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Abstract

Causal representation learning seeks to extract high-level latent factors from low-level
sensory data. Most existing methods rely on observational data and structural assumptions
(e.g., conditional independence) to identify the latent factors. However, interventional data
is prevalent across applications. Can interventional data facilitate causal representation
learning? We explore this question in this paper. The key observation is that interventional
data often carries geometric signatures of the latent factors’ support (i.e. what values each
latent can possibly take). For example, when the latent factors are causally connected,
interventions can break the dependency between the intervened latents’ support and their
ancestors’. Leveraging this fact, we prove that the latent causal factors can be identi�ed up to
permutation and scaling given data from perfect do interventions. Moreover, we can achieve
block a�ne identi�cation, namely the estimated latent factors are only entangled with a few
other latents if we have access to data from imperfect interventions. These results highlight
the unique power of interventional data in causal representation learning; they can enable
provable identi�cation of latent factors without any assumptions about their distributions or
dependency structure.

1 Introduction

Modern deep learning models like GPT-3 (Brown et al., 2020) and CLIP (Radford et al., 2021) are
remarkable representation learners (Bengio et al., 2013). Despite the successes, these models
continue to be far from the human ability to adapt to new situations (distribution shifts) or
carry out new tasks (Geirhos et al., 2020; Bommasani et al., 2021; Yamada et al., 2022). Humans
encapsulate their causal knowledge of the world in a highly reusable and recomposable way (Goyal
and Bengio, 2020), enabling them to adapt to new tasks in an ever-distribution-shifting world.
How can we empower modern deep learning models with this type of causal understanding? This
question is central to the emerging �eld of causal representation learning (Schölkopf et al., 2021).

A core task in causal representation learning is provable representation identi�cation, i.e.,
developing representation learning algorithms that can provably identify natural latent factors
(e.g., location, shape and color of di�erent objects in a scene). While provable representation
identi�cation is known to be impossible for arbitrary data-generating process (DGP) (Hyvärinen
and Pajunen, 1999; Locatello et al., 2019), real data often exhibits additional structures. For
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Figure 1: 1a) Observational data: the support of child (Z2) conditional on parent (Z1) varies with the
value of parent. Figure 1b), 1c): the support of child conditional on parent under do intervention, perfect
intervention and many imperfect interventions is independent of the parent. Figure 1d): intervention on
child reduces the impact of the parent on it which causes the support of the child conditional on parent to
take a larger set of values.

example, Hyvarinen et al. (2019); Khemakhem et al. (2022) consider the conditional independence
between the latents given auxiliary information; Lachapelle et al. (2022) leverage the sparsity of
the causal connections among the latents; Locatello et al. (2020); Klindt et al. (2020); Ahuja et al.
(2022a) rely on the sparse variation in the latents over time.

Most existing works rely on observational data and make assumptions on the dependency
structure of the latents to achieve provable representation identi�cation. However, in
many applications, such as robotics and genomics, there is a wealth of interventional data
available. For example, interventional data can be obtained from experiments such as genetic
perturbations (Dixit et al., 2016) and electrical stimulations (Nejatbakhsh et al., 2021). Can
interventional data help identify latent factors in causal representation learning? How can it help?
We explore these questions in this work. The key observation is that interventional data often
carries geometric signatures of the latent factors’ support (i.e., what values each latent can
possibly take). Figure 1 illustrates these geometric signatures: perfect interventions and many
imperfect interventions can make the intervened latents’ support independent of their ancestors’
support. As we will show, these geometric signatures go a long way in facilitating provable
representation identi�cation in the absence of strong distributional assumptions.

Contributions. This work establishes representation identi�cation guarantees without strong
distributional assumptions on the latents in the following settings.

• do interventions. We �rst investigate scenarios where the true latent factors are mapped to
high-dimensional observations through a �nite-degree multivariate polynomial. When some
latent dimension undergoes a hard do intervention (Pearl, 2009), we are able to identify it up to
shift and scaling. Even when the mapping is not a polynomial, approximate identi�cation of
the intervened latent is still achievable provided we have data from multiple do interventional
distributions on the same latent dimension.

• Perfect & imperfect interventions. We achieve block a�ne identi�cation under imperfect
interventions (Peters et al., 2017) provided the support of the intervened latent is rendered
independent of its ancestors under the intervention as shown in Figure 1c. This result covers
all perfect interventions as a special case.

• Observational data and independent support. The independence-of-support condition
above can further facilitate representation identi�cation with observational data. We show that,
if the support of the latents are already independent in observational data, then these latents
can be identi�ed up to permutation, shift, and scaling, without the need of any interventional

2



Table 1: Summary of results. Existing works such as iVAE (Khemakhem et al., 2022) use observational
data and make assumptions on the graphical model of the latents to achieve identi�cation. In contrast, we
use interventional data and make no assumptions on the graph.

Input data Assm. on Z Assm. on g Identi�cation

Obs Zr ⊥ Zs|U , U aux info. Di�eomorphic Perm & scale (Khemakhem, 2020)
Obs Non-empty interior Injective poly A�ne (Theorem 1)
Obs Non-empty interior ≈ Injective poly ≈ A�ne (Theorem 6)
Obs Independent support Injective poly Perm, shift, & scale (Theorem 4)
Obs + do intervn Non-empty interior Injective poly Perm, shift, & scale (Theorem 2)
Obs + do intervn Non-empty interior Di�eomorphic ≈ Perm & comp-wise (Theorem 7)
Obs + Perfect intervn Non-empty interior Injective poly Block a�ne (Theorem 3)
Obs + Imperfect intervn Partially indep. support Injective poly Block a�ne (Theorem 3)
Counterfactual Bijection w.r.t. noise Di�eomorphic Perm & comp-wise (Brehmer, 2022)

data. This result extends the classical identi�ability results from linear independent component
analysis (ICA) (Comon, 1994) to allow for dependent latent variables. They also provide
theoretical justi�cations for recent proposals of performing unsupervised disentanglement
through the independent support condition (Wang and Jordan, 2021; Roth et al., 2022).

We summarize our results in Table 1. Finally, we empirically demonstrate the practical utility of
our theory. From data generation mechanisms ranging from polynomials to image generation
from rendering engine (Shinners et al., 2011), we show that interventional data helps identi�cation.

2 Setup: Causal Representation Learning

Causal representation learning aims to identify latent variables from high-dimensional
observations. Begin with a data-generating process where some high-dimensional observations
x ∈ Rn are generated from some latent variables z ∈ Rd. We consider the task of identifying
latent z assuming access to both observational and interventional datasets: the observational
data is drawn from

z ∼ PZ ; x← g(z), (1)

where the latent z is sampled from the distribution PZ and x is the observed data point rendered
from the underlying latent z via an injective decoder g : Rd → Rn. The interventional data is
drawn from a similar distribution except the latent z is drawn from P(i)

Z , namely the distribution
of z under intervention on zi:

z ∼ P(i)
Z ; x← g(z). (2)

We denote Z and Z(i) as the support of PZ and P(i)
Z respectively (support is the set where the

probability density is more than zero). The support of x is thus X = g(Z) in observational data
and X (i) = g

(
Z(i)

)
in interventional data. The goal of causal representation learning is provable

representation identi�cation, i.e. to learn an encoder function, which takes in the observation x
as input and provably output its underlying true latent z. In practice, such an encoder is often
learned via solving a reconstruction identity,

h ◦ f(x) = x ∀x ∈ X ∪ X (i), (3)

where f : Rn → Rd and h : Rd → Rn are a pair of encoder and decoder, which need to jointly
satisfy Equation 3. The pair (f, h) together is referred to as the autoencoder. Given the learned
encoder f , the resulting representation is ẑ , f(x), which holds the encoder’s estimate of the
latents.
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The reconstruction identity Equation 3 is highly underspeci�ed and cannot in general identify
the latents. There exist many pairs of (f, h) that jointly solve Equation 3 but do not provide
representations ẑ , f(x) that coincide with the true latents z. For instance, applying an invertible
map b to any solution (f, h) will result in another valid solution b ◦ f , h ◦ b−1. In practical
applications, however, the exact identi�cation of the latents is not necessary. For example, we
may not be concerned with the recovering the latent dimensions in the order they appear in z.
Thus, in this work, we examine conditions of under which the true latents can be identi�ed up to
certain transformations, such as a�ne transformations and coordinate permutations.

3 Stepping Stone: A�ne Representation Identi�cation with
Polynomial Decoders

We �rst establish an a�ne identi�cation result, which serves as a stepping stone towards stronger
identi�cation guarantees in the next section. We begin with a few assumptions.

Assumption 1. The interior of the support of z, Z ∪ Z(i), is a non-empty subset of Rd.1

Assumption 2. The decoder g is a polynomial of �nite degree p whose corresponding coe�cient
matrix G has full column rank. Speci�cally, the decoder g is determined by the coe�cient matrix G
as follows,

g(z) = G[1, z, z⊗̄z, · · · , z⊗̄ · · · ⊗̄ z︸ ︷︷ ︸
p times

]> ∀z ∈ Rd,

where ⊗̄ represents the Kronecker product with all distinct entries; for example, if z = [z1, z2],
then z⊗̄z = [z2

1 , z1z2, z
2
2 ].

The assumption that the matrixG ∈ Rn×q has a full column rank of q guarantees that the decoder
g is injective; see Lemma 1 in Appendix A.1 for a proof. This injectivity condition on g is common
in identi�able representation learning. Without injectivity, the problem of identi�cation becomes
ill-de�ned; multiple di�erent latent z’s can give rise to the same observation x. We note that
the full-column-rank condition for G in Assumption 2 imposes an implicit constraint on the
dimensionality n of the data; it requires that the dimensionality n is greater than the number of
terms in the polynomial of degree p, namely n ≥

∑p
r=0

(
r+d−1
d−1

)
. In the Appendix (Theorem 5),

we show that if our data is generated from sparse polynomials, i.e., G is a sparse matrix, then n is
allowed to be much smaller.

Under Assumptions 1 and 2, we perform causal representation learning with two constraints:
polynomial decoder and non-collapsing encoder.

Constraint 1. The learned decoder h is a polynomial of degree p and it is determined by its
corresponding coe�cient matrix H as follows,

h(z) = H[1, z, z⊗̄z, · · · , z⊗̄ · · · ⊗̄ z︸ ︷︷ ︸
p times

]> ∀z ∈ Rd,

where ⊗̄ represents the Kronecker product with all distinct entries. The interior of the image of the
encoder f(X ∪ X (i)) is a non-empty subset of Rd.

We now show that solving the reconstruction identity with these constraints can provably identify
the true latent z up to a�ne transformations.

1We work with (Rd, ‖‖2) as the metric space. A point is in the interior of a set if there exists an ε ball for some
ε > 0 containing that point in the set. The set of all such points de�nes the interior.
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Theorem 1. Suppose the observational data and interventional data are generated from Equation 1
and Equation 2 respectively under Assumptions 1 and 2. The autoencoder that solves the reconstruction
identity in Equation 3 under Constraint 1 achieves a�ne identi�cation, i.e., ∀z ∈ Z∪Z(i), ẑ = Az+c,
where ẑ is the encoder f ’s output, z is the true latent, A ∈ Rd×d is invertible and c ∈ Rd.

Theorem 1 drastically reduces the ambiguities in identifying latent z from arbitrary invertible
transformations to only invertible a�ne transformations. Moreover, Theorem 1 does not require
any structural assumptions about the dependency between the latents. It only requires (i) a
geometric assumption that the interior of the support is non-empty and (ii) the map g is a
�nite-degree polynomial.

The proof of Theorem 1 is in Appendix A.1. The idea is to write the representation ẑ = f(x) as
ẑ = f ◦ g(z) = a(z) with a , f ◦ g, leveraging the relationship x = g(z) in Equation 1. We then
show the a function must be an a�ne map. To give further intuition, we consider a toy example
with one-dimensional latent z, three-dimensional observation x, and the true decoder g and the
learned decoder h each being a degree-two polynomial. We �rst solve the reconstruction identity
on all x, which gives h(ẑ) = g(z), and equivalently H[1, ẑ, ẑ2]> = G[1, z, z2]>. This equality
implies that both ẑ and ẑ2 must be at most degree-two polynomials of z. As a consequence, ẑ
must be a degree-one polynomial of z, which we next prove by contradiction. If ẑ is a degree-two
polynomial of z, then ẑ2 is degree four; it contradicts the fact that ẑ2 is at most degree two in z.
Therefore, ẑ must be a degree-one polynomial in z, i.e. a linear function of z.

Beyond polynomial map g. Theorem 6 in the Appendix extends Theorem 1 to a class of maps
g(·) that are ε-approximable by a polynomial.

4 Provable Representation Identi�cation with Interventional
Data

In the previous section, we derived a�ne identi�cation guarantees. Next, we strengthen these
guarantees by leveraging geometric signals speci�c to many interventions.

4.1 Representation identi�cation with do interventions

We begin with a motivating example on images, where we are given data with do interventions on
the latents. Consider the two balls shown in Figure 2a. Ball 1’s coordinates are (z1

1 , z
1
2) and Ball

2’s coordinates are (z2
1 , z

2
2). We write the latent z = [(z1

1 , z
1
2), (z2

1 , z
2
2)], this latent is rendered in

the form of the image x shown in the Figure 2a. The latent z in the observational data follows the
directed acyclic graph (DAG) in Figure 2b, where Ball 1’s coordinate cause the Ball 2 coordinates.
The latent z under a do intervention on z2

2 , then the second coordinate of Ball 2, follows the DAG
in Figure 2c. Our goal is to learn an encoder using the images x in observational and interventional
data, which outputs the coordinates of the balls up to permutation and scaling.

Suppose z is generated from a structural causal model with an underlying DAG (Pearl, 2009).
Formally, a do intervention on one latent dimension �xes it to some constant value. The
distribution of the children of the intervened component is a�ected by the intervention, while the
distribution of remaining latents remains unaltered. Based on this property of do intervention,
we characterize the distribution P(i)

Z in Equation 2 as

zi = z∗; z−i ∼ P(i)
Z−i

, (4)

where zi takes a �xed value z∗. The remaining variables in z, z−i, are sampled from P(i)
Z−i

.
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Figure 2: Illustrating do interventions in image-based data in (a). The DAG of dependencies under
the observational distribution (b) and a perfect intervention on z2

2 in (c).

