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ABSTRACT

Graphs are ubiquitous in social networks and biochemistry, where Graph Neural
Networks (GNN) are the state-of-the-art models for prediction. Graphs can be
evolving and it is vital to formally model and understand how a trained GNN re-
sponds to graph evolution. We propose a smooth parameterization of the GNN
predicted distributions using axiomatic attribution, where the distributions are on
a low-dimensional manifold within a high-dimensional embedding space. We
exploit the differential geometric viewpoint to model distributional evolution as
smooth curves on the manifold. We reparameterize families of curves on the
manifold and design a convex optimization problem to find a unique curve that
concisely approximates the distributional evolution for human interpretation. Ex-
tensive experiments on node classification, link prediction, and graph classifica-
tion tasks with evolving graphs demonstrate the better sparsity, faithfulness, and
intuitiveness of the proposed method over the state-of-the-art methods.

1 INTRODUCTION

Graph neural networks (GNN) are now the state-of-the-art method for graph representation in many
applications, such as social network modeling Kipf & Welling (2017) and molecule property pre-
diction Wu et al. (2018), pose estimation in computer vision Yang et al. (2021), smart cities Ye
et al. (2020), fraud detection Wang et al. (2019), and recommendation systems Ying et al. (2018). A
GNN outputs a probability distribution Pr(Y'|G; €) of Y, the class random variable of a node (node
classification), a link (link prediction), or a graph (graph classification), using trained parameters
6. Graphs can be evolving, with edges/nodes added and removed. For example, social networks
are undergoing constant updates Xu et al. (2020a); graphs representing chemical compounds are
constantly tweaked and tested during molecule design. In a sequence of graph snapshots, without
loss of generality, let Gy — (1 be any two snapshots where the source graph Gy evolves to the
destination graph G1. Pr(Y'|Gg; ) will evolve to Pr(Y|Gy; @) accordingly, and we aim to model
and explain the evolution of Pr(Y'|G; 0) with respect to Gy — G to help humans understand the
evolution Ying et al. (2019); Schnake et al. (2020); Pope et al. (2019); Ren et al. (2021); Liu et al.
(2021). For example, a GNN’s prediction of whether a chemical compound is promising for a target
disease during compound design can change as the compound is fine-tuned, and it is useful for the
designers to understand how the GNN’s prediction evolves with respect to compound perturbations.

To model graph evolution, existing work Leskovec et al. (2007; 2008) analyzed the macroscopic
change in graph properties, such as graph diameter, density, and power law, but did not analyze
how a parametric model responses to graph evolution. Recent work Kumar et al. (2019); Rossi
et al. (2020); Kazemi et al. (2020); Xu et al. (2020b;a) investigated learning a model for each graph
snapshot and thus the model is evolving, while we focus on modeling a fixed GNN model over
evolving graphs. A more fundamental drawback of the above work is the discrete viewpoint of
graph evolution, as individual edges and nodes are added or deleted. Such discrete modeling fails to
describe the corresponding change in Pr(Y'|G; ), which is generated by a computation graph that
can be perturbed with infinitesimal amount and can be understood as a sufficiently smooth function.
The smoothness can help identify subtle infinitesimal changes contributing significantly to change
in Pr(Y'|G; 0), and thus more faithfully explain the change.
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Manifold of GNN predicted distributions
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Figure 1: Gy at time time s = 0 is updated to G; at time s = 1 after the edge (J, K) is added, and the
predicted class distribution (Pr(Y|Go)) of node J changes accordingly. The contributions of each path p on
a computation graph to Pr(Y = j|G) for class j give the coordinates of Pr(Y|G) in a high-dimensional
Euclidean space, with axes indexed by (p, 7). Pr(Y'|G) varies smoothly on a low dimensional manifold, where
multiple curves ~y(s) can explain the evolution from Pr(Y'|Go) to Pr(Y|G1) at very fine-grained. We select a
~(s) that use a sparse set of axes for explaining the prediction evolution. Edge deletion, mixture of addition
and deletion, link prediction, and graph classification are handled similarly.

Regarding explaining GNN predictions, there is promising progress made with static graphs, in-
cluding local or global explanation methods Yuan et al. (2020b). Local methods explain individual
GNN predictions by selecting salient subgraphs Ying et al. (2019), nodes, or edges Schnake et al.
(2020). Global methods Yuan et al. (2020a); Vu & Thai (2020) optimize simpler surrogate mod-
els to approximate the target GNN and generate explaining models or graph instances. Existing
counterfactual or perturbation-based methods Lucic et al. (2021) attribute a static prediction to indi-
vidual edges or nodes by optimizing a perturbation to the input graph to maximally alter the target
prediction, thus giving a sense of explaining graph evolution. However, the perturbed graph found
by these algorithms can differ from Gy, and thus does not explain the change from Pr(Y|Gy; ) to
Pr(Y|G1;0). Both prior methods DeepLIFT Shrikumar et al. (2017) and GNN-LRP Schnake et al.
(2020) can find propagation paths that contribute to prediction changes. However, they have a fixed
G for any (G and thus fail to model smooth evolution between arbitrary Go and GG;. They also
handle multiple classes independently Schnake et al. (2020) or uses the log-odd of two predicted
classes Y = j and Y = j’ to measure the changes in Pr(Y'|G; @) Shrikumar et al. (2017), rather
than the overall divergence between two distributions.

