
Safe Environmental Envelopes of Discrete Systems

Rômulo Meira-Góes1, Ian Dardik2, Eunsuk Kang2, Stéphane Lafortune3, and
Stavros Tripakis4

1 School of EECS,
Pennsylvania State University, State College USA

romulo@psu.edu
2 School of Computer Science,

Carnegie Mellon University, Pittsburgh USA
{idardik,eunsukk}@andrew.cmu.edu

3 EECS Department, University of Michigan, Ann Arbor USA
stephane@umich.edu

4 Khoury College of Computer Science, Northeastern University, Boston USA
stavros@northeastern.edu

Abstract. A safety verification task involves verifying a system against a
desired safety property under certain assumptions about the environment.
However, these environmental assumptions may occasionally be violated due
to modeling errors or faults. Ideally, the system guarantees its critical prop-
erties even under some of these violations, i.e., the system is robust against
environmental deviations. This paper proposes a notion of robustness as an
explicit, first-class property of a transition system that captures how robust it
is against possible deviations in the environment. We modeled deviations as a
set of transitions that may be added to the original environment. Our robust-
ness notion then describes the safety envelope of this system, i.e., it captures
all sets of extra environment transitions for which the system still guaran-
tees a desired property. We show that being able to explicitly reason about
robustness enables new types of system analysis and design tasks beyond the
common verification problem stated above. We demonstrate the application of
our framework on case studies involving a radiation therapy interface, an elec-
tronic voting machine, a fare collection protocol, and a medical pump device.

Keywords: Robustness · Discrete Transition Systems · Model Uncertainty.

1 Introduction

A common type of verification task involves verifying a system (C) against a desired
property (P) under certain assumptions about the environment (E); i.e., C||E |=P .
Such assumptions may capture, for example, the expected behavior of a human
operator in a safety-critical system, the reliability of the communication channel in a
distributed system, or the capabilities of an attacker. However, the actual environment
(E′) may occasionally deviate from the original model (E), due to changes or faults
in the environment entities (e.g., errors committed by the operator or message loss in
the channel). For certain types of deviations, a system that is robust would ideally be
able to guarantee the property even under the deviated environment; i.e., C||E′ |=P .

2 R. Meira-Góes et al.

This paper proposes the notion of robustness as an explicit, first-class property of
a transition system that captures how robust it is against possible deviations in the
environment. A deviation is modeled as a set of extra transitions that may be added
to the original environment, resulting in a new, deviated environment E′ that has
a larger set of behaviors than E does. Then, system C is said to be robust to this
deviated environment with respect to P if and only if it can still guarantee P even
in presence of the deviation. Finally, the overall robustness of C with respect to E
and P , denoted ∆, is the largest set of deviations that the system is robust against.

Conceptually, ∆ defines the safe operating envelopes of the system: As long as the
deployment environment remains within these envelopes, the system can guarantee a
desired property. Being able to explicitly reason about ∆ enables new types of system
analysis and design tasks beyond the common verification problem stated above.
Given a pair of alternative system designs, C1 and C2, one could rigorously compare
them with respect to their robustness levels; they both may satisfy property P under
the normal operating environment E, but one may be more robust to deviations than
the other. Given two properties, P1 and P2 (the latter possibly more critical than
the former), one could check whether the system would continue to guarantee P2
under a deviated environment even if it fails to do so for P1. Finally, given E, P , and
a desired level of robustness, ∆, one could synthesize machine C to be robust to ∆.

In this paper, we formalize (1) the proposed notion of robustness and (2) the
problem of computing ∆ for given C, E, and P . One approach to automatically
compute ∆ is a brute-force method that enumerates all possible sets of deviations;
however, as we will show, this approach is impractical, as the number of deviations is
exponential in the size of the environment. To mitigate this, we present an approach
for computing ∆ by reduction to a controller synthesis problem [35,37].

We have built a prototype of the proposed approach for computing robustness
and applied it to several case studies, including models of (1) a radiation therapy
interface, (2) an electronic voting machine, (3) a public transportation fare collection
protocol, and (4) a medical pump device. Our results show that our approach is
capable of computing ∆ to provide information about deviations under which these
systems are able to guarantee their critical safety properties.

The contributions of this paper are as follows: (i) A novel, formal definition
of robustness against environmental deviations (Sect. 4); (ii) A simple, brute-force
method for computing robustness and a more efficient approach based on controller
synthesis (Sect. 5); and (iii) A prototype tool for computing ∆ and an experimental
evaluation on several case studies (Sect. 6).

2 Motivating example

As a motivating example, we consider the Therac-25 radiation therapy machine. This
machine is infamous for a design flaw that caused radiation overdoses, several of
which led to the deaths of patients who received treatment [18]. In this section, we
introduce a model for the Therac-25 based on the descriptions in [18] and discuss
several methods for analyzing its safety. We show that robustness provides a generally
richer analysis than classic verification.

Safe Environmental Envelopes of Discrete Systems 3

x x x
beam ready

up, enter up, x, e enter

x, e enter

up

beamReady

b

(a) The operating terminal, Cterm.

SP

FL
mid-
rotate

rotate

rotate

e

x

e

x
Spreader

Flattener

mid-
rotate

(b) The turntable, Cturn.

choose
mode

confirm
mode

fire
beam finished

x, e enter b

(c) The normative environment, E

Fig. 1: The Therac-25 is modeled as CT25 =Cterm||Cbeam||Cturn. Cbeam is in Figure 7b.

System We model the Therac-25 as the composition of the following three finite-state
machines: (1) Cterm, a computer terminal that nurses use to operate the Therac-25,
(2) Cbeam, a beam-emitter that fires a radiation treatment beam in either X-ray
or electron mode, and (3) Cturn, a turntable that rotates between two hardware
components called the flattener and the spreader. Formally, we define the Therac-25
as the composition all three machines: CT25 = Cterm||Cbeam||Cturn. We show the
terminal and turntable in Figs. 1a and 1b respectively. We show the beam in Sect.
6.2 (Fig. 7b), where we present a case study on the Therac-25.
Environment Nurses operate the Therac-25 by typing at a keyboard connected to a
terminal. A nurse begins by choosing a beam mode by typing either an “x” for X-ray
or an “e” for electron mode. The nurse then hits the “enter” key and waits for the
terminal to display “beam ready” before finally pressing the “b” key to fire the beam.
This workflow defines the operating environment which we call E, shown in Fig. 1c.
Safety property Since the X-ray beams contain a high concentration of radiation,
it is imperative that the flattener is in place when the machine fires an X-ray. We
capture this key safety property in the following LTL [36] formula:

G
(
XFIRED → FLATMODE

)
In this formula, XFIRED is a predicate that is true if an X-ray beam was just fired,
while FLATMODE is a predicate that is true when the turn table is in flattener
mode. We refer to this safety property as Pxflat in this example.
Safety Analyses Robustness opens our safety analysis beyond classic verification.
We discuss several analysis options below.
(1) Standard Verification: We can check that the Therac-25 is safe within the
operating environment, that is, E||CT25 |=Pxflat. Standard model checking techniques
[2] show that the Therac-25 is indeed safe with respect to E.

4 R. Meira-Góes et al.

(2) Robustness Calculation: Given that the Therac-25 is safe with respect to E, we
can calculate its robustness ∆. This calculation identifies the set of safe environmental
envelopes of the Therac-25. Importantly, these envelopes reveal the environmental
deviations that the Therac-25 can safely handle. For example, in Sect. 6.2, we show
that the Therac-25 is robust against the environmental deviations in Fig. 8 in which
a nurse repeatedly hits “enter” or the “up” arrow key after choosing a beam mode.
(3) Controller Comparison: Holding the environment E and the property Pxflat

constant, we can compare the robustness of the Therac-25 against other models. In
Sect. 6.2, we introduce the Therac-20 (CT20) and compare the robustness between
CT25 and CT20. Although both machines are safe with respect to the normative
environment, we will find that CT25 is strictly less robust than CT20. We will show
how contrasting the robustness between the two machines exposes a critical software
bug in the Therac-25. Furthermore, we will show that fixing the bug in the Therac-25
causes its robustness to be equivalent to the Therac-20.
(4) Property Comparison: Holding the environment E and the machine CT25
constant, we can compare the machine’s robustness with respect to Pxflat and a
second safety property. For example, we could consider a new safety property P ′ that
strengthens Pxflat by additionally enforcing the spreader to be in place when a beam
is fired in electron mode. The property P ′ might be of interest to avoid an underdose,
a situation that might result from the flattener being in place when an electron beam
is fired. Because P ′ is stronger than Pxflat, a designer may be interested to compare
the robustness between the properties to understand which environmental deviations
maintain Pxflat, but violate P ′.