The distribution P(i)
Z−i

in Equation 4 encompasses many settings in practice, including (i) the do
interventions on causal DAGs (Pearl, 2009), i.e., P(i)

Z−i
= PZ−i|do(zi=z∗), ii) the do interventions on

cyclic graphical models (Mooij and Heskes, 2013), and (iii) sampling z−i from its conditional in
the observational data P(i)

Z−i
= PZ−i|zi=z∗ (e.g., subsampling images in observational data with a

�xed background color).

Given interventional data from do interventions, we perform causal representation learning
by leveraging the geometric signature of the do intervention in search of the autoencoder. In
particular, we enforce the following constraint while solving the reconstruction identity in
Equation 3.

Constraint 2. The encoder’s kth component fk(x) denoted as ẑk is required to take some �xed
value z† for all x ∈ X (i). Formally stated fk(x) = z†, ∀x ∈ X (i).

In Constraint 2, we do not need to know which component is intervened and the value it takes,
i.e., k 6= i and z† 6= z∗. We next show how this constraint helps identify the intervened latent zi
under an additional assumption on the support of the unintervened latents stated below.

Assumption 3. The interior of support of distribution of unintervened latents P(i)
Z−i

is a non-empty
subset of Rd−1.

Theorem 2. Suppose the observational data and interventional data are generated from Equation 1
and Equation 2 respectively under Assumptions 1 and 2, where P(i)

Z follows Equation 4. The
autoencoder that solves Equation 3 under Constraint 1, Constraint 2 identi�es the intervened latent
zi up to shift and scaling, i.e., ẑk = ezi + b, where e ∈ R, b ∈ R.

Theorem 2 immediately extends to settings when multiple interventional distributions are
available, with each corresponding to a hard do intervention on a distinct latent variable. Under the
same assumptions of Theorem 2, each of the intervened latents can be identi�ed up to permutation,
shift, and scaling. Notably, Theorem 2 does not rely on any distributional assumptions (e.g.,
parametric assumptions) on z; nor does it rely on the nature of the graphical model for z (e.g., cyclic,
acyclic). Theorem 2 makes these key geometric assumptions: (i) support of z in observational
data, (ii) support of unintervened latents z−i has a non-empty interior.

Theorem 2 combines the a�ne identi�cation guarantee we derived in Theorem 1 with the
geometric signature of do interventions. For example, in Figure 1b, the support of the true latents
is axis-aligned (parallel to x-axis). In this case, the interventional constraint also forces the support
of ẑ to be axis-aligned (parallel to x-axis or y-axis). The proof of Theorem 2 is in Appendix A.2.
We provide some intuition here. First, given Assumptions 1 and 2 and constraint 1, Theorem 1
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already guarantees a�ne identi�cation. It implies ẑk = a>−iz−i + ezi + b, where z−i includes
all entries of z other than zi, and a−i is a vector of the corresponding coe�cients. As a result,
a>−iz−i must also take a �xed value for all values of z−i in the support of P(i)

Z−i
, since both ẑk and

zi are set to a �xed value. We argue a−i = 0 by contradiction. If a−i 6= 0, then any changes to
z−i in the direction of a−i will also re�ect as a change in ẑk; it contradicts the fact that ẑk takes a
�xed value. Therefore, a−i = 0 and zi is identi�ed up to shift and scaling.

Beyond polynomial map g. In Theorem 2, we assume that the map g is a polynomial.
In the Appendix (Theorem 7) we show that, even when g is not a polynomial but a general
di�eomorphism, the intervened latent can be approximately identi�ed up to an invertible
transform provided su�ciently many do interventional distributions per latent are available.
That said, one interventional distribution per latent no longer su�ces, unlike the polynomial g
case. Our experiments on images in Section 7 further support this argument. We state Theorem 7
informally below.

Theorem. (Informal) Suppose the observational data is generated from Equation 1 and suppose
we gather multiple interventional datasets for latent zi, where in each interventional dataset, zi
is set to a distinct �xed value under do intervention following Equation 4. If the number of do
interventional datasets is su�ciently large and the support of the latents satisfy certain regularity
conditions (detailed in Theorem 7), then the autoencoder that solves Equation 3 under multiple
constraints of the form Constraint 2 identi�es zi up to an invertible transform approximately.

4.2 General perfect and imperfect interventions

In the discussion so far, we focused on do interventions. In this section, our goal is to build
identi�cation guarantees under imperfect interventions. In the example that follows, we motivate
the class of imperfect interventions we consider.

Motivating example of perfect & imperfect interventions on images. First, we revisit
perfect interventions in causal DAGs (Peters et al., 2017). Under a perfect intervention, the
intervened latent is disconnected from its parents and do interventions are a special case of
perfect interventions. Consider the two balls shown in Figure 2a. Suppose Ball 1 has a strong
in�uence on Ball 2 in the observational DAG shown in Figure 2b. As a result, the position of Ball
1 determines the region where Ball 2 can be located inside the box in Figure 2a. Now imagine if
a perfect intervention is carried out as shown in Figure 2c. Under this intervention the second
coordinate of Ball 2 is not restricted by Ball 1 and it takes all possible values in the box. Do
we need perfect interventions to ensure that Ball 2 can be located anywhere in the box? Even
an imperfect intervention that reduces the strength of in�uence of Ball 1 on Ball 2 can su�ce
to ensure that Ball 2 takes all possible locations in the box. In this section, we consider such
imperfect interventions that guarantee that the range of values the intervened latent takes does
not depend on its ancestors. We formalize this below.

De�nition 1. (Wang and Jordan, 2021) Consider a random variable V = [V1, V2] sampled from
PV . V1, V2 are said to have independent support if V = V1 × V2 where V is the support of PV , Vj
are the supports of marginal distribution of Vj for j ∈ {1, 2} and × is the Cartesian product.

Observe that two random variables can be dependent but have independent support. Suppose z is
generated from a structural causal model with an underlying DAG and zi undergoes an imperfect
intervention. We consider imperfect interventions such that each pair (zi, zj) satis�es support
independence (De�nition 1), where zj is an ancestor of zi in the underlying DAG. Below we
characterize imperfect interventions that satisfy support independence.

7



Characterizing imperfect interventions that lead to support independence. Suppose
zi ← w(Pa(zi), u), where Pa(zi) is the value of the set of parents of zi, u ∈ U is a noise variable
that is independent of the ancestors of zi, and w is the map that generates zi. We carry out an
imperfect intervention on zi and change the map w to v. If the range of values assumed by v for
any two values assumed by the parents are equal, then the support of zi is independent of all
its ancestors. Formally stated the condition is v(Pa(zi),U) = v(Pa

′
(zi),U), where Pa(zi) and

Pa
′
(zi) are any two sets of values assumed by the parents.

We are now ready to describe the geometric properties we require of the interventional distribution
P(i)
Z in Equation 2. We introduce some notation before that. Let [d] := {1, · · · , d}. For each j ∈ [d],

we de�ne the supremum and in�mum of each component zj in the interventional distribution.
De�ne αjsup (αjinf ) to be the supremum (in�mum) of the set Z(i)

j .

Assumption 4. Consider z sampled from the interventional distributionP(i)
Z in Equation 2. ∃S ⊆ [d]

such that the support of zi is independent of zj for all j ∈ S . For all j ∈ S

Z(i)
i,j = Z(i)

i ×Z
(i)
j (5)

For all j ∈ [d], −∞ < αjinf ≤ α
j
sup <∞ ∃ ζ > 0 such that (αjsup − ζ, αjsup) ∪ (αjinf , α

j
inf + ζ) ⊆

Z(i)
j , ∀j ∈ [d].

The distribution P(i)
Z above is quite general in several ways as it encompasses i) all perfect

interventions since they render the intervened latent independent of its ancestors and ii) imperfect
interventions that lead to independent support as characterized above. The latter part of the
above assumption is a regularity condition on the geometry of the support. It ensures the support
of z has a ζ-thick boundary for a ζ > 0.

We now describe a constraint on the encoder that leverages the geometric signature of imperfect
interventions in Assumption 4. Recall ẑk = fk(x). Let Ẑ = f(X ) and Ẑ(i) = f(X (i)) represent
the support of encoder f ’s output on observational data and interventional data respectively.
Ẑ(i)
k,m represents the joint support of (ẑk, ẑm) and Ẑ(i)

k is the support of ẑk in interventional data.
Similarly, we de�ne Ẑk,m and Ẑk for observational data.

Constraint 3. Given a set S ′ . For each m ∈ S ′ , (ẑk, ẑm) satis�es support independence on
interventional data, i.e.,

Ẑ(i)
k,m = Ẑ(i)

k × Ẑ
(i)
m , ∀m ∈ S ′ .

In the above Constraint 3, the index k and set S ′ are not necessarily the same as i and S from
Assumption 4. In the theorem that follows, we require |S ′ | ≤ |S| to guarantee that a solution to
Constraint 3 exists. In the Appendix A.3, we explain that this requirement can be easily relaxed.
Note that Constraint 3 bears similarity to Constraint 2 from the case of do interventions. Both
constraints ensure that the support of the kth component is independent of all other components.
In the theorem that follows, we show that the above Constraint 3 helps achieve block a�ne
identi�cation, which we formally de�ne below.

De�nition 2. If ẑ = Λ̃Πz + c for all z ∈ Z ∪ Z(i), where Π is a permutation matrix, Λ̃ is an
invertible matrix such that there is a submatrix of Λ̃ which is zero, then ẑ is said to block-a�ne
identify z.

Theorem 3. Suppose the observational data and interventional data are generated from Equation 1
and Equation 2 respectively under Assumptions 1, 2, 4. The autoencoder that solves Equation 3 under
Constraint 1, 3 (with |S ′ | ≤ |S|) achieves block a�ne identi�cation. More speci�cally, ∀z ∈ Z ∪Z(i)

ẑk = a>k z + ck, ẑm = a>mz + cm, ∀m ∈ S
′
,
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where ak contains at most d− |S ′ | non-zero elements and each component of am is zero whenever
the corresponding component of ak is non-zero for allm ∈ S

′
.

Firstly, from Theorem 1, ẑ = Az + c. From the above theorem, it follows that ẑk linearly depends
on at most d− |S ′ | latents and not all the latents. Each ẑm with m ∈ S ′ does not depend on any
of the latents that ẑk depends on. As a result, |S ′ | + 1 rows of A (from Theorem 1) are sparse.
Observe that if |S ′ | = |S| = d− 1, then as a result of the above theorem, ẑk identi�es some zj up
to scale and shift. Further, remaining components ẑ−k linearly depend on z−j and do not depend
on zj . The proof of Theorem 3 is in Appendix A.3.

5 Extensions to Identi�cation with Observational Data &
Independent Support

In the previous section, we showed that interventions induce geometric structure (independence
of supports) in the support of the latents that helps achieve strong identi�cation guarantees. In
this section, we consider a special case where such geometric structure is already present in the
support of the latents in the observational data. Since we only work with observational data in
this section, we set the interventional supports Z(i) = X (i) = ∅, where ∅ is the empty set. For
each j ∈ [d], de�ne βjsup to be the supremum of the support of zj , i.e., Zj . Similarly, for each
j ∈ [d], de�ne βjinf to be the in�mum of the set Zj .

Assumption 5. The support of PZ in Equation 1 satis�es pairwise support independence between
all the pairs of latents. Formally stated,

Zr,s = Zr ×Zs, ∀r 6= s, r, s ∈ [d] (6)

For all r ∈ [d],−∞ < βrinf ≤ βrsup <∞. ∃ ζ > 0 such that (βrsup−ζ, βrsup)∪(βrinf , β
r
inf +ζ) ⊆ Zr

for all r ∈ [d].

Following previous sections, we state a constraint, where the learner leverages the geometric
structure in the support in Assumption 5 to search for the autoencoder.

Constraint 4. Each pair (ẑk, ẑm), where k,m ∈ [d] and k 6= m satis�es support independence on
observational data, i.e., Ẑk,m = Ẑk × Ẑm, where Ẑk,m is the joint support of (ẑk, ẑm) and Ẑk is
support of ẑk.

Theorem 4. Suppose the observational data is generated from Equation 1 under Assumption 1, 2,
and 5, The autoencoder that the solves Equation 3 under Constraint 4 achieves permutation, shift and
scaling identi�cation. Speci�cally, ∀z ∈ Z, ẑ = ΛΠz + c, where ẑ is the output of the encoder f
and z is the true latent and Π is a permutation matrix and Λ is an invertible diagonal matrix.

The proof of Theorem 4 is in Appendix A.4. Theorem 4 says that the independence between
the latents’ support is su�cient to achieve identi�cation up to permutation, shift, and scaling
in observational data. Theorem 4 has important implications for the seminal works on linear
ICA (Comon, 1994), considering the simple case of a linear g. Comon (1994) shows that, if the
latent variables are independent and non-Gaussian, then the latent variables can be identi�ed
up to permutation and scaling. However, Theorem 4 states that, even if the latent variables are
dependent, the latent variables can be identi�ed up to permutation, shift and scaling, as long as
they are bounded (hence non-Gaussian) and satisfy pairwise support independence.

Finally, Theorem 4 provides a �rst general theoretical justi�cation for recent proposals of
unsupervised disentanglement via the independent support condition (Wang and Jordan, 2021;
Roth et al., 2022).
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6 LearningRepresentations fromGeometric Signatures: Practical
Considerations

In this section, we describe practical algorithms to solve the constrained representation learning
problems in Sections 4 and 5.

To perform constrained representation learning with do-intervention data, we proceed in two
steps. In the �rst step, we carry out minimization of the reconstruction objective f †, h† =
arg minf,h E

[
‖h ◦ f(X) − X‖2

]
, where h is the decoder, f is the encoder and expectation is

taken over observational data and interventional data. In the experiments, we restrict h to be
a polynomial and show that a�ne identi�cation is achieved by the learned f † as proved in
Theorem 1.

