The linearly increasing k-priority instance is motivated by a natural large
network visualization problem. Semantic zooming features similar to the Google
map (Figure 1) are desirable while visualizing large networks. In semantic zooming,
when an object appears at a particular level, it should not suddenly disappear
after zooming in. In the context of network visualization, we can say that if an

4 R. Ahmed et al.

Fig. 2: Right: A graph G with k = 2 priorities, with four and three vertices of
priority 1 and 2, respectively (indicated using small and large circles). mid: The
subgraph H1 with edges of rates 2 and 1 (indicated using the thickness) of a
2-priority sparsification with distance constraints. left: The subgraph H2 with
edges of rate 2 of the same 2-priority sparsification.

Fig. 3: Right: A graph G with k = 2 priorities, with four and three vertices of
priority 1 and 2, respectively (indicated using small and large circles). mid: The
subgraph H1 with edges of rates 2 and 1 (indicated using the thickness) of a
2-priority sparsification with a tree constraint. left: The subgraph H2 with edges
of rate 2 of the same 2-priority sparsification.

edge appears at a particular rate or level, then it should also appear in the lower
levels. In other words, an edge can appear in multiple levels and the total weight
is the highest level of appearance times the edge weight in level 1.

Definition 1 is intentially open-ended to encompass a wide variety of sparsifi-
cation problems. The k-priority problem is a generalization of many NP-hard
problems, for example, Steiner trees, spanners, distance preservers, etc. These
classical problems can be considered different variants of the 1-priority problem.
Hence, the k-priority problem can not be simpler than the 1-priority problem.
In this paper, we are mainly interested in the following problem: how much
harder is it to compute a k-priority sparsification, compared to the corresponding
1-priority sparsification problem?

We use the terms cost and weight interchangeably, as from an optimization
point of view the term “cost” is more intuitive. Let OPT be an optimal solution
to the k-priority problem and the cost of OPT be weight(OPT).

Problem. Given 〈G,P,w〉 consisting of a graph G with vertex priorities ℓ :
V → [k] ∪ {0}, can we compute a k-priority sparsification whose weight is small
compared to weight(OPT)?

Multi-Priority Graph Sparsification 5

1.2 Related work

The case where Fi consists of all Steiner trees over Ti is known under different
names including Priority Steiner Tree [17], Multi-level Network Design [10],
Quality-of-Service Multicast Tree [14,22], and Multi-level Steiner Tree [3].

Charikar et al. [14] give two O(1)-approximations for the Priority Steiner Tree
problem using a rounding approach which rounds the priorities of each terminal
up to the nearest power of some fixed base (2 or e), then using a subroutine which
computes an exact or approximate Steiner tree. If edge weights are arbitrary with
respect to rate (not necessarily increasing linearly w.r.t. the input edge weights),
the best known approximation algorithm achieves ratio O(min{log |T |, kρ} [14,30]
where ρ ≈ 1.39 [13] is an approximation ratio for the edge-weighted Steiner
tree problem. On the other hand, the Priority Steiner tree problem cannot be
approximated with ratio c log log n unless NP ⊆ DTIME(nO(log log logn)) [17].

Ahmed et al. [7] describe an experimental study for the k-priority problem in
the case where Fi consists of all subset multiplicative spanners over Ti. They show
that simple heuristics for computing multi-priority spanners already perform
nearly optimally on a variety of random graphs. Multi-priority variants of additive
spanners have also been studied [6], although with objective functions that are
more restricted than our setting.

1.3 Our contribution

We have extended the rounded-up approach provided by Charikar et al. [14]. The
original approach has several limitations:

– The algorithm only ensures that for each priority the terminals are connected.
By removing the redundant paths, one can generate a tree-like structure, but
it is not obvious how to generate sparsifications for distance preservers or
spanners.

– The algorithm computes a solution for different priorities independently.
However, we may need to satisfy constraints between different priorities. For
example, in graph spanners, we have to maintain the distance constraints
between pairs of vertices with different priorities. The independent solu-
tions approach does not easily handle distance constraints between different
priorities.

We generalize the algorithm to deal with these limitations and the result can be
applied not only Steiner trees but to other sparsifiers. Specifically:

– We define a merging operation that can handle graph spanners, distance
preservers, and similar structures in addition to Steiner trees.

– We propose different partitioning of the terminals that helps to satisfy the
distance constraints between different priorities and study the trade-offs
between different partitioning techniques.

– We prove an approximation guarantee for all considered sparsifications using
proof by induction that is independent of the partitioning method.