3 Modeling formalism
This section describes the underlying formalism used to model the environment,
controlled systems, and the properties enforced by them.

Labeled transition systems Given a finite set A, the usual notations |A| and A∗

denote the cardinality of A and the set of all finite sequences over A respectively.
In this work, we use finite labeled transition systems to model the behavior of the
environment, the controller, and the property.
Definition 1. A labeled transition system (LTS) E is a tuple ⟨QE,ActE,RE,q0,E⟩,
where QE is a finite set of states, ActE is a finite set of actions, RE ⊆QE ×ActE ×QE

is the transition relation of E, and q0,E ∈QE is the initial state.
LTS E is said to be deterministic if for any (q,a,q′),(q,a,q′′) ∈ RE, then q′ = q′′;
otherwise it is nondeterministic. We extend the transition relation RE to finite
sequences of actions as RE

∗ ⊆QE ×ActE
∗×QE in the usual manner. A trace of E

is a finite sequence of actions a0...an of E complying with the transition in RE
∗, i.e.,

(q0,E,a0...an,q)∈RE
∗ for some q∈QE. The set of all traces in E is denoted by beh(E).

Given LTSs E1 and E2, the parallel composition || defines standard synchronization
of E1 and E2 [2,7]. The composed LTS E1||E2 =⟨QE1 ×QE2,ActE1 ∪ActE2,RE1||E2,
(q0,E1,q0,E2)⟩ synchronizes over the common actions between E1 and E2 and inter-
leaves the remaining actions. Lastly, given LTSs E1 and E2, we say that E1 is a subset
of E2, denoted E1 ⊆E2, if QE1 ⊆QE2, ActE1 =ActE2, RE1 ⊆RE2, and q0,E1 =q0,E2.

Safe Environmental Envelopes of Discrete Systems 5

1 2 3
ba

(a) Environment E

4

a

(b) Controller C

A B Caa

err
a,bb b

(c) Property P

Fig. 2: LTSs for the running example

Control strategy Let an LTS E represent the environmental model to be controlled.
A control strategy, or simply controller, for E is a function that maps a finite sequence
of actions to a set of actions, i.e., C :ActE

∗ →2ActE . A controlled trace of E is a trace of
E, a0...an ∈beh(E), such that ai ∈C(a0...ai−1) for any i≤n. The set of all controlled
runs, denoted by beh(E/C), defines the closed-loop system of C controlling E. For
convenience, this closed-loop system is denoted by E/C. In this work, we assume
that controller C has finite memory and it can be represented by a deterministic
LTS. With an abuse of notation, the LTS controller representation is also denoted by
C. For convenience, we define controller C =⟨QC,ActC,RC,q0,C⟩ to have the same
actions as in E, i.e., ActC =ActE. In this manner, the closed-loop system E/C can
be represented by the composition of environment E and controller C: E/C =E||C.

Remark 1. We assume that all elements of the set of actions ActE are “controllable”
actions, that can be acted upon by a controller. However, the nondeterministic tran-
sition relation of E can be used to model uncontrollable actions of the environment.
After an action a is selected by the controller at state q, the environment decides
which state the system will be in, similarly to two-player games [15].

Safety property In this work, we consider a class of regular linear-time properties
called safety properties over an environment E [2]. A safety property P is represented
by a deterministic LTS P that defines the set of accepted behaviors. Usually, the
LTS P encodes both the traces that satisfy P and those that violate it by including
a sink error state. Formally, any trace that reaches the error state err∈QP violates
the safety property. An LTS E satisfies property P , denoted by E |=P , whenever
the traces in beh(E) do not reach the error state in P . In this manner, we can test
if E |=P by composing E||P and investigating if the err is reached.

Example 1. We describe a simple example that we use as a running example through-
out the paper. Figure 2 depicts the environment E, controller C, and property P
considered in this example. The environment E defines that action a is immediately
followed by action b. Although controller C in Fig. 2b only shows action a, we assume
that ActC ={a,b}. In this manner, C only allows action a to occur. Lastly, property
P defines that action a should happen at most two times while action b should
never happen. It follows that E/C |=P since the controller disables action b and the
environment only executes one instance of action a.

6 R. Meira-Góes et al.

4 Robustness against environmental deviations

4.1 Deviations

A deviation is a set of transitions d⊆(QE ×ActE ×QE) A deviated system is defined
by augmenting the transitions of environment E with a deviation set:

Definition 2. Given an LTS E = ⟨QE,ActE,RE,q0,E⟩ and a deviation d ⊆ QE ×
ActE ×QE. We define the deviated system Ed as Ed :=⟨QE,ActE,RE ∪d,q0,E⟩.

A controller C that guarantees property P for environment E, i.e., E/C |= P ,
might violate this property for the deviated environment Ed, i.e., Ed/C |̸=P .

Definition 3. Controller C is a robust controller with respect to environment E,
deviation d, and property P if Ed/C |= P . Deviation d is a robust deviation with
respect to E, C, and P if C is a robust controller with respect to E, d, and P .

Remark 2. In this paper, we are only interested in ensuring safety properties over
the controlled system. For this reason, it is sufficient to only consider adding new
transitions to the environment. If a controlled system is safe, then deleting transitions
from the environment does not violate the safety property.

4.2 Comparing deviations

Each deviation set affects the environment in different ways. To reason about the
effects of each deviation set, we compare them using a partial order relation over
QE ×ActE ×QE. For deviations d1 and d2 such that d1 ⊆ d2, d2 deviates LTS E
more than d1 since beh(Ed1) ⊆ beh(Ed2). For this reason, we select the relation ⊆
over QE ×ActE ×QE to be the partial order to compare different deviation sets.

Definition 4. Given E and deviations d1,d2, d1 is at least as powerful as d2 if d2 ⊆d1.

4.3 Robustness

Intuitively, robustness is defined as the set of all possible robust deviations d with
respect to the environment E, controller C, and safety property Psaf . Additionally,
we introduce an environmental constraint, Penv, to capture domain knowledge about
the system under analysis. Penv will filter environment deviations that might not be
physically feasible or of interest to analyze. This constraint is captured as a safety
property over E, i.e., E |=Penv states that the environment satisfies the constraint.
Formally, our robustness notions is defined as follows:

Definition 5. Let environment E, controller C, property Psaf such that E/C |=Psaf ,
and environment constraint Penv such that E |= Penv be given. The robustness of
controller C with respect to E, Psaf , and Penv, denoted by ∆(E,C,Psaf ,Penv), is a
set of robust deviations ∆ ⊆ 2QE×ActE×QE . ∆ is defined to be the (unique) set of
robust deviations satisfying the following conditions:

1. ∀d∈∆. Ed/C |=Psaf [d is robust];
2. ∀d⊆QE ×ActE ×QE.Ed/C |=Psaf ∧Ed |=Penv ⇒∃d′ ∈∆.d⊆d′ [d is represented];

Safe Environmental Envelopes of Discrete Systems 7

1 2 3
ba

a

(a) A robust deviated environment

1 2 3
ba

a

a

(b) Maximal robust deviated environment

1 2 3
ba

a

a

(c) Maximal robust deviated environment

1 2 3
ba

a

a
a

(d) Maximal robust deviated environment

Fig. 3: Robust deviated environments. Robust transitions QE ×{b}×QE are omitted.

3. ∀d,d′ ∈∆. d≠d′ ⇒d⊈d′ [unique representation].
4. ∀d∈∆. Ed |=Penv [d is feasible].