In the second step, we learn a linear map to transform the learned representations and enforce
Constraint 2. For each interventional distribution, P(i)

X , we learn a di�erent linear map γi that
projects the representation such that it takes an arbitrary �xed value z†i on the support of P(i)

X .
We write this objective as

min
{γi}

∑
i

E
X∼P(i)

X

[∥∥γ>i f †(X)− z†i
∥∥2
]

(7)

Construct a matrix Γ with di�erent γ>i as the rows. The �nal output representation is Γf †(X).
In the experiments, we show that this representation achieves permutation, shift and scaling
identi�cation as predicted by Theorem 2. A few remarks in order. i) z†i is arbitrary and learner
does not know the true do intervention value, ii) for ease of exposition, Equation 7 assumes the
knowledge of index of intervened and can be easily relaxed by multiplying Γ with a permutation
matrix.

We next describe an algorithm that learns representations to enforce independence of support
(leveraged in Theorem 3 and 4). To measure the (non)-independence of the latents’ support, we
follow Wang and Jordan (2021); Roth et al. (2022) and measure the distance between the sets in
terms of Hausdor� distance: the Hausdor� distance HD between the sets S1,S2 is HD(S1,S2) =

supz∈S2

(
infz′∈S1(‖z − z

′‖)
)

, where S1 ⊆ S2. Next, to enforce the independent support

constraint, we again follow a two-step algorithm. The �rst step remains the same, i.e., we minimize
the reconstruction objective. In the second step, we transform the learned representations (f †(x))
with an invertible map Γ ∈ Rd×d. The joint support obtained post transformation is a function
of the parameters Γ and is denoted as Ẑ(Γ). Following the notation introduced earlier, the
joint support along dimensions k,m is Ẑk,m(Γ) and the marginal support along k is Ẑk(Γ). We
translate the problem in Constraint 4 as follows. We �nd a Γ to minimize

min
Γ

∑
k 6=m

HD
(
Ẑk,m(Γ), Ẑk(Γ)× Ẑm(Γ)

)
. (8)

Similarly, we can translate the constraint in Constraint 3.

7 Empirical Findings

In this section, we analyze how the practical implementation of the theory holds up in di�erent
settings ranging from data generated from polynomial decoders to images generated from PyGame
rendering engine (Shinners et al., 2011). The code to reproduce the experiments can be found at
the link in the footnote. 2

2Github repository: https://github.com/facebookresearch/CausalRepID
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Data generation process. Polynomial decoder data: The latents for the observational data are
sampled from PZ . PZ can be i) independent uniform, ii) an SCM with sparse connectivity (SCM-S),
iii) an SCM with dense connectivity (SCM-D) (Brouillard et al., 2020). The latent variables are
then mapped to x using a multivariate polynomial. We use a n = 200 dimensional x. We use two
possible dimensions for the latents (d) – six and ten. We use polynomials of degree (p) two and
three. Each element in G to generate x is sampled from a standard normal distribution.

Image data: For image-based experiments, we used the PyGame (Shinners, 2011) rendering engine.
We generate 64× 64× 3 pixel images of the form in Figure 2 and consider a setting with two
balls. We consider three distributions for latents: i) independent uniform, ii) a linear SCM with
DAG in Figure 2, iii) a non-linear SCM with DAG in Figure 2, where the coordinates of Ball 1 are
at the top layer in the DAG and coordinates of Ball 2 are at the bottom layer in the DAG.

For both settings above, we carry out do interventions on each latent dimension to generate
interventional data.

Model parameters and evaluation metrics. We follow the two step training procedures
described in Section 6. For image-based experiments we use a ResNet-18 as the encoder (He et al.,
2016) and for all other experiments, we use an MLP with three hidden layers and two hundred
units per layer. We learn a polynomial decoder h as the theory prescribes to use a polynomial
decoder (Constraint 1) when g is a polynomial. In Appendix B.3, we also present results when
we use an MLP decoder. To check for a�ne identi�cation (from Theorem 1), we measure the R2

score for linear regression between the output representation and the true representation. If the
score is high, then it guarantees a�ne identi�cation. To verify permutation, shift and scaling
identi�cation (from Theorem 4), we check the mean correlation coe�cient (MCC (Khemakhem
et al., 2022)). For further details on data generation, models, hyperparamters, and supplementary
experiments refer to the Appendix B.

PZ d p R2 MCC (IOS)

Uniform 6 2 1.00± 0.00 99.3± 0.07
Uniform 6 3 1.00± 0.00 99.4± 0.06
Uniform 10 2 1.00± 0.00 90.7± 2.92
Uniform 10 3 0.99± 0.00 94.6± 1.50

SCM-S 6 2 0.96± 0.02 72.6± 1.48
SCM-S 6 3 0.87± 0.07 70.6± 1.54
SCM-S 10 2 0.99± 0.00 65.9± 1.32
SCM-S 10 3 0.90± 0.05 58.8± 1.27

SCM-D 6 2 0.97± 0.01 61.6± 4.36
SCM-D 6 3 0.81± 0.11 65.2± 2.70
SCM-D 10 2 0.83± 0.10 69.6± 3.09
SCM-D 10 3 0.72± 0.15 60.1± 1.16

Table 2: Observational data with polynomial decoder g: Mean ± S.E. (5 random seeds). R2 and
MCC(IOS) (for uniform) have high values as predicted in Theorem 1 and Theorem 4 respectively.

Results for polynomial decoder. Observational data: We consider the setting when the true
decoder g is a polynomial and the learned decoder h is also a polynomial. In Table 2, we report the
R2 between the representation learned after the �rst step, where we only minimize reconstruction
loss. R2 values are high as predicted in Theorem 1. In the second step, we learn a map Γ and
enforce independence of support constraint by minimizing Hausdor� distance from Equation 8.
Among the distributions PZ only the uniform distribution satis�es support independence from
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PZ d p MCC MCC (IL)

Uniform 6 2 69.1± 1.11 100.0± 0.00
Uniform 6 3 73.4± 0.49 100.0± 0.00
Uniform 10 2 59.9± 2.03 100.0± 0.00
Uniform 10 3 65.9± 0.80 99.9± 0.03

SCM-S 6 2 68.4± 0.90 99.5± 0.38
SCM-S 6 3 74.1± 2.32 99.3± 0.34
SCM-S 10 2 68.0± 2.36 99.9± 0.03
SCM-S 10 3 66.8± 1.10 98.8± 0.13

SCM-D 6 2 71.8± 3.77 99.6± 0.12
SCM-D 6 3 79.5± 3.45 98.2± 1.07
SCM-D 10 2 70.8± 1.89 95.3± 2.24
SCM-D 10 3 70.1± 2.80 97.2± 0.88

Table 3: Interventional data with polynomial decoder g: Mean ± S.E. (5 random seeds). MCC(IL)
is high as shown in Theorem 2.

#interv dist. Uniform SCM linear SCM non-linear

1 33.2± 7.09 42.7± 1.43 34.9± 2.29
3 72.2± 4.04 73.9± 2.77 65.2± 3.71
5 88.3± 1.02 83.6± 0.94 77.2± 1.79
7 88.1± 1.10 85.5± 0.82 81.9± 2.37
9 87.5± 1.33 84.8± 1.49 81.1± 2.53

Table 4: Interventional data in image-based experiments: Mean ± S.E (5 random seeds). MCCs
increase with the number of do interventional distributions per latent dimension (Theorem 7).

Assumption 5 and following Theorem 4, we expect MCC to be high in this case only. In Table
2, we report the MCC obtained by enforcing independence of support in MCC (IOS). In the
Appendix B.3, we also carry out experiments on correlated uniform distributions and observe
high MCC (IOS).

Interventional data: We now consider the case when we also have access to do intervention data
in addition to observational data. We consider the setting with one do intervention per latent
dimension. We follow the two step procedure described in Section 6. In Table 3, we �rst show the
MCC values of the representation obtained after the �rst step in the MCC column. In the second
step, we learn Γ by minimizing the interventional loss (IL) in Equation 7. We report the MCC
of the representation obtained in the MCC (IL) column in Table 3; the values are close to one as
predicted by Theorem 2.

Results for image dataset. We follow the two step procedure described in Section 6 except
now in the second step, we learn a non-linear map (using an MLP) to minimize the interventional
loss (IL) in Equation 7. In Table 4, we show the MCC values achieved by the learned representation
as we vary the number of do interventional distributions per latent dimension. As shown in
Theorem 7, more interventional distributions per latent dimension improve the MCC.
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8 Related Work

Existing provable representation identi�cation approaches often utilize structure in time-series
data, as seen in initial works by Hyvarinen and Morioka (2016) and Hyvarinen and Morioka (2017).
More recent studies have expanded on this approach, such as Hälvä and Hyvarinen (2020); Yao
et al. (2021, 2022); Lippe et al. (2022); Lachapelle et al. (2022). Other forms of weak supervision,
such as data augmentations, can also be used in representation identi�cation, as seen in works
by Zimmermann et al. (2021); Von Kügelgen et al. (2021); Brehmer et al. (2022); Locatello et al.
(2020); Ahuja et al. (2022a) that assume access to contrastive pairs of observations (x, x̃). A third
approach, used in (Khemakhem et al., 2022, 2020), involves using high-dimensional observations
(e.g., an image) and auxiliary information (e.g., label) to identify representations.

To understand the factual and counterfactual knowledge used by di�erent works in representation
identi�cation, we can classify them according to Pearl’s ladder of causation (Bareinboim et al.,
2022). In particular, our work operates with interventional data (level-two knowledge), while other
studies leverage either observational data (level-one knowledge) or counterfactual data (level-three
knowledge). Works such as Khemakhem et al. (2022, 2020); Ahuja et al. (2022b); Hyvarinen and
Morioka (2016, 2017); Ahuja et al. (2021) use observational data and either make assumptions
on the structure of the underlying causal graph of latents or rely on auxiliary information. In
contrast, works like Brehmer et al. (2022) use counterfactual knowledge to achieve identi�cation
for general DAG structures; Lippe et al. (2022); Ahuja et al. (2022a); Lachapelle et al. (2022) use
pre- and post-intervention observations to achieve provable representation identi�cation. These
latter studies use instance-level temporal interventions that carry much more information than
interventional distribution alone.

9 Conclusion

In this work, we lay down the theoretical foundations for learning causal representations in the
presence of interventional data. We show that geometric signatures such as support independence
that are induced under many interventions are useful for provable representation identi�cation.
Looking forward, we believe that exploring representation learning with real interventional data
(Lopez et al., 2022; Liu et al., 2023) is a fruitful avenue for future work.
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Interventional Causal Representation Learning

Appendices

Contents

We organize the Appendix as follows.

• In Appendix A, we present the proofs for the theorems that were presented in the main
body of the paper.

– In Appendix A.1, we derive the a�ne identi�cation guarantees and its approximations
in various settings. (Theorem 1)

– In Appendix A.2, we derive the do intervention based identi�cation guarantees and
its extensions. (Theorem 2)

– In Appendix A.3, we present representation identi�cation guarantees for imperfect
interventions. (Theorem 3)

– In Appendix A.4, we present representation identi�cation guarantees for observational
data with independent support. (Theorem 4)

• In Appendix B, we present supplementary materials for the experiments.

– In Appendix B.1, we present the pseudocode for the method used to learn the
representations.

– In Appendix B.2, we present the details of the setup used in the experiments with the
polynomial decoder g.

– In Appendix B.3, we present supplementary results for the setting with polynomial
decoder g.

– In Appendix B.4, we present the details of the setup used in the experiments with
image data.

– In Appendix B.5, we present supplementary results for the setting with image data.
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A Proofs and Technical Details

In this section, we provide the proofs for the theorems. We restate the theorems for convenience.

Preliminaries and notation. We state the formal de�nition of support of a random variable.
In most of the work, we operate on the following measure space (Rd,B, λ), B is the Borel sigma
�eld over Rd and λ is the Lebesgue measure over completion of Borel sets on Rd (Ash et al.,
2000). For a random variable X , the support X = {x ∈ Rd, dPX(x) > 0}, where dPX(x) is
the Radon-Nikodym derivative of P w.r.t Lebesgue measure over completion of Borel sets on
Rd. For random variable Z , Z is the support of Z in the observational data. The support of the
component Zj of Z is Zj . For random variable Z , Z(i) is the support of Z when Zi is intervened.
The support of the component Zj of Z in intervened data is Z(i)

j .

A.1 A�ne Identi�cation

Lemma 1. If the matrix G that de�nes the polynomial g is full rank and p > 0, then g is injective.

Proof. Suppose this is not the case and g(z1) = g(z2) for some z1 6= z2. Thus

G



1
z1

z1⊗̄z1
...

z1⊗̄ · · · ⊗̄ z1︸ ︷︷ ︸
p times


= G



1
z2

z2⊗̄z2
...

z2⊗̄ · · · ⊗̄ z2︸ ︷︷ ︸
p times



=⇒ G



0
(z1 − z2)

z1⊗̄z1 − z2⊗̄z2
...

z1⊗̄ · · · ⊗̄ z1︸ ︷︷ ︸
p times

− z2⊗̄ · · · ⊗̄ z2︸ ︷︷ ︸
p times


= 0

(9)

Since z1 6= z2 we �nd a non-zero vector in the null space of G which contradicts the fact that G
has full column rank. Therefore, it cannot be the case that g(z1) = g(z2) for some z1 6= z2. Thus
g has to be injective.

Lemma 2. If v1 is a polynomial of degree k1 and v2 is a polynomial of degree k2, then v1v2 is a
polynomial of degree k1 + k2.

Proof. We separate vi(z) into two parts – the terms with degree ki (ui(z)) and the terms with
degree less than ki (wi(z)) for i ∈ {1, 2}. We obtain the following expression.

v1(z)v2(z) = (u1(z)+w1(z))(u2(z)+w2(z)) = u1(z)u2(z)+u1(z)w2(z)+u2(z)w1(z)+w1(z)w2(z)
(10)

The maximum degree achieved by u1(z)u2(z) is k1 + k2. For the other terms, the maximum is
bounded above by k1 + k2− 1. To prove the result, we need to show that u1(z)u2(z) has a degree
k1 + k2.