6 R. Ahmed et al.

2 A general approximation for k-priority sparsification

In this section, we generalize the rounding approach of [14]. The approach has
two main steps: the first step rounds up the priority of all terminals to the
nearest power of 2; the second step computes a solution independently for each
rounded-up priority and merges all solutions from the highest priority to the
lowest priority. Each of these steps can make the solution at most two times worse
than the optimal solution. Hence, overall the algorithm is a 4-approximation, we
provide the pseudocode of the algorithm below.

Algorithm k-priority Approximation(G = (V,E))

// Round up the priorities
for each terminal v ∈ V do

Round up the priority of v to the nearest power of 2

// Independently compute the solutions
Compute a partition S1, S2, · · · , Sk from the rounded-up terminals
for each partition Si do

Compute a 1-priority solution on partition Si

// Merge the independent solutions
for i ∈ {k, k − 1, · · · , 1} do

Merge the solution of Si to the solutions of lower priorities

Independently computed solutions introduce some complicated situations for
the k-priority problem. For example, consider the most natural partitioning of
the terminals to different priorities: if ti and tj are two terminals having priority
i and j respectively (where i < j), then assign ti to Si and tj to Sj \ Si. Here, Si

and Sj are the partitions having priority i and j, respectively. In other words,
this is an exclusive partitioning: each terminal vertex is assigned to exactly one
set of terminals. In the second step, we can compute a solution for each terminal
set independently. Although exclusive partitioning is a natural approach, it may
generate invalid solutions. If we select a vertex with the highest priority as a root
and add it to each partition, then the solution based on exclusive partitioning will
satisfy the general constraints mentioned in Section 1.1. It will also satisfy the
additional constraints for the Steiner tree after merging the solutions. However, it
may not satisfy the additional constraints of other types of problems: for example,
in graph spanners, we may need to satisfy the distance constraints between two
terminal vertices that belong to two different partitions.

We now propose two partitioning techniques that will guarantee valid solutions.
The first one is the inclusive partitioning: each terminal tj is assigned to each
partition in {Si : i ≤ ℓ(tj)}. In other words, Si = Ti for all i.

Definition 2. An inclusive partitioning of the terminal vertices of a k-priority
instance assigns each terminal tj to each partition in {Si : i ≤ ℓ(tj)}.

Multi-Priority Graph Sparsification 7

We propose another partitioning that is based on pairs of terminals. Consider
a pair of terminals ti and tj and w.l.o.g. let ℓ(ti) ≤ ℓ(tj). Then we assign the
priority to this pair equal to min(ℓ(ti), ℓ(tj)). We partition the pairs of terminals
for each priority and refer to it as the pairwise partitioning.

Definition 3. A pairwise partitioning of the terminal vertices of a k-priority
instance assigns the priority of each pair of terminals ti and tj equal to min(ℓ(ti),
ℓ(tj)). Based on this assignment, we can create a partitioning; ∀kSk = {(ti, tj) :
min(ℓ(ti), ℓ(tj)) = k}.

We compute partitions S1, S2, · · · , Sk from the terminal sets T1, T2, · · · , Tk

and use them to compute the independent solutions. Here, we require one more
assumption: given 1 ≤ i < j ≤ k and two partitioned sets Si, Sj , any two
sparsifications of rate i and j can be “merged” to produce a third sparsification of
rate i. Specifically, if Hi ∈ Fi, and Hj ∈ Fj , then there is a graph Hi,j ∈ Fi such
that Hj ⊆ Hi,j ⊆ Hi ∪Hj . For the above sparsification problems (e.g., Steiner
tree, spanners), we can often let Hi,j be the union of Hi and Hj , though edges
may need to be pruned to ensure that Hi,j is a Steiner tree (by removing cycles).

Definition 4. Let Si and Sj be two partitions where i < j. Let Hi and Hj be the
independently computed solution for the terminal set Ti and Tj respectively. We
say that the solution Hj is merged with solution Hi if we complete the following
two steps:

1. If an edge e is not present in Hi but present in Hj, then we add e to Hi.
2. If there is a tree constraint, then prune some lower-rated edges to ensure

there is no cycle.

For a tree constraint, we need to prune lower-rated edges since pruning
higher-rated edges may disconnect the tree. More specifically, for each pair of
terminals u and v in Sj , we check if there exists more than one path in Hj . We
prune edges until there is only one path P between u and v. Now consider the
solution Hi. If a path between u and v other than P exists in Hi, we remove
more edges until P is the only path between u and v. At the end, there is exactly
one path for each pair of terminals in both Hi and Hj . We need the second step
of merging particularly for sparsifications with tree constraints. Although the
merging operation treats these sparsifications differently, we will later show that
the pruning step does not play a significant role in the approximation guarantee.