When E,C,Psaf , and Penv are clear from context, we simply write ∆. The set ∆ is
also denoted as the safety envelope of C with respect to E, Psaf , and Penv.
Intuitively, the set ∆ defines an upper bound on the possible deviations from E that
controller C is robust against. In other words, ∆ captures the envelopes for which
controller C remains safe.

If a designer does not have domain knowledge about the system, then Penv can be
set to not constrain the environment, i.e., Penv =Act∗

E. After computing ∆ without en-
vironmental constraints, a designer can obtain important information about the system
and the environment. In the next analysis iteration, this knowledge can be transformed
into environmental constraints to enhance the robustness analysis, i.e., Penv ⊆Act∗

E.
By definition, ∆ is always non-empty since d=∅ is always robust. Moreover, due

to conditions 2 and 3, only maximal robust deviations are included in ∆. We show
that there is a unique set of deviations that satisfies the conditions of Def. 5. The
proof of this lemma is available at [27], pg. 23.
Lemma 1. Given LTS E, controller C, safety property Psaf , and environment
property Penv, there is a unique ∆ that satisfies the conditions in Def. 5.
Example 2. Back to our running example, we investigate robust deviations and ∆. For
simplicity, we do not impose any environment constraint, i.e., Penv =Act∗

E. Figure 3
shows four robust deviations for our running example, where transitions in green
are deviations added to the environment. All robust deviations allow at most two
transitions with action a, which is the maximum number allowed by the property.
In this example, ∆ has three robust deviations that are represented in Figs. 3b-3d.
Since the robust deviation shown in Fig. 3a is a subset of both deviations in Fig. 3b
and Fig.3c, it is not included in ∆.

4.4 Problem statement
Although Def. 5 has formally introduced our notion of robustness, it does not show how
to compute robustness. Therefore, we investigate the problem of computing the set ∆.

8 R. Meira-Góes et al.

Problem 1. Given E, C, Psaf , and Penv as in Def. 5, compute ∆.

4.5 Comparing robustness

Our robustness definition also allows us to compare the robustness between different
controllers as well as different safety properties.

Comparing controllers Holding the environment and safety property constant,
we can compare the robustness of the controllers.

Definition 6. Given an environment E, controllers C1 and C2, safety property Psaf ,
and environment constraint Penv, controller C1 is at least as robust as C2 if and only if
for all d2 ∈∆(E,C2,Psaf ,Penv) there exists d1 ∈∆(E,C1,Psaf ,Penv) such that d2 ⊆d1.
Equality and strictly less/more robust are defined in the usual manner using ⊆.

Comparing safety properties Holding the environment and controller constant,
we can compare the robustness between safety properties.

Definition 7. Given an environment E, controllers C, safety properties Psaf,1 and
Psaf,2, and environment constraint Penv, controller C is at least as robust with respect
to Psaf,1 than with respect to Psaf,2 if and only if for all d2 ∈ ∆(E,C,Psaf,2,Penv),
there exists d1 ∈∆(E,C,Psaf,1,Penv) such that d2 ⊆d1.

5 Computing robustness

This section presents two manners of solving Problem 1. One is a brute-force algorithm
whereas the second uses control techniques to obtain the solution. Usually when dealing
with regular safety properties, one transforms the safety property into an invariance
property. This transformation is simply obtained by composing the environment with
the safety property; then, an invariance property equivalent to the safety is defined
over this composed system [2]. In this composed system, an invariance property is
simply defined by a set of safe states. Unfortunately, computing robustness for safety
properties does not directly reduce to computing robustness for invariance properties.

When transforming a safety property Psaf to an invariance property, we compose
the environment and the safety property. Let us assume that there are no environ-
mental constraints. In our scenario, the invariance property Pinv is defined based on
the composed system E||C||Psaf , i.e., Pinv ⊆QE||C||Psaf

. The composed system Pinv

introduces memory to the environment to differentiate when the safety property is
violated or not. This memory addition prevents a simple reduction between invariance
and safety properties since robustness is defined with respect to the environment.
Robustness defines new transitions in E whereas computing robustness with respect
to Pinv defines new transitions in E||C||Psaf . For this reason, we cannot simply
reduce the problem of computing ∆ with respect to safety properties to the problem
of computing ∆ with respect to an invariance property.

Safe Environmental Envelopes of Discrete Systems 9

5.1 Brute-force algorithm

One way of solving Prob. 1 is via a brute-force algorithm. Intuitively, this algorithm is
broken into two parts: (i) finding the set of robust deviations that satisfy the environ-
mental constraint, and (ii) identifying the maximal ones within this set. In part (i),
we verify Ed||C |=Psaf and Ed |=Penv for all deviations d⊆(QE ×ActE ×QE)\RE,
which can be solved using standard model checking techniques [2]. Since this algorithm
checks if every deviation set is robust or not, it is clear that it computes ∆.

5.2 Controlling the deviations without environmental constraints

Due to the lack of scalability of the brute-force algorithm, we search for more efficient
ways to compute ∆. For readability purposes, we start by describing our algorithm
in detail assuming no environmental constraints, i.e., unconstrained environment
Penv =Act∗

E. In the next section, we show how to use this algorithm to completely
solve Prob. 1, i.e., for a possibly constrained environment Penv ⊆Act∗

E.

Overview of the control algorithm At a high level, we transform the problem
of computing ∆ to a problem of controlling environmental transitions to avoid safety
violations. Intuitively, we control deviations to force them to be robust, i.e., we take the
viewpoint that we can control transitions in (QE ×ActE ×QE)\RE. Different ways of
controlling transitions in (QE ×ActE ×QE)\RE provide different robust deviations.

Input:
 EE

Compute
Deviated
System

Output:
EAEA

Compute
Meta-
system

Output:
T1, . . . , Tn ⊆ FT1, . . . , Tn ⊆ F

Control
Meta-
system

Output:
F = EA||C||PF = EA||C||P

Generate
Robustness

Output:
DD

Input:
C, PC, P

Fig. 4: Overview of our approach to compute robustness for the unconstrained
environment. The inputs are the LTSs of environment E, controller C, and property
Psaf . The set A is the set of all environment transitions, A=QE ×ActE ×QE. The
LTSs T1,...,Tn ⊆F represent controlled meta-systems.

Figure 4 provides an overview of our approach. First, we define LTS EA to be
the deviated system with all possible transitions, i.e., A = QE ×ActE ×QE. The
deviated system EA is the maximally deviated environment since it encompasses
every possible deviated system Ed for d⊆QE ×ActE ×QE.

Next, we compose the deviated environment EA with controller C and property
Psaf , to create a “meta-system” F . This meta-system provides information about
how the deviated environment EA under the control of C can violate Psaf . Following
this composition, we pose a control problem over the meta-system to prevent any
violation of Psaf . There are multiple ways of controlling this composed system; in our
approach, we obtain a finite number of controllers encoded as Ti ⊆F . These different

10 R. Meira-Góes et al.

ways of controlling the meta-system provide different robust deviations from which
we can extract ∆. To make our approach concrete, we describe each step in detail
using our running example, shown in Figure 2.

Constructing the meta-system The deviated environment EA =EQE×ActE×QE

contains the behavior of any other deviated environment. Therefore, we define the
meta-system to be the composition of deviated environment EA, controller C, and
property Psaf , i.e., F = EA||C||Psaf . Figure 5a shows the meta-system F for our
running example. Since C only has one state, we omit its state from the state names in
Fig. 5a, i.e., states in Fig. 5a are defined as (qe,qp)∈QE ×QPsaf

instead of (qe,qc,qp)∈
QE ×QC ×QPsaf

. All transitions in F are labeled a, omitted in Fig. 5a, since controller
C only enables action a. We also identify in F which transitions are derived from the
environment (dashed blue) and which are derived from deviations (green). For simplic-
ity, we define a single error state in F to capture every (qe,qc,err)∈QE ×QC ×QPsaf

.