We �rst start with a simple case. Suppose u1(z) and u2(z) do not share any component of z that
they both depend on. In such a case, if we take the leading degree term in u1 and u2 respectively
and multiply them then we obtain distinct terms of degree k1 + k2.
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Suppose u1 and u2 both depend on z1. We write u1(z) as

u1(z) =
∑

∑
i dji=k1

θj

d∏
i=1

z
dji
i =

∑
∑
i dji=k1

θjcj(z)

where cj(z) =
∏
i z
dji
i is a degree k1 polynomial. Note that for each j, cj is a di�erent polynomial,

i.e. for j 6= q, cj 6= cq . We write u2(z) as

u2(z) =
∑

∑
i dji=k2

βj

d∏
i=1

z
dji
i =

∑
∑
i dji=k2

βjcj(z)

We collect all the terms in u1 that have the highest degree associated with z1 such that the
coe�cient θj is non-zero. We denote the highest degree as r and write these terms as

∑
q

θqz
r
1

d∏
i=2

z
dqi
i =

∑
q

θqz
r
1ωq(z)

where ωq(z) =
∏d
i=2 z

dqi
i , q 6= l =⇒ ωq 6= ωl, and r ≥ 1

From u2(z), collect the terms with the highest degree for z1 such that the coe�cient βj is non-zero
to obtain. We denote the highest degree as s and write these terms as

∑
t

βtz
s
1

d∏
i=2

zdtii =
∑
t

βtz
s
1ηt(z)

where ηt(z) =
∏d
i=2 z

dti
i , t 6= l =⇒ ηt 6= ηl, and s ≥ 1.

As a result, u1(z)u2(z) will contain the term

zr+s1

∑
q

θqωq(z)
∑
t

βtηt(z)

zr+s1 δ1(z)δ2(z)

where δ1(z) =
∑

q θqωq(z) and δ2(z) =
∑

t βtηt(z). We will use principle of induction on the
degree of polynomial to prove the claim.

We �rst establish the base case for k1 = 1 and k2 = 1. Consider two polynomials ρ>1 z and ρ>2 z.
We multiply the two to obtain

∑
i,j ρ1iρ2jzizj . Consider two cases. In case 1, the two polynomials

have at least one non-zero coe�cient for the same component zi. In that case, we obtain the only
non-zero term with ρ2

1iz
2
i , which establishes the base case. In the second case, the two polynomials

have no shared non-zero coe�cients. In such a case, each term with a non-zero coe�cient is of
the form ρ1iρ2jzizj . This establishes the base case. The other cases with k1 = 0 and k2 = 1 or
k2 = 0 and k1 = 1 or both k1 = 0, k2 = 0 are trivially true. Thus we have established the base
case for all polynomials (with arbitrary dimension for z) of degree less than k1 = 1 and k2 = 1.

We can now assume that the claim is true for all polynomials v1 with degree less than k1 − 1
and all polynomials v2 with degree less than k2 − 1. As a result, the degree of δ1(z)δ2(z) is
k1 + k2 − r − s.
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We can write δ1δ2 in terms of the terms with degree equal to k1 + k2 − r − s (δ′(z)) and terms
that have a degree less than k1 + k2 − r − s (δ∗(z)). As a result, we can simplify zr+s1 δ1(z)δ2(z)
to obtain

zr+s1 (δ
′
(z) + δ∗(z)) (11)

The degree of zr+s1 δ∗(z) is at most k1 + k2 − 1. The degree of zr+s1 (δ
′
(z)) has to be k1 + k2

since δ′(z) does not depend on z1, δ′(z) is of degree k1 + k2 − r − s. Note that this is the only
term in the entire polynomial u1(z)u2(z) that is associated with the highest degree for z1 (zr+s1 )
since other terms (cj , c

′
j ) have a smaller degree associated with z1 thus the coe�cient of this term

cannot be cancelled to zero. Therefore, the degree of the polynomial u1u2 and hence the degree
of v1v2 is k1 + k2.

Recall ẑ , f(x), a , f ◦ g. Since f(x) = f ◦ g(z) = a(z) =⇒ ẑ = a(z), where a : Z ∪Z(i) →
Ẑ ∪ Ẑ(i), and Ẑ = f(X ) and Ẑ(i) = f(X (i)). We now show that a is bijective.

Lemma 3. Suppose the observational data and interventional data are generated from Equation 1
and Equation 2 respectively. The mapping a that relates the output of the encoder f written as ẑ,
which solves the reconstruction identity Equation 3, is related to the true latent z is bijective, where
ẑ = a(z).

Proof. Observe that a is surjective by construction. We now need to prove that a is injective.
Suppose a is not injective. Therefore, there exists z1 ∈ Z and z2 ∈ Z , where z1 6= z2 and
ẑ1 = a(z1) = ẑ2 = a(z2). Note that a(z1) = f(x1), where x1 = g(z1) and a(z2) = f(x2),
where x2 = g(z2). This implies that f(x1) = f(x2). We know that the decoder encoder pair
satisfy reconstruction, which means h ◦ f(x1) = x1 and h ◦ f(x2) = x2. Since f(x1) = f(x2),
we obtain that x1 = x2, which implies that z1 = z2 since g is injective. This contradicts the fact
that z1 6= z2. Therefore, ẑ = a(z) is bijective.

Theorem 1. Suppose the observational data and interventional data are generated from Equation 1
and Equation 2 respectively under Assumptions 1 and 2. The autoencoder that solves the reconstruction
identity in Equation 3 under Constraint 1 achieves a�ne identi�cation, i.e., ∀z ∈ Z∪Z(i), ẑ = Az+c,
where ẑ is the encoder f ’s output, z is the true latent, A ∈ Rd×d is invertible and c ∈ Rd.

Proof. We start by restating the reconstruction identity. For all x ∈ X ∪ X (i)

h ◦ f(x) = x

h(ẑ) = g(z)

H



1
ẑ
ẑ⊗̄ẑ

...
ẑ⊗̄ · · · ⊗̄ ẑ︸ ︷︷ ︸

p times


= G



1
z
z⊗̄z

...
z⊗̄ · · · ⊗̄ z︸ ︷︷ ︸

p times


(12)

Following the assumptions, h is restricted to be polynomial but f bears no restriction. If H = G
and f = g−1, we get the ideal solution ẑ = z, thus a solution to the above identity exists.
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Since G has full column rank, we can select q rows of G such that G̃ ∈ Rq×q and rank(G̃) = q.
Denote the corresponding matrix H that select the same rows as H̃ . We restate the identity in
Equation 12 in terms of H̃ and G̃ as follows. For all z ∈ Z ∪ Z(i)

H̃



1
ẑ
ẑ⊗̄ẑ

...
ẑ⊗̄ · · · ⊗̄ ẑ︸ ︷︷ ︸

p times


= G̃



1
z
z⊗̄z

...
z⊗̄ · · · ⊗̄ z︸ ︷︷ ︸

p times



G̃−1H̃



1
ẑ
ẑ⊗̄ẑ

...
ẑ⊗̄ · · · ⊗̄ ẑ︸ ︷︷ ︸

p times


=



1
z
z⊗̄z

...
z⊗̄ · · · ⊗̄ z︸ ︷︷ ︸

p times



z = Ã



1
ẑ
ẑ⊗̄ẑ

...
ẑ⊗̄ · · · ⊗̄ ẑ︸ ︷︷ ︸

p times


z = Ã1ẑ + Ã2 ẑ⊗̄ẑ + · · · Ãp ẑ⊗̄ · · · ⊗̄ ẑ︸ ︷︷ ︸

p times

+c,

(13)

where Ã is a submatrix of G̃−1H̃ that describes the relationship between z and polynomial of
ẑ, {Ãi}pi=1 correspond to blocks of rows of Ã. Suppose at least one of Ã2, · · · , Ãp is non-zero.
Among the matrices Ã2, · · · , Ãp which are non-zero, pick the matrix Ãk with largest index k.
Suppose row i of Ãk has some non-zero element. Now consider the element in the row in the
RHS of (13) corresponding to zpi . Observe that zpi is a polynomial of ẑ of degree kp, where k ≥ 2
(follows from Lemma 2). In the LHS, we have a polynomial of degree at most p. In the LHS,
we have a polynomial of degree at most p. The equality between LHS and RHS is true for all
ẑ ∈ f(X ∪ X (i)). The di�erence of LHS and RHS is an analytic function. From Constraint 1
f(X ∪X (i)) has a measure greater than zero. Therefore, we leverage Mityagin (2015) to conclude
that the LHS is equal to RHS on entire Rd. If two polynomials are equal everywhere, then their
respective coe�cients have to be the same. Based on supposition, RHS has non zero coe�cient
for terms with degree kp while LHS has zero coe�cient for terms higher than degree p. This
leads to a contradiction. As a result, none of Ã2, · · · , Ãp can be non-zero. Thus z = Ã1ẑ + c.
Next, we show that Ã1 is invertible, which immediately follows from Lemma 3.

21



A.1.1 Extensions to sparse polynomial g(·)

Suppose g(·) is a degree p polynomial. Let us de�ne the basis that generates g as

u(z) =



1
z
z⊗̄z

...
z⊗̄ · · · ⊗̄ z︸ ︷︷ ︸

p times


Note that the number of terms in u(z) grows as q =

∑p
r=0

(
r+d−1
d−1

)
. In the previous proof, we

worked with

g(z) = G



1
z
z⊗̄z

...
z⊗̄ · · · ⊗̄ z︸ ︷︷ ︸

p times


= Gu(z)

where G ∈ Rn×q was full rank. As a result, n has to be greater than q and also grow at least
as
∑p

r=0

(
r+d−1
d−1

)
. In real data, we can imagine that the g(·) has a high degree. However, g can

exhibit some structure, for instance sparsity. We now show that our entire analysis continues to
work even for sparse polynomials thus signi�cantly reducing the requirment on n to grow as
the number of non-zero basis terms in the sparse polynomial. We write the basis for the sparse
polynomial of degree p as u′(z). u′(z) consists of a subset of terms in u(z). We write the sparse
polynomial g(·) as

g(z) = Gu
′
(z)

We formally state the assumption on the decoder in this case as follows.

Assumption 6. The decoder g is a polynomial of degree p whose corresponding coe�cient matrix
G (a.k.a. the weight matrix) has full column rank. Speci�cally, the decoder g is determined by the
coe�cient matrix G as follows,

g(z) = Gu
′
(z) (14)

where u
′
(z) consists of a subset of terms in u(z). u

′
(z) consists of the degree one term, i.e., z and at

least one term of the form zoi , where o ≥
p+1

2

Theorem 5. Suppose the observational data and interventional data are generated from Equation 1
and Equation 2 respectively under Assumptions 1, 6. The autoencoder that solves reconstruction
identity in Equation 3 under Constraint 1 achieves a�ne identi�cation, i.e., ∀z ∈ Z∪Z(i), ẑ = Az+c,
where ẑ is the output of the encoder f , z is the true latent, A is an invertible d×dmatrix and c ∈ Rd.
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Proof. We start by restating the reconstruction identity. For all x ∈ X ∪ X (i)

h ◦ f(x) = x

h(ẑ) = g(z)

H



1
ẑ
ẑ⊗̄ẑ

...
ẑ⊗̄ · · · ⊗̄ ẑ︸ ︷︷ ︸

p times


= Gu

′
(z)

(15)

Following the assumptions, h is restricted to be polynomial but f bears no restriction. If H is
equal to the matrix G for columns i where ui = u

′
j for some j and zero in other columns and

f = g−1, we get the ideal solution ẑ = z, thus a solution to the above identity exists. Since G has
full column rank, we can select q rows of G such that G̃ ∈ Rq×q and rank(G̃) = q. Denote the
corresponding matrix H that select the same rows as H̃ . We restate the identity in Equation 15 in
terms of H̃ and G̃ as follows. For all z ∈ Z ∪ Z(i)

H̃



1
ẑ
ẑ⊗̄ẑ

...
ẑ⊗̄ · · · ⊗̄ ẑ︸ ︷︷ ︸

p times


= G̃u

′
(z)

G̃−1H̃



1
ẑ
ẑ⊗̄ẑ

...
ẑ⊗̄ · · · ⊗̄ ẑ︸ ︷︷ ︸

p times


= u

′
(z)

z = Ã



1
ẑ
ẑ⊗̄ẑ

...
ẑ⊗̄ · · · ⊗̄ ẑ︸ ︷︷ ︸

p times


z = Ã1ẑ + Ã2 ẑ⊗̄ẑ + · · · Ãp ẑ⊗̄ · · · ⊗̄ ẑ︸ ︷︷ ︸

p times

+c

(16)

In the simpli�cation above, we rely on the fact that u′(z) consists of the �rst degree term. Suppose
at least one of Ã2, · · · , Ãp is non-zero. Among the matrices Ã2, · · · , Ãp which are non-zero,
pick the matrix Ãk with largest index k. Suppose row i of Ãk has some non-zero element. Now
consider the element in the row in the RHS of (16) corresponding to zoi . Observe that zoi is a
polynomial of ẑ of degree ko, where k ≥ 2. In the LHS, we have a polynomial of degree at most
p. The equality between LHS and RHS is true for all ẑ ∈ f(X ∪ X (i)). The di�erence of LHS
and RHS is an analytic function. From Constraint 1 f(X ∪ X (i)) has a measure greater than zero.
Therefore, we leverage Mityagin (2015) to conclude that the LHS is equal to RHS on entire Rd. If
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two polynomials are equal everywhere, then their respective coe�cients have to be the same.
Based on supposition, RHS has non zero coe�cient for terms with degree p+ 1 while LHS has
zero coe�cient for terms higher than degree p. This leads to a contradiction. As a result, none
of Ã2, · · · , Ãp can be non-zero. Thus z = Ã1ẑ + c. Next, we need to show that Ã1 is invertible,
which follows from Lemma 3.

A.1.2 Extensions to polynomial g(·) with unknown degree

The learner starts with solving the reconstruction identity by setting the degree of h(·) to be s;
here we assume H has full rank (this implicitly requires that n is greater than the number of
terms in the polynomial of degree s).

