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Abstract

Causal representation learning seeks to extract high-level latent factors from low-level
sensory data. Most existing methods rely on observational data and structural assumptions
(e.g., conditional independence) to identify the latent factors. However, interventional data
is prevalent across applications. Can interventional data facilitate causal representation
learning? We explore this question in this paper. The key observation is that interventional
data often carries geometric signatures of the latent factors’ support (i.e. what values each
latent can possibly take). For example, when the latent factors are causally connected,
interventions can break the dependency between the intervened latents’ support and their
ancestors’. Leveraging this fact, we prove that the latent causal factors can be identified up to
permutation and scaling given data from perfect do interventions. Moreover, we can achieve
block affine identification, namely the estimated latent factors are only entangled with a few
other latents if we have access to data from imperfect interventions. These results highlight
the unique power of interventional data in causal representation learning; they can enable
provable identification of latent factors without any assumptions about their distributions or
dependency structure.

1 Introduction

Modern deep learning models like GPT-3 (Brown et al., 2020) and CLIP (Radford et al., 2021) are
remarkable representation learners (Bengio et al., 2013). Despite the successes, these models
continue to be far from the human ability to adapt to new situations (distribution shifts) or
carry out new tasks (Geirhos et al., 2020; Bommasani et al., 2021; Yamada et al., 2022). Humans
encapsulate their causal knowledge of the world in a highly reusable and recomposable way (Goyal
and Bengio, 2020), enabling them to adapt to new tasks in an ever-distribution-shifting world.
How can we empower modern deep learning models with this type of causal understanding? This
question is central to the emerging field of causal representation learning (Schoélkopf et al., 2021).

A core task in causal representation learning is provable representation identification, i.e.,
developing representation learning algorithms that can provably identify natural latent factors
(e.g., location, shape and color of different objects in a scene). While provable representation
identification is known to be impossible for arbitrary data-generating process (DGP) (Hyvirinen
and Pajunen, 1999; Locatello et al., 2019), real data often exhibits additional structures. For
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Figure 1: 1a) Observational data: the support of child (Z3) conditional on parent (Z;) varies with the
value of parent. Figure 1b), 1c): the support of child conditional on parent under do intervention, perfect
intervention and many imperfect interventions is independent of the parent. Figure 1d): intervention on
child reduces the impact of the parent on it which causes the support of the child conditional on parent to
take a larger set of values.

example, Hyvarinen et al. (2019); Khemakhem et al. (2022) consider the conditional independence
between the latents given auxiliary information; Lachapelle et al. (2022) leverage the sparsity of
the causal connections among the latents; Locatello et al. (2020); Klindt et al. (2020); Ahuja et al.
(2022a) rely on the sparse variation in the latents over time.

Most existing works rely on observational data and make assumptions on the dependency
structure of the latents to achieve provable representation identification. However, in
many applications, such as robotics and genomics, there is a wealth of interventional data
available. For example, interventional data can be obtained from experiments such as genetic
perturbations (Dixit et al., 2016) and electrical stimulations (Nejatbakhsh et al., 2021). Can
interventional data help identify latent factors in causal representation learning? How can it help?
We explore these questions in this work. The key observation is that interventional data often
carries geometric signatures of the latent factors’ support (i.e., what values each latent can
possibly take). Figure 1 illustrates these geometric signatures: perfect interventions and many
imperfect interventions can make the intervened latents’ support independent of their ancestors’
support. As we will show, these geometric signatures go a long way in facilitating provable
representation identification in the absence of strong distributional assumptions.

Contributions. This work establishes representation identification guarantees without strong
distributional assumptions on the latents in the following settings.

« do interventions. We first investigate scenarios where the true latent factors are mapped to
high-dimensional observations through a finite-degree multivariate polynomial. When some
latent dimension undergoes a hard do intervention (Pearl, 2009), we are able to identify it up to
shift and scaling. Even when the mapping is not a polynomial, approximate identification of
the intervened latent is still achievable provided we have data from multiple do interventional
distributions on the same latent dimension.

« Perfect & imperfect interventions. We achieve block affine identification under imperfect
interventions (Peters et al., 2017) provided the support of the intervened latent is rendered
independent of its ancestors under the intervention as shown in Figure 1c. This result covers
all perfect interventions as a special case.

« Observational data and independent support. The independence-of-support condition
above can further facilitate representation identification with observational data. We show that,
if the support of the latents are already independent in observational data, then these latents
can be identified up to permutation, shift, and scaling, without the need of any interventional



Table 1: Summary of results. Existing works such as iVAE (Khemakhem et al., 2022) use observational
data and make assumptions on the graphical model of the latents to achieve identification. In contrast, we
use interventional data and make no assumptions on the graph.

Input data Assm. on Z Assm. on g Identification

Obs Zy L Zs|U, U aux info.  Diffeomorphic Perm & scale (Khemakhem, 2020)
Obs Non-empty interior Injective poly Affine (Theorem 1)

Obs Non-empty interior ~ Injective poly  ~ Affine (Theorem 6)

Obs Independent support Injective poly Perm, shift, & scale (Theorem 4)
Obs + do intervn Non-empty interior Injective poly Perm, shift, & scale (Theorem 2)
Obs + do intervn Non-empty interior Diffeomorphic ~ Perm & comp-wise (Theorem 7)
Obs + Perfect intervn Non-empty interior Injective poly Block affine (Theorem 3)

Obs + Imperfect intervn  Partially indep. support  Injective poly Block affine (Theorem 3)
Counterfactual Bijection w.r.t. noise Diffeomorphic Perm & comp-wise (Brehmer, 2022)

data. This result extends the classical identifiability results from linear independent component
analysis (ICA) (Comon, 1994) to allow for dependent latent variables. They also provide
theoretical justifications for recent proposals of performing unsupervised disentanglement
through the independent support condition (Wang and Jordan, 2021; Roth et al., 2022).

We summarize our results in Table 1. Finally, we empirically demonstrate the practical utility of
our theory. From data generation mechanisms ranging from polynomials to image generation
from rendering engine (Shinners et al., 2011), we show that interventional data helps identification.

2 Setup: Causal Representation Learning

Causal representation learning aims to identify latent variables from high-dimensional
observations. Begin with a data-generating process where some high-dimensional observations
x € R™ are generated from some latent variables = € R%. We consider the task of identifying
latent z assuming access to both observational and interventional datasets: the observational
data is drawn from

z ~ Py; x(—g(z), (1)

where the latent z is sampled from the distribution P and x is the observed data point rendered
from the underlying latent z via an injective decoder g : RY — R". The interventional data is
drawn from a similar distribution except the latent z is drawn from P(Zz), namely the distribution
of z under intervention on z;:

z IP’%); x <+ g(2). (2)

We denote Z and Z(*) as the support of P and Pg) respectively (support is the set where the
probability density is more than zero). The support of x is thus X = g(Z) in observational data
and XV = g(Z (i)) in interventional data. The goal of causal representation learning is provable
representation identification, i.e. to learn an encoder function, which takes in the observation x
as input and provably output its underlying true latent z. In practice, such an encoder is often
learned via solving a reconstruction identity,

hof(x)=a2 Vexexux®, 3)

where f : R” — R% and h : R? — R" are a pair of encoder and decoder, which need to jointly
satisfy Equation 3. The pair (f, h) together is referred to as the autoencoder. Given the learned
encoder f, the resulting representation is 2 £ f(x), which holds the encoder’s estimate of the
latents.



The reconstruction identity Equation 3 is highly underspecified and cannot in general identify
the latents. There exist many pairs of (f, k) that jointly solve Equation 3 but do not provide
representations 2 £ f(z) that coincide with the true latents z. For instance, applying an invertible
map b to any solution (f, k) will result in another valid solution b o f, h o b=, In practical
applications, however, the exact identification of the latents is not necessary. For example, we
may not be concerned with the recovering the latent dimensions in the order they appear in z.
Thus, in this work, we examine conditions of under which the true latents can be identified up to
certain transformations, such as affine transformations and coordinate permutations.

3 Stepping Stone: Affine Representation Identification with
Polynomial Decoders

We first establish an affine identification result, which serves as a stepping stone towards stronger
identification guarantees in the next section. We begin with a few assumptions.

Assumption 1. The interior of the support of z, Z U 2, is a non-empty subset of R%.!

Assumption 2. The decoder g is a polynomial of finite degree p whose corresponding coefficient
matrix G has full column rank. Specifically, the decoder g is determined by the coefficient matrix G

as follows,
_ _ - p
g(Z):G[l,Z,Z®Z,,Z®®Z VZER,
p times
where & represents the Kronecker product with all distinct entries; for example, if z = [z1, 23],

then 22z = [23, 21 29, 23]

The assumption that the matrix G € R"*? has a full column rank of ¢ guarantees that the decoder
g is injective; see Lemma 1 in Appendix A.1 for a proof. This injectivity condition on g is common
in identifiable representation learning. Without injectivity, the problem of identification becomes
ill-defined; multiple different latent 2’s can give rise to the same observation x. We note that
the full-column-rank condition for GG in Assumption 2 imposes an implicit constraint on the
dimensionality n of the data; it requires that the dimensionality n is greater than the number of
terms in the polynomial of degree p, namely n > >2_, (Hd'le). In the Appendix (Theorem 5),
we show that if our data is generated from sparse polynomials, i.e., G is a sparse matrix, then 7 is
allowed to be much smaller.

Under Assumptions 1 and 2, we perform causal representation learning with two constraints:
polynomial decoder and non-collapsing encoder.

Constraint 1. The learned decoder h is a polynomial of degree p and it is determined by its
corresponding coefficient matrix H as follows,

h(z) = H[1,2,28z,-- ,2Q---® 2] Vz e RY,
p times

where @ represents the Kronecker product with all distinct entries. The interior of the image of the
encoder f(X U X(i)) is a non-empty subset of RY.

We now show that solving the reconstruction identity with these constraints can provably identify
the true latent z up to affine transformations.

"We work with (R, ||||2) as the metric space. A point is in the interior of a set if there exists an ¢ ball for some
€ > 0 containing that point in the set. The set of all such points defines the interior.



Theorem 1. Suppose the observational data and interventional data are generated from Equation 1
and Equation 2 respectively under Assumptions 1 and 2. The autoencoder that solves the reconstruction
identity in Equation 3 under Constraint 1 achieves affine identification, i.e,Vz € ZUZ 3 = Az+c,
where 2 is the encoder f’s output, z is the true latent, A € R%*4 js invertible and ¢ € R,

Theorem 1 drastically reduces the ambiguities in identifying latent z from arbitrary invertible
transformations to only invertible affine transformations. Moreover, Theorem 1 does not require
any structural assumptions about the dependency between the latents. It only requires (i) a
geometric assumption that the interior of the support is non-empty and (ii) the map g is a
finite-degree polynomial.

The proof of Theorem 1 is in Appendix A.1. The idea is to write the representation 2 = f(z) as
2= fog(z) = a(z) witha £ f o g, leveraging the relationship = = g(z) in Equation 1. We then
show the a function must be an affine map. To give further intuition, we consider a toy example
with one-dimensional latent z, three-dimensional observation x, and the true decoder g and the
learned decoder h each being a degree-two polynomial. We first solve the reconstruction identity
on all z, which gives h(2) = g(z), and equivalently H[1, 2, 2%]"T = G[1, z, 2%]". This equality
implies that both 2 and 2% must be at most degree-two polynomials of z. As a consequence, 2
must be a degree-one polynomial of z, which we next prove by contradiction. If 2 is a degree-two
polynomial of z, then 22 is degree four; it contradicts the fact that 22 is at most degree two in z.
Therefore, Z must be a degree-one polynomial in z, i.e. a linear function of z.

Beyond polynomial map g. Theorem 6 in the Appendix extends Theorem 1 to a class of maps
g(-) that are e-approximable by a polynomial.

4 Provable Representation Identification with Interventional
Data

In the previous section, we derived affine identification guarantees. Next, we strengthen these
guarantees by leveraging geometric signals specific to many interventions.

4.1 Representation identification with do interventions

We begin with a motivating example on images, where we are given data with do interventions on
the latents. Consider the two balls shown in Figure 2a. Ball 1’s coordinates are (2}, z3) and Ball
2’s coordinates are (27, 25). We write the latent z = [(21, 23), (22, 22)], this latent is rendered in
the form of the image « shown in the Figure 2a. The latent z in the observational data follows the
directed acyclic graph (DAG) in Figure 2b, where Ball 1’s coordinate cause the Ball 2 coordinates.
The latent z under a do intervention on z%, then the second coordinate of Ball 2, follows the DAG
in Figure 2c. Our goal is to learn an encoder using the images x in observational and interventional

data, which outputs the coordinates of the balls up to permutation and scaling.