1,A 2,B 2,C err

3,B

1,B

3,C

1,C

(a) Meta-system F

1,A 2,B 2,C err

3,B

1,B

3,C

1,C

(b) Meta-controller T1

1,A 2,B 2,C err

3,B

1,B

3,C

1,C

(c) Meta-controller T2

Fig. 5: Meta-systems. All transitions have action a since C only enables action a (see
Fig. 2b). Dashed blue transitions represent transitions that are feasible in RE while
solid green transitions represent the deviated transitions in (QE ×ActE ×QE)\RE.
The shaded area in Fig. 5b contains all safe states in the meta-system.

Controlling the meta-system: Once the meta-system is constructed, we pose
a meta-control problem over F to ensure that the meta-system avoids the error
states, i.e., states (qe,qc,err)∈QE ×QC ×QPsaf

. These error states represent safety
violations in the closed-loop system. For instance, in Fig. 5a, if transition (2,C)→err
occurs, then the closed-loop system violates Psaf since more than two actions a were
executed. In this meta-control problem, a meta-controller can disable transitions in
F that originated from deviations in E, i.e., transitions in (QE ×ActE ×QE)\RE.

Safe Environmental Envelopes of Discrete Systems 11

Problem 2. Given meta-system F , synthesize a meta-controller T ⊆F such that (1)
for any (qe,qc,qp)∈QT then state qp≠err; and (2) for any

(
(qe,qc,qp),a,(q′

e,q′
c,q

′
p)

)
∈

RF \RT such that (qe,qc,qp)∈QT , it follows that (qe,a,q′
e) /∈RE.

Problem 2 states that the meta-controller is a subset of the meta-system F . We
want to maintain the same structure as in F since we need to enforce that the
meta-controller does not disable any transition associated with RE. Condition (1) in
Problem 2 ensures that property Psaf is not violated. On the other hand, condition (2)
guarantees that only transitions assigned to deviations are disabled.

Back to our example, the LTS T described by the shaded area in Fig. 5b demon-
strates a possible meta-controller that satisfies Problem 2. Condition (1) is satisfied
since the error state is not included in the shaded area. With respect to condition (2),
only solid green transitions are disabled. Figure 5c shows another meta-controller.

To solve Problem 2, one can solve a safety game over F using fixed-point com-
putation [15,25]. Due to space limitations, we point the reader to [27], pg. .23 for the
solution to this safety game.

Extracting robust deviations Each meta-controller that solves Problem 2 relates
to a robust deviation. Intuitively, a meta-controller disables deviations that would
violate Psaf . For instance, the meta-controller T1 shown in Fig. 5b disables transi-
tion (3,B)→(1,C), which relates to disabling transition 3 a−→1 in the environment.
Figure 3a depicts the deviated environment related to meta-controller T1. Similarly,
Fig. 3b shows the deviated environment associated with meta-controller T2.

To extract a robust deviation from a meta-controller, we have to (1) identify
the transitions that the meta-controller has disabled; and (2) project the disabled
transitions to transitions QE ×ActE ×QE. Since a meta-controller is a subset of the
meta-system, the disabled transitions are obtained by comparing F and T . Intuitively,
the disabled transitions are those that escape the shaded area in Fig. 5.

Disabled :={(q, a, q′)∈RF |q∈QT ∧ (q, a, q′) /∈RT } (1)

For instance, in the case of meta-controller T1, the transition ((1,B),a,(1,C))
belongs to the Disabled set. Next, based on the disabled transitions, we project them
to transitions in QE ×ActE ×QE, i.e., transitions in the environment.

del :={(qe, a, q′
e)∈QE ×ActE ×QE |((qe,qc,qp),a,(q′

e,q′
c,q

′
p))∈Disabled} (2)

Transitions in del are the transitions to be deleted from QE ×ActE ×QE such that
(QE ×ActE ×QE)\del is a robust deviation set. If transitions in del are included in
a deviation set, they can cause a violation of property Psaf . In the case of T1, the
transition (1,a,1) is included in del. If we maintain, for instance, transition 1 a−→1 as
part of a deviation set d, then the closed-loop Ed/C violates the property Psaf since
the path (1,A)→(1,B)→(1,C)→err would be feasible in the meta-controller.

Computing robustness ∆ Problem 2 searches for meta-controllers that guarantee
the satisfaction of property Psaf . To compute ∆, we need to obtain a finite number
of meta-controllers. Algorithm 1 formalizes our description in Fig. 4. It takes as input

12 R. Meira-Góes et al.

the environment E, the controller C, a deviation set d, and a safety property P . From
the algorithm overview description in Fig. 2, we have that for the unconstrained
environment d=A=QE ×ActE ×QE and P =Psaf .

Algorithm 1 COMPUTE-ROBUSTNESS
Input: LTSs E, C, P and deviation d
Output: Set of deviations D
1: D←∅
2: F←Ed||C||P
3: Err←{(qe,qc,qp)∈QF |qp =err}
4: W←Inv(QF \Err)
5: for all S∈2W \{∅} do
6: T←Meta-Controller(S,F)
7: del←{(qe,a,q′

e)∈d |∃((qe,qc,qp), a, (q′
e,q′

c,q′
p))∈RF \RT s.t. (qe,qc,qp)∈QT}

8: D←D∪{d\del}
9: while ∃d1,d2∈∆ s.t. d1⊆d2 do

10: D←D\{d1}
return D

11: procedure Meta-Controller(S,F)
12: S←Inv(S)
13: if q0,F /∈S then
14: T←∅
15: else
16: QT←S, ActT←ActF , q0,T←q0,F

17: RT←{(q,a,q′)∈S×ActT×S |(q,a,q′)∈RF}
return T

In Alg. 1, line 4 computes the largest possible set of invariant states that avoid the
error state, i.e., Inv(QF \Err) solves the safety game as shown in [27], pg. 23. Based
on this invariant set, each iteration in the loop (lines 5-8) computes a meta-controller
(line 6) and stores its respective robust deviation (line 8). The meta-controller T is
also computed by using the function Inv. The meta-controller solution ensures that
QT ⊆S. Line 7 computes environmental transitions that must be deleted in order to
obtain a robust deviation. The computed robust deviations are stored in ∆. Lastly,
the loop in lines 9-10 ensures that only maximal robust deviations are included in ∆.

In more detail, to solve Problem 2, we must guarantee that the meta-system F does
not reach any states in Err :={(qe,qc,qp)∈QF |qp =err}. Formally, we compute the set
Inv(QF \Err), which contains every state in F that does not reach a state in Err via
a transition associated with RE. Based on this invariant set, we can extract any meta-
controller that remains within this set. Informally, the Meta-Controller(S,F) in
line 11 of Alg. 1 computes a meta-controller that remains within states in S. First, this
procedure computes the invariant set of S, i.e., Inv(S) with respect to meta-system F
(line 12). In this manner, a meta-controller is defined by projecting the meta-system
F to states and transitions in the set of state Inv(S) (lines 16-17).

Safe Environmental Envelopes of Discrete Systems 13

The following theorem shows that ∆ computed via Alg. 1 is equal to ∆ as in
Def. 5 when Penv =Act∗

E, i.e., Alg. 1 partially solves Problem 1.

Theorem 1. Given LTS E, controller C, and property Psaf , Algorithm 1 outputs
∆ as in Def. 5 when Penv =Act∗

E.

Proof. Sketch. In order to show that Theorem 1 holds, we provide two intermediate
lemmas whose proofs are available at [27], pg. 24 (Lemma 2 and Lemma 3). The
first lemma states that every meta-controller T produces a robust deviation. In this
manner, we show that for every d∈∆, the deviation d is robust. The second lemma
shows that for every maximal robust deviation d∈∆, there exists a meta-controller T
associated with deviation d. Consequently, Alg. 1 computes every possible maximal
robust deviation.

Using Alg. 1 to compute ∆ for our running example, we obtain ∆ that con-
tains the three maximal robust deviations shown in Fig. 3. Lastly, we provide the
computational complexity of Alg. 1.

Theorem 2. Algorithm 1 outputs ∆ in O(2|QE||QC|(|QP |−1)).