Algorithm k-priority Approximation computes a partition from the rounded-
up terminals. The following claims show that if the algorithm computes either an
inclusive or pairwise partitioning, then the algorithm provides a valid solution.

Lemma 1. If Algorithm k-priority Approximation computes an inclusive parti-
tioning, then the algorithm provides a valid solution.

Proof. To compute the solution of the k-priority instance we merge all the
independent solutions, that is, if an edge is present for a particular rate i, then
it is also present for all rates smaller than i. If we are computing the Steiner

8 R. Ahmed et al.

tree, then the merging operation ensures that we have exactly one path for each
pair of terminals. Hence, we have a valid priority Steiner tree. Now suppose
that we are computing a spanner (or preserver). Consider a pair of terminals
ti ∈ Si and tj ∈ Sj , w.l.o.g. we assume ℓ(ti) ≤ ℓ(tj). Then tj ∈ Si since the
partitioning is inclusive. Hence there is a path between ti and tj satisfying the
distance constraint since we have computed an independent spanner on Si. Hence
the merged solution is valid.

Lemma 2. If Algorithm k-priority Approximation computes a pairwise parti-
tioning, then the algorithm provides a valid solution.

Proof. After we merge the independent solutions, the general constraints will
be satisfied. Also, the second step of the merging operation will make sure
that for each pair of terminals there is exactly one path if we are computing
priority Steiner trees. Hence, in that case, the output will be a valid priority
Steiner tree. Now consider a sparsification where distance constraints must be
satisfied to obtain a valid solution. Consider any pair of terminals ti and tj .
If ℓ(ti) = ℓ(tj) = k, then the partition Sk contains this pair. Hence, when we
compute the independent solution of Sk, the distance constraint of this pair is
satisfied. Otherwise, let min(ℓ(ti), ℓ(tj)) = k. Then the distance constraint needs
to be satisfied at priority k. Also, the pair will be in Sk. Hence, after computing
the independent solution the constraint will be satisfied. Hence, in both cases,
we have a valid sparsification.

Both the pairwise partitioning and inclusive partitioning are theoretically
no worse than four times the optimal solution as we prove later. The proof is
the same for both cases. However, in practice, pairwise partitioning will perform
better than inclusive partitioning as indicated by the following claim.

Lemma 3. The total number of distance constraints in pairwise partitioning is
less than or equal to the number of distance constraints in an inclusive partitioning.

Proof. In pairwise partitioning, the total number of distance constraints is equal
to the total number of pairs in S1, S2, · · · , Sk. On the other hand, the total
number of distance constraints in inclusive partitioning is equal to

∑
i

(
|Si|
2

)
.

Consider a pair of terminals ti and tj such that both ℓ(ti) and ℓ(tj) are not equal
to 1. Then in the inclusive partitioning this pair will be considered in partitions
Smin(ℓ(ti),ℓ(tj)) to S1. On the other hand, in the pairwise partitioning, this pair
will be only considered in Smin(ℓ(ti),ℓ(tj)). Hence, pairwise partitioning will have
only one constraint for this pair and the inclusive partitioning will have more
than one constraint. Overall, the pairwise partitioning will have a smaller number
of constraints and better running time.

Algorithm k-priority Approximation provides valid solutions for both inclusive
partitioning and pairwise partitioning as shown in Lemma 1 and 2. Lemma 3
shows that pairwise partitioning is better in terms of the number of distance
constraints. We now provide an approximation guarantee for Algorithm k-priority
Approximation that is independent of the partitioning method.

Multi-Priority Graph Sparsification 9

Theorem 1. Consider an instance ϕ = 〈G,P,w〉 of the k-priority problem with
linear edge weights. If we are given an oracle that can compute the minimum
weight sparsification of G over T , then with at most log2 k + 1 queries to the
oracle, Algorithm k-priority computes a k-priority sparsification with weight at
most 4 weight(OPT).

Proof. The k-priority problem does not explicitly require some vertex has priority
k, so we will assume w.l.o.g. k is a power of 2. Given ϕ, construct the rounded-up
instance ϕ′ which is obtained by rounding up the priority of each vertex to the
nearest power of 2. Then, if OPT′ is an optimum solution to the rounded-up
instance, we have weight(OPT′) ≤ 2 weight(OPT), since edge weights are linear.

Then for each rounded-up priority i ∈ {1, 2, 4, 8, . . . , k}, compute a sparsifica-
tion independently over the partition Si, creating log2 k+1 graphs. Denote these
graphs ALG1, ALG2, ALG4, . . . , ALGk. Combine these sparsifications into a
single subgraph ALG. This is done using the “merging” operation described ear-
lier in this section: (i) add each edge of Hi to all sparsification of lower priorities
Hi−1, Hi−2, · · · , H1 and (ii) prune some edges to make sure that there is exactly
one path between each pair of terminals if we are computing priority Steiner tree.