Suppose z is generated from a structural causal model with an underlying DAG (Pearl, 2009).
Formally, a do intervention on one latent dimension fixes it to some constant value. The
distribution of the children of the intervened component is affected by the intervention, while the
distribution of remaining latents remains unaltered. Based on this property of do intervention,

(2)

we characterize the distribution P},” in Equation 2 as

Zi = Z*; R—q ™ ]P)(ZZ) ) (4)

—1

where z; takes a fixed value z*. The remaining variables in z, z_;, are sampled from IP)(Z)_Z
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Figure 2: lllustrating do interventions in image-based data in (a). The DAG of dependencies under
the observational distribution (b) and a perfect intervention on z3 in (c).

The distribution P(Zz)ﬂ in Equation 4 encompasses many settings in practice, including (i) the do
interventions on causal DAGs (Pearl, 2009), i.e., ]P’g)_l = P2_,|do(z;==+) 1) the do interventions on
cyclic graphical models (Mooij and Heskes, 2013), and (iii) sampling z_; from its conditional in

the observational data P(Zl)ﬂ =P,

fixed background color).

.|zi=2* (e.g., subsampling images in observational data with a

Given interventional data from do interventions, we perform causal representation learning
by leveraging the geometric signature of the do intervention in search of the autoencoder. In
particular, we enforce the following constraint while solving the reconstruction identity in
Equation 3.

Constraint 2. The encoder’s k' component fi.(x) denoted as 3y, is required to take some fixed
value 2 for allz € X, Formally stated fi,(x) = 2', Yz € X0,

In Constraint 2, we do not need to know which component is intervened and the value it takes,
ie, k #iand 2" # 2*. We next show how this constraint helps identify the intervened latent z;
under an additional assumption on the support of the unintervened latents stated below.

)

Assumption 3. The interior of support of distribution of unintervened latents IP’(ZZ
subset of R91,

_is a non-empty

Theorem 2. Suppose the observational data and interventional data are generated from Equation 1

and Equation 2 respectively under Assumptions 1 and 2, where Pg) follows Equation 4. The
autoencoder that solves Equation 3 under Constraint 1, Constraint 2 identifies the intervened latent
z; up to shift and scaling, i.e., Z;, = ez; + b, wheree € R, b € R.

Theorem 2 immediately extends to settings when multiple interventional distributions are
available, with each corresponding to a hard do intervention on a distinct latent variable. Under the
same assumptions of Theorem 2, each of the intervened latents can be identified up to permutation,
shift, and scaling. Notably, Theorem 2 does not rely on any distributional assumptions (e.g.,
parametric assumptions) on z; nor does it rely on the nature of the graphical model for z (e.g., cyclic,
acyclic). Theorem 2 makes these key geometric assumptions: (i) support of z in observational
data, (ii) support of unintervened latents z_; has a non-empty interior.

Theorem 2 combines the affine identification guarantee we derived in Theorem 1 with the
geometric signature of do interventions. For example, in Figure 1b, the support of the true latents
is axis-aligned (parallel to x-axis). In this case, the interventional constraint also forces the support
of Z to be axis-aligned (parallel to x-axis or y-axis). The proof of Theorem 2 is in Appendix A.2.
We provide some intuition here. First, given Assumptions 1 and 2 and constraint 1, Theorem 1



already guarantees affine identification. It implies 2, = a!,z_; + ez; + b, where z_; includes
all entries of z other than z;, and a_; is a vector of the corresponding coefficients. As a result,
aLz_i must also take a fixed value for all values of z_; in the support of IP’(ZZL since both 2, and
z; are set to a fixed value. We argue a_; = 0 by contradiction. If a_; # 0, then any changes to
z_; in the direction of a_; will also reflect as a change in Zj; it contradicts the fact that 2 takes a

fixed value. Therefore, a_; = 0 and z; is identified up to shift and scaling.

Beyond polynomial map g. In Theorem 2, we assume that the map g is a polynomial.
In the Appendix (Theorem 7) we show that, even when g is not a polynomial but a general
diffeomorphism, the intervened latent can be approximately identified up to an invertible
transform provided sufficiently many do interventional distributions per latent are available.
That said, one interventional distribution per latent no longer suffices, unlike the polynomial ¢
case. Our experiments on images in Section 7 further support this argument. We state Theorem 7
informally below.

Theorem. (Informal) Suppose the observational data is generated from Equation 1 and suppose
we gather multiple interventional datasets for latent z;, where in each interventional dataset, z;
is set to a distinct fixed value under do intervention following Equation 4. If the number of do
interventional datasets is sufficiently large and the support of the latents satisfy certain regularity
conditions (detailed in Theorem 7), then the autoencoder that solves Equation 3 under multiple
constraints of the form Constraint 2 identifies z; up to an invertible transform approximately.

4.2 General perfect and imperfect interventions

In the discussion so far, we focused on do interventions. In this section, our goal is to build
identification guarantees under imperfect interventions. In the example that follows, we motivate
the class of imperfect interventions we consider.

Motivating example of perfect & imperfect interventions on images. First, we revisit
perfect interventions in causal DAGs (Peters et al., 2017). Under a perfect intervention, the
intervened latent is disconnected from its parents and do interventions are a special case of
perfect interventions. Consider the two balls shown in Figure 2a. Suppose Ball 1 has a strong
influence on Ball 2 in the observational DAG shown in Figure 2b. As a result, the position of Ball
1 determines the region where Ball 2 can be located inside the box in Figure 2a. Now imagine if
a perfect intervention is carried out as shown in Figure 2c. Under this intervention the second
coordinate of Ball 2 is not restricted by Ball 1 and it takes all possible values in the box. Do
we need perfect interventions to ensure that Ball 2 can be located anywhere in the box? Even
an imperfect intervention that reduces the strength of influence of Ball 1 on Ball 2 can suffice
to ensure that Ball 2 takes all possible locations in the box. In this section, we consider such
imperfect interventions that guarantee that the range of values the intervened latent takes does
not depend on its ancestors. We formalize this below.

Definition 1. (Wang and Jordan, 2021) Consider a random variable V- = [V1, V3] sampled from
Py. V1, Vs are said to have independent support if V = Vi X Vo whereV is the support of Py, V;
are the supports of marginal distribution of V; for j € {1,2} and x is the Cartesian product.

Observe that two random variables can be dependent but have independent support. Suppose z is
generated from a structural causal model with an underlying DAG and z; undergoes an imperfect
intervention. We consider imperfect interventions such that each pair (z;, 2;) satisfies support
independence (Definition 1), where z; is an ancestor of z; in the underlying DAG. Below we
characterize imperfect interventions that satisfy support independence.



Characterizing imperfect interventions that lead to support independence. Suppose
zi < w(Pa(z;), u), where Pa(z;) is the value of the set of parents of z;, u € U is a noise variable
that is independent of the ancestors of z;, and w is the map that generates z;. We carry out an
imperfect intervention on z; and change the map w to v. If the range of values assumed by v for
any two values assumed by the parents are equal, then the support of z; is independent of all
its ancestors. Formally stated the condition is v(Pa(z;),U) = v(Pa’(z;),U), where Pa(z;) and
Pa’ (z;) are any two sets of values assumed by the parents.

We are now ready to describe the geometric properties we require of the interventional distribution
}P’(ZZ) in Equation 2. We introduce some notation before that. Let [d] := {1,--- ,d}. Foreach j € [d],
we define the supremum and infimum of each component z; in the interventional distribution.

(@)

Define agup (ozijnf) to be the supremum (infimum) of the set Z ji .
Assumption 4. Consider z sampled from the interventional distribution ]P’g) in Equation 2. 3§ C [d]
such that the support of z; is independent of z; forallj € S. Forallj € S
(@) _ z() (%)
ZZ’] =Z" x ij (5)
Forallj € [d], —o0 < ozijnf < dup < 00 3¢ > 0 such that (aduy — ¢, adyp) U (ozijnf,ozijnf +() C
2,vj e [d).

The distribution P(Zl) above is quite general in several ways as it encompasses i) all perfect
interventions since they render the intervened latent independent of its ancestors and ii) imperfect
interventions that lead to independent support as characterized above. The latter part of the
above assumption is a regularity condition on the geometry of the support. It ensures the support
of z has a (-thick boundary for a > 0.

We now describe a constraint on the encoder that leverages the geometric signature of imperfect
interventions in Assumption 4. Recall 2, = fi(z). Let Z = f(X) and Z) = f(X®) represent
the support of encoder f’s output on observational data and interventional data respectively.
z,il,)n represents the joint support of (2, 2,,) and 2}?) is the support of Zj in interventional data.

Similarly, we define ZAk,m and ék for observational data.

Constraint 3. Given a set S'. For eachm € S, (34, 2m) satisfies support independence on
interventional data, i.e., ' .
20 20 20 yme S

In the above Constraint 3, the index k and set S’ are not necessarily the same as ¢ and S from
Assumption 4. In the theorem that follows, we require |S'| < |S| to guarantee that a solution to
Constraint 3 exists. In the Appendix A.3, we explain that this requirement can be easily relaxed.
Note that Constraint 3 bears similarity to Constraint 2 from the case of do interventions. Both
constraints ensure that the support of the k' component is independent of all other components.
In the theorem that follows, we show that the above Constraint 3 helps achieve block affine
identification, which we formally define below.

Definition 2. If 2 = Allz + ¢ forall z € Z U 2, where II is a permutation matrix, A is an
invertible matrix such that there is a submatrix of A which is zero, then 2 is said to block-affine
identify z.

Theorem 3. Suppose the observational data and interventional data are generated from Equation 1
and Equation 2 respectively under Assumptions 1, 2, 4. The autoencoder that solves Equation 3 under
Constraint 1, 3 (with |S'| < |S|) achieves block affine identification. More specifically, Vz € ZU Z()

~ ~ !
2k :agz—{—ck,zm:a;z—i—cm,VmES,



. / .

where aj, contains at most d — |S' | non-zero elements and each component of a, is zero whenever
. . /

the corresponding component of ay, is non-zero forallm € S .

Firstly, from Theorem 1, Z = Az + c. From the above theorem, it follows that Z;, linearly depends
on at most d — |S'| latents and not all the latents. Each 2, with m € S " does not depend on any

Observe that if |S'| = |S| = d — 1, then as a result of the above theorem, 2, identifies some z; up
to scale and shift. Further, remaining components Z_, linearly depend on z_; and do not depend
on z;. The proof of Theorem 3 is in Appendix A.3.

5 Extensions to Identification with Observational Data &
Independent Support

In the previous section, we showed that interventions induce geometric structure (independence
of supports) in the support of the latents that helps achieve strong identification guarantees. In
this section, we consider a special case where such geometric structure is already present in the
support of the latents in the observational data. Since we only work with observational data in
this section, we set the interventional supports Z(?) = X)) = (), where () is the empty set. For
each j € [d], define Bgup to be the supremum of the support of z;, i.e., Z;. Similarly, for each
J € [d], define 55@ to be the infimum of the set Z;.

Assumption 5. The support of Pz in Equation 1 satisfies pairwise support independence between
all the pairs of latents. Formally stated,

Zr,s = Zp X Zg,Vr 7é 8,7, 8 € [d] (6)

Forallr € [d] —00 < ﬁmf sup < 00. 3¢ > 0 such that (g, sup -G sup) (/B{nf76irnf+<n) C Z,
forallr € [d].

Following previous sections, we state a constraint, where the learner leverages the geometric
structure in the support in Assumption 5 to search for the autoencoder.

Constraint 4. Each pair (2, 2y,), where k,m € [d] and k # m satisfies support independence on
observational data, i.e., Zk m = Zk X Zm, where Zk .m IS the joint support of (2, 2m) and Zk is

support of Zx.

Theorem 4. Suppose the observational data is generated from Equation 1 under Assumption 1, 2,
and 5, The autoencoder that the solves Equation 3 under Constraint 4 achieves permutation, shift and
scaling identification. Specifically,Vz € Z,2 = Allz + ¢, where % is the output of the encoder f
and z is the true latent and 11 is a permutation matrix and A is an invertible diagonal matrix.