H



1
ẑ
ẑ⊗̄ẑ

...
ẑ⊗̄ · · · ⊗̄ ẑ︸ ︷︷ ︸

s times


= G



1
z
z⊗̄z

...
z⊗̄ · · · ⊗̄ z︸ ︷︷ ︸

p times


(17)

We can restrict H to rows such that it is a square invertible matrix H̃ . Denote the corresponding
restriction of G as G̃. The equality is stated as follows.



1
ẑ
ẑ⊗̄ẑ

...
ẑ⊗̄ · · · ⊗̄ ẑ︸ ︷︷ ︸

s times


= H̃−1G̃



1
z
z⊗̄z

...
z⊗̄ · · · ⊗̄ z︸ ︷︷ ︸

p times


(18)

If s > p, then ẑ⊗̄ · · · ⊗̄ ẑ︸ ︷︷ ︸
s times

is a polynomial of degree at least p + 1. Since the RHS contains a

polynomial of degree at most p the two sides cannot be equal over a set of values of z with positive
Lebesgue measure in Rd. Thus the reconstruction identity will only be satis�ed when s = p.
Thus we can start with the upper bound and reduce the degree of the polynomial on LHS till the
identity is satis�ed.

A.1.3 Extensions from polynomials to ε-approximate polynomials

We now discuss how to extend Theorem 1 to settings beyond polynomial g. Suppose g is a
function that can be ε-approximated by a polynomial of degree p on entire Z ∪ Z(i). In this
section, we assume that we continue to use polynomial decoders h of degree p (with full rank
matrix H) for reconstruction. We state this as follows.

Constraint 5. The learned decoder h is a polynomial of degree p and its corresponding coe�cient
matrix h is determined by H as follows. For all z ∈ Rd

h(z) = H[1, z, z⊗̄z, · · · , z⊗̄ · · · ⊗̄ z︸ ︷︷ ︸
p times

]> (19)

where ⊗̄ represents the Kronecker product with all distinct entries. H has a full column rank.
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Since we use h as a polynomial, then satisfying the exact reconstruction is not possible. Instead,
we enforce approximate reconstruction as follows. For all x ∈ X ∪ X (i), we want

‖h ◦ f(x)− x‖ ≤ ε, (20)

where ε is the tolerance on reconstruction error. Recall ẑ = f(x). We further simplify it as
ẑ = f ◦ g(z) = a(z). We also assume that a can be η-approximated on entire Z ∪ Z(i) with a
polynomial of su�ciently high degree say q. We write this as follows. For all z ∈ Z ∪ Z(i),

∥∥∥∥∥ẑ −Θ


z
z⊗̄z

...
z⊗̄ · · · ⊗̄ z︸ ︷︷ ︸

q times


∥∥∥∥∥ ≤ η,

∥∥∥∥∥ẑ −Θ1z −Θ2 z⊗̄z − · · ·Θp z⊗̄ · · · ⊗̄ z︸ ︷︷ ︸
q times

∥∥∥∥∥ ≤ η.
(21)

We want to show that the norm of Θk for all k ≥ 2 is su�ciently small. We state some assumptions
needed in theorem below.

Assumption 7. Encoder f does not take values near zero, i.e., fi(x) ≥ γη for all x ∈ X ∪X (i) and
for all i ∈ {1, · · · , d}, where γ > 2. The absolute value of each element in H̃−1G̃ is bounded by a
�xed constant. Consider the absolute value of the singular values of H̃ ; we assume that the smallest
absolute value is strictly positive and bounded below by ζ .

Theorem 6. Suppose the true decoder g can be approximated by a polynomial of degree p on entire
Z ∪ Z(i) with approximation error ε

2 . Suppose a = f ◦ g can be approximated by polynomials
on entire Z ∪ Z(i) with η error. If [−zmax, zmax]

d ⊆ Z ∪ Z(i), where zmax is su�ciently large,
and Assumption 1, Assumption 7 hold, then the polynomial approximation of a (recall ẑ = a(z))
corresponding to solutions of approximate reconstruction identity in Equation 20 under Constraint 5
is approximately linear, i.e., the norms of the weights on higher order terms are su�ciently small.
Speci�cally, the absolute value of the weight associated with term of degree k decays as 1

zk−1
max

.

Proof. We start by restating the approximate reconstruction identity. We use the fact that g
can be approximated with a polynomial of say degree p to simplify the identity below. For all
x ∈ X ∪ X (i)

‖h ◦ f(x)− x‖ ≤ ε

∥∥∥∥∥H


ẑ
ẑ⊗̄ẑ

...
ẑ⊗̄ · · · ⊗̄ ẑ︸ ︷︷ ︸

p times

−G


z
z⊗̄z

...
z⊗̄ · · · ⊗̄ z︸ ︷︷ ︸

p times


∥∥∥∥∥−

∥∥∥∥∥G


z
z⊗̄z

...
z⊗̄ · · · ⊗̄ z︸ ︷︷ ︸

p times

− g(z)

∥∥∥∥∥ ≤ ε (22)
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To obtain the second step from the �rst, add and subtract G[z, z⊗̄z, · · · , ẑ⊗̄ · · · ⊗̄ ẑ︸ ︷︷ ︸
p times

]> and use

reverse triangle inequality. Since H is full rank, we select rows of H such that H̃ is square and
invertible. The corresponding selection for G is denoted as G̃. We write the identity in terms of
these matrices as follows.

∥∥∥∥∥H̃


ẑ
ẑ⊗̄ẑ

...
ẑ⊗̄ · · · ⊗̄ ẑ︸ ︷︷ ︸

p times

− G̃


z
z⊗̄z

...
z⊗̄ · · · ⊗̄ z︸ ︷︷ ︸

p times


∥∥∥∥∥ ≤ 3ε

2

∥∥∥∥∥


ẑ
ẑ⊗̄ẑ

...
ẑ⊗̄ · · · ⊗̄ ẑ︸ ︷︷ ︸

p times

− H̃−1G̃


z
z⊗̄z

...
z⊗̄ · · · ⊗̄ z︸ ︷︷ ︸

p times


∥∥∥∥∥ ≤ 3ε

2|σmin(H̃)|

(23)

where |σmin(H̃)| is the singular value with smallest absolute value corresponding to the matrix H̃ .
In the simpli�cation above, we use the assumption that g is ε

2 -approximated by a polynomial with
matrix G and we also use the fact that |σmin(H̃)| is positive. Now we write that the polynomial
that approximates ẑi = ai(z) as follows.

|ẑi − θ>1 z − θ>2 z⊗̄z − · · · θ>q z⊗̄ · · · ⊗̄ z︸ ︷︷ ︸
q times

| ≤ η (24)

ẑi ≥ θ>1 z + θ>2 z⊗̄z + · · · θ>q z⊗̄ · · · ⊗̄ z︸ ︷︷ ︸
q times

−η

ẑi ≤ θ>1 z + θ>2 z⊗̄z + · · · θ>q z⊗̄ · · · ⊗̄ z︸ ︷︷ ︸
q times

+η
(25)

From Assumption 7 we know that ẑi ≥ γη, where γ > 2. It follows from the above equation that

θ>1 z + θ>2 z⊗̄z + · · · θ>q z⊗̄ · · · ⊗̄ z︸ ︷︷ ︸
q times

+η ≥ γη

=⇒ θ>1 z + θ>2 z⊗̄z + · · ·+ θ>q z⊗̄ · · · ⊗̄ z︸ ︷︷ ︸
q times

−(γ − 1)η ≥ 0

=⇒ 1

γ − 1
≥ η

θ>1 z + θ>2 z⊗̄z + · · ·+ θ>q z⊗̄ · · · ⊗̄ z︸ ︷︷ ︸
q times

(26)

For ẑi ≥ γη, we track how ẑpi grows below.

ẑi ≥ θ>1 z + θ>2 z⊗̄z + · · · θ>q z⊗̄ · · · ⊗̄ z︸ ︷︷ ︸
q times

−η ≥ (γ − 2)η ≥ 0

ẑpi ≥ (θ>1 z + θ>2 z⊗̄z + · · · θ>q z⊗̄ · · · ⊗̄ z︸ ︷︷ ︸
q times

−η)p

ẑpi ≥ (θ>1 z + θ>2 z⊗̄z + · · · θ>q z⊗̄ · · · ⊗̄ z︸ ︷︷ ︸
q times

)p(1− 1

γ − 1
)p

(27)
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In the last step of the above simpli�cation, we use the condition in Equation 26. We consider
z = [zmax, · · · , zmax]. Consider the terms θijzkmax inside the polynomial in the RHS above.
We assume all components of θ are positive. Suppose θij ≥ 1

zk−κ−1
max

, where κ ∈ (0, 1), then

the RHS in Equation 27 grows at least z(1+κ)p
max

(γ−2
γ−1

)p. From Equation 23, ẑpi is very close to
degree p polynomial in z. Under the assumption that the terms in H̃−1G̃ are bounded by a
constant, the polynomial of degree p grows at at most zpmax. The di�erence in growth rates the
Equation 23 is an increasing function of zmax for ranges where zmax is su�ciently large. Therefore,
the reconstruction identity in Equation 23 cannot be satis�ed for points in a su�ciently small
neighborhood of z = [zmax, · · · , zmax]. Therefore, θij < 1

zk−κ−1
max

. We can consider other vertices
of the hypercube Z and conclude that |θij | < 1

zk−κ−1
max

.

A.2 Representation identi�cation under do interventions

Theorem 2. Suppose the observational data and interventional data are generated from Equation 1
and Equation 2 respectively under Assumptions 1 and 2, where P(i)

Z follows Equation 4. The
autoencoder that solves Equation 3 under Constraint 1, Constraint 2 identi�es the intervened latent
zi up to shift and scaling, i.e., ẑk = ezi + b, where e ∈ R, b ∈ R.

Proof. First note that Assumptions 1-2 hold. Since we solve Equation 3 under Constraint 1, we
can continue to use the result from Theorem 1. From Theorem 1, it follows that the estimated
latents ẑ are an a�ne function of the true z. ẑk = a>z + b, ∀z ∈ Z ∪ Z(i), where a ∈ Rd, b ∈ R.

We consider a z ∈ Z(i) such that z−i is in the interior of the support of P(i)
Z−i

. We write z ∈ Z(i)

as [z∗, z−i]. We can write ẑk = aiz
∗ + a>−iz−i + b, where a−i is the vector of the values of

coe�cients in a other than the coe�cient of ith dimension, ai is ith component of a, z−i is the
vector of values in z other than zi. From the constraint in Constraint 2 it follows that for all
z ∈ Z(i), ẑk = z†. We use these expressions to carry out the following simpli�cation.

a>−iz−i = z† − aiz∗ − b (28)

Consider another data point z′ ∈ Z(i) from the same interventional distribution such that
z
′
−i = z−i + θej is in the interior of the support of P(i)

Z−i
, where ej is vector with one in jth

coordinate and zero everywhere else. From Assumption 3, we know that there exists a small
enough θ such that z′−i is in the interior. Since the point is from the same interventional distribution
z
′
i = z∗. For z′−i we have

a>−iz
′
−i = z† − aiz∗ − b (29)

We take a di�erence of the two equations (28) and (29) to get

a>−i(z−i − z
′
−i) = θa>−iej = 0. (30)

From the above, we get that the jth component of a−i is zero. We can repeat the above argument
for all j and get that a−i = 0. Therefore, ẑk = aizi+b for all possible values of zi inZ∪Z(i).
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A.2.1 Extension of do interventions beyond polynomials

In the main body of the paper, we studied the setting where g is a polynomial. We relax the
constraint on g. We consider settings with multiple do interventional distribution on a target
latent.

We write the DGP for intervention j ∈ {1, · · · , t} on latent i as

zi = z∗,j

z−i ∼ P(i,j)
Z−i

(31)

Let T = {z∗,1, · · · , z∗,t} be the set of do intervention target values. We extend the constrained
representation learning setting from the main body, where the learner leverages the geometric
signature of a single do intervention per latent dimension to multiple do interventional
distributions per latent dimension.

h ◦ f(x) = x, ∀x ∈ X ∪ X (i,j)

fk(x) = z†,j , ∀x ∈ X (i,j), ∀j ∈ {1, · · · , t}
(32)

Recall that the ẑ = f(x) = f ◦ g(z) = a(z). Consider the kth component ẑk = ak(z). Suppose
ak(z) is invertible and only depends on zi, we can write it as ak(zi). If ẑk only depends on zi, i.e.,
ẑk = ak(zi) and ak is invertible, then the zi is identi�ed up to an invertible transform. Another
way to state the above property is ∇z−iak(z) = 0 for all z−i. In what follows, we show that it is
possible to approximately achieve identi�cation up to an invertible transform. We show that if
the number of interventions t is su�ciently large, then ‖∇z−iak(z)‖ ≤ ε for all z ∈ Z .

Assumption 8. The interior of the support of z in the observational data, i.e., Z , is non-empty.
The interior of the support of z−i in the interventional data, i.e., Z(i,j)

−i , is equal to the support
in observational data, i.e., Z−i, for all j ∈ {1, · · · , t}. Each intervention z∗,j is sampled from a
distribution Q. The support of Q is equal to the support of zi in the observational data, i.e., Zi. The
density of Q is greater than % (% > 0) on the entire support.

The above assumption states the restrictions on the support of the latents underlying the
observational data and the latents underlying the interventional data.

Assumption 9. ‖ ∂
2a(z)
∂zi∂zj

‖ is bounded by L <∞ for all z ∈ Z and for all i, j ∈ {1, · · · , d}.

Lemma 4. If the number of interventions t ≥ log( δε
2(βisup+βiinf )

)/ log(1 − % ε2), then

maxzi∈Zi minz∗,j∈T ‖zi − z∗,j‖ ≤ ε with probability 1− δ.