Proof. It follows from the size of 2W .

Although Alg. 1 has exponential complexity, we empirically show in Section 6 that
it scales better than the brute-force algorithm.

Heuristics to exploit the structure of F In Alg. 1, we compute robust deviations
for every possible subset of the largest invariant state set, c.f., line 5. To improve
the efficiency of Alg. 1, we provide a sound and complete heuristic that identifies
and skips redundant subsets of 2W \∅. The heuristic is based on the observation
that sets of states that are not directly connected in F correspond to redundant
deletion sets from QE ×ActE ×QE. As such, the heuristic exploits the structure of F
by performing a depth-first search over its state space, hence skipping disconnected
groups of states. For instance, the heuristic will skip the subset {(1,A),(3,C)} because
(1,A) and (3,C) are not connected in F . This subset is redundant because its deletion
set del={((1,A),(1,B)),((1,A),(2,B)),((1,A),(3,B))} is identical to the deletion set
for the subset {(1,A)} which is connected. In the worst-case scenario, our heuristic
computes the power set of W , i.e., exactly as in line 5.

5.3 Controlling the deviations with environmental constraints

When introducing environmental constraints, we must eliminate the robust deviations
that violate these constraints as described in Def. 5. One might think that Penv

and Psaf could be combined as a single safety property for which we then compute
∆. However, this approach does not work since Penv must be enforced only by the
environment whereas Psaf is a property of the closed-loop system. Another approach
is to verify if Penv is satisfied for each deviation obtained in the for-loop (lines 5-8)
in Alg. 1. Although this approach is feasible, in practice, we want to reduce the
number of deviations, using Penv, before we compute the robust deviations. For this

14 R. Meira-Góes et al.

Input:

E,Call,
Penv, A
E,Call,
Penv, A,

Comp-Rob
(E,Call, Penv, A)(E,Call, Penv, A)

Alg.1

Output:
D̃ = {d̃1, . . . , d̃n}D̃ = {d̃1, . . . , d̃n}

Output:
∆∆

Post-
process

Output:
D1, . . . , DnD1, . . . , Dn

Input:
E,C, PsafE,C, Psaf

Part (a) Part (b)

Alg. 1
Compute-
Robustness

(E,C, Penv, d̃i)(E,C, Penv, d̃i)

Alg. 1
Compute-
Robustness

(E,C, Penv, d̃i)(E,C, Penv, d̃i)

Alg. 1
Compute-
Robustness

(E,C, Penv, d̃i)(E,C, Penv, d̃i)

Comp-Rob
(E,C, Psaf , d̃n)(E,C, Psaf , d̃n)

Alg.1

Fig. 6: Overview of our approach to compute robustness for constrained environments.
reason, we describe a sequential algorithm shown in Fig. 6. In this algorithm, Alg. 1
is used multiple times in this constrained scenario instead of a single time as in the
unconstrained scenario (Sect. 5.2).

The algorithm to compute robustness for constrained environments can be broken
into two parts: (a) computing all maximal environments d̃i that satisfy Penv; and
(b) computing robust deviations for each deviated environment Ed̃i

found in part
(a). Computing the maximal environments that satisfy Penv reduces to computing
maximal deviations of E with respect to a controller that allows every environment
action, Call. Formally, the behavior of Call does not restrain E, beh(Call) = Act∗

E;
and it can be described by a one-state LTS. Therefore, the output of part (a) is the
set of maximal deviations d̃i with respect to E, Call, and Penv, denoted as maximal
environment deviations. Each maximal deviated environment Ed̃i

satisfy the Penv.
Once we have obtained all maximal environment deviations that satisfy Penv, we

focus on finding the maximal robust deviations with respect to C and Psaf . In other
words, we run Alg. 1 for each maximal deviated environment Ed̃i

together with C and
Psaf . Since d is a subset of d̃i, we have that the perturbed system Ed satisfies Penv.

Each maximal deviated environment Ed̃i
generates a set of maximal robust devia-

tions Di with respect to C and Psaf . The final step is combining these maximal robust
deviations with respect to each d̃i. Since they are maximal with respect to d̃i, there
could be deviations that are not maximal as defined by Def. 5. The post-processing
step combines the deviations and eliminates any non-maximal deviations; and it
outputs ∆ as in Def. 5. The correctness of this algorithm follows from Theorem 1.

6 Case studies
6.1 Implementation
We have implemented a prototype tool for computing robustness [28]. The tool
accepts a model of an environment, a controller, and a safety property–as well as an
optional list of environmental constraints–and outputs ∆. The tool has support for
comparing the robustness of two controllers as well as the robustness of a controller
with respect to two separate safety properties. Currently, the environment, controller,
safety property, and environmental constraints must be encoded in Finite State
Process (FSP) notation [23] but this is not a fundamental limitation.

We wrote the tool in the Kotlin programming language. Our tool includes an
implementation of the brute-force algorithm from Sect. 5.1, as well as an implemen-
tation of Alg. 1 and Alg. 1 with heuristics. In the following case studies, we leverage
the tool to calculate and compare the robustness of several systems. We summarize
our performance results for each case study in Sect. 6.6.

Safe Environmental Envelopes of Discrete Systems 15

x
fireXray

fireElectron

X-ray
mode

electron
mode

ready to
fire

ready to
fire

e

e

x

b

b
switching

mode

rotate

(a) The beam C′
beam with hardware

interlocks used in the Therac-20.

x
fireXray

fireElectron

X-ray
mode

electron
mode

ready to
fire

ready to
fire

e

e x
b

b

(b) The beam Cbeam without hardware
interlocks used in the Therac-25.

Fig. 7: The beam components of the two Therac machines. The hardware interlocks
cause C′

beam to have a fifth state “switching mode” that will only switch to X-ray
mode after the flattener rotates into place.
6.2 Therac-25

Background In Sect. 2, we introduced the Therac-25 radiation therapy machine.
In this section, we present a case study in which we compare the robustness of the
Therac-25 to that of its predecessor, the Therac-20. We begin by showing that the
Therac-20 is strictly more robust than the Therac-25. We then use this information
to identify and fix a critical safety bug in the Therac-25 model.

Therac-20 The Therac-20 is a radiation therapy machine that was designed before
the Therac-25. Unlike the Therac-25, the Therac-20 was not known for causing
accidents that led to injuries and death. A key difference between the two machines
is that the Therac-20 includes hardware interlocks in its beam component (Fig. 7a),
while the Therac-25 does not (Fig. 7b). The purpose of the hardware interlocks is to
provide a layer of security at the hardware level for upholding Pxflat. In our model, the
interlocks work by ensuring that the flattener is completely rotated into place before
allowing an operator to fire an X-ray beam. Unfortunately, hardware interlocks were
considered expensive so they were omitted from the design of the later Therac-25 model.
In the following section, we compare the robustness between the two Therac machines
with respect to the normative environment E and the key safety property Pxflat.

Comparing controllers Using standard model checking techniques [2], we can con-
firm that both the Therac-20 and the Therac-25 are safe with respect to E and Pxflat.
Historically, however, the Therac-20 is known to be safer than the Therac-25. There-
fore, we improve our safety analysis by also comparing the robustness between the
two machines with respect to E, Pxlfat, and an environmental constraint Penv. Penv,
shown in [27], pg. 26, Fig. 11, restricts the environment to firing the beam at most once.

Our tool reports that the Therac-20 is strictly more robust than the Thearc-25.
To understand this result, we can examine the difference between the robustness for
each machine. We show this difference visually by presenting one maximal robust
deviation from each machine in Fig. 8. This figure shows that the Therac-20 is robust
against the scenario in which the operator 1) types “e” to select electron beam mode,
2) optionally types “enter”, 3) presses the “up” arrow key, and finally 4) types “x” to

16 R. Meira-Góes et al.

choose
mode

confirm
mode

fire
beam finished

e, enter, x, up

enter
b, enter,

up

enter, up

up, x, e enter, up

enter, up

e, x

up

enter

up

Fig. 8: Visual robustness comparison
between the two Therac machines.
Both machines are robust against gray
transitions, but only the Therac-20 is
robust against green transitions.

x x x
beam ready

up, enter up, x, e enter

x, e enter

up beam
Read

y

b

block

rotate

Fig. 9: Software fix that eliminates the
race condition in the Therac-25.

switch the beam into X-ray mode. The Therac-25, however, is not robust against this
scenario. We see this in Fig 8 because the series of actions must pass through at least
one green arrow, where a green arrow indicates a transition that the Therac-25 is not
robust against. In fact, the Therac-25 does not have any maximal robust deviations
that allow this scenario.