The proof of Theorem 4 is in Appendix A.4. Theorem 4 says that the independence between
the latents’ support is sufficient to achieve identification up to permutation, shift, and scaling
in observational data. Theorem 4 has important implications for the seminal works on linear
ICA (Comon, 1994), considering the simple case of a linear g. Comon (1994) shows that, if the
latent variables are independent and non-Gaussian, then the latent variables can be identified
up to permutation and scaling. However, Theorem 4 states that, even if the latent variables are
dependent, the latent variables can be identified up to permutation, shift and scaling, as long as
they are bounded (hence non-Gaussian) and satisfy pairwise support independence.

Finally, Theorem 4 provides a first general theoretical justification for recent proposals of
unsupervised disentanglement via the independent support condition (Wang and Jordan, 2021;
Roth et al., 2022).



6 Learning Representations from Geometric Signatures: Practical
Considerations

In this section, we describe practical algorithms to solve the constrained representation learning
problems in Sections 4 and 5.

To perform constrained representation learning with do-intervention data, we proceed in two
steps. In the first step, we carry out minimization of the reconstruction objective f1,hl =
argmin g j, E[[|h o f(X) — X|?], where h is the decoder, f is the encoder and expectation is
taken over observational data and interventional data. In the experiments, we restrict h to be
a polynomial and show that affine identification is achieved by the learned fT as proved in
Theorem 1.

In the second step, we learn a linear map to transform the learned representations and enforce
(%)

Constraint 2. For each interventional distribution, Py, we learn a different linear map ~; that
projects the representation such that it takes an arbitrary fixed value zj on the support of ]P’g?.

We write this objective as

win Y B o [W 71 — AP )

Construct a matrix I with different 7, as the rows. The final output representation is I fT(X).
In the experiments, we show that this representation achieves permutation, shift and scaling
identification as predicted by Theorem 2. A few remarks in order. i) ZZT is arbitrary and learner
does not know the true do intervention value, ii) for ease of exposition, Equation 7 assumes the
knowledge of index of intervened and can be easily relaxed by multiplying I with a permutation
matrix.

We next describe an algorithm that learns representations to enforce independence of support
(leveraged in Theorem 3 and 4). To measure the (non)-independence of the latents’ support, we
follow Wang and Jordan (2021); Roth et al. (2022) and measure the distance between the sets in
terms of Hausdorff distance: the Hausdorff distance HD between the sets S1, Sa is HD(S1, S2) =

Sup,es, | inf,/cg (lz — z’H)>, where §; C Sy. Next, to enforce the independent support

z €S
constraint, we again follow a two-step algorithm. The first step remains the same, i.e., we minimize
the reconstruction objective. In the second step, we transform the learned representations (f(z))
with an invertible map I' € R?*¢, The joint support obtained post transformation is a function
of the parameters I and is denoted as Z (T"). Following the notation introduced earlier, the
joint support along dimensions k, m is ZA/.@m(F ) and the marginal support along & is ﬁk(F) We
translate the problem in Constraint 4 as follows. We find a I' to minimize

min > HD(Zim(I), Z(I') x Zn(I)). (8)
k#m

Similarly, we can translate the constraint in Constraint 3.

7 Empirical Findings

In this section, we analyze how the practical implementation of the theory holds up in different
settings ranging from data generated from polynomial decoders to images generated from PyGame
rendering engine (Shinners et al., 2011). The code to reproduce the experiments can be found at
the link in the footnote.

®Github repository: https://github.com/facebookresearch/CausalRepID
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Data generation process. Polynomial decoder data: The latents for the observational data are
sampled from Pz. P can be i) independent uniform, ii) an SCM with sparse connectivity (SCM-S),
iii) an SCM with dense connectivity (SCM-D) (Brouillard et al., 2020). The latent variables are
then mapped to x using a multivariate polynomial. We use a n = 200 dimensional . We use two
possible dimensions for the latents (d) — six and ten. We use polynomials of degree (p) two and
three. Each element in G to generate x is sampled from a standard normal distribution.

Image data: For image-based experiments, we used the PyGame (Shinners, 2011) rendering engine.
We generate 64 x 64 x 3 pixel images of the form in Figure 2 and consider a setting with two
balls. We consider three distributions for latents: i) independent uniform, ii) a linear SCM with
DAG in Figure 2, iii) a non-linear SCM with DAG in Figure 2, where the coordinates of Ball 1 are
at the top layer in the DAG and coordinates of Ball 2 are at the bottom layer in the DAG.

For both settings above, we carry out do interventions on each latent dimension to generate
interventional data.

Model parameters and evaluation metrics. We follow the two step training procedures
described in Section 6. For image-based experiments we use a ResNet-18 as the encoder (He et al,,
2016) and for all other experiments, we use an MLP with three hidden layers and two hundred
units per layer. We learn a polynomial decoder & as the theory prescribes to use a polynomial
decoder (Constraint 1) when g is a polynomial. In Appendix B.3, we also present results when
we use an MLP decoder. To check for affine identification (from Theorem 1), we measure the R2
score for linear regression between the output representation and the true representation. If the
score is high, then it guarantees affine identification. To verify permutation, shift and scaling
identification (from Theorem 4), we check the mean correlation coefficient (MCC (Khemakhem
et al., 2022)). For further details on data generation, models, hyperparamters, and supplementary
experiments refer to the Appendix B.

P d p R? MCC (I0S)
Uniform 6 2 1.00£0.00 99.340.07
Uniform 6 3 1.00£0.00 99.440.06
Uniform 10 2 1.004+0.00 90.7 £2.92
Uniform 10 3 0.994+0.00 94.6+1.50

SCM-S 6 2 0.96+£0.02 72.641.48
SCM-S 6 3 0.87+£0.07 70.6+1.54
SCM-S 10 2 0.99+£0.00 65.941.32
SCM-S 10 3 0.90+£0.05 58841.27
SCM-D 6 2 0.97£0.01 61.6+4.36
SCM-D 6 3 0.81£0.11 65.242.70
SCM-D 10 2 0.83+£0.10 69.6=+3.09
SCM-D 10 3 0.72+0.15 60.1+1.16

Table 2: Observational data with polynomial decoder g: Mean + S.E. (5 random seeds). R? and
MCC(IOS) (for uniform) have high values as predicted in Theorem 1 and Theorem 4 respectively.

Results for polynomial decoder. Observational data: We consider the setting when the true
decoder ¢ is a polynomial and the learned decoder 4 is also a polynomial. In Table 2, we report the
R? between the representation learned after the first step, where we only minimize reconstruction
loss. R? values are high as predicted in Theorem 1. In the second step, we learn a map I" and
enforce independence of support constraint by minimizing Hausdorff distance from Equation 8.
Among the distributions Pz only the uniform distribution satisfies support independence from

11



Py d p MCC MCC (IL)
Uniform 6 2 69.14+1.11 100.0=+0.00
Uniform 6 3 73.44+0.49 100.0=+0.00
Uniform 10 2 59.94+2.03 100.04 0.00
Uniform 10 3 65.94+0.80 99.94+0.03

SCM-S 6 2 684+090 99.54+0.38
SCM-S 6 3 7414232 99.3+0.34
SCM-S 10 2 68.0%+236 99.940.03
SCM-S 10 3 66.84+1.10 98.84+0.13
SCM-D 6 2 T71.8+3.77 99.64+0.12
SCM-D 6 3 795+345 98.241.07
SCM-D 10 2 70.8+1.89 95.3+2.24
SCM-D 10 3 70.1+2.80 97.2+0.88

Table 3: Interventional data with polynomial decoder g: Mean + S.E. (5 random seeds). MCC(IL)
is high as shown in Theorem 2.

#interv dist.  Uniform SCM linear = SCM non-linear
1 33.24+7.09 42.7+1.43 34.9+2.29
3 722+£4.04 73.9x277 652+3.71
5 88.34+1.02 83.6+£0.94 77.2+1.79
7 88.1+1.10 85.5£0.82 81.9+2.37
9 87.5+1.33 84.8+1.49 81.1+2.53

Table 4: Interventional data in image-based experiments: Mean * S.E (5 random seeds). MCCs
increase with the number of do interventional distributions per latent dimension (Theorem 7).

Assumption 5 and following Theorem 4, we expect MCC to be high in this case only. In Table
2, we report the MCC obtained by enforcing independence of support in MCC (IOS). In the
Appendix B.3, we also carry out experiments on correlated uniform distributions and observe
high MCC (IOS).

Interventional data: We now consider the case when we also have access to do intervention data
in addition to observational data. We consider the setting with one do intervention per latent
dimension. We follow the two step procedure described in Section 6. In Table 3, we first show the
MCC values of the representation obtained after the first step in the MCC column. In the second
step, we learn I' by minimizing the interventional loss (IL) in Equation 7. We report the MCC
of the representation obtained in the MCC (IL) column in Table 3; the values are close to one as
predicted by Theorem 2.

Results for image dataset. We follow the two step procedure described in Section 6 except
now in the second step, we learn a non-linear map (using an MLP) to minimize the interventional
loss (IL) in Equation 7. In Table 4, we show the MCC values achieved by the learned representation
as we vary the number of do interventional distributions per latent dimension. As shown in
Theorem 7, more interventional distributions per latent dimension improve the MCC.

12



8 Related Work

Existing provable representation identification approaches often utilize structure in time-series
data, as seen in initial works by Hyvarinen and Morioka (2016) and Hyvarinen and Morioka (2017).
More recent studies have expanded on this approach, such as Halva and Hyvarinen (2020); Yao
et al. (2021, 2022); Lippe et al. (2022); Lachapelle et al. (2022). Other forms of weak supervision,
such as data augmentations, can also be used in representation identification, as seen in works
by Zimmermann et al. (2021); Von Kiigelgen et al. (2021); Brehmer et al. (2022); Locatello et al.
(2020); Ahuja et al. (2022a) that assume access to contrastive pairs of observations (z, Z). A third
approach, used in (Khemakhem et al., 2022, 2020), involves using high-dimensional observations
(e.g., an image) and auxiliary information (e.g., label) to identify representations.

To understand the factual and counterfactual knowledge used by different works in representation
identification, we can classify them according to Pearl’s ladder of causation (Bareinboim et al.,
2022). In particular, our work operates with interventional data (level-two knowledge), while other
studies leverage either observational data (level-one knowledge) or counterfactual data (level-three
knowledge). Works such as Khemakhem et al. (2022, 2020); Ahuja et al. (2022b); Hyvarinen and
Morioka (2016, 2017); Ahuja et al. (2021) use observational data and either make assumptions
on the structure of the underlying causal graph of latents or rely on auxiliary information. In
contrast, works like Brehmer et al. (2022) use counterfactual knowledge to achieve identification
for general DAG structures; Lippe et al. (2022); Ahuja et al. (2022a); Lachapelle et al. (2022) use
pre- and post-intervention observations to achieve provable representation identification. These
latter studies use instance-level temporal interventions that carry much more information than
interventional distribution alone.

9 Conclusion

In this work, we lay down the theoretical foundations for learning causal representations in the
presence of interventional data. We show that geometric signatures such as support independence
that are induced under many interventions are useful for provable representation identification.
Looking forward, we believe that exploring representation learning with real interventional data
(Lopez et al.,, 2022; Liu et al., 2023) is a fruitful avenue for future work.
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Interventional Causal Representation Learning

Appendices

Contents

We organize the Appendix as follows.

 In Appendix A, we present the proofs for the theorems that were presented in the main

body of the paper.

In Appendix A.1, we derive the affine identification guarantees and its approximations
in various settings. (Theorem 1)

In Appendix A.2, we derive the do intervention based identification guarantees and
its extensions. (Theorem 2)

In Appendix A.3, we present representation identification guarantees for imperfect
interventions. (Theorem 3)

In Appendix A.4, we present representation identification guarantees for observational
data with independent support. (Theorem 4)

+ In Appendix B, we present supplementary materials for the experiments.

In Appendix B.1, we present the pseudocode for the method used to learn the
representations.

In Appendix B.2, we present the details of the setup used in the experiments with the
polynomial decoder g.

In Appendix B.3, we present supplementary results for the setting with polynomial
decoder g.

In Appendix B.4, we present the details of the setup used in the experiments with
image data.

In Appendix B.5, we present supplementary results for the setting with image data.
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A Proofs and Technical Details

In this section, we provide the proofs for the theorems. We restate the theorems for convenience.