It is not obvious why after this merging operation we have a k-priority sparsi-
fication with cost no more than 4 weight(OPT). The approximation algorithm
computes solutions independently, which means it is unaware of the terminal
sets at the lower levels. Consider the top most partition Sk of the rounded up
instance. The approximation algorithm computes an optimal solution for that
partition. The optimal algorithm of the k-priority sparsification computes the
solution while considering all the terminals and all priorities. Let OPTi be the
minimum weighted subgraph in an optimal k-priority solution OPT to generate
a valid sparsification on partition Si. Then weight(ALGk) ≤ weight(OPTk), i.e.,
if we only consider the top partition Sk, then the approximation algorithm is no
worse than the optimal algorithm.

However, the approximation algorithm may incur additional cost when merg-
ing the edges of ALGk in lower priorities. In the worst case, merged edges might
not be needed to compute the solutions of the lower partitions (if the merged
edges are used in the lower partitions in their independent solutions, then we
do not need to pay any cost for the merging operation). This is because the
approximation algorithm computes the solutions independently. On the other
hand, in the worst case, it may happen that OPTk includes all the edges to
satisfy all the constraints of lower partitions. In this case, the cost of the opti-
mal k-priority solution is k weight(OPTk). If weight(ALGk) ≈ weight(ALGk−1)
≈ · · · ≈ weight(ALG1) and the edges of the sparsification of a particular priority
do not help in the lower priorities, then it seems like the approximation algo-
rithm can perform around k times worse than the optimal k-priority solution.
However, the hypothesis (the edges of the sparsification of a particular priority
do not help in the lower priorities) will not be true because we are considering a
rounded up instance. In a rounded up instance Sk = Sk−1 = · · · = S k

2
+1. Hence,

weight(ALGi) ≤ weight(OPTi) for i = k, k/2, · · · , k
2 + 1.

10 R. Ahmed et al.

Lemma 4. If we compute independent solutions of a rounded up k-priority in-
stance and merge them, then the cost of the solution is no more than 2 weight(OPT).

Proof. Let the set of partitions be Sk, Sk/2, · · · , S1. Suppose we have com-
puted the independent solution and merged them in lower priorities. We ac-
tually prove a stronger claim, and use that to prove the lemma. Note that
in the worst case the cost of approximation algorithm is 2kweight(ALGk) +
2k/2weight(ALGk/2) + · · · + weight(ALG1). And the cost of the optimal algo-
rithm is weight(OPTk) + weight(OPTk−1) + · · ·+weight(OPT1). We show that
2kweight(ALGk)+2k/2weight(ALGk/2)+· · ·+weight(ALG1) ≤ 2 (weight(OPTk)+
weight(OPTk−1) + · · ·+weight(OPT1)). Let k = 2i. We provide a proof by in-
duction on i.

Base step: If i = 0, then we have just one partition S1. The approximation
algorithm computes a sparsification for S1 and there is nothing to merge. Since
the approximation algorithm uses an optimal algorithm to compute independent
solutions, weight(ALG1) ≤ 2 weight(OPT1).

Inductive step: We assume that the claim is true for i = j which is the
induction hypothesis. Hence 2jweight(ALG2j) + 2j−1weight(ALG2j−1) + · · · +
weight(ALG1) ≤ 2 (weight(OPT2j) + weight(OPT2j−1) + · · ·+weight(OPT1)).
We now show that the claim is also true for i = j + 1. In other words, we have
to show that 2j+1weight(ALG2j+1) + 2jweight(ALG2j) + · · ·+weight(ALG1) ≤
2 (weight(OPT2j+1) + weight(OPT2j+1−1) + · · ·+weight(OPT1)). We know,

L.H.S. = 2j+1weight(ALG2j+1) + 2jweight(ALG2j) + · · ·+weight(ALG1)

= weight(ALG2j+1) + weight(ALG2j+1) + · · ·+weight(ALG2j+1)

+ 2jweight(ALG2j) + 2j−1weight(ALG2j−1) + · · ·+weight(ALG1))

≤ weight(OPT2j+1) + weight(OPT2j+1) + · · ·+weight(OPT2j+1)

+ 2jweight(ALG2j) + 2j−1weight(ALG2j−1) + · · ·+weight(ALG1))

= 2j+1weight(OPT2j+1) + 2jweight(ALG2j) + · · ·+weight(ALG1)

= 2 (weight(OPT2j+1) + weight(OPT2j+1−1) + · · ·+weight(OPT2j+1))

+ 2jweight(ALG2j) + 2j−1weight(ALG2j−1) + · · ·+weight(ALG1))

≤ 2 (weight(OPT2j+1) + weight(OPT2j+1−1) + · · ·+weight(OPT2j+1))

+ 2 (weight(OPT2j) + weight(OPT2j−1) + · · ·+weight(OPT1))

= 2 (weight(OPT2j+1) + weight(OPT2j+1−1) + · · ·+weight(OPT1))

= R.H.S.