The Therac-25’s lack of robustness to the scenario above represents a race condition
that occurs after the operator switches into X-ray mode from electron mode. In this sce-
nario, if the operator types “enter” and fires the X-ray beam before the flattener rotates
into place, the beam will fire an unflattened X-ray at the patient. This critical bug was
responsible for real-world radiation overdoses, several of which resulted in death [18].

Fixing the software bug In the previous section, we identified a critical software
bug in the Therac-25. Our goal in the current section is to fix this bug entirely in
the terminal software, thus avoiding an expensive hardware solution.

In Fig. 7a, we see that the hardware interlocks prevent a race condition by blocking
the operator from typing a “b” until the flattener is rotated into place. Thus we
can fix the race condition in software by altering the terminal to block the operator
from typing a “b” until the flattener is rotated into place. We implement this fix by
redesigning the terminal to block all key strokes from the instant it issues a “beam
ready” message until the turntable rotates into place, as shown in Fig. 9. Finally, we use
our tool to evaluate the robustness of the fix. The tool reports that the fixed Therac-25
design is strictly more robust than the original, and equally robust to the Therac-20.

6.3 Voting

Background In this section, we consider a case study of an electronic voting machine,
introduced in [46]. In this case study, we model the voting machine, a voter, and
a corrupt election official who attempts to “flip” the voter’s choice. We define the
voting machine as the composition of a voting booth and a user interface, shown at
[27], pg. 26 in Fig. 12a and Fig. 12b respectively.

In the normative environment–shown in Fig. 10a–the voter enters the booth, enters
their password, selects a candidate, clicks the vote button, and finally confirms the
choice. Unfortunately, some voters may inadvertently skip the confirmation step and

Safe Environmental Envelopes of Discrete Systems 17

booth
empty

enter
pass-
word

select
candi-
date

confirm
candi-
date

v.enter pass

select

votecfm

v.exit

leave
booth

vote for
candi-
date

back back

(a) Normative environment for the voting
machine.

booth
empty

enter
pass-
word

select
candi-
date

confirm
candi-
date

v.enter pass

select

votecfm

v.exit

leave
booth

vote for
candi-
date

v.enter

v.exit

cfm

pass

back back

(b) The voting machine’s robustness is identical
with respect to Pall and Pcfm.

Fig. 10: Models for the voting machine example. In the figures above, the prefix “v”
represents actions by the voter.
leave the booth early. This deviation from the normative behavior presents an opportu-
nity for the election official to “flip” the intended vote: after the voter leaves the booth,
the corrupt official can enter the booth, press “back” and change the vote to their
liking. This scenario represents an actual election fraud that took place in the US [38].

Comparing properties In this case study, we will consider two safety properties,
Pall and Pcfm, both of which imply the absence of vote flipping. Pall requires that
the election official cannot at any point select, vote, or confirm a candidate. Pcfm

is weaker, only requiring that the election official cannot at any point confirm a
candidate selection.

Using our tool for comparison, we see that the voting machine is equally robust
with respect to each property. However, this result is surprising because Pcfm is
weaker than Pall. To understand this result, we examine Fig. 10b where we present
the sole maximal robust deviation for each property. In this figure, it is clear that the
voting machine is not robust against any deviation in which the voter enters their
password and then exits the booth without confirming their vote. The key insight is
that, when an election official has the ability to confirm, it implies that the official can
also select and vote. Therefore, we desire a voting machine without this implication
because it will reduce the number of points of failure. For example, we could redesign
the voting machine to require a password as part of the confirmation step. In lieu of
this insight, a designer could choose to specify a margin of safety into the machine’s
specification by requiring that it is strictly more robust against Pcfm than Pall.

6.4 Oyster

Background The Oyster example was introduced in [41], in which the authors
modeled the Oyster card that is used the public transportation system in the United
Kingdom. In our model, the controller consists of an entry gate and an exit gate, where
the card holder taps the Oyster card at the start and end of their journey respectively.
The environment models the actions of a card holder; in the normative environment,
a card holder chooses to tap with either their Oyster card or a credit card, and taps
in and out with the chosen card. The key safety property is avoiding an incomplete
journey, in which a card holder taps in with one card and taps out with a different card.

18 R. Meira-Góes et al.

Calculating Robustness An incomplete journey is avoided under the normative
environment. We calculate the robustness of the system under the two environmental
constraints 1) Oyster cards and credit cards give the correct information to the gates
and 2) the gates operate correctly and calculate the correct fare when a card is tapped
in and out. Unfortunately, the system is not robust to any deviations.

6.5 PCA Pump

Background In this section, we model a patient-controlled analgesia (PCA) pump,
originally introduced in [5]. A PCA pump is a medical device that dispenses pain
medicine to a patient, offering them partial control over the dose rate. A nurse uses
the device interface to program the volume per dosage, as well as a minimum and
maximum dose rate to protect the patient from an overdose. The pump includes
batteries to power the device in case it is unplugged (e.g., by mistake by the nurse
or patient), yet the power may fail if the device runs out of battery. In this case, the
device cannot monitor the dosage amount or frequency, which may cause an overdose.
Therefore, we define the key safety property Ppfail which requires the PCA pump
to abstain from administering medicine after a power failure.

In the normative environment, the nurse operates the pump using the following
three step workflow: 1) plug in the pump and turn it on, 2) program the desired
dosage parameters into the pump and administer the treatment, and 3) turn off the
device and unplug it. The nurse begins with step (1) and ends with step (3), but
may omit or repeat step (2) as many times as needed. A diagram of the normative
environment is available at [27], pg. 26, Fig. 13. Crucially, the pump is safe with
respect to this environment and Ppfail because the workflow assumes that the pump
is never unplugged in step (2).

Calculating Robustness We use our tool to calculate the robustness of the pump
with respect to the normative environment, Ppfail, and an environmental constraint
Penv. In this case study, Penv restricts the environment to actions that are allowed
by the pump’s interface. A diagram of the sole maximal robust deviation is available
at [27], pg. 27, Fig. 14. The tool reports that the pump is robust against four actions,
three of which allow the operator to change settings before administering the treat-
ment, and the fourth allows the operator to turn off the device prematurely after
programming the dosage parameters. Unfortunately, the pump is not robust against
any deviations in which it is unexpectedly unplugged. This poses a key weakness in
the pump that the designers may wish to improve upon.

6.6 Results and Discussion

We have run our tool on the examples and case studies above, and we present our
results in Table 1. All tests were run on a Mac Book Pro with an M1 Pro chip and
32GB of RAM. In the table, |Act| is the union of ActE, ActC, ActPsaf

and ActPenv ,
|dmax| is the size of the largest deviation in ∆, and |WPenv

| is the size of the winning
set for each maximal deviation d̃i (separated by a comma); NA indicates the absence
of an environmental constraint. Furthermore, “Wall Heur” denotes the wall time

Safe Environmental Envelopes of Discrete Systems 19

for running Alg. 1 with the heuristic, while “Wall Plain” denotes the wall time for
running Alg. 1, and “TO” indicates a time-out after five minutes.

Our results demonstrate that calculating robustness is tractable across several
different case studies. In particular, our tool’s performance on the larger PCA pump
case study shows promising results in terms of scalability. Furthermore, we have
shown that ∆ is useful as a means for both analysis and comparison of controllers. For
example, in the Therac-25 case study, robustness provided a richer analysis than classic
verification that helped us discover–and ultimately fix–a critical race condition. Finally,
we have also demonstrated in the voting machine case study that robustness provides
a means for comparing two properties with respect to a controller and an environment.