Preliminaries and notation. We state the formal definition of support of a random variable.
In most of the work, we operate on the following measure space (R%, B, \), B is the Borel sigma
field over R? and ) is the Lebesgue measure over completion of Borel sets on R? (Ash et al,,
2000). For a random variable X, the support X = {x € R dPx(z) > 0}, where dPx () is
the Radon-Nikodym derivative of P w.r.t Lebesgue measure over completion of Borel sets on
R?. For random variable Z, Z is the support of Z in the observational data. The support of the
component Z; of Z is Z;. For random variable Z, Z () is the support of Z when Z; is intervened.

The support of the component Z; of Z in intervened data is ZJ(-i).

A.1 Affine Identification

Lemma 1. If the matrix G that defines the polynomial g is full rank and p > 0, then g is injective.

Proof. Suppose this is not the case and g(z1) = g(z2) for some z; # z3. Thus

1 1
21 )
21021 20®22
G =G
2AQ - ® 21 29® - ® 29
N— N—
L p times _ L p times _ (9)
- 0 .
(1-2)
21021 — 22822
=G . =0
2110 @21 — 28 ® 29
p t?r?tes p times _

Since z1 # 29 we find a non-zero vector in the null space of G which contradicts the fact that G
has full column rank. Therefore, it cannot be the case that g(z1) = g(z2) for some z; # z2. Thus
g has to be injective. O

Lemma 2. Ifv; is a polynomial of degree k1 and vs is a polynomial of degree ko, then vive is a
polynomial of degree ky + k.

Proof. We separate v;(z) into two parts — the terms with degree k; (u;(2)) and the terms with
degree less than k; (w;(z)) for i € {1,2}. We obtain the following expression.

v1(2)va(2) = (ua(2)+wi(2))(v2(2)+wa(2)) = ui(2)uz(2)+ui (2)wa(z)fuz(2)wi(2)+wi(2)wa(2)
(10)

The maximum degree achieved by u1(z)ug(2) is k1 + ko. For the other terms, the maximum is

bounded above by k1 + ko — 1. To prove the result, we need to show that u; (z)ug(z) has a degree

k1 + ko.

We first start with a simple case. Suppose u;(z) and uz(z) do not share any component of z that
they both depend on. In such a case, if we take the leading degree term in u; and uy respectively
and multiply them then we obtain distinct terms of degree k1 + ko.
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Suppose u1 and ug both depend on 2. We write u1(z) as

d
wz) = Y G[[=" = Y b

i dji=k1 =1 > dji=k1

where ¢j(z) =[], z:-i 7" is a degree k1 polynomial. Note that for each 7, ¢; is a different polynomial,
ie. for j # q, ¢; # cq. We write up(2) as

d
w= > GI[A"= 30 Bi)

Zz’ dji:k2 =1 Zz dji=k2

We collect all the terms in u; that have the highest degree associated with z; such that the
coefficient 6; is non-zero. We denote the highest degree as r and write these terms as

d
dgi
PIZEN | EREDIETNC)
q =2 q

where wy(2) = H?:2 zgqi, q#l = wg#wpandr > 1
From us(z), collect the terms with the highest degree for 21 such that the coefficient 3; is non-zero
to obtain. We denote the highest degree as s and write these terms as

d
dy;
> s = Bizim(z)
t i=2 t
d dy;

where n:(2) = [[;_o 27", t #1 = m #m,and s > 1.

As a result, uj (z)ug(z) will contain the term
AN " Ogwy(2) Y Bimi(2)
q t

z{+s(51 (2)02(2)

where 01(2) = >_, 0qwq(2) and 02(2) = >_, Bimi(2). We will use principle of induction on the
degree of polynomial to prove the claim.

We first establish the base case for k; = 1 and ko = 1. Consider two polynomials p{ z and py 2.
We multiply the two to obtain Zz ; P1ip2;zizj. Consider two cases. In case 1, the two polynomials
have at least one non-zero coefficient for the same component z;. In that case, we obtain the only
non-zero term with p?, 22, which establishes the base case. In the second case, the two polynomials
have no shared non-zero coefficients. In such a case, each term with a non-zero coefficient is of
the form p1;p2;2;2;. This establishes the base case. The other cases with ky = 0 and k3 = 1 or
ko = 0and k1 = 1 or both k1 = 0, k2 = 0 are trivially true. Thus we have established the base
case for all polynomials (with arbitrary dimension for z) of degree less than ky = 1 and ko = 1.

We can now assume that the claim is true for all polynomials v; with degree less than k1 — 1
and all polynomials ve with degree less than ko — 1. As a result, the degree of §;(2)d2(z) is
ki+ ko —1r—s.
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We can write 0105 in terms of the terms with degree equal to ki 4 k — 7 — 5 (8 (2)) and terms
that have a degree less than k; + ko — r — 5 (*(2)). As a result, we can simplify 2] 756 (2)d2(2)
to obtain

2750 (2) + 07(2)) (11)

The degree of 2{7°5*(2) is at most k; + ka2 — 1. The degree of 2{7°(5'(2)) has to be k; + ks
since &' (z) does not depend on z1, 8 (2) is of degree k1 + ky — r — s. Note that this is the only
term in the entire polynomial u; (z)uz (%) that is associated with the highest degree for 21 (2] ")
since other terms (c;, c;-) have a smaller degree associated with z; thus the coefficient of this term
cannot be cancelled to zero. Therefore, the degree of the polynomial uu2 and hence the degree
of vivg is k1 + ko.

O]

Recall 2 = f(x),a £ fog. Since f(x) = fog(z) = a(z) = % =a(z), wherea : ZUz0 -
ZUZW, and Z = f(X) and 2 = f(X?)). We now show that a is bijective.

Lemma 3. Suppose the observational data and interventional data are generated from Equation 1
and Equation 2 respectively. The mapping a that relates the output of the encoder f written as Z,
which solves the reconstruction identity Equation 3, is related to the true latent z is bijective, where
z=a(z).

Proof. Observe that a is surjective by construction. We now need to prove that a is injective.
Suppose a is not injective. Therefore, there exists z; € Z and zy € Z, where 21 # 22 and
Z1 = a(z1) = Z2 = a(z2). Note that a(z1) = f(z1), where 1 = g(z1) and a(z2) = f(x2),
where x9 = ¢(z2). This implies that f(xz1) = f(x2). We know that the decoder encoder pair
satisfy reconstruction, which means h o f(x1) = x1 and h o f(x2) = xs. Since f(x1) = f(x2),
we obtain that x1 = x9, which implies that z; = 25 since g is injective. This contradicts the fact
that z; # z,. Therefore, 2 = a(z) is bijective. O

Theorem 1. Suppose the observational data and interventional data are generated from Equation 1
and Equation 2 respectively under Assumptions 1 and 2. The autoencoder that solves the reconstruction
identity in Equation 3 under Constraint 1 achieves affine identification, i.e,Vz € ZUZ® 2 = Az+c,
where 2 is the encoder f’s output, z is the true latent, A € R9%d s invertible and ¢ € R,

Proof. We start by restating the reconstruction identity. For all z € X U X

hof(z)=x
h(2) = g(z)
_ ) - _ -
c i (12)
Z®z 2Rz
H . =G
R-® 2 2R ® z
—_—— —_—
L ptimes | p times

Following the assumptions, A is restricted to be polynomial but f bears no restriction. If H = G
and f = g_l, we get the ideal solution Z = z, thus a solution to the above identity exists.
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Since G has full column rank, we can select ¢ rows of G such that~C~¥ € R7%9 and rank(G) = q.
Denote the corresponding matrix [ that select the same rows as H. We restate the identity in
Equation 12 in terms of H and G as follows. For all z € Z U 20

1 1
Z z
. 2R3 - 2Rz
H =G )
—_———— —_—————
p times | | p times
- 1 . - 1 .
Z z
.. 22 2Rz
G 'H =
== - (13)
Z®"'®Z Z®"'®Z
—_——— ———
p times | |l ptimes
1 .
z
. 2®2
z=A
2Q--® 2
——
p times
cm A2 Ay 20244y 208 5 4e,
——
p times

Where A is a submatrix of G~ H that describes the relationship between z and polynomial of

5 {AN correspond to blocks of rows of A. Suppose at least one of Ag, .-, A, is non-zero.
Among the matrices A, - - A which are non-zero, pick the matrix A, with largest index k.
Suppose row i of Aj, has some non-zero element. Now consider the element in the row in the
RHS of (13) corresponding to z7. Observe that 2! is a polynomial of 2 of degree kp, where k > 2
(follows from Lemma 2). In the LHS, we have a polynomial of degree at most p. In the LHS,
we have a polynomial of degree at most p. The equality between LHS and RHS is true for all
2 € f(X U XW). The difference of LHS and RHS is an analytic function. From Constraint 1
f(xux (i)) has a measure greater than zero. Therefore, we leverage Mityagin (2015) to conclude
that the LHS is equal to RHS on entire R?. If two polynomials are equal everywhere, then their
respective coeflicients have to be the same. Based on supposition, RHS has non zero coefficient
for terms with degree kp while LHS has zero coefficient for terms higher than degree p. This
leads to a contradiction. As a result, none of 1212, e ,flp can be non-zero. Thus z = A1 + c.
Next, we show that fll is invertible, which immediately follows from Lemma 3.

O]
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A.1.1 Extensions to sparse polynomial g(-)

Suppose g(-) is a degree p polynomial. Let us define the basis that generates g as

z
2@z
u(z) =
2Q-® z
—_——
p times
Note that the number of terms in u(z) growsas ¢ = > -_, (T”;le). In the previous proof, we
worked with
z
2@z
9(:) =G ~ Gu()
Q- ® z
5,—/
p times

where G € R"*? was full rank. As a result, n has to be greater than ¢ and also grow at least
asy v, (“;i;l) In real data, we can imagine that the g(-) has a high degree. However, g can
exhibit some structure, for instance sparsity. We now show that our entire analysis continues to
work even for sparse polynomials thus significantly reducing the requirment on n to grow as
the number of non-zero basis terms in the sparse polynomial. We write the basis for the sparse
polynomial of degree p as u'(z). u' () consists of a subset of terms in u(z). We write the sparse
polynomial g(+) as
9(z) = Gu'(2)

We formally state the assumption on the decoder in this case as follows.

Assumption 6. The decoder g is a polynomial of degree p whose corresponding coefficient matrix
G (a.k.a. the weight matrix) has full column rank. Specifically, the decoder g is determined by the
coefficient matrix G as follows, /

9(2) = Gu (2) (14)

where u/ (2) consists of a subset of terms in u(z). ul(z) consists of the degree one term, i.e., z and at
least one term of the form z}, where 0 > %

Theorem 5. Suppose the observational data and interventional data are generated from Equation 1
and Equation 2 respectively under Assumptions 1, 6. The autoencoder that solves reconstruction
identity in Equation 3 under Constraint 1 achieves affine identification, i.e,Vz € ZUZ® 2 = Az+c,
where 2 is the output of the encoder f, z is the true latent, A is an invertible d x d matrix and ¢ € R,
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Proof. We start by restating the reconstruction identity. For all z € X U X'(?)

o f(z) =
( ) = 9(2)

1

z

_ 15
ZQ% / (19)

R--® 2
———

p times

Following the assumptions, h is restricted to be polynomial but f bears no restriction. If H is
equal to the matrix G for columns 7 where u; = u; for some j and zero in other columns and
f= gfl, we get the ideal solution Z = z, thus a solution to the above identity exists. Since G has
full column rank, we can select ¢ rows of G such that G’ € R9%? and rank(G) = ¢. Denote the
corresponding matrix H that select the same rows as H. We restate the identity in Equation 15 in
terms of H and G as follows. Forall z € ZU Z()

i (16)

p=A12+ Ay @24 A, 28 ® Etc

p times

In the 51mp11ﬁcat10n above, we rely on the fact that u/(2) consists of the first degree term. Suppose
at least one of Ag, = A is non-zero. Among the matrices Ay, ,fl which are non-zero,
pick the matrix A, w1th largest index k. Suppose row i of A, has some non-zero element. Now

consider the element in the row in the RHS of (16) corresponding to z{. Observe that z{ is a
polynomial of Z of degree ko, where k > 2. In the LHS, we have a polynomial of degree at most
p. The equality between LHS and RHS is true for all 2 € f(X U X®). The difference of LHS
and RHS is an analytic function. From Constraint 1 f(X U X)) has a measure greater than zero.
Therefore, we leverage Mityagin (2015) to conclude that the LHS is equal to RHS on entire R%. If
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two polynomials are equal everywhere, then their respective coeflicients have to be the same.
Based on supposition, RHS has non zero coefficient for terms with degree p + 1 while LHS has
zero coeflicient for terms higher than degree p. This leads to a contradiction. As a result, none
of Ag, -+, Ap can be non-zero. Thus z = A% + ¢. Next, we need to show that A is invertible,
which follows from Lemma 3. O

A.1.2 Extensions to polynomial g(-) with unknown degree

The learner starts with solving the reconstruction identity by setting the degree of h(-) to be s;
here we assume H has full rank (this implicitly requires that n is greater than the number of
terms in the polynomial of degree s).