Here, the second equality is just a simplification. The third inequality uses the
fact that an independent optimal solution has a cost lower than or equal to any
other solution. The fourth equality is a simplification, the fifth inequality uses
the fact that the input is a rounded up instance. The sixth inequality uses the
induction hypothesis. The L.H.S. is greater than the cost of the approximation
algorithm. The R.H.S. is smaller than 2 weight(OPT).

Multi-Priority Graph Sparsification 11

We have shown earlier that the solution of the rounded up instance has a
cost of no more than 2 weight(OPT). Combining that claim and the previous
claim, we can show that the solution of the approximation algorithm has cost no
more than 4 weight(OPT).

In most cases, computing the optimal sparsification is computationally difficult.
If an oracle is instead replaced with a ρ-approximation, the rounding-up approach
is a 4ρ-approximation, by following the same proof as above.

3 Subset spanners and distance preservers

Here we provide a bound on the size of subsetwise graph spanners, where lightness
is expressed with respect to the weight of the corresponding Steiner tree.

A spanner of a graph G is a subgraph H which approximates distances in
G up to some error. Specifically, given a (possibly edge-weighted) graph G and
α ≥ 1, we say that H is a (multiplicative) α-spanner if dH(u, v) ≤ α · dG(u, v)
for all u, v ∈ V , where α is the stretch factor of the spanner and dG(u, v) is the
graph distance between u and v in G. A subset spanner over T ⊆ V approximates
distances between pairs of vertices in T (e.g., dH(u, v) ≤ α · dG(u, v) for all
u, v ∈ T). For clarity, we refer to the case where T = V as an all-pairs spanner.
The lightness of an all-pairs spanner is defined as its total edge weight divided
by w(MST (G)). A distance preserver is a spanner with α = 1.

Althöfer et al. [9] give a simple greedy algorithm which constructs an all-pairs
(2k − 1)-spanner H of size O(n1+1/k) and lightness 1 + n

2k . The lightness has
been subsequently improved; in particular Chechik and Wulff-Nilsen [16] give
a (2k − 1)(1 + ε) spanner with size O(n1+1/k) and lightness Oε(n

1/k). Up to ε
dependence, these size and lightness bounds are conditionally tight assuming
a girth conjecture by Erdős [20], which states that there exist graphs of girth
2k + 1 and Ω(n1+1/k) edges.

For subset spanners over T ⊆ V , the lightness is defined with respect to the
minimum Steiner tree over T , since that is the minimum weight subgraph which
connects T . We remark that in general graphs, the problem of finding a light
multiplicative subset spanner can be reduced to that of finding a light spanner:

Lemma 5. Let G be a weighted graph and let T ⊆ V . Then there is a poly-time
constructible subset spanner with stretch (2k− 1)(1 + ε) and lightness Oε(|T |

1/k).

Proof. Let G̃ be the metric closure over (G, T), namely the complete graph K|T |

where each edge uv ∈ E(G̃) has weight dG(u, v). Let H ′ be a (2k − 1)(1 + ε)-
spanner of G̃. By replacing each edge of H ′ with the corresponding shortest
path in G, we obtain a subset spanner H of G with the same stretch and
total weight. Using the spanner construction of [16], the total weight of H ′ is
Oε(|T |

1/k)w(MST (G̃)). Using the well-known fact that the MST of G̃ is a 2-
approximation for the minimum Steiner tree over (G, T), it follows that the total
weight of H ′ is also Oε(|T |

1/k) times the minimum Steiner tree over (G, T).

12 R. Ahmed et al.

Thus, the problem of finding a subset spanner with multiplicative stretch
becomes more interesting when the input graph is restricted (e.g., planar, or
H-minor free). Klein [24] showed that every planar graph has a subset (1 + ε)-
spanner with lightness Oε(1). Le [27] gave a poly-time algorithm which computes
a subset (1 + ε)-spanner with lightness Oε(log |T |), where G is restricted to be
H-minor free.