Proof. Consider the interval [−βiinf , β
i
sup], where βiinf and βisup are the in�mum and supremum of

Zi. Consider an ε
2 covering of [−βiinf , β

i
sup]. This covering consists of 2(βisup+βiinf )

ε equally spaced
points at a separation of ε/2. Consider a point zi, its nearest neighbor in the cover is denoted as
z
′
l , and the nearest neighbor of zi in the set of interventions T is z∗,j . The nearest neighbor of z′l

in the set of interventions is z∗,r . Since ‖zi − z∗,j‖ ≤ ‖zi − z∗,q‖ for all q ∈ {1, · · · , t} we can
write

‖zi − z∗,j‖ ≤ ‖zi − z∗,r‖ ≤ ‖zi − z
′
l‖+ ‖z′l − z∗,r‖ ≤

ε

2
+ ‖z′l − z∗,r‖ (33)

Observe that if ‖z′l − z∗,r‖ is less than ε
2 for all z′l in the cover, then for all zi in Zi, ‖zi − z∗,j‖

is less than ε. We now show that ‖z′l − z∗,r‖ is su�ciently small provided t is su�ciently large.
Observe that
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P(‖z′l − z∗,r‖ >
ε

2
) ≤ (1− % ε

2
)t

We would like that (1 − % ε2)t ≤ δ, which implies t ≥ log(δ)/ log(1 − % ε2). Therefore, if t ≥
log(δ)/ log(1 − % ε2), then P(‖z′l − z∗,r‖ ≤

ε
2) with a probability at least 1 − δ. If we set δ =

δε
2(βisup+βiinf )

, then we obtain that for all j, P(‖z′l − z∗,r‖ ≤
ε
2) with probability at least 1− δ. The

�nal expression for t ≥ log( δε
2(βisup+βiinf )

)/ log(1− % ε2)

Theorem 7. Suppose the observational data and interventional data are generated from
Equation 1 and Equation 31 respectively. If the number of interventions t is su�ciently large,
i.e., t ≥ log( δε

2L(βisup+βiinf )
)/ log(1 − % ε

2L), Assumption 8 and Assumption 9 are sati�ed, then the
solution to Equation 32 identi�es the intervened latent zi approximately up to an invertible tranform,
i.e., ‖∇z−iak(z)‖∞ ≤ ε for all z ∈ Z .

Proof. Recall ẑ = f(x) = f ◦ g(z) = a(z), where a : ∪jZ(i,j) ∪ Z → ∪jẐ(i,j) ∪ Ẑ . Consistent
with the notation used earlier in the proof of Theorem 1, Ẑ(i,j) = f(X (i,j)). In Lemma 3, we had
shown that a is bijective, we can use the same recipe here and show that a is bijective.

Owing to the constraint in Equation 32, we claim that ∇z−iak(z) = 0 for all z−i in the interior
of Z−i with zi = z∗,j . Consider a ball around z−i that is entirely contained in Z−i, denote it
as Bz . From Equation 32, it follows that fk(x) takes the same value on this neighborhood. As
a result, ak(z) is equal to a constant on the ball Bz . Therefore, it follows that ∇z−iak(z) = 0
on the ball Bz . We can extend this argument to all the points in the interior of the support of
z−i. As a result, ∇z−iak(z) = 0 on the interior of the support of z−i. Further, ∇z−iak(z) = 0

for all z = [z∗,j , z−i] in ∪jZ(i,j). De�ne ℵ(z) = ∇z−iak(z). Consider the jth component of ℵ(z)

denoted as ℵj(z). Consider a point z ∈ Z and �nd its nearest neighbor in ∪jZ(i,j) and denote it
as z′ . Following the assumptions, z′−i = z−i. We expand ℵj(z) around z′ as follows

ℵj(z) = ℵj(z
′
) +∇zℵj(z

′′
)>(z − z′)

ℵj(z) =
∂ℵj(z

′′
)

∂zi
(zi − z

′
i)

In the above, we use the fact that ℵj(z
′
) = 0.

|ℵj(z)| =
∣∣∣∣∂ℵj(z′′)∂zi

(zi − z
′
i)

∣∣∣∣ ≤ ∣∣∣∣∂ℵj(z′′)∂zi

∣∣∣∣ εL ≤ ε
To see the last inequality in the above, use Lemma 4 with ε as ε/L and Assumption 9.

In the discussion above, we showed that multiple do interventional distribution on target latent
dimension help achieve approximate identi�cation of a latent up to an invertible transform. The
above argument extends to all latents provided we have data with multiple do interventional
distributions per latent. We end this section by giving some intuition as to why multiple
interventions are necessary in the absence of much structure on g.

Necessitating multiple interventions We consider the case with one do intervention.
Consider the set of values achieved under intervention, where z−i is from the interior of Z̃(i)

−i .
We call this set Z̃(i) Suppose a is a bijection of the following form.

a =

{
I, if z is in Z̃(i)

ã otherwise
(34)
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where I is identity function and ã is an arbitrary bijection with bounded second order derivative
(satisfying Assumption 9). De�ne f = a ◦ g−1 and h = g ◦ a−1. Observe that these f and h
satisfy both the constraints in the representation learning problem in Constraint 2. In the absence
of any further assumptions on g or structure of support of Z , each intervention enforces local
constraints on a.

A.3 Representation identi�cation under general perfect and imperfect
interventions

Before proving Theorem 3, we prove a simpler version of the theorem, which we leverage to
prove Theorem 3. We start with the case when the set S has one element say S = {j}.

Assumption 10. Consider the Z that follow the interventional distribution P(i)
Z . The joint support

of zi, zj satis�es factorization of support, i.e.,

Z(i)
i,j = Z(i)

i ×Z
(i)
j (35)

For all j ∈ {1, · · · , d}, −∞ < αjinf ≤ α
j
sup <∞. There exists a ζ > 0 such that the all the points

in (αjsup − ζ, αjsup) ∪ (αjinf , α
j
inf + ζ) are in Z(i)

j , ∀j ∈ {1, · · · , d}

The above assumption only requires support independence for two random variables Zi and Zj .

We now describe a constraint, where the learner enforces support independence between ẑi and
ẑj .

Constraint 6. The pair (ẑi, ẑj) satis�es support independence on interventional data, i.e.,

Ẑ(i)
i,j = Ẑ(i)

i × Ẑ
(i)
j

In the above Constraint 6, we use same indices i and j as in Assumption 10 for convenience, the
arguments extend to the case where we use a di�erent pair.

Theorem 8. Suppose the observational data and interventional data are generated from Equation 1
and Equation 2 respectively under Assumptions 1, 2, 10. The autoencoder that solves Equation 3 under
Constraint 1, 6 achieves block a�ne identi�cation, i.e., ∀z ∈ Z, ẑ = Az + c, where ẑ is the output of
the encoder f and z is the true latent and A is an invertible d× d matrix and c ∈ Rd. Further, the
matrix A has a special structure, i.e., the row ai and aj do not have a non-zero entry in the same
column. Also, each row ai and aj has at least one non-zero entry.

Proof. Let us �rst verify that there exists a solution to Equation 3 under Constraint 1, 6. If Ẑ = Z
and h = g, then that su�ces to guarantee that a solution exists.

First note that since Assumptions 1, 2 holds and we are solving Equation 3 under Constraint 1,
we can continue to use the result from Theorem 1. From Theorem 1, ∀z ∈ Z ∪ Z(i), ẑ = Az + c,
where ẑ is the output of the encoder f and z is the true latent and A is an invertible d× d matrix
and c ∈ Rd.

From Assumption 10 we know each component k ∈ {1, · · · , d} of z, zk is bounded above and
below. Suppose the minimum and maximum value achieved by zk ∈ Z(i)

k is αkinf and the maximum
value achieved by zk ∈ Z(i)

k is αksup .

De�ne a new latent

z
′
k = 2

(
zk −

αksup+αkinf
2

αksup − αkinf

)
, ∀k ∈ {1, · · · , d}
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Notice post this linear operation, the new latent takes a maximum value of 1 and a minimum
value of −1.

We start with ẑ = Az
′
+ c, where z′ is element-wise transformation of z that brings its maximum

and minimum value of each component to 1 and −1. Following the above transformation, we
de�ne the left most interval for z′i as [−1,−1 + ηi] and the rightmost interval is [1− ζi, 1], where
ηi > 0 and ζi > 0. Such an interval exists owing to the Assumption 10.

Few remarks are in order. i) Here we de�ne intervals to be closed from both ends. Our arguments
also extend to the case if these intervals are open from both ends or one end, ii) We assume all the
values in the interval [−1,−1 + ηi] are in the support. The argument presented below extends
to the case when all the values in [−1,−1 + ηi] are assumed by z′i except for a set of measure
zero, iii) The assumption 10 can be relaxed by replacing supremum and in�mum with essential
supremum and in�mum.

For a su�ciently small κ, we claim that the marginal distribution of ẑi and ẑj contain the sets
de�ned below. Formally stated

(−‖ai‖1 + ci,−‖ai‖1 + ci + κ) ∪ (‖ai‖1 + ci − κ, ‖ai‖1 + ci) ⊆ Ẑ(i)
i (36)

(−‖aj‖1 + cj ,−‖aj‖1 + cj + κ) ∪ (‖aj‖1 + cj − κ, ‖aj‖1 + cj) ⊆ Ẑ(i)
j (37)

where ai and aj are ith and jth row in matrix A. We justify the above claim next. Suppose all
elements of ai are positive. We set κ su�ciently small such that κ

|aik|d ≤ ηk for all k ∈ {1, · · · , d}.
Since κ is su�ciently small, [−1,−1 + κ

|aik|d ] in the support z′k , this holds for all k ∈ {1, · · · , d}.
As a result, (−‖ai‖1 + ci,−‖ai‖1 + ci + κ) is in the support of ẑk. We can repeat the same
argument when the signs of ai are not all positive by adjusting the signs of the elements z′ .
This establishes (−‖ai‖1 + ci,−‖ai‖1 + ci + κ) ⊆ Ẑ(i)

i . Similarly, we can also establish that
(‖ai‖1 + ci − κ, ‖ai‖1 + ci) ⊆ Ẑ(i)

i .

Suppose the two rows ai and aj share at least q ≥ 1 non-zero entries. Without loss of generality
assume that ai1 is non-zero and aj1 is non-zero. Pick an 0 < ε < κ

• Suppose ai1 and aj1 are both positive. In this case, if ẑi < −‖ai‖1 + ci + ε, then

z
′
1 < −1 +

2ε

|ai1|

To see why is the case, substitute z′1 = −1 + 2ε
|ai1| and observe that ẑi > −‖ai‖1 + ci + ε.

• Suppose ai1 and aj1 are both positive. In this case, if ẑj > ‖aj‖1 + cj − ε, then

z
′
1 > 1− 2ε

|aj1|

For su�ciently small ε (ε < 1
1/|ai1|+|aj1| ) both z′1 < −1 + 2ε

ai1
and z′1 > 1 − 2ε

aj1
cannot be true

simultaneously.

Therefore, ẑi < −‖ai‖1 + ci + ε and ẑj > ‖aj‖1 + cj − ε cannot be true simultaneously.
Individually, ẑi < −‖ai‖1 + ci + ε occurs with a probability greater than zero; see Equation 36.
Similarly, ẑj > ‖aj‖1 + cj − ε occurs with a probability greater than zero; see Equation 37. This
contradicts the support independence constraint. For completeness, we present the argument for
other possible signs of a.
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• Suppose ai1 is positive and aj1 is negative. In this case, if ẑi < −‖ai‖1 + ci + ε, then

z
′
1 < −1 +

2ε

|ai1|

• Suppose ai1 is positive and aj1 is negative. In this case, if ẑj < −‖aj‖1 + cj + ε, then

z
′
1 > 1− 2ε

|aj1|

Rest of the above case is same as the previous case. We can apply the same argument to any
shared non-zero component. Note that a row ai cannot have all zeros or all non-zeros (then aj
has all zeros). If that is the case, then matrix A is not invertible. This completes the proof.

We now use the result from Theorem 8 to prove the Theorem 3.

Theorem 3. Suppose the observational data and interventional data are generated from Equation 1
and Equation 2 respectively under Assumptions 1, 2, 4. The autoencoder that solves Equation 3 under
Constraint 1, 3 (with |S ′ | ≤ |S|) achieves block a�ne identi�cation. More speci�cally, ∀z ∈ Z ∪Z(i)

ẑk = a>k z + ck, ẑm = a>mz + cm, ∀m ∈ S
′
,

where ak contains at most d− |S ′ | non-zero elements and each component of am is zero whenever
the corresponding component of ak is non-zero for allm ∈ S

′
.

Proof. Let us �rst verify that there exists a solution to Equation 3 under Constraint 1, 3 (with
|S ′ | ≤ |S|).

We write Ẑ = ΠZ , where Π is a permutation matrix such that Ẑk = Zi. For each m ∈ S ′ there
exists a unique j ∈ S ′ such that Ẑm = Zj . Suppose h = g ◦Π−1. Observe that this construction
satis�es the constraints in Constraint 3.

To show the above claim, we leverage Theorem 8. We apply Theorem 8 to all the pairs in
{(k,m), ∀m ∈ S ′}, we obtain the following. We write ẑk = a>k z+ ck . Without loss of generality,
assume ak is non-zero in �rst s elements. Now consider any ẑm = a>mz+cm, wherem ∈ S ′ . From
Theorem 8 it follows that am[1 : s] = 0. This holds true for all m ∈ S ′ . Suppose s ≥ d− |S ′ |+ 1.
In this case, the �rst s columns cannot be full rank. Consider the submatrix formed by the �rst s
columns. In this submatrix |S ′ | rows are zero. The maximum rank of this matrix is d− |S ′ |. If
s ≥ d− |S ′ |+ 1, then this submatrix would not have a full column rank, which contradicts the
fact that A is invertible. Therefore, 1 ≤ s ≤ d− |S ′ |.

We can relax the assumption that |S ′ | ≤ |S| in the above theorem. We follow an iterative
procedure. We start by solving Constraint 3 with |S ′ | = d− 1. If a solution exists, then we stop.
If a solution does not exist, then we reduce the size of |S ′ | by one and repeat the procedure till
we �nd a solution. As we reach |S ′ | = |S| a solution has to exist.