1
Z z
2®Z 2Qz
H , e (17)
| stimes | L ptimes

We can restrict H to rows such that it is a square invertible matrix H. Denote the corresponding
restriction of G as GG. The equality is stated as follows.

1 1
Z z
2R% g 2Qz
=H'G (18)
s times | |l p times

If s > p, then 2® ---® Z is a polynomial of degree at least p + 1. Since the RHS contains a
—_———

s times
polynomial of degree at most p the two sides cannot be equal over a set of values of z with positive

Lebesgue measure in R?. Thus the reconstruction identity will only be satisfied when s = p.
Thus we can start with the upper bound and reduce the degree of the polynomial on LHS till the
identity is satisfied.

A.1.3 Extensions from polynomials to e-approximate polynomials

We now discuss how to extend Theorem 1 to settings beyond polynomial g. Suppose g is a
function that can be e-approximated by a polynomial of degree p on entire Z U Z(). In this
section, we assume that we continue to use polynomial decoders h of degree p (with full rank
matrix H) for reconstruction. We state this as follows.

Constraint 5. The learned decoder h is a polynomial of degree p and its corresponding coefficient
matrix h is determined by H as follows. For all z € R¢

I’L(Z):H[l,Z,Z@Z,'-',Z@"'@ZT (19)

p times

where & represents the Kronecker product with all distinct entries. H has a full column rank.
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Since we use h as a polynomial, then satisfying the exact reconstruction is not possible. Instead,
we enforce approximate reconstruction as follows. For all z € X U X(®), we want

[hofz) —xl| < (20)

where € is the tolerance on reconstruction error. Recall 2 = f(x). We further simplify it as
2 = fog(z) = a(z). We also assume that a can be n-approximated on entire Z U Z() with a
polynomial of sufficiently high degree say q. We write this as follows. For all z € ZU Z(),

z
2Rz

q times

Z2—012—0220z—-0, 28Rz || <.

q times

We want to show that the norm of ©, for all £ > 2 is sufficiently small. We state some assumptions
needed in theorem below.

Assumption 7. Encoder f does not take values near zero, i.e., fi(z) > vn forallz € X UX® and
foralli € {1,--- ,d}, where~y > 2. The absolute value of each element in H~'G is bounded by a
fixed constant. Consider the absolute value of the singular values of H ; we assume that the smallest
absolute value is strictly positive and bounded below by (.

Theorem 6. Suppose the true decoder g can be approximated by a polynomial of degree p on entire
Z U 29 with approximation error 5. Suppose a = f o g can be approximated by polynomials
on entire Z U Z(1) with n error. If [—Zmax, zmax]d C ZU ZW, where Zmax 1S sufficiently large,
and Assumption 1, Assumption 7 hold, then the polynomial approximation of a (recall Z = a(z))
corresponding to solutions of approximate reconstruction identity in Equation 20 under Constraint 5
is approximately linear, i.e., the norms of the weights on higher order terms are sufficiently small.
Specifically, the absolute value of the weight associated with term of degree k decays as %
Proof. We start by restating the approximate reconstruction identity. We use the fact that g
can be approximated with a polynomial of say degree p to simplify the identity below. For all
reXxux®

z z z
ZR% 2Qz 2Qz (22)
H : -G : - |G : —g(2)|| <e
@ @4 R Bz 2B ® 2
—_——— ———
L ptimes | L ptimes | | ptimes
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To obtain the second step from the first, add and subtract G[z, 2@z, -+ , 2@ ---® 2] and use
p times
reverse triangle inequality. Since H is full rank, we select rows of H such that H is square and

invertible. The corresponding selection for G is denoted as G. We write the identity in terms of
these matrices as follows.

z z
2Q% 2Qz 5
||I§I : -G : < 56
——— ———
p times p times
bpme - ] (23)
z z
2®2 2@z 5
H - H'G : < G Gg
20 B2 CIREY lomin ()]
—_——— —_——
|l ptimes | |l ptimes

where |omin(H)| is the singular value with smallest absolute value corresponding to the matrix H.
In the simplification above, we use the assumption that g is §-approximated by a polynomial with

matrix G and we also use the fact that |omin (H)| is positive. Now we write that the polynomial
that approximates 2; = a;(z) as follows.

. T T 5 T.5. &
|2i =01 2 — 0y 2@z —-- -0, 20---® z| <7 (24)

q times

éi201T2+02Tz®z+-~-952®'--®2—77
%,—/
q times
21’S0?z+9;z®z+---9;z®--~®z+n
—_———

q times

(25)

From Assumption 7 we know that 2; > ~n, where v > 2. It follows from the above equation that

T 9t »& O L S~ >
12+ 65 202 + g EQ--®z+n 271

q times
= 0] 240,202+ 40, 20 @z—(y—1)n>0
q times (26)
— 1 > n
vy—17 9]—2+9;z®z+~--+052®...®z
———
q times

For 2; > n, we track how 2! grows below.

s > T TG T.5...5
2200240y 20z+---0, 28---@z—n>(y—2)n>0
q times
P> 0] z24+0) 2@z +--0] 28 @ z—n)P
’L—(l 2 q _ 77)
q times

_ _ _ 1
éfz(91T2+92Tz®z+-~-9;rz®---®z)p(1—77_1)1”

q times
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In the last step of the above simplification, we use the condition in Equation 26. We consider
2 = [2max, " > ?max]. Consider the terms 6;;zk . inside the polynomial in the RHS above.

We assume all components of 6 are positive. Suppose ;; > ———, where x € (0, 1), then
Zmax

the RHS in Equation 27 grows at least zr(,qla';”)p (3—:%

degree p polynomial in 2. Under the assumption that the terms in H~'G are bounded by a
constant, the polynomial of degree p grows at at most 2P . The difference in growth rates the
Equation 23 is an increasing function of znax for ranges where 2oy is sufficiently large. Therefore,
the reconstruction identity in Equation 23 cannot be satisfied for points in a sufficiently small
neighborhood of 2 = [Zmax, - - * , Zmax|. Therefore, §;; < z’“*% We can consider other vertices

max

)p . From Equation 23, 217-’ is very close to

of the hypercube Z and conclude that |6;;| < z’“‘%

O

A.2 Representation identification under do interventions

Theorem 2. Suppose the observational data and interventional data are generated from Equation 1
and Equation 2 respectively under Assumptions 1 and 2, where IP’(Z%) follows Equation 4. The
autoencoder that solves Equation 3 under Constraint 1, Constraint 2 identifies the intervened latent
z; up to shift and scaling, i.e., Zj, = ez; + b, wheree € R;b € R.

Proof. First note that Assumptions 1-2 hold. Since we solve Equation 3 under Constraint 1, we
can continue to use the result from Theorem 1. From Theorem 1, it follows that the estimated
latents # are an affine function of the true z. 3, = a 'z +b,Vz € ZU Z(), where a € R% b € R.

We consider a z € Z() such that z_; is in the interior of the support of IP’%L We write z € Z()

as [2*, z_;]. We can write 2, = a;z* + al—iz,i + b, where a_; is the vector of the values of
coefficients in a other than the coefficient of i'"* dimension, a; is ith component of a, z_; is the
vector of values in z other than z;. From the constraint in Constraint 2 it follows that for all

z e 20, 2, = 21 We use these expressions to carry out the following simplification.

al—iz_i =zl —az"—b (28)

Consider another data point 2 € Z() from the same interventional distribution such that
()

ZLZ- = z_; + be; is in the interior of the support of ')’ ., where ¢; is vector with one in G

coordinate and zero everywhere else. From Assumption 3, we know that there exists a small
enough 6 such that 2 ; is in the interior. Since the point is from the same interventional distribution

’ !
z; = z*. For z_; we have

—i%—i (29)

We take a difference of the two equations (28) and (29) to get

ali(z_i —z_;) = 0a’,e; = 0. (30)

—1

From the above, we get that the j** component of a_; is zero. We can repeat the above argument
for all j and get that a_; = 0. Therefore, Z;; = a;z; + b for all possible values of z; in ZU z0, O
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A.2.1 Extension of do interventions beyond polynomials

In the main body of the paper, we studied the setting where g is a polynomial. We relax the
constraint on g. We consider settings with multiple do interventional distribution on a target
latent.

We write the DGP for intervention j € {1,--- , ¢} on latent i as
2 =2
o (31)
oy
Let T = {z*1,- -+, 2%!} be the set of do intervention target values. We extend the constrained

representation learning setting from the main body, where the learner leverages the geometric
signature of a single do intervention per latent dimension to multiple do interventional
distributions per latent dimension.

ho f(z) = x, Ve e X u X))

. (32)
fr(x) = 21, Vo e X0 vje {1, 1}
Recall that the 2 = f(z) = f o g(z) = a(z). Consider the k" component 2;, = az(z). Suppose
ay(z) is invertible and only depends on z;, we can write it as ay(z;). If 2 only depends on z;, i.e.,
2 = ag(z;) and ay, is invertible, then the z; is identified up to an invertible transform. Another
way to state the above property is V,_,ax(z) = 0 for all z_;. In what follows, we show that it is
possible to approximately achieve identification up to an invertible transform. We show that if
the number of interventions ¢ is sufficiently large, then ||V,_,ax(2)|| < eforall z € Z.

Assumption 8. The interior of the support of z in the observational data, i.e., Z, is non-empty.

The interior of the support of z_; in the interventional data, i.e., Z (g ), is equal to the support

in observational data, i.e., Z_;, forallj € {1,--- ,t}. Each mterventlon 2% is sampled from a
distribution Q. The support of Q is equal to the support of z; in the observational data, i.e., Z;. The
density of Q is greater than o (¢ > 0) on the entire support.

The above assumption states the restrictions on the support of the latents underlying the
observational data and the latents underlying the interventional data.

Assumption 9. H%H is bounded by L < oo forall z € Z and foralli,j € {1,--- ,d}.
Lemma 4. If the number of interventions t > log(w)/log(l — 05), then
sup inf

max,,cz, Min,. ;7 ||2; — 27| < € with probability 1 — 4.

where 3! ; and ﬂsup are the infimum and supremum of
f (ﬁ;up+ﬁfnf)
€

Proof. Consider the interval [— iinf, )
Z;. Consider an § covering of [ ;, Sup] This covering consists o equally spaced
points at a separation of €/2. Consider a point z;, its nearest neighbor in the cover is denoted as
zl/, and the nearest neighbor of z; in the set of interventions 7 is z*/. The nearest neighbor of z;
in the set of interventions is z*". Since ||z; — 27| < [|z; — 2™?| forall ¢ € {1,--- ,t} we can

write

lzi = 290 < lai = 27 < Dl =l + iz = 2570 < >+l = 2| (33)

2 — 24|

Observe that if ||z, — 2*7]| is less than § for all z; in the cover, then for all z; in Z;,
is less than e. We now show that ||z, — 2*"|| is sufficiently small provided ¢ is sufficiently large.
Observe that
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/ € €

P N V< (1 = 0= t

(I - =711 > §) < (1 - o)

We would like that (1 — o§)" < ¢, which implies ¢ > log(8)/log(1 — o%). Therefore, if ¢ >

log(d)/log(1 — o5), then P(||z; — 27| < 5) with a probability at least 1 — J. If we set § =

s, then we obtain that for all j, P(||z; — 27| < &) with probability at least 1 — . The
2(Blup+Bius) 2

: de€ €
final expression for ¢ > log(m)/ log(1 — 05) O

Theorem 7. Suppose the observational data and interventional data are generated from
Equation 1 and Equation 31 respectively. If the number of interventions t is sufficiently large,

ie,t > log(m)/ log(1 — 057 ), Assumption 8 and Assumption 9 are satified, then the

solution to Equation 32 identifies the intervened latent z; approximately up to an invertible tranform,
ie, ||V._,ak(2)|leo < €forallz € Z.