Example |Act| |QE| |QC| |QP | |W | |WPenv | |∆| |dmax| Wall Heur Wall Plain
Running Example 2 4 2 4 6 NA 3 13 0.433 sec 0.431 sec
Therac-25 w/bug 9 5 21 5 62 28,30,31,37 4 21 4.921 sec TO
Therac-25 w/fix 9 5 19 5 72 18,20,23,25 4 26 0.852 sec TO
Therac-20 9 5 11 5 40 17,19,21,23 4 26 0.626 sec TO
Voting wrt. Pcfm 9 7 13 3 66 7 1 12 0.469 sec TO
Voting wrt. Pall 9 7 13 3 66 7 1 12 0.426 sec TO
Oyster 8 4 17 2 15 8 1 4 0.472 sec TO
PCA Pump 21 11 105 4 1396 34 1 15 1.922 sec TO

Table 1: Summary of results from running our tool.

7 Related work

Quantitative robustness notions for discrete transition systems have been investigated
in several works [3,4,8,16,24,32,40,42]. We capture robustness qualitatively, which
avoids the need for external cost functions over the discrete transition systems. The
problem of synthesizing robust controllers against deviated environments given by a de-
signer is investigated in [45]. Since [45] focuses on synthesizing robust controllers, their
framework does not address the analysis of robustness. Moreover, robust controllers are
measured via a rank function (quantitatively). Robust linear temporal logic (rLTL) ex-
tends the binary view of LTL to a 5-valued semantics to capture different levels of prop-
erty satisfaction [43]. This work is tangent to ours as it focuses on specifying robustness.

In [17,49], the authors define robustness as a set of environmental behaviors for
which a software system can guarantee safety. Defining robustness in the semantic
domain–i.e. in terms of behaviors–implicitly describes safe environmental deviations.
Our notion of robustness captures safe environmental deviations explicitly in terms of
transitions, which offer both syntactic (transitions) and semantic (implied behaviors)
information. Transition-based robustness also allows us to capture the safe environ-
mental envelopes of a system; it is not clear how one might efficiently capture this
information with only behaviors.

In [29], the authors define robustness also based on additional transitions to
the environment. Their definition of robustness compares the perturbed controlled
behavior, i.e., beh(Ed|f), instead of directly comparing the additional transitions. In
this manner, the partial order used to define robustness in [29] is different from our

20 R. Meira-Góes et al.

notion of robustness. Moreover, only an efficient algorithm for invariance properties is
presented. Extending the work in [29], the authors explore the relationship between
controller robustness and permissiveness for invariance properties [30].

Robust control in discrete event systems is also an active area of research
[1,10,19,20,21,26,31,33,39,44,47,48]. However, they usually deal with specific types
of faults such as communication delays, loss of information, or deception attacks
[1,20,21,26,31,39,47]. We capture model uncertainty with our robustness definition,
which can be attributed to these faults. Robustness against model uncertainty is
tackled in the works of [10,19,44,48]. In these works, deviations are modeled by the
behavior generated by the environment. On the other hand, we modeled deviations by
the inclusion of extra transitions. In [11], a controller realizability problem is studied
for environments modeled as modal transition systems, where a controller satisfies a
property in all, some, or none of the LTS family. Our notion of robustness explicitly
computes which systems in the LTS family satisfy the property.

Lastly, robustness also relates to fault-tolerance. Fault-tolerance has been studied
in the context of distributed systems [13,22,34]. In [6,9,12,14], synthesis of fault-
tolerant programs by retrofitting initial fault-intolerant programs. These works focus
on specific types of fault models, whereas our robustness model computes the safety
envelope the controller is robust against.

8 Conclusion
In this paper, we introduced a new notion of robustness against environmental devi-
ations for discrete-state transition systems. Our notion of robustness is syntactically
defined by additional transitions and semantically defined by the controlled behavior
generated by these additional transitions. We provided two methods to compute
robustness: a brute-force algorithm, and an algorithm based on a controller synthesis
problem. We implemented these methods in a prototype tool which we used to an-
alyze several case studies. In these case studies, we demonstrated that our robustness
analysis provides crucial information by identifying the environmental envelopes in
which the system can guarantee its safety properties.

As part of future work, we plan to extend our work to investigate robustness in the
context of partially observable systems as well as in stochastic systems such as Markov
decision processes (MDPs). We also plan to investigate the benefit of considering addi-
tional environmental states–as well as additional transitions–in our robustness analysis.
Finally, we plan to extend our work beyond safety properties, e.g. including liveness.

Acknowledgements
This project was supported by the US NSF Awards CCF-2144860, CNS-1801342,
CNS-1801546, CCF-1918140, and ECCS-2144416.

References
1. Alves, M.V.S., da Cunha, A.E.C., Carvalho, L.K., Moreira, M.V., Basilio, J.C.: Robust

supervisory control of discrete event systems against intermittent loss of observations.
International Journal of Control pp. 1–13 (2019)

Safe Environmental Envelopes of Discrete Systems 21

2. Baier, C., Katoen, J.P.: Principles of Model Checking. The MIT Press (2008)
3. Bloem, R., Chatterjee, K., Greimel, K., Henzinger, T.A., Hofferek, G., Jobstmann,

B., Könighofer, B., Könighofer, R.: Synthesizing robust systems. Acta Inf. 51(3–4),
193–220 (Jun 2014)

4. Bloem, R., Greimel, K., Henzinger, T.A., Jobstmann, B.: Synthesizing robust systems.
In: 2009 Formal Methods in Computer-Aided Design. pp. 85–92 (2009)

5. Bolton, M.L., Bass, E.J.: Evaluating human-automation interaction using task analytic
behavior models, strategic knowledge-based erroneous human behavior generation,
and model checking. In: 2011 IEEE International Conference on Systems, Man, and
Cybernetics. pp. 1788–1794 (2011). https://doi.org/10.1109/ICSMC.2011.6083931

6. Bonakdarpour, B., Kulkarni, S.S.: Sycraft: A tool for synthesizing distributed
fault-tolerant programs. In: van Breugel, F., Chechik, M. (eds.) CONCUR 2008 -
Concurrency Theory. pp. 167–171. Springer Berlin Heidelberg (2008)

7. Cassandras, C.G., Lafortune, S.: Introduction to Discrete Event Systems. Springer,
Cham, 3rd edn. (2021)

8. Chaudhuri, S., Gulwani, S., Lublinerman, R., Navidpour, S.: Proving programs robust.
In: Proceedings of the 19th ACM SIGSOFT Symposium and the 13th European
Conference on Foundations of Software Engineering. p. 102–112. ESEC/FSE ’11,
Association for Computing Machinery (2011)

9. Cheng, C.H., Rueß, H., Knoll, A., Buckl, C.: Synthesis of fault-tolerant embedded systems
using games: From theory to practice. In: Jhala, R., Schmidt, D. (eds.) Verification, Model
Checking, and Abstract Interpretation. pp. 118–133. Springer Berlin Heidelberg (2011)

10. Cury, J., Krogh, B.: Robustness of supervisors for discrete-event systems. IEEE
Transactions on Automatic Control 44(2), 376–379 (1999)

11. D’Ippolito, N., Braberman, V., Piterman, N., Uchitel, S.: The modal transition system
control problem. In: Giannakopoulou, D., Méry, D. (eds.) FM 2012: Formal Methods.
pp. 155–170. Springer Berlin Heidelberg (2012)

12. Ebnenasir, A., Kulkarni, S.S., Arora, A.: FTSyn: A framework for automatic synthesis
of fault-tolerance. Int. J. Softw. Tools Technol. Transf. 10(5), 455–471 (Oct 2008)

13. Gärtner, F.C.: Fundamentals of fault-tolerant distributed computing in asynchronous
environments. ACM Comput. Surv. 31(1), 1–26 (Mar 1999)

14. Girault, A., Rutten, E.: Automating the Addition of Fault Tolerance with Discrete
Controller Synthesis. Formal Methods in System Design 35, 190–225 (2009)