A.4 Representation identi�cation with observational data under independent
support

Theorem 4. Suppose the observational data is generated from Equation 1 under Assumption 1, 2,
and 5, The autoencoder that the solves Equation 3 under Constraint 4 achieves permutation, shift and
scaling identi�cation. Speci�cally, ∀z ∈ Z, ẑ = ΛΠz + c, where ẑ is the output of the encoder f
and z is the true latent and Π is a permutation matrix and Λ is an invertible diagonal matrix.

32



Proof. We will leverage Theorem 8 to show this claim. Consider ẑi = aTi z+ ci. We know that the
ai has at least one non-zero element. Suppose it has at least q ≥ 2 non-zero elements. Without
loss of generality assume that these correspond to the �rst q components. We apply Theorem 8
to each pair ẑi, ẑj for all j 6= i. Note here i is kept �xed and then Theorem 8 is applied to every
possible pair. From the theorem we get that aj [1 : q] is zero for all j 6= i. If q ≥ 2, then the span
of �rst q columns will be one dimensional and as a result A cannot be invertible. Therefore, only
one element of row i is non-zero. We apply the above argument to all i ∈ {1, · · · , d}. We write a
function π : {1, · · · , d} → {1, · · · , d}, where π(i) is the index of the element that is non-zero in
row i, i.e., ẑi = aiπ(i)zπ(i) + ci. Note that π is injective, if two indices map to the same element,
then that creates shared non-zero coe�cients, which violates Theorem 8. This completes the
proof.
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B Supplementary Materials for Empirical Findings

B.1 Method details

Algorithm 1: Summarizing our two step approach for both the independence of support
(IOS) and interventional data case.

1: {Step 1: Training autoencoder (f, h)}
2: Sample data: X ∼ X ∪ X I where X I = ∪di=1X (i)

3: Minimize reconstruction loss: f †, h† = arg minf,h E
[
‖h ◦ f(X)−X‖2

]
4:
5: {Step 2: Learning transformation Γ with Independence of Support (IOS) objective}
6: Sample data: Ẑ ∼ f †(X ) where f † is the encoder learnt in Step 1
7: Minimize reconstruction + Hausdor� loss:

minΓ E
[
‖Γ′ ◦ Γ(Ẑ)− Ẑ‖2

]
+ λ×

∑
k 6=m HD

(
Ẑk,m(Γ), Ẑk(Γ)× Ẑm(Γ)

)
8: Return transformed latents: Γ(Ẑ)
9:

10: {Step 2: Learning transformation Γ = [γi]i=1:d using do-interventions}
11: for i in {1, · · · , d} do
12: Sample data: Ẑ ∼ f †(X (i)) where f † is the encoder learnt in Step 1s
13: Fix intervention targets at random Ŷ (i) ∼ Uniform(0, 1)

14: Minimize MSE loss: minγi EẐ
[∥∥γi(Ẑ)− Ŷ (i)

∥∥2]
15: end for
16: Return transformed latents: Γ(Ẑ)

We provide details about our training procedure in Algorithm 1. For learning with the
independence of support (IOS) objective in Step 2, we need to ensure that the map Γ is invertible,
hence we minimize a combination of reconstruction loss with Hausdor� distance, i.e.,

min
Γ

E
[
‖Γ′ ◦ Γ(Ẑ)− Ẑ‖2

]
+ λ×

∑
k 6=m

HD
(
Ẑk,m(Γ), Ẑk(Γ)× Ẑm(Γ)

)
(38)

where Ẑ denotes the output from the encoder learnt in Step 1, i.e., Ẑ = f †(X).

If we have data with multiple interventional distributions per latent dimension, then we sample a
new target for each interventional distribution. In our polynomial decoder experiments, we use a
linear γi. In our image based experiments, in Step 2, we use a non-linear map γi.

B.2 Experiment setup details: Polynomial decoder (g)

Basic setup. We sample data following the DGP described in Assumption 2 with the following
details:

• Latent dimension: d ∈ {6, 10}

• Degree of decoder polynomial (g): p ∈ {2, 3}

• Data dimension: n = 200

• Decoder polynomial coe�cient matrix G: sample each element of the matrix iid from a
standard normal distribution.

Latent distributions. Recall zi is the ith component of the latent vector z ∈ Rd. The various
latent distributions (PZ ) we use in our experiments are as follows:
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• Uniform: Each latent component zi is sampled from Uniform(-5, 5). All the latents (zi) are
independent and identically distributed.

• Uniform-Correlated: Consider a pair of latent variables zi, zi+1 and sample two
confounder variables c1, c2 s.t. c1 ∼ Bernoulli(p = 0.5), and c2 ∼ Bernoulli(p = 0.9).
Now we sample zi, zi+1 using c1, c2 as follows:

zi ∼

{
Uniform(0.0, 0.5) if c1 = 1

Uniform(−0.5, 0.0) if c1 = 0
,

zi+1 ∼

{
Uniform(0.0, 0.3) if c1 ⊕ c2 = 1

Uniform(−0.3, 0.0) if c1 ⊕ c2 = 0
,

where ⊕ is the xor operation. Hence, c1 acts as a confounder as it is involved in the
generation process for both zi, zi+1, which leads to correlation between them. Due to the
xor operation, the two random variables satisfy independence of support condition. Finally,
we follow this generation process to generate the latent vector z by iterating over di�erent
pairs (i ∈ { 1, · · · , d} with step size 2 ).

• Gaussian-Mixture: Each zi is sampled from a Gaussian mixture model with two
components and equal probability of sampling from the components, as described below:

zi ∼

{
N (0, 1) with prob. 0.5

N (1, 2) with prob. 0.5

All latents in this case are independent and identically distributed like the Uniform case;
though we have mixture distribution instead of single mode distribution.

• SCM-S: The latent variable z is sampled as a DAG with d nodes using the Erdős–Rényi
scheme with linear causal mechanism and Gaussian noise (Brouillard et al., 2020) 3 and set
the expected density (expected number of edges per node) to be 0.5.

• SCM-D: The latent variable z is sampled as a DAG with d nodes using the Erdős–Rényi
scheme with linear causal mechanism and Gaussian noise (Brouillard et al., 2020) and set
the expected density (expected number of edges per node) to be 1.0.

Case Train Validation Test

Observational (D) 10000 2500 20000
Interventional (D(I)) 10000 2500 20000

Table 5: Statistics for the synthetic poly-DGP experiments

Further details on dataset and evaluation. For experiments in Table 2, we only use
observational data (D); while for experiments in Table 3, we use both observational and
interventional data (D ∪D(i)), with details regarding the train/val/test split described in Table 5.

We carry out do interventions on each latent with D(i) corresponding to data from interventions
on zi. The union of data from interventions across all latent dimensions is denoted as D(I) =
∪i=1:dD(i). The index of the variable to be intervened is sampled from Uniform({1, . . . , d}). The
selected latent variable to be intervened is set to value 2.0.

3https://github.com/slachapelle/dcdi
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Further, note that for learning the linear transformation (γi) in Step 2 (Equation 7), we only use the
corresponding interventional data (D(i)) from do-intervention on the latent variable i. Also, all
the metrics (R2, MCC (IOS), MCC, MCC (IL)) are computed only on the test split of observational
data (D) (no interventional data used).

Model architecture. We use the following architecture for the encoder f across all the
experiments with polynomial decoder g (Table 2, Table 3) to minimize the reconstruction loss;

• Linear Layer (n, h); LeakyReLU(0.5),

• Linear Layer (h, h); LeakyReLU(0.5),

• Linear Layer (h, d),

where n is the input data dimension and h is hidden units and h = 200 in all the experiments.
For the architecture for the decoder (h) in Table 2, Table 3, we use the polynomial decoder
(h(z) = H[1, z, z⊗̄z, · · · , z⊗̄ · · · ⊗̄ z︸ ︷︷ ︸

p times

]>); where p is set to be same as that of the degree of true

decoder polynomial (g(z)) and the coe�cient matrix H is modeled using a single fully connected
layer.

For the independence of support (IOS) experiments in Table 2, we model both Γ,Γ
′ using a single

fully connected layer.

For the interventional data results (Table 3), we learn the mappings γi from the corresponding
interventional data (P(i)

X ) using the default linear regression class from scikit-learn (Pedregosa
et al., 2011) with the intercept term turned o�.

Finally, for the results with NN Decoder h (Table 8, Table 9), we use the following architecture for
the decoder with number of hidden nodes h = 200.

• Linear layer (d, h); LeakyReLU(0.5)

• Linear layer (h, h); LeakyReLU(0.5)

• Linear layer (h, n)

Hyperparameters. We use the Adam optimizer with hyperparameters de�ned below. We also
use early stopping strategy, where we halt the training process if the validation loss does not
improve over 10 epochs consecutively.

• Batch size: 16

• Weight decay: 5× 10−4

• Total epochs: 200

• Learning rate: optimal value chosen from grid: {10−3, 5× 10−4, 10−4}

For experiments with independence of support (IOS) objective in Step 2 (Table 2), we train with
λ = 10 as the relative weight of Hausdor� distance in the reconstruction loss (Equation 38).

B.3 Additional results: Polynomial decoder (g)

Table 6 presents additional details about Table 2 in main paper. We present additional metrics
like mean squared loss for autoencoder reconstruction task (Recon-MSE) and MCC computed
using representations from Step 1. Note that training with independence of support objective in
Step 2 leads to better MCC scores than using the representations from Step 1 on distributions
that satisfy independence of support. Also, the Uniform Correlated (Uniform-C) latent case can
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be interpreted as another sparse SCM with confounders between latent variables. For this case,
the latent variables are not independent but their support is still independent, therefore we see
improvement in MCC with IOS training in Step 2. Similarly, Table 7 presents the extended results
for the interventional case using polynomial decoder (Table 3 in main paper); with additional
metrics like mean squared loss for autoencoder reconstruction task (Recon-MSE) and R2 to test
for a�ne identi�cation using representations from Step 1. We notice the same pattern for all
latent distributions, that training on interventional data on Step 2 improves the MCC metric.

Further, we also experiment with using a neural network based decoder to have a more standard
autoencoder architecture where we do not assume access to speci�c polynomial structure or the
degree of the polynomial. Table 8 presents the results with NN decoder for the observational case,
where we see a similar trend to that of polynomial decoder case (Table 6) that the MCC increase
with IOS training in Step 2 for Uniform and Uniform-C latent distributions. Similarly, Table 9
presents the results with NN decoder for the interventional case, where the trend is similar to
that of polynomial decoder case (Table 7); though the MCC (IL) for the SCM sparse and SCM
dense case are lower compared to that with polynomial decoder case.

PZ d p Recon-MSE R2 MCC MCC (IOS)

Uniform 6 2 1.59± 0.40 1.00± 0.00 66.91± 2.45 99.31± 0.07
Uniform 6 3 1.81± 0.40 1.00± 0.00 75.14± 3.93 99.39± 0.06
Uniform 10 2 2.04± 0.76 1.00± 0.00 58.49± 2.26 90.73± 2.92
Uniform 10 3 8.59± 2.15 0.99± 0.00 56.77± 0.60 94.62± 1.50

Uniform-C 6 2 0.36± 0.07 1.00± 0.00 71.19± 2.29 96.81± 0.11
Uniform-C 6 3 1.72± 0.67 1.00± 0.00 70.53± 1.1 96.29± 0.05
Uniform-C 10 2 0.86± 0.27 1.00± 0.00 64.58± 1.81 85.31± 2.35
Uniform-C 10 3 2.42± 0.47 1.00± 0.00 62.69± 0.92 87.20± 1.77

Gaussian-Mixture 6 2 0.86± 0.27 1.0± 0.0 70.53± 1.25 67.43± 2.01
Gaussian-Mixture 6 3 0.86± 0.32 0.99± 0.0 66.19± 1.38 67.94± 1.42
Gaussian-Mixture 10 2 1.38± 0.51 1.0± 0.0 59.5± 2.22 58.3± 0.67
Gaussian-Mixture 10 3 4.12± 1.70 0.99± 0.0 57.15± 0.43 59.08± 1.11

SCM-S 6 2 1.52± 0.70 0.96± 0.02 71.77± 1.43 72.61± 1.48
SCM-S 6 3 2.25± 0.51 0.87± 0.07 73.14± 3.44 70.56± 1.54
SCM-S 10 2 4.23± 1.13 0.99± 0.0 64.35± 2.0 65.86± 1.32
SCM-S 10 3 2.83± 0.85 0.90± 0.05 61.95± 0.98 58.77± 1.27

SCM-D 6 2 1.34± 0.26 0.97± 0.01 75.25± 2.85 61.61± 4.36
SCM-D 6 3 1.20± 0.55 0.81± 0.11 82.9± 3.11 65.19± 2.70
SCM-D 10 2 2.89± 0.79 0.83± 0.10 67.49± 2.32 69.64± 3.09
SCM-D 10 3 1.55± 0.39 0.72± 0.15 66.4± 1.86 60.1± 1.16

Table 6: Observational data with Polynomial Decoder: Mean ± S.E. (5 random seeds). R2 and
MCC (IOS) achieve high values (for Uniform & Uniform-C) as predicted Theorem 1 and Theorem 4
respectively.
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PZ d p Recon-MSE R2 MCC MCC (IL)

Uniform 6 2 0.29± 0.08 1.0± 0.0 69.11± 1.11 100.0± 0.0
Uniform 6 3 0.97± 0.36 1.0± 0.0 73.42± 0.49 100.0± 0.0
Uniform 10 2 2.29± 0.85 1.0± 0.0 59.96± 2.03 100.0± 0.0
Uniform 10 3 2.74± 0.36 1.0± 0.0 65.94± 0.80 99.85± 0.03

Uniform-C 6 2 0.29± 0.11 1.0± 0.0 71.2± 2.46 100.0± 0.0
Uniform-C 6 3 1.50± 0.62 1.0± 0.0 70.21± 1.90 99.97± 0.01
Uniform-C 10 2 0.79± 0.24 1.0± 0.0 61.02± 1.03 100.0± 0.0
Uniform-C 10 3 1.72± 0.45 1.0± 0.0 61.16± 1.59 99.91± 0.01

Gaussian-Mixture 6 2 0.75± 0.27 1.0± 0.0 67.72± 2.20 99.99± 0.01
Gaussian-Mixture 6 3 0.57± 0.20 0.99± 0.0 70.21± 2.74 99.39± 0.05
Gaussian-Mixture 10 2 0.61± 0.16 1.0± 0.0 60.77± 1.60 99.98± 0.01
Gaussian-Mixture 10 3 2.29± 0.72 0.99± 0.0 57.81± 1.16 99.46± 0.05

SCM-S 6 2 0.21± 0.04 0.99± 0.0 68.41± 0.90 99.53± 0.38
SCM-S 6 3 0.93± 0.18 0.99± 0.0 74.12± 2.32 99.25± 0.34
SCM-S 10 2 0.63± 0.17 1.0± 0.0 68.01± 2.36 99.92± 0.03
SCM-S 10 3 1.29± 0.31 0.97± 0.01 66.81± 1.10 98.8± 0.13

SCM-D 6 2 0.81± 0.05 0.99± 0.01 71.8± 3.77 99.64± 0.12
SCM-D 6 3 0.75± 0.26 0.98± 0.01 79.48± 3.45 98.22± 1.07
SCM-D 10 2 0.76± 0.15 0.98± 0.01 70.78± 1.89 95.3± 2.24
SCM-D 10 3 0.96± 0.22 0.97± 0.0 70.08± 2.80 97.24± 0.88

Table 7: Interventional data with Polynomial Decoder: Mean ± S.E. (5 random seeds). MCC(IL) is
high as predicted by Theorem 2.