Proof. Recall 2 = f(z) = f o g(2) = a(z), where a : U; 20 U Z — U; 20:9) U Z. Consistent
with the notation used earlier in the proof of Theorem 1, Z (6.4) = f(x (4.7 )). In Lemma 3, we had
shown that a is bijective, we can use the same recipe here and show that a is bijective.

Owing to the constraint in Equation 32, we claim that V,_ a;(z) = 0 for all z_; in the interior
of Z_; with z; = z*J. Consider a ball around z_; that is entirely contained in Z_;, denote it
as B,. From Equation 32, it follows that fj(x) takes the same value on this neighborhood. As
a result, ai(2) is equal to a constant on the ball 53,. Therefore, it follows that V, ,ax(z) = 0
on the ball B,. We can extend this argument to all the points in the interior of the support of
z_;. As aresult, V, .ax(z) = 0 on the interior of the support of z_;. Further, V, .ax(z) =0
forall z = [2*7, 2_;] in U; Z(%). Define R(z) = V,_,ay,(2). Consider the j*" component of R(z)
denoted as X;(z). Consider a point z € Z and find its nearest neighbor in U; 2 (:7) and denote it

as z . Following the assumptions, z_

. = 2_;. We expand X;(z) around 2" as follows

R;(2) = R;(2) 4+ VR (2) T (2 — 2)

o (2" :
Ri(2) = PAE) e )
In the above, we use the fact that X;(2") = 0.
IR, (2") , OR;(2") ] €
= | P - | < | P £ <o
To see the last inequality in the above, use Lemma 4 with € as ¢/L and Assumption 9. O

In the discussion above, we showed that multiple do interventional distribution on target latent
dimension help achieve approximate identification of a latent up to an invertible transform. The
above argument extends to all latents provided we have data with multiple do interventional
distributions per latent. We end this section by giving some intuition as to why multiple
interventions are necessary in the absence of much structure on g.

Necessitating multiple interventions We consider the case with one do intervention.
(4)

Consider the set of values achieved under intervention, where z_; is from the interior of Z;.

We call this set Z(?) Suppose a is a bijection of the following form.

l,if z is in Z(0)
a= (34)

a otherwise
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where | is identity function and a is an arbitrary bijection with bounded second order derivative
(satisfying Assumption 9). Define f = ao g~ ! and h = g o a~!. Observe that these f and h
satisfy both the constraints in the representation learning problem in Constraint 2. In the absence
of any further assumptions on g or structure of support of Z, each intervention enforces local
constraints on a.

A.3 Representation identification under general perfect and imperfect
interventions

Before proving Theorem 3, we prove a simpler version of the theorem, which we leverage to
prove Theorem 3. We start with the case when the set S has one element say S = {j}.
Assumption 10. Consider the Z that follow the interventional distribution Pg). The joint support
of z;, z; satisfies factorization of support, i.e.,

2 =z x 20 (35)
Forallj € {1, - ,d}, —o0 < ozijnf < ozgup < 00. There exists a ¢ > 0 such that the all the points

in (&up — ¢, agup) U (afnf, aijnf + () arein ZJ@, Ve {l,---,d}

The above assumption only requires support independence for two random variables Z; and Z;.

We now describe a constraint, where the learner enforces support independence between 2; and
Z;.
Constraint 6. The pair (2;, 2;) satisfies support independence on interventional data, i.e.,
>(1) _ 2(0) (%)
Z, =2 xZ;
In the above Constraint 6, we use same indices ¢ and j as in Assumption 10 for convenience, the
arguments extend to the case where we use a different pair.

Theorem 8. Suppose the observational data and interventional data are generated from Equation 1
and Equation 2 respectively under Assumptions 1, 2, 10. The autoencoder that solves Equation 3 under
Constraint 1, 6 achieves block affine identification, i.e,Vz € Z,2 = Az + ¢, where Z is the output of
the encoder f and z is the true latent and A is an invertible d x d matrix and ¢ € R<. Further, the
matrix A has a special structure, i.e., the row a; and a; do not have a non-zero entry in the same
column. Also, each row a; and a; has at least one non-zero entry.

Proof. Let us first verify that there exists a solution to Equation 3 under Constraint 1, 6. If Z=27
and h = g, then that suffices to guarantee that a solution exists.

First note that since Assumptions 1, 2 holds and we are solving Equation 3 under Constraint 1,
we can continue to use the result from Theorem 1. From Theorem 1,Vz € Z U Z (’), z2=Az+c,
where Z is the output of the encoder f and z is the true latent and A is an invertible d x d matrix
and c € R%

From Assumption 10 we know each component k € {1,--- ,d} of z, z is bounded above and
(2)

below. Suppose the minimum and maximum value achieved by 2;, € Z; 7 is afnf and the maximum
(@) oo

value achieved by z, € Z” is ag, -

Define a new latent
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Notice post this linear operation, the new latent takes a maximum value of 1 and a minimum
value of —1.

We start with 2 = Az + ¢, where 2 is element-wise transformation of z that brings its maximum
and minimum value of each component to 1 and —1. Following the above transformation, we
define the left most interval for z; as [~1, —1 4 7;] and the rightmost interval is [1 — (;, 1], where
n; > 0 and ¢; > 0. Such an interval exists owing to the Assumption 10.

Few remarks are in order. i) Here we define intervals to be closed from both ends. Our arguments
also extend to the case if these intervals are open from both ends or one end, ii) We assume all the
values in the interval [—1, —1 4 7;] are in the support. The argument presented below extends
to the case when all the values in [—1, —1 + 7;] are assumed by z; except for a set of measure
zero, iii) The assumption 10 can be relaxed by replacing supremum and infimum with essential
supremum and infimum.

For a sufficiently small x, we claim that the marginal distribution of Z; and 2; contain the sets
defined below. Formally stated

(<Maslly + e, ~lasll + e+ m) U (laslls + e = s flail + ) € 2 (36)
(~llaglly + e, ~llaslly + e + %) U llaslls + ¢ = . flagl +¢) € 257 7)
where a; and a; are i’ and 4% row in matrix A. We justify the above claim next. Suppose all
elements of a; are positive. We set « sufficiently small such that m <ngforallk € {1,--- ,d}.
Since  is sufficiently small, [-1, —1 + m] in the support z,, this holds for all k € {1,--- ,d}.

As a result, (—||a;||1 + ¢i, —||ail]1 + ¢i + k) is in the support of Z;. We can repeat the same
argument when the signs of a; are not all positive by adjusting the signs of the elements Z.

This establishes (—||a;||1 + ¢, —||ail|1 + ¢ + &) C 2:71.(1). Similarly, we can also establish that
(laslly + e = . Jaill +ei) © Z{7.

Suppose the two rows a; and a; share at least ¢ > 1 non-zero entries. Without loss of generality
assume that a;1 is non-zero and @ is non-zero. Pickan 0 < ¢ < x

« Suppose a;1 and a;; are both positive. In this case, if 2; < —||a;||1 + ¢; + €, then
2e

/
2 < —14+ —
! |ai1]

<. and observe that 2; > —||a;||1 + ¢; + €.

To see why is the case, substitute le =1+ ‘3_1‘

« Suppose a;1 and a;; are both positive. In this case, if Z; > ||a;||1 + ¢; — €, then

For sufficiently small € (¢ < )both z; < —1+ 2¢ and 2} > 1 — 2¢ cannot be true
1| a;l ajs1

simultaneously.

Therefore, 2; < —||a;|l1 + ¢; + € and 2; > ||aj|l1 + ¢; — € cannot be true simultaneously.
Individually, 2; < —||a;||1 + ¢; + € occurs with a probability greater than zero; see Equation 36.
Similarly, 2; > ||a;||1 + ¢; — € occurs with a probability greater than zero; see Equation 37. This
contradicts the support independence constraint. For completeness, we present the argument for
other possible signs of a.
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« Suppose a;1 is positive and aj; is negative. In this case, if 2; < —||a;|[1 + ¢; + €, then

2¢

|ai1l

z,1<—1+

« Suppose a;j is positive and a;; is negative. In this case, if 2; < —||a;||1 + ¢; + €, then

Rest of the above case is same as the previous case. We can apply the same argument to any
shared non-zero component. Note that a row a; cannot have all zeros or all non-zeros (then a;
has all zeros). If that is the case, then matrix A is not invertible. This completes the proof. [

We now use the result from Theorem 8 to prove the Theorem 3.

Theorem 3. Suppose the observational data and interventional data are generated from Equation 1
and Equation 2 respectively under Assumptions 1, 2, 4. The autoencoder that solves Equation 3 under
Constraint 1, 3 (with |S'| < |S|) achieves block affine identification. More specifically, ¥z € ZU Z(®)

~ ~ /
2k :a;—z+ck,zm:a;z+cm,Vm€S,

. / .

where aj, contains at most d — |S' | non-zero elements and each component of a, is zero whenever
. . /

the corresponding component of aj, is non-zero forallm € S .

Proof. Let us first verify that there exists a solution to Equation 3 under Constraint 1, 3 (with
S < [S]).

We write Z = 117, where Il is a permutation matrix such that 7y, = Z;. For eachm € S’ there
exists a unique j € S’ such that Z,,, = Z;. Suppose h = g o II"L. Observe that this construction
satisfies the constraints in Constraint 3.

To show the above claim, we leverage Theorem 8. We apply Theorem 8 to all the pairs in
{(k,m),¥m € S'}, we obtain the following. We write %, = a, z -+ c;. Without loss of generality,
assume ag, is non-zero in first s elements. Now consider any Z,,, = a;,rlz +¢m, wherem € S ". From
Theorem 8 it follows that a,,[1 : s] = 0. This holds true for all m € S". Suppose s > d — |S'| + 1.
In this case, the first s columns cannot be full rank. Consider the submatrix formed by the first s
columns. In this submatrix |S’| rows are zero. The maximum rank of this matrix is d — |S’|. If
s>d—|S /] + 1, then this submatrix would not have a full column rank, which contradicts the
fact that A is invertible. Therefore, 1 < s < d — \Sl|. O

We can relax the assumption that |Sl| < |S] in the above theorem. We follow an iterative
procedure. We start by solving Constraint 3 with |S'| = d — 1. If a solution exists, then we stop.
If a solution does not exist, then we reduce the size of \Sl| by one and repeat the procedure till
we find a solution. As we reach |S'| = |S| a solution has to exist.

A.4 Representation identification with observational data under independent
support

Theorem 4. Suppose the observational data is generated from Equation 1 under Assumption 1, 2,
and 5, The autoencoder that the solves Equation 3 under Constraint 4 achieves permutation, shift and
scaling identification. Specifically,Vz € Z,2 = Allz + ¢, where % is the output of the encoder f
and z is the true latent and 11 is a permutation matrix and A is an invertible diagonal matrix.
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Proof. We will leverage Theorem 8 to show this claim. Consider 2; = a] z + ¢;. We know that the
a; has at least one non-zero element. Suppose it has at least ¢ > 2 non-zero elements. Without
loss of generality assume that these correspond to the first ¢ components. We apply Theorem 8
to each pair Z;, Z; for all j # 7. Note here 7 is kept fixed and then Theorem 8 is applied to every
possible pair. From the theorem we get that a;[1 : ¢ is zero for all j # i. If ¢ > 2, then the span
of first ¢ columns will be one dimensional and as a result A cannot be invertible. Therefore, only
one element of row 7 is non-zero. We apply the above argument to alli € {1,--- ,d}. We write a
function 7 : {1,--- ,d} — {1,--- ,d}, where 7(7) is the index of the element that is non-zero in
TOW i, 1.€., Z; = Qjr(;)2x(;) T Ci- Note that 7 is injective, if two indices map to the same element,
then that creates shared non-zero coefficients, which violates Theorem 8. This completes the
proof. O
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B Supplementary Materials for Empirical Findings

B.1 Method details

Algorithm 1: Summarizing our two step approach for both the independence of support
(IOS) and interventional data case.
1: {Step 1: Training autoencoder (f, h)}
Sample data: X ~ X U X! where X! = Ulezl’(i)
Minimize reconstruction loss: f1, hf = arg ming , E [lho f(X)—X|J?]