15. Grädel, E., Thomas, W., Wilke, T. (eds.): Automata Logics, and Infinite Games: A
Guide to Current Research. Springer-Verlag, Berlin, Heidelberg (2002)

16. Henzinger, T.A., Otop, J., Samanta, R.: Lipschitz Robustness of Finite-state Transducers.
In: Raman, V., Suresh, S.P. (eds.) 34th International Conference on Foundation of
Software Technology and Theoretical Computer Science (FSTTCS 2014). Leibniz
International Proceedings in Informatics (LIPIcs), vol. 29, pp. 431–443. Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany (2014)

17. Kang, E.: Robustness analysis for secure software design. In: Proceedings of the
3rd ACM SIGSOFT International Workshop on Software Security from Design to
Deployment. p. 19–25. SEAD 2020, Association for Computing Machinery (2020)

18. Leveson, N., Turner, C.: An investigation of the therac-25 accidents. Computer 26(7),
18–41 (1993). https://doi.org/10.1109/MC.1993.274940

19. Lin, F.: Robust and adaptive supervisory control of discrete event systems. IEEE
Transactions on Automatic Control 38(12), 1848–1852 (Dec 1993)

20. Lin, F.: Control of networked discrete event systems: Dealing with communication
delays and losses. SIAM Journal on Control and Optimization 52(2), 1276–1298 (2014)

21. Lin, L., Zhu, Y., Su, R.: Towards bounded synthesis of resilient supervisors. In: 2019
IEEE 58th Conference on Decision and Control (CDC). pp. 7659–7664 (2019)

https://doi.org/10.1109/ICSMC.2011.6083931
https://doi.org/10.1109/MC.1993.274940

22 R. Meira-Góes et al.

22. Lynch, N.A.: Distributed Algorithms. Morgan Kaufmann Publishers Inc., San Francisco,
CA, USA (1996)

23. Magee, J., Kramer, J.: Concurrency: State Models and Java Programs. John Wiley
and Sons, Inc., USA (2000)

24. Majumdar, R., Render, E., Tabuada, P.: Robust discrete synthesis against unspecified
disturbances. In: Proceedings of the 14th International Conference on Hybrid Systems:
Computation and Control. p. 211–220. HSCC ’11, Association for Computing Machinery
(2011)

25. McNaughton, R.: Infinite games played on finite graphs. Annals of Pure and Applied
Logic 65(2), 149–184 (1993)

26. Meira-Góes, R., Marchand, H., Lafortune, S.: Towards resilient supervisors against
sensor deception attacks. In: 2019 IEEE 58th Annual Conference on Decision and
Control (CDC) (Dec 2019)

27. Meira-Góes, R., Dardik, I., Kang, E., Lafortune, S., Tripakis, S.: Safe environmental en-
velopes of discrete systems. Zenodo (Jun 2023). https://doi.org/10.5281/zenodo.7999482

28. Meira-Goes, R., Dardik, I., Kang, E., Lafortune, S., Tripakis, S.: Transitional robustness
github repository (2023), https://github.com/cmu-soda/transitional-robustness,
accessed on May 29, 2023

29. Meira-Góes, R., Kang, E., Lafortune, S., Tripakis, S.: On tolerance of discrete systems
with respect to transition perturbations. arXiv:2110.04200 [eess.SY] (2021)

30. Meira-Góes, R., Kang, E., Lafortune, S., Tripakis, S.: On synthesizing tolerable and
permissive controllers for labeled transition systems. 16th IFAC Workshop on Discrete
Event Systems WODES 2022 55(28), 158–164 (2022)

31. Meira-Goes, R., Lafortune, S., Marchand, H.: Synthesis of supervisors robust against
sensor deception attacks. IEEE Transactions on Automatic Control 66(10), 4990–4997
(2021)

32. Neider, D., Weinert, A., Zimmermann, M.: Synthesizing optimally resilient controllers.
Acta Inf. 57(1), 195–221 (Apr 2020)

33. Paoli, A., Lafortune, S.: Safe diagnosability for fault-tolerant supervision of discrete-event
systems. Automatica 41(8), 1335–1347 (Aug 2005)

34. Pease, M., Shostak, R., Lamport, L.: Reaching agreement in the presence of faults. J.
ACM 27(2), 228–234 (Apr 1980)

35. Pnueli, A., Rosner, R.: On the synthesis of a reactive module. In: Proceedings of the
16th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages.
p. 179–190. POPL ’89, Association for Computing Machinery (1989)

36. Pnueli, A.: The temporal logic of programs. In: 18th Annual Symposium on Foundations
of Computer Science (sfcs 1977). pp. 46–57 (1977)

37. Ramadge, P.J., Wonham, W.M.: Supervisory control of a class of discrete event
processes. SIAM J. Control Optim. 25(1), 206–230 (Jan 1987)

38. U.S. Attorney’s Office Eastern District of Kentucky: Clay county officials
and residents convicted on racketeering and voter fraud charges (Mar 2010),
https://archives.fbi.gov/archives/louisville/press-releases/2010/lo032510.htm

39. Rohloff, K.: Bounded sensor failure tolerant supervisory control. 11th IFAC Workshop
on Discrete Event Systems 45(29), 272 – 277 (2012)

40. Samanta, R., Deshmukh, J.V., Chaudhuri, S.: Robustness analysis of string transducers.
In: Van Hung, D., Ogawa, M. (eds.) Automated Technology for Verification and
Analysis. pp. 427–441. Springer Publishing Company (2013)

41. Sempreboni, D., Viganò, L.: X-men: A mutation-based approach for the formal analysis
of security ceremonies. In: 2020 IEEE European Symposium on Security and Privacy
(EuroS&P). pp. 87–104 (2020). https://doi.org/10.1109/EuroSP48549.2020.00014

https://doi.org/10.5281/zenodo.7999482
https://github.com/cmu-soda/transitional-robustness
https://archives.fbi.gov/archives/louisville/press-releases/2010/lo032510.htm
https://doi.org/10.1109/EuroSP48549.2020.00014

Safe Environmental Envelopes of Discrete Systems 23

42. Tabuada, P., Balkan, A., Caliskan, S.Y., Shoukry, Y., Majumdar, R.: Input-output
robustness for discrete systems. In: Proceedings of the Tenth ACM International
Conference on Embedded Software. p. 217–226. EMSOFT ’12, Association for
Computing Machinery (2012)

43. Tabuada, P., Neider, D.: Robust Linear Temporal Logic. In: Talbot, J.M., Regnier, L.
(eds.) 25th EACSL Annual Conference on Computer Science Logic (CSL 2016). Leibniz
International Proceedings in Informatics (LIPIcs), vol. 62, pp. 10:1–10:21. Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany (2016)

44. Takai, S.: Maximizing robustness of supervisors for partially observed discrete event
systems. Automatica 40(3), 531 – 535 (2004)

45. Topcu, U., Ozay, N., Liu, J., Murray, R.M.: On synthesizing robust discrete controllers
under modeling uncertainty. In: Proceedings of the 15th ACM International Conference
on Hybrid Systems: Computation and Control. p. 85–94. HSCC ’12, Association for
Computing Machinery (2012)

46. Tun, T.T., Bennaceur, A., Nuseibeh, B.: Oasis: Weakening user obligations for
security-critical systems. In: 2020 IEEE 28th International Requirements Engineering
Conference (RE). pp. 113–124 (2020). https://doi.org/10.1109/RE48521.2020.00023

47. Wang, F., Shu, S., Lin, F.: Robust networked control of discrete event systems. IEEE
Transactions on Automation Science and Engineering 13(4), 1528–1540 (2016)

48. Young, S., Garg, V.K.: Model uncertainty in discrete event systems. SIAM Journal
on Control and Optimization 33(1), 208–226 (1995)

49. Zhang, C., Garlan, D., Kang, E.: A behavioral notion of robustness for software systems.
In: Proceedings of the 28th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering. p. 1–12.
ESEC/FSE 2020, Association for Computing Machinery (2020)

https://doi.org/10.1109/RE48521.2020.00023

	Safe Environmental Envelopes of Discrete Systems