On the other hand, subset spanners with additive +β error are more inter-
esting, as one cannot simply reduce this problem to the all-pairs spanner as
in Lemma 5. It is known that every unweighted graph G has +2, +4, and +6
spanners with O(n3/2) edges [8], Õ(n7/5) edges [15], and O(n4/3) edges [11,25]
respectively, and that the upper bound of O(n4/3) edges cannot be improved
even with +no(1) additive error [2].

3.1 Subset distance preservers

Unlike spanners, general graphs do not contain sparse distance preservers that
preserve all distances exactly; the unweighted complete graph has no nontrivial
distance preserver and thus Θ(n2) edges are needed. Similarly, subset distance
preservers over a subset T ⊆ V may require Θ(|T |2) edges. It is an open question
whether there exists c > 0 such that any undirected, unweighted graph and subset
of size |T | = O(n1−c) has a distance preserver on O(|T |2) edges [12]. Moreover,
when |T | = O(n2/3), there are graphs for which any subset distance preserver
requires Ω(|T |n2/3) edges, which is ω(|T |2) when |T | = o(n2/3) [12].

Theorem 2. If the above open question is true, then every unweighted graph
with |T | = O(n1−c) and terminal priorities in [k] has a priority distance preserver
of size 4 weight(OPT).

4 Multi-Priority Approximation Algorithms

In this section, we illustrate how the subset spanners mentioned in Section 3 can
be used in Theorem 1, and show several corollaries of the kinds of guarantees
one can obtain in this manner. In particular, we give the first weight bounds for
multi-priority graph spanners. The case of Steiner trees was discussed [3].

4.1 Spanners

If the input graph is planar, then we can use the algorithm by Klein [24] to
compute a subset spanner for the set of priorities we get from the rounding
approach. The polynomial-time algorithm in [24] has constant approximation
ratio, assuming constant stretch factor, yielding the following corollary.

Corollary 1. Given a planar graph G and ε > 0, there exists a rounding ap-
proach based algorithm to compute a multi-priority multiplicative (1 + ε)-spanner

of G having O(ε−4) approximation. The algorithm runs in O(|T | log |T |
ε) time,

where T is the set of terminals.

Multi-Priority Graph Sparsification 13

The proof of this corollary follows from combining the guarantee of Klein [24]
with the bound of Theorem 1. Using the approximation result for subset spanners
provided in Lemma 5, we obtain the following corollary.

Corollary 2. Given an undirected weighted graph G, t ∈ N, ε > 0, there exists
a rounding approach based algorithm to compute a multi-priority multiplicative
(2t− 1)(1 + ε)-spanner of G having O(|T |

1
ε) approximation, where T is the set

of terminals. The algorithm runs in O(|T |2+
1
k
+ε) time.

For additive spanners, there are algorithms to compute subset spanners of
size O(n|T |

2
3), Õ(n|T |

4
7) and O(n|T |

1
2) for additive stretch 2, 4 and 6, respec-

tively [1,23]. Similarly, there is an algorithm to compute a near-additive subset

(1 + ε, 4)–spanner of size O(n
√

|T | logn
ε) [23]. If we use these algorithms as sub-

routines in Lemma 5 to compute subset spanners for different priorities, then we
have the following corollaries.

Corollary 3. Given an undirected weighted graph G, there exist polynomial-time
algorithms to compute multi-priority graph spanners with additive stretch 2, 4
and 6, of size O(n|T |

2
3), Õ(n|T |

4
7), and O(n|T |

1
2), respectively.

Corollary 4. Given an undirected unweighted graph G, there exists a polynomial-

time algorithm to compute multi-priority (1+ε, 4)–spanners of size O(n
√

|T | logn
ε).

Several of the above results involving additive spanners have been recently
generalized to weighted graphs; more specifically, there are algorithms to compute
subset spanners in weighted graphs of size O(n|T |

2
3), and O(n|T |

1
2) for additive

stretch 2W (·, ·), and 6W (·, ·), respectively [18,19,4], where W (u, v) denotes the
maximum edge weight along the shortest u-v path in G. Hence, we have the
following corollary.

Corollary 5. Given an undirected weighted graph G, there exist polynomial-time
algorithms to compute multi-priority graph spanners with additive stretch 2W (·, ·),

and 6W (·, ·), of size O(n|T |
2
3), and O(n|T |

1
2), respectively.