{Step 2: Learning transformation I" with Independence of Support (I0S) objective}
Sample data: Z ~ fT(X) where f1 is the encoder learnt in Step 1
Minimize reconstruction + Hausdorff loss:

minr E[|[T" o T(2) — Z|?] + AX Yt HD (Z),m(T), Z,(T) x Zn(T))

8: Return transformed latents: I'(Z)

10: {Step 2: Learning transformation I' = [;];—1.4 using do-interventions}
11: foriin{1,---,d} do

122 Sample data: Z ~ fT(X(?)) where fT is the encoder learnt in Step 1s

13 Fix intervention targets at random Y () ~ Uniform(0, 1)

14 Minimize MSE loss: min,, E, [H%(Z) —y® HQ]

15: end for

16: Return transformed latents: I'(Z)

We provide details about our training procedure in Algorithm 1. For learning with the
independence of support (I0OS) objective in Step 2, we need to ensure that the map I is invertible,
hence we minimize a combination of reconstruction loss with Hausdorff distance, i.e.,

A

. / S 5112 5 5
minE[|[T 0 T(Z) = Z|] + A x Y HD(Zgm(T), Z1(T) X 2 (T)) (38)
k#m
where Z denotes the output from the encoder learnt in Step 1, i.e., 7 = fT (X).

If we have data with multiple interventional distributions per latent dimension, then we sample a
new target for each interventional distribution. In our polynomial decoder experiments, we use a
linear ~;. In our image based experiments, in Step 2, we use a non-linear map ;.

B.2 Experiment setup details: Polynomial decoder (g)

Basic setup. We sample data following the DGP described in Assumption 2 with the following
details:

« Latent dimension: d € {6,10}

« Degree of decoder polynomial (¢g): p € {2,3}

« Data dimension: n = 200

+ Decoder polynomial coefficient matrix G: sample each element of the matrix iid from a

standard normal distribution.

Latent distributions. Recall z; is the i*" component of the latent vector z € R?. The various
latent distributions (Pz) we use in our experiments are as follows:
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+ Uniform: Fach latent component z; is sampled from Uniform(-5, 5). All the latents (z;) are
independent and identically distributed.

+ Uniform-Correlated: Consider a pair of latent variables z;,z;11 and sample two
confounder variables ¢, co s.t. ¢; ~ Bernoulli(p = 0.5), and ¢3 ~ Bernoulli(p = 0.9).
Now we sample z;, z;+1 using ¢y, co as follows:

Uniform(0.0,0.5)  ifc; =1
Z; ™~ )
Uniform(—0.5,0.0) ifc; =0

Uniform(0.0, 0.3) ife; e =1
Zig1 ~ ,
) Uniform(—0.3,0.0) if e ® cp = 0

where & is the xor operation. Hence, ¢; acts as a confounder as it is involved in the
generation process for both z;, z;41, which leads to correlation between them. Due to the
xor operation, the two random variables satisfy independence of support condition. Finally,
we follow this generation process to generate the latent vector z by iterating over different
pairs (i € { 1,--- ,d} with step size 2).

« Gaussian-Mixture: Each z; is sampled from a Gaussian mixture model with two
components and equal probability of sampling from the components, as described below:

N(0,1) with prob. 0.5
Zg
N(1,2) with prob. 0.5

All latents in this case are independent and identically distributed like the Uniform case;
though we have mixture distribution instead of single mode distribution.

« SCM-S: The latent variable z is sampled as a DAG with d nodes using the Erd6s-Rényi
scheme with linear causal mechanism and Gaussian noise (Brouillard et al., 2020) * and set
the expected density (expected number of edges per node) to be 0.5.

+ SCM-D: The latent variable 2 is sampled as a DAG with d nodes using the Erdés—Rényi
scheme with linear causal mechanism and Gaussian noise (Brouillard et al., 2020) and set
the expected density (expected number of edges per node) to be 1.0.

Case ‘ Train ‘ Validation ‘ Test

Observational (D) | 10000 2500 20000
Interventional (D)) | 10000 2500 20000

Table 5: Statistics for the synthetic poly-DGP experiments

Further details on dataset and evaluation. For experiments in Table 2, we only use
observational data (D); while for experiments in Table 3, we use both observational and
interventional data (D U D), with details regarding the train/val/test split described in Table 5.

We carry out do interventions on each latent with D) corresponding to data from interventions
on z;. The union of data from interventions across all latent dimensions is denoted as D) =
Ui=1:¢D®. The index of the variable to be intervened is sampled from Uniform({1, ..., d}). The
selected latent variable to be intervened is set to value 2.0.

*https://github.com/slachapelle/dcdi
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Further, note that for learning the linear transformation (7;) in Step 2 (Equation 7), we only use the
corresponding interventional data (D)) from do-intervention on the latent variable i. Also, all
the metrics (R?, MCC (I0S), MCC, MCC (IL)) are computed only on the test split of observational
data (D) (no interventional data used).

Model architecture. We use the following architecture for the encoder f across all the
experiments with polynomial decoder g (Table 2, Table 3) to minimize the reconstruction loss;

« Linear Layer (n, h); LeakyReLU(0.5),
« Linear Layer (h, h); LeakyReLU(0.5),
« Linear Layer (h, d),

where n is the input data dimension and A is hidden units and & = 200 in all the experiments.
For the architecture for the decoder (h) in Table 2, Table 3, we use the polynomial decoder
(h(z) = H[1,2,28z,--- ,2®---® 2] "); where p is set to be same as that of the degree of true

p times
decoder polynomial (¢(z)) and the coefficient matrix H is modeled using a single fully connected
layer.

For the independence of support (IOS) experiments in Table 2, we model both T', T” using a single
fully connected layer.

For the interventional data results (Table 3), we learn the mappings ; from the corresponding

interventional data (]P’g?) using the default linear regression class from scikit-learn (Pedregosa
et al., 2011) with the intercept term turned off.

Finally, for the results with NN Decoder h (Table 8, Table 9), we use the following architecture for
the decoder with number of hidden nodes h = 200.

« Linear layer (d, h); LeakyReLU(0.5)
« Linear layer (h, h); LeakyReLU(0.5)
« Linear layer (h, n)
Hyperparameters. We use the Adam optimizer with hyperparameters defined below. We also

use early stopping strategy, where we halt the training process if the validation loss does not
improve over 10 epochs consecutively.

« Batch size: 16

+ Weight decay: 5 x 10~*

+ Total epochs: 200

« Learning rate: optimal value chosen from grid: {1072,5 x 1074,1074}

For experiments with independence of support (IOS) objective in Step 2 (Table 2), we train with
A = 10 as the relative weight of Hausdorft distance in the reconstruction loss (Equation 38).

B.3 Additional results: Polynomial decoder (g)

Table 6 presents additional details about Table 2 in main paper. We present additional metrics
like mean squared loss for autoencoder reconstruction task (Recon-MSE) and MCC computed
using representations from Step 1. Note that training with independence of support objective in
Step 2 leads to better MCC scores than using the representations from Step 1 on distributions
that satisfy independence of support. Also, the Uniform Correlated (Uniform-C) latent case can
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be interpreted as another sparse SCM with confounders between latent variables. For this case,
the latent variables are not independent but their support is still independent, therefore we see
improvement in MCC with IOS training in Step 2. Similarly, Table 7 presents the extended results
for the interventional case using polynomial decoder (Table 3 in main paper); with additional
metrics like mean squared loss for autoencoder reconstruction task (Recon-MSE) and R? to test
for affine identification using representations from Step 1. We notice the same pattern for all
latent distributions, that training on interventional data on Step 2 improves the MCC metric.

Further, we also experiment with using a neural network based decoder to have a more standard
autoencoder architecture where we do not assume access to specific polynomial structure or the
degree of the polynomial. Table 8 presents the results with NN decoder for the observational case,
where we see a similar trend to that of polynomial decoder case (Table 6) that the MCC increase
with IOS training in Step 2 for Uniform and Uniform-C latent distributions. Similarly, Table 9
presents the results with NN decoder for the interventional case, where the trend is similar to
that of polynomial decoder case (Table 7); though the MCC (IL) for the SCM sparse and SCM
dense case are lower compared to that with polynomial decoder case.

Py d p Recon-MSE R? MCC MCC (IOS)
Uniform 6 2 1594+040 1.00£0.00 66.91+2.45 99.31+0.07
Uniform 6 3 181+040 1.004£0.00 75.14+3.93 99.39+0.06
Uniform 10 2 2.044+0.76 1.00+0.00 5849+2.26 90.73 +2.92
Uniform 10 3 8.59+215 0994+0.00 56.77+0.60 94.62+1.50

Uniform-C 6 2 0364007 1.00+0.00 71.19+2.29 96.81+0.11
Uniform-C 6 3 1724067 1.00£0.00 70.53+1.1 96.294+0.05
Uniform-C 10 2 0.864+0.27 1.00+0.00 64.58+1.81 85.31+2.35
Uniform-C 10 3 2424047 1.00+0.00 62.69+0.92 87.20+1.77
Gaussian-Mixture 6 2 0.86 £0.27 1.0£+0.0 70.53 +1.25 67.43+2.01
Gaussian-Mixture 6 3 0.86+0.32 0.99+0.0 66.19+1.38 67.944+1.42
Gaussian-Mixture 10 2 1.38 +£0.51 1.0+0.0 59.5 +2.22 58.3 £ 0.67
Gaussian-Mixture 10 3 4.12+1.70 0.994+0.0 57.15+0.43 59.08+1.11
SCM-S 6 2 1524070 0.964+0.02 71.77+1.43 72.61+1.48
SCM-S 6 3 2254051 0.87+0.07 73.14+3.44 70.56+1.54
SCM-S 10 2 423+1.13 0.99+0.0 64.35 £2.0 65.864+1.32
SCM-S 10 3 2.83+0.85 0.90+0.05 61.95+0.98 5877+1.27
SCM-D 6 2 1344+026 0.974+0.01 7525+2.85 61.61+4.36
SCM-D 6 3 1204055 0.814+0.11 829+3.11 65.194+2.70
SCM-D 10 2 289+0.79 0.83+£0.10 67.49+2.32 69.64+3.09
SCM-D 10 3 1.554+0.39 0.72+0.15 66.4+1.86 60.1 £1.16

Table 6: Observational data with Polynomial Decoder: Mean + S.E. (5 random seeds). R? and
MCC (IOS) achieve high values (for Uniform & Uniform-C) as predicted Theorem 1 and Theorem 4

respectively.

37



Py d p Recon-MSE R? MCC MCC (IL)
Uniform 6 2 0.29+0.08 1.0+0.0 69.11 £1.11 100.0£0.0
Uniform 6 3 097+0.36 1.0£0.0 73.42+0.49 100.0£0.0
Uniform 10 2 2.29+0.85 1.04+0.0 59.96 +£2.03 100.0 £0.0
Uniform 10 3 2.74+0.36 1.04+0.0 65.94 +£0.80 99.854+0.03

Uniform-C 6 2 0.294+0.11 1.0+ 0.0 71.2 +2.46 100.0 0.0
Uniform-C 6 3 1.50£0.62 1.0£0.0 70.21 +£1.90 99.97 £0.01
Uniform-C 10 2 0.79+0.24 1.0+0.0 61.02+£1.03 100.0£0.0
Uniform-C 10 3 1.72+0.45 1.04+0.0 61.16 £1.59 99.91 +0.01
Gaussian-Mixture 6 2 0.75 £0.27 1.0+ 0.0 67.72+2.20 99.99 +0.01
Gaussian-Mixture 6 3 0.57+0.20 0.99+0.0 70.21+2.74 99.3940.05
Gaussian-Mixture 10 2 0.61 £0.16 1.0£0.0 60.77 £ 1.60 99.98 +0.01
Gaussian-Mixture 10 3 2.29+0.72 0.99+0.0 57.81+£1.16 99.46+0.05
SCM-S 6 2 021+004 099+0.0 6841+090 99.53+0.38
SCM-S 6 3 093+0.18 0.99+0.0 74.12+2.32 99.25+0.34
SCM-S 10 2 0.63+0.17 1.0£0.0 68.01 £2.36  99.92 4+ 0.03
SCM-S 10 3 129+£031 0974+0.01 66.81+£1.10 98.84+0.13
SCM-D 6 2 081+005 0994+0.01 71.8+£3.77 99.64+0.12
SCM-D 6 3 075+£026 098+0.01 79.48+3.45 98.22+1.07
SCM-D 10 2 0.76£0.15 0.98+0.01 70.78+1.89 95.3+224
SCM-D 10 3 0.96£0.22 097+0.0 70.08£2.80 97.2440.88

Table 7: Interventional data with Polynomial Decoder: Mean + S.E. (5 random seeds). MCC(IL) is

high as predicted by Theorem 2.