PZ d p Recon-MSE R2 MCC MCC (IOS)

Uniform 6 2 1.22± 0.19 0.98± 0.0 73.75± 2.85 99.05± 0.02
Uniform 6 3 2.79± 0.20 0.92± 0.0 63.29± 1.06 95.74± 0.12
Uniform 10 2 3.66± 0.39 0.99± 0.0 61.71± 1.16 94.25± 2.13
Uniform 10 3 33.16± 3.34 0.94± 0.0 59.27± 1.06 91.24± 4.99

Uniform-C 6 2 0.65± 0.10 0.96± 0.02 68.46± 1.94 94.95± 1.83
Uniform-C 6 3 1.39± 0.30 0.91± 0.0 68.09± 1.56 89.14± 2.38
Uniform-C 10 2 1.78± 0.09 0.99± 0.0 62.63± 2.05 88.88± 3.28
Uniform-C 10 3 12.0± 1.59 0.91± 0.01 59.91± 1.75 81.76± 3.67

Gaussian-Mixture 6 2 0.49± 0.12 0.95± 0.0 72.59± 2.03 65.33± 1.11
Gaussian-Mixture 6 3 0.79± 0.16 0.84± 0.01 66.25± 2.86 63.43± 1.27
Gaussian-Mixture 10 2 1.38± 0.18 0.95± 0.0 57.12± 1.52 54.76± 1.26
Gaussian-Mixture 10 3 7.22± 1.23 0.83± 0.01 55.41± 1.40 52.87± 0.86

SCM-S 6 2 2.24± 1.11 0.59± 0.18 69.77± 3.87 66.04± 1.34
SCM-S 6 3 2.45± 0.18 0.74± 0.05 73.72± 1.63 67.66± 2.18
SCM-S 10 2 6.41± 1.71 0.78± 0.08 65.99± 1.14 63.52± 1.11
SCM-S 10 3 4.32± 1.37 0.11± 0.43 66.96± 2.60 62.11± 1.36

SCM-D 6 2 2.7± 0.39 0.63± 0.22 75.19± 2.62 61.89± 4.0
SCM-D 6 3 1.89± 0.73 0.47± 0.25 77.83± 3.49 65.85± 1.58
SCM-D 10 2 4.46± 0.76 0.46± 0.11 69.81± 1.43 65.35± 2.72
SCM-D 10 3 3.53± 0.69 0.10± 0.29 65.89± 2.56 61.92± 1.95

Table 8: Observational data with Neural Network Decoder: Mean ± S.E. (5 random seeds). R2

achieves high values in many cases but MCC (IOS) achieve high values (for Uniform & Uniform-C).
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PZ d p Recon-MSE R2 MCC MCC (IL)

Uniform 6 2 0.35± 0.08 0.98± 0.0 68.39± 1.21 99.09± 0.02
Uniform 6 3 2.02± 0.28 0.91± 0.0 63.2± 1.33 91.67± 2.50
Uniform 10 2 3.89± 0.50 0.99± 0.0 60.54± 1.81 99.59± 0.04
Uniform 10 3 29.21± 2.33 0.95± 0.0 61.0± 1.48 93.73± 0.45

Uniform-C 6 2 0.42± 0.15 0.94± 0.02 65.91± 0.53 96.43± 1.47
Uniform-C 6 3 1.05± 0.19 0.91± 0.0 67.92± 3.48 94.8± 0.28
Uniform-C 10 2 1.32± 0.09 0.99± 0.0 60.02± 1.83 99.42± 0.01
Uniform-C 10 3 10.46± 1.27 0.92± 0.0 61.68± 1.20 93.83± 0.78

Gaussian-Mixture 6 2 0.45± 0.13 0.94± 0.0 70.64± 3.83 96.87± 0.14
Gaussian-Mixture 6 3 0.62± 0.12 0.83± 0.01 64.43± 2.36 84.53± 2.60
Gaussian-Mixture 10 2 0.87± 0.15 0.94± 0.0 57.35± 1.62 97.06± 0.16
Gaussian-Mixture 10 3 5.98± 0.93 0.83± 0.0 57.89± 2.06 80.14± 1.77

SCM-S 6 2 0.27± 0.07 0.94± 0.02 74.68± 2.28 93.07± 2.16
SCM-S 6 3 0.9± 0.18 0.89± 0.02 71.56± 3.18 88.66± 2.71
SCM-S 10 2 0.93± 0.23 0.98± 0.0 66.08± 1.04 94.14± 0.39
SCM-S 10 3 1.99± 0.36 0.88± 0.01 63.35± 1.44 76.62± 6.15

SCM-D 6 2 0.69± 0.07 0.95± 0.02 76.99± 2.53 91.63± 1.90
SCM-D 6 3 0.87± 0.25 0.88± 0.01 75.72± 1.69 88.19± 3.63
SCM-D 10 2 1.05± 0.29 0.95± 0.01 68.71± 2.16 90.14± 4.35
SCM-D 10 3 1.68± 0.34 0.86± 0.01 68.52± 2.11 81.82± 3.0

Table 9: Interventional data with Neural Network Decoder: Mean ± S.E. (5 random seeds). MCC(IL)
is high.
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B.4 Experiment setup details: Synthetic image experiments

The latent variable comprises of two balls and their (x, y) coordinates; hence we have d = 4
dimensional latent variable. We use PyGame (Shinners, 2011) rendering engine �nal images of
dimension 64× 64× 3.

Latent Distributions. We denote the (x, y) coordinates of the Ball 1 as (x1, y1), and for Ball
2 as (x2, y2). We have the following three cases for the latent distributions in case of synthetic
image experiments:

• Uniform: Each coordinate of Ball 1 (x1, y1) and Ball 2 (x2, y2) are sampled from
Uniform(0.1, 0.9).

• SCM (linear): The coordinates of Ball 1 (x1, y1) are sampled from Uniform(0.1, 0.9), which
are used to sample the coordinates of Ball 2 as follows:

x2 ∼

{
Uniform(0.1, 0.5) if x1 + y1 ≥ 1.0

Uniform(0.5, 0.9) if x1 + y1 < 1.0

y2 ∼

{
Uniform(0.5, 0.9) if x1 + y1 ≥ 1.0

Uniform(0.1, 0.5) if x1 + y1 < 1.0

• SCM (non-linear): The coordinates of Ball 1 (x1, y1) are sampled from Uniform(0.1, 0.9),
which are used to sample the coordinates of Ball 2 as follows:

x2 ∼

{
Uniform(0.1, 0.5) if 1.25× (x2

1 + y2
1) ≥ 1.0

Uniform(0.5, 0.9) if 1.25× (x2
1 + y2

1) < 1.0

y2 ∼

{
Uniform(0.5, 0.9) if 1.25× (x2

1 + y2
1) ≥ 1.0

Uniform(0.1, 0.5) if 1.25× (x2
1 + y2

1) < 1.0

Case Train Validation Test

Observational (D) 20000 5000 20000
Interventional (D(I)) 20000 5000 20000

Table 10: Statistics for the synthetic image experiments

Further details on dataset and evaluation. For experiments in Table 4, the details regarding
the train/val/test split are described in Table 10.

Note that the interventional data (D(I)) is composed of do interventions on each latent variable
(D(I) = ∪i=1:dDi), where latent variable to be intervened is sampled from Uniform({1, · · · , d}).
Hence, each latent variable has equal probability to be intervened.

While performing do-interventions on any latent variable (D(i)), we control for the total number
of distinct values the latent takes under the intervention (#interv, each distinct value correpsonds
to sampling data from one interventional distribution). When #interv = 1, then we set the latent
variable i to value 0.5. For the case when #interv > 1, we sample the values corresponding
to di�erent do-interventions on latent variable i as total of #interv equally distant points from
S = [0.25, 0.75]. Eg, when #interv = 3, then the possible values after do-intervention on
latent variable i are {0.25, 0.50, 0.75}. Note that we uniformly at random sample the value of
intervention from the set of intervention values.
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Note that we only use the observational data (D) for training the autoencoder in Step 1. while
the non-linear transformations γi in Step 2 (Equation 7) are learnt using the corresponding
interventional data (D(i)). Further, the metrics (MCC, MCC (IL)) are computed only on the test
split of observational data (D) (no interventional data used).

Model architecture. We use the following architecture for encoder f across all experiments
(Table 4) in Step 1 of minimizing the reconstruction loss.

• Pre Trained ResNet-18: Image (64×64×3)→ Penultimate Layer Output (512 dimensional)

• Linear Layer (512, 128); LeakyReLU()

• Linear Layer (128, 25)

We use the following architecture for decoder h across all experiments (Table 4) in Step 1
of minimizing the reconstruction loss. Our architecture for decoder is inspired from the
implementation in widely used works (Locatello et al., 2019).

• Linear Layer (25, 128); LeakyReLU()

• Linear Layer (128, 1024); LeakyReLU()

• DeConvolution Layer (cin: 64, cout: 64, kernel: 4; stride: 2; padding: 1); LeakyReLU()

• DeConvolution Layer (cin: 64, cout: 32, kernel: 4; stride: 2; padding: 1); LeakyReLU()

• DeConvolution Layer (cin: 32, cout: 32, kernel: 4; stride: 2; padding: 1); LeakyReLU()

• DeConvolution Layer (cin: 32, cout: 3, kernel: 4; stride: 2; padding: 1); LeakyReLU()

Note: Here the latent dimension of the encoder (25) is not equal to the true latent dimension
(d = 4) as that would lead issues with training the autoencoder itself. Also, this choice is more
suited towards practical scenarios where we do not know the dimension of latent beforehand.

For learning the mappings γi from the corresponding interventional data (P(i)
X ), we use the

default MLP Regressor class from scikit-learn (Pedregosa et al., 2011) with 1000 max iterations for
convergence.

Hyperparameters. We use Adam optimizer with hyperparameters de�ned below. We also use
early stopping strategy, where we halt the training process if the validation loss does not improve
over 100 epochs consecutively.

• Batch size: 64

• Weight decay: 5× 10−4

• Total epochs: 1000

• Learning rate: 5× 10−4

B.5 Additional Results: Synthetic Image Experiments

Table 11 presents more details about Table 4 in the main paper, with additional metrics like
mean squared loss for autoencoder reconstruction task (Recon-MSE) and and R2 to test for a�ne
identi�cation using representations from Step 1. Note that Recon-RMSE and R2 are computed
using the autoencoder trained from Step 1, hence the results are not a�ected by training on
varying #interv per latent in Step 2. We get high R2 values across di�erent latent distributions
indicating the higher dimensional latents (d̂ = 25) learned by the encoder are related to the small
dimensional true latents (d = 4) by a linear function.
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PZ #interv Recon-RMSE R2 MCC (IL)

Uniform 1 514.25± 61.8 0.78± 0.07 33.18± 7.09
Uniform 3 514.25± 61.8 0.78± 0.07 72.22± 4.04
Uniform 5 514.25± 61.8 0.78± 0.07 88.3± 1.02
Uniform 7 514.25± 61.8 0.78± 0.07 88.08± 1.10
Uniform 9 514.25± 61.8 0.78± 0.07 87.52± 1.33

SCM (linear) 1 529.9± 57.94 0.90± 0.01 42.74± 1.43
SCM (linear) 3 529.9± 57.94 0.90± 0.01 73.9± 2.77
SCM (linear) 5 529.9± 57.94 0.90± 0.01 83.57± 0.94
SCM (linear) 7 529.9± 57.94 0.90± 0.01 85.45± 0.82
SCM (linear) 9 529.9± 57.94 0.90± 0.01 84.8± 1.49

SCM (non-linear) 1 366.06± 27.6 0.91± 0.0 34.9± 2.29
SCM (non-linear) 3 366.06± 27.6 0.91± 0.0 65.15± 3.71
SCM (non-linear) 5 366.06± 27.6 0.91± 0.0 77.15± 1.79
SCM (non-linear) 7 366.06± 27.6 0.91± 0.0 81.92± 2.37
SCM (non-linear) 9 366.06± 27.6 0.91± 0.0 81.13± 2.53

Table 11: Interventional data in image-based experiments: Mean ± S.E. (5 random seeds). MCCs
increase with the number of interventions per latent dimension as predicted by Theorem 7.

We also report a batch of reconstructed images from the trained autoencoder for the di�erent
latent distributions; Uniform (Figure 3), SCM Linear (Figure 4), and SCM Non-Linear (Figure 5).
In all the cases the position and color of both the balls is accurately reconstructed.
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Figure 3: Reconstructed images (top row) for the corresponding real images (bottom row) for the
uniform latent case.

Figure 4: Reconstructed images (top row) for the corresponding real images (bottom row) for the
SCM (linear) latent case.

Figure 5: Reconstructed images (top row) for the corresponding real images (bottom row) for the
SCM (non-linear) latent case.
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