4.2 t–Connected Subgraphs

Another example which fits the framework of Section 1.1 is that of finding t–
connected subgraphs [28,26,29], in which (similar to the Steiner tree problem) a set
T ⊆ V of terminals is given, and the goal is to find the minimum-cost subgraph H
such that each pair of terminals is connected with at least t vertex-disjoint paths
in H. Nutov [28] presents an approximation algorithm for this problem giving
approximation ratio O(t2 log t). Laekhanukit [26] improves the approximation
guarantee to O(t log t) if |T | ≥ t2 and shows that the hardest instances of
the problem are when |T | ≈ t. Nutov [29] studies the subset t–connectivity
augmentation problem where given a graph G and a (t− 1)–connected subgraph
H, we want to augment some edges to H to make it t–connected. The objective

14 R. Ahmed et al.

is to minimize the size of the set of augmented edges. If we use the algorithm
of [26] in Theorem 1 to compute subsetwise t–connected subgraphs for different
priorities, then we have following corollary.

Corollary 6. Given an undirected weighted graph G, using the algorithm of [26]
as a subroutine in Theorem 1 yields a polynomial-time algorithm which computes
a multi-priority t–connected subgraph over the terimals with approximation ratio
O(t log t) provided |T | ≥ t2.

5 Conclusions and Future Work

We defined a class of k-priority sparsification problems and analyzed their difficulty
relative to their corresponding single-priority problems. The proposed technique
solves these problems using a subroutine for the corresponding single-priority
problem. Assuming linearly increasing edge weights and an exact oracle for the
single priority module, our algorithm yields a constant approximation to the
optimal solution that is independent of the number of priorities k. Naturally, a
ρ-approximation can be used in place of the oracle, yielding a O(ρ)-approximation
to the k-priority problem, which is again independent of the number of priorities
k. Since the k-priority sparsification problem relies on a single priority subroutine,
we studied the single priority subsetwise problem for graph spanners and distance
preservers. A feature in common for all the results in this paper is that solving
the k-priority problem relies on single priority solutions (exact or approximate).
A nice open problem is whether these k-priority problems can be solved directly,
without relying on single priority solvers, by building the solution simultaneously
for all priorities.

References

1. Abboud, A., Bodwin, G.: Lower bound amplification theorems for graph spanners.
In: Proceedings of the 27th ACM-SIAM Symposium on Discrete Algorithms (SODA).
pp. 841–856 (2016)

2. Abboud, A., Bodwin, G.: The 4/3 additive spanner exponent is tight. Journal of
the ACM (JACM) 64(4), 28 (2017)

3. Ahmed, A.R., Angelini, P., Sahneh, F.D., Efrat, A., Glickenstein, D., Gronemann,
M., Heinsohn, N., Kobourov, S., Spence, R., Watkins, J., Wolff, A.: Multi-level
Steiner trees. In: 17th International Symposium on Experimental Algorithms,
(SEA). pp. 15:1–15:14 (2018). https://doi.org/10.4230/LIPIcs.SEA.2018.15, https:
//doi.org/10.4230/LIPIcs.SEA.2018.15

4. Ahmed, R., Bodwin, G., Hamm, K., Kobourov, S., Spence, R.: On additive spanners
in weighted graphs with local error. In: Graph-Theoretic Concepts in Computer
Science. pp. 361–373. Springer International Publishing, Cham (2021)

5. Ahmed, R., Bodwin, G., Sahneh, F.D., Hamm, K., Jebelli, M.J.L., Kobourov,
S., Spence, R.: Graph spanners: A tutorial review. Computer Science Review 37,
100253 (2020)

Multi-Priority Graph Sparsification 15

6. Ahmed, R., Bodwin, G., Sahneh, F.D., Hamm, K., Kobourov, S., Spence, R.:
Multi-Level Weighted Additive Spanners. In: Coudert, D., Natale, E. (eds.)
19th International Symposium on Experimental Algorithms (SEA 2021). Leib-
niz International Proceedings in Informatics (LIPIcs), vol. 190, pp. 16:1–16:23.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany (2021).
https://doi.org/10.4230/LIPIcs.SEA.2021.16, https://drops.dagstuhl.de/opus/
volltexte/2021/13788

7. Ahmed, R., Hamm, K., Jebelli, M.J.L., Kobourov, S., Sahneh, F.D., Spence, R.:
Approximation algorithms and an integer program for multi-level graph spanners.
In: Proceedings of the Special Event on Analysis of Experimental Algorithms (2019)

8. Aingworth, D., Chekuri, C., Indyk, P., Motwani, R.: Fast estimation of diameter and
shortest paths (without matrix multiplication). SIAM J. Comput. 28, 1167–1181
(04 1999). https://doi.org/10.1137/S0097539796303421

9. Althöfer, I., Das, G., Dobkin, D., Joseph, D., Soares, J.: On sparse spanners of
weighted graphs. Discrete & Computational Geometry 9(1), 81–100 (1993)

10. Balakrishnan, A., Magnanti, T.L., Mirchandani, P.: Modeling and heuristic worst-
case performance analysis of the two-level network design problem. Management
Sci. 40(7), 846–867 (1994). https://doi.org/10.1287/mnsc.40.7.846