Pz d p Recon-MSE R? MCC MCC (I0S)
Uniform 6 2 1.2240.19 098 4+0.0 73.75+£2.85 99.054+0.02
Uniform 6 3 27940.20 0.924+0.0 63.29+1.06 95.74+0.12
Uniform 10 2 3.66+0.39 099400 61.71+£1.16 94.25+2.13
Uniform 10 3 33.16+3.34 0.94+£0.0 59.27+1.06 91.24+4.99

Uniform-C 6 2 0654+0.10 096+0.02 68.46+1.94 94.95+1.83
Uniform-C 6 3 1.394+0.30 0914+0.0 68.09+1.56 89.14+2.38
Uniform-C 10 2 1.78+0.09 0.994+0.0 62.63+£2.05 88.8843.28
Uniform-C 10 3 120+£1.59 0914£0.01 59.91+1.75 &81.76+£3.67
Gaussian-Mixture 6 2 0.49+£0.12 0.95+0.0 7259+2.03 6533+1.11
Gaussian-Mixture 6 3 0.79+£0.16 0.84+0.01 66.25+£2.86 63.43+£1.27
Gaussian-Mixture 10 2 1.38 £0.18 095400 57.12+£1.52 54.76+1.26
Gaussian-Mixture 10 3 7.22+1.23 0.83+0.01 55.41+1.40 52.87+0.86
SCM-S 6 2 224+£1.11 0.59+0.18 69.77+3.87 66.04+1.34
SCM-S 6 3 2454+0.18 0.74+£0.05 73.724+1.63 67.66+2.18
SCM-S 10 2 6.41+£1.71 0.784+0.08 6599+1.14 63.52+1.11
SCM-S 10 3 4.32+1.37 0.11+0.43 66.96+2.60 62.11+1.36
SCM-D 6 2 2.7+0.39 0.63+£0.22 75.19+2.62 61.89+4.0
SCM-D 6 3 1894073 047+£0.25 77.83+3.49 65.85+1.58
SCM-D 10 2 446+0.76 0.46+0.11 69.81 +1.43 65.35+£2.72
SCM-D 10 3 353+£0.69 0.10+0.29 65.89+256 61.92+1.95

Table 8: Observational data with Neural Network Decoder: Mean + S.E. (5 random seeds). R?
achieves high values in many cases but MCC (IOS) achieve high values (for Uniform & Uniform-C).
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Py d p Recon-MSE R? MCC MCC (IL)
Uniform 6 2 0.3540.08 098 4+0.0 68.39+£1.21 99.09 £ 0.02
Uniform 6 3 2024+0.28 0.914+0.0 63.2+1.33 91.67+2.50
Uniform 10 2 3.89+0.50 0.994+0.0 60.54+1.81 99.59+0.04
Uniform 10 3 29.21+233 0.95+0.0 61.04+1.48 93.734+0.45

Uniform-C 6 2 0424+0.15 0.94+£0.02 65914+0.53 96.43+1.47
Uniform-C 6 3 1.054+0.19 0914+00 67.92+3.48 94.84+0.28
Uniform-C 10 2 1.32 +0.09 0.99+0.0 60.02+1.83 99.424+0.01
Uniform-C 10 3 1046+1.27 0.92+£0.0 61.68+1.20 93.83+£0.78
Gaussian-Mixture 6 2 0.45+0.13 0.94+00 70.64+3.83 96.87+0.14
Gaussian-Mixture 6 3 0.62+0.12 0.83+0.01 64.43+2.36 84.53+2.60
Gaussian-Mixture 10 2 0.87£0.15 0.94+00 57.35+1.62 97.06+0.16
Gaussian-Mixture 10 3  5.98 £0.93 0.834+0.0 57.89+2.06 80.14+1.77
SCM-S 6 2 0274+0.07 094+£0.02 74.68+2.28 93.07+2.16
SCM-S 6 3 0.9+0.18 0.89 +£0.02 71.56 +3.18 88.66 £2.71
SCM-S 10 2 0.93+0.23 0984+0.0 66.08+1.04 94.144+0.39
SCM-S 10 3 199+0.36 0.88+0.01 63.35+1.44 76.62+6.15
SCM-D 6 2 0.694+0.07 095+£0.02 76.994+2.53 91.63+1.90
SCM-D 6 3 0874025 0.88+£0.01 75724+1.69 88.19+ 3.63
SCM-D 10 2 1.05+0.29 0.954+0.01 68.71+216 90.14+4.35
SCM-D 10 3 1.68 £0.34 0.86+0.01 6852+2.11 81.82 + 3.0

Table 9: Interventional data with Neural Network Decoder: Mean + S.E. (5 random seeds). MCC(IL)

is high.
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B.4 Experiment setup details: Synthetic image experiments

The latent variable comprises of two balls and their (x, y) coordinates; hence we have d = 4
dimensional latent variable. We use PyGame (Shinners, 2011) rendering engine final images of
dimension 64 x 64 x 3.

Latent Distributions. We denote the (z,y) coordinates of the Ball 1 as (z1, y1), and for Ball
2 as (x2, y2). We have the following three cases for the latent distributions in case of synthetic
image experiments:

« Uniform: Each coordinate of Ball 1 (v, y1) and Ball 2 (x3, y2) are sampled from
Uniform(0.1,0.9).

« SCM (linear): The coordinates of Ball 1 (21, y1) are sampled from Uniform(0.1, 0.9), which
are used to sample the coordinates of Ball 2 as follows:

Uniform(0.1,0.5) ifxz; +y; > 1.0
€T ~
2"\ Uniform(0.5,0.9) if 21 + 41 < 1.0

Uniform(0.5,0.9) ifxz; +y; > 1.0
2™ Uniform(0.1,0.5) if 1 + g1 < 1.0

« SCM (non-linear): The coordinates of Ball 1 (1, y1) are sampled from Uniform(0.1,0.9),
which are used to sample the coordinates of Ball 2 as follows:
Uniform(0.1,0.5) if 1.25 x (22 4+ 3?) > 1.0
€Tro ~
2" | Uniform(0.5,0.9) i 1.25 x (22 +12) < 1.0

Uniform(0.5,0.9) if 1.25 x (22 4+ %?) > 1.0
v Uniform(0.1,0.5) if 1.25 x (23 + y3) < 1.0

Case ‘ Train ‘ Validation ‘ Test

Observational (D) | 20000
Interventional (D) | 20000

5000
5000

20000
20000

Table 10: Statistics for the synthetic image experiments

Further details on dataset and evaluation. For experiments in Table 4, the details regarding
the train/val/test split are described in Table 10.

Note that the interventional data (D)) is composed of do interventions on each latent variable
(DY) = U;_,.4D"), where latent variable to be intervened is sampled from Uniform({1, - - - , d}).
Hence, each latent variable has equal probability to be intervened.

While performing do-interventions on any latent variable (D)), we control for the total number
of distinct values the latent takes under the intervention (#interv, each distinct value correpsonds
to sampling data from one interventional distribution). When #interv = 1, then we set the latent
variable ¢ to value 0.5. For the case when #interv > 1, we sample the values corresponding
to different do-interventions on latent variable ¢ as total of #interv equally distant points from
S = [0.25,0.75]. Eg, when #interv = 3, then the possible values after do-intervention on
latent variable ¢ are {0.25,0.50,0.75}. Note that we uniformly at random sample the value of
intervention from the set of intervention values.

40



Note that we only use the observational data (D) for training the autoencoder in Step 1. while
the non-linear transformations ~; in Step 2 (Equation 7) are learnt using the corresponding
interventional data (D). Further, the metrics (MCC, MCC (IL)) are computed only on the test
split of observational data (D) (no interventional data used).

Model architecture. We use the following architecture for encoder f across all experiments
(Table 4) in Step 1 of minimizing the reconstruction loss.

« Pre Trained ResNet-18: Image (64 x 64 x 3) — Penultimate Layer Output (512 dimensional)
« Linear Layer (512, 128); LeakyReLU()
« Linear Layer (128, 25)

We use the following architecture for decoder h across all experiments (Table 4) in Step 1
of minimizing the reconstruction loss. Our architecture for decoder is inspired from the
implementation in widely used works (Locatello et al., 2019).

« Linear Layer (25, 128); LeakyReLU()

« Linear Layer (128, 1024); LeakyReLU()

« DeConvolution Layer (¢;: 64, cou: 64, kernel: 4; stride: 2; padding: 1); LeakyReLU()
« DeConvolution Layer (¢;: 64, cout: 32, kernel: 4; stride: 2; padding: 1); LeakyReLU()
« DeConvolution Layer (c;n: 32, Cout: 32, kernel: 4; stride: 2; padding: 1); LeakyReLU()
« DeConvolution Layer (¢;: 32, cout: 3, kernel: 4; stride: 2; padding: 1); LeakyReLU()

Note: Here the latent dimension of the encoder (25) is not equal to the true latent dimension
(d = 4) as that would lead issues with training the autoencoder itself. Also, this choice is more
suited towards practical scenarios where we do not know the dimension of latent beforehand.

For learning the mappings 7; from the corresponding interventional data (Pg?), we use the
default MLP Regressor class from scikit-learn (Pedregosa et al., 2011) with 1000 max iterations for
convergence.

Hyperparameters. We use Adam optimizer with hyperparameters defined below. We also use
early stopping strategy, where we halt the training process if the validation loss does not improve
over 100 epochs consecutively.

« Batch size: 64
. Weight decay: 5 x 1074
« Total epochs: 1000

« Learning rate: 5 x 1074

B.5 Additional Results: Synthetic Image Experiments

Table 11 presents more details about Table 4 in the main paper, with additional metrics like
mean squared loss for autoencoder reconstruction task (Recon-MSE) and and R? to test for affine
identification using representations from Step 1. Note that Recon-RMSE and R? are computed
using the autoencoder trained from Step 1, hence the results are not affected by training on
varying #interv per latent in Step 2. We get high R? values across different latent distributions
indicating the higher dimensional latents (d = 25) learned by the encoder are related to the small
dimensional true latents (d = 4) by a linear function.
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Py #interv  Recon-RMSE R? MCC (IL)
Uniform 1 514.25+61.8 0.78+0.07 33.18 +7.09
Uniform 3 514.25+£61.8 0.78 +£0.07 72.224+4.04
Uniform 5 514.25 £61.8 0.78 £0.07 88.3 +1.02
Uniform 7 514.25 £61.8 0.78 £0.07 88.08£1.10
Uniform 9 514.25+61.8 0.78 +0.07 87.52+1.33

SCM (linear) 1 529.9+57.94 0.90+0.01 42.74+1.43
SCM (linear) 3 529.9 £57.94 0.90+0.01 73.9+£2.77
SCM (linear) 5 529.9£57.94 0.90+0.01 83.57+£0.94
SCM (linear) 7 529.9 £57.94 0.90+0.01 85.45+0.82
SCM (linear) 9 529.9+57.94 0.904+0.01 84.84+1.49
SCM (non-linear) 1 366.06 £27.6 0.91+0.0 3494229
SCM (non-linear) 3 366.06 £27.6 0.91+0.0 65.15+3.71
SCM (non-linear) 5 366.06 £27.6 091+0.0 77.15+1.79
SCM (non-linear) 7 366.06 £27.6 0.91+0.0 81.92+2.37
SCM (non-linear) 9 366.06 £27.6 0.91+0.0 81.13+2.53

Table 11: Interventional data in image-based experiments: Mean * S.E. (5 random seeds). MCCs
increase with the number of interventions per latent dimension as predicted by Theorem 7.

We also report a batch of reconstructed images from the trained autoencoder for the different
latent distributions; Uniform (Figure 3), SCM Linear (Figure 4), and SCM Non-Linear (Figure 5).
In all the cases the position and color of both the balls is accurately reconstructed.
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Figure 3: Reconstructed images (top row) for the corresponding real images (bottom row) for the
uniform latent case.

Figure 4: Reconstructed images (top row) for the corresponding real images (bottom row) for the
SCM (linear) latent case.

Figure 5: Reconstructed images (top row) for the corresponding real images (bottom row) for the
SCM (non-linear) latent case.
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