11. Baswana, S., Kavitha, T., Mehlhorn, K., Pettie, S.: Additive spanners and (α,
β)-spanners. ACM Transactions on Algorithms (TALG) 7(1), 5 (2010)

12. Bodwin, G.: New results on linear size distance preservers. SIAM Journal on
Computing 50(2), 662–673 (2021). https://doi.org/10.1137/19M123662X, https:
//doi.org/10.1137/19M123662X

13. Byrka, J., Grandoni, F., Rothvoß, T., Sanità, L.: Steiner tree approxima-
tion via iterative randomized rounding. J. ACM 60(1), 6:1–6:33 (2013).
https://doi.org/10.1145/2432622.2432628

14. Charikar, M., Naor, J., Schieber, B.: Resource optimization in QoS multicast routing
of real-time multimedia. IEEE/ACM Transactions on Networking 12(2), 340–348
(April 2004). https://doi.org/10.1109/TNET.2004.826288

15. Chechik, S.: New additive spanners. In: Proceedings of the twenty-fourth annual
ACM-SIAM symposium on Discrete algorithms. pp. 498–512. Society for Industrial
and Applied Mathematics (2013)

16. Chechik, S., Wulff-Nilsen, C.: Near-optimal light spanners. ACM Transactions on
Algorithms (TALG) 14(3), 33 (2018)

17. Chuzhoy, J., Gupta, A., Naor, J.S., Sinha, A.: On the approximability of
some network design problems. ACM Trans. Algorithms 4(2), 23:1–23:17 (2008).
https://doi.org/10.1145/1361192.1361200

18. Elkin, M., Gitlitz, Y., Neiman, O.: Almost shortest paths and PRAM distance
oracles in weighted graphs. arXiv preprint arXiv:1907.11422 (2019)

19. Elkin, M., Gitlitz, Y., Neiman, O.: Improved weighted additive spanners. arXiv
preprint arXiv:2008.09877 (2020)

20. Erdős, P.: Extremal problems in graph theory. In: Proceedings of the Symposium
on Theory of Graphs and its Applications. p. 2936 (1963)

21. Hauptmann, M., Karpiński, M.: A compendium on Steiner tree problems. Inst. für
Informatik (2013)

22. Karpinski, M., Mandoiu, I.I., Olshevsky, A., Zelikovsky, A.: Improved approximation
algorithms for the quality of service multicast tree problem. Algorithmica 42(2),
109–120 (2005). https://doi.org/10.1007/s00453-004-1133-y

23. Kavitha, T.: New pairwise spanners. Theory of Computing Systems 61(4), 1011–
1036 (Nov 2017). https://doi.org/10.1007/s00224-016-9736-7, https://doi.org/
10.1007/s00224-016-9736-7

16 R. Ahmed et al.

24. Klein, P.N.: A subset spanner for planar graphs, with application to sub-
set tsp. In: Proceedings of the Thirty-eighth Annual ACM Symposium on
Theory of Computing. pp. 749–756. STOC ’06, ACM, New York, NY, USA
(2006). https://doi.org/10.1145/1132516.1132620, http://doi.acm.org/10.1145/
1132516.1132620

25. Knudsen, M.B.T.: Additive spanners: A simple construction. In: Scandinavian
Workshop on Algorithm Theory. pp. 277–281. Springer (2014)

26. Laekhanukit, B.: An improved approximation algorithm for minimum-cost sub-
set k-connectivity. In: International Colloquium on Automata, Languages, and
Programming. pp. 13–24. Springer (2011)

27. Le, H.: A ptas for subset tsp in minor-free graphs. In: Proceedings of the Thirty-First
Annual. Society for Industrial and Applied Mathematics, USA (2020)

28. Nutov, Z.: Approximating minimum cost connectivity problems via uncrossable
bifamilies and spider-cover decompositions. In: IEEE 50th Annual Symposium
on Foundations of Computer Science (FOCS 2009). IEEE Computer Society, Los
Alamitos, CA, USA (oct 2009). https://doi.org/10.1109/FOCS.2009.9, https://
doi.ieeecomputersociety.org/10.1109/FOCS.2009.9

29. Nutov, Z.: Approximating subset k-connectivity problems. Journal of Discrete
Algorithms 17, 51–59 (2012)

30. Sahneh, F.D., Kobourov, S., Spence, R.: Approximation algorithms for the priority
Steiner tree problem. 27th International Computing and Combinatorics Conference
(COCOON) (2021), http://arxiv.org/abs/1811.11700

	Multi-Priority Graph Sparsification