To facilitate smooth evolution from Pr(Y|Gy; 0) to Pr(Y|G1; 0) (we ignore the fixed 0 in the se-
quel), in Section 3.1, we set up a coordinate system for Pr(Y'|G) using the contributions of paths on
the computation graphs to Pr(Y'|G) relative to a global reference graph. We rewrite the distribution
Pr(Y|G) for node classification, link prediction, and graph classification using these coordinates,
so that Pr(Y'|G) for any graph G is embedded in this Euclidean space spanned by the paths. For
classification, the distributions Pr(Y|G) have only ¢ — 1 sufficient statistics and form an intrinsic
low-dimensional manifold embedded in the constructed extrinsic embedding Euclidean space. In
Section 3.2, we study the curvature of the manifold local to a particular Pr(Y'|G). We derive the
Fisher information matrix I of Pr(Y|G) with respect to the path coordinates. As the KL-divergence
between Pr(Y|Gy) and Pr(Y|G) that are sufficiently close can be approximated by a quadratic
function with the Fisher information matrix, Pr(Y'|G) does not necessarily evolve linearly in the
extrinsic coordinates but adapts to the curved intrinsic geometry of the manifold around Pr(Y'|G).
Previous explanation methods Shrikumar et al. (2017); Schnake et al. (2020) taking a linear view
point will not sufficiently model such curved geometry. Our results justify KL-divergence as a faith-
fulness metric of explanations adopted in the literature. The manifold allows a set of curves (s)
with the continuous time variable s € [0, 1] to model differentiable evolution between two distri-
butions. With a novel reparameterization, we devise a convex optimization problem to optimally
select a curve depending on a small number of extrinsic coordinates to approximate the evolution
of Pr(Y|Gy) into Pr(Y|G1) following the local manifold curvature. Empirically, in Section 4, we
show that the proposed model and algorithm help select sparse and salient graph elements to con-
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cisely and faithfully explain the GNN responses to evolving graphs on 8 graph datasets with node
classification, link prediction, and graph classification, with edge additions and/or deletions.

2 PRELIMINARIES

Graph neural networks. For node classification, assume that we have a trained GNN of T layers
that predicts the class distribution of each node J € V on a graph G = (V,€). Let N'(J) be the

neighbors of node J. On layer ¢, ¢t = 1,...,7T and for node J, GNN computes hidden vector hf]t)
using messages sent from its neighbors:

fot) = l(JtP)DATE( /(\QG(h(Jtil)’h(lzil)’KEN(J)))7 (D
h(Jt) = NonLinear(z(Jt)), 2)

where f /SgG aggregates the messages from all neighbors and can be the element-wise sum, average,
or maximum of the incoming messages. fétP)DATE maps f 152(} to zf]t), using Zf,t) = < /gt(‘zc,v 0 (t)> or

a multi-layered perceptron with parameters 8(*). For layer ¢ € {1,...,T — 1}, ReLU is used as
the NonLinear mapping, and we refer to the linear terms in the argument of NonLinear as “logits”.
At the input layer, hf,o) is the node feature vector x ;. At layer T, the logits are ZST) £y I (@),
whose j-th element z;(G) denotes the logit of the class j = 1,...,c. z;(G) is mapped to the
class distribution Pr(Y;|G; @) through the softmax (¢ > 2) or sigmoid (¢ = 2) function, and
argmax; z; = argmax; Pr(Y = j|G;0) is the predicted class for .J. For link prediction, we

(1)

concatenate z; ’ and zF]T) as the input to a linear layer to obtain the logits:

Zry = <|:Z(IT); ZST):| ,0> . 3)

Since link prediction is a binary classification problem, Z;; can be mapped to the probability that
(I, J) exists using the sigmoid function. For graph classification, the average pooling of z;(G) of
all nodes from G can be used to obtain a single vector representation z(G) of G for classification.
Since the GNN parameters 0 are fixed,

we ignore 6 in Pr(Y|G; 0_) and use Table 1: Symbols and their meanings
Pr(Y|G) to denote the predicted class
distribution of Y, whichis a general ran- Symbols Definitions and Descriptions
dom variable of the class of a node, an Jy LUV K Nodes in the graph
d hol h. d di Jyeves Uy, ...,k Neurons of the corresponding nodes
edge, or a whole graph, dépending on c The number of classes
the tasks. Similarly, we use z*) and Go — G ~ Graph Gy evolves to Gy
z to denote logits on layer ¢ and the 27 (G) Logit vector [z, (G), . . ., 2 (G)] of node J
. Az (Go, Gr) Az;(Go,G1) = 27(G1) — z7(Go)

last layer of GNN, respectively. For Pr(Y|G) Distribution [Pry (G), . . ., Pr.(G)] of class Y
a uniform treatment, we consider the W(G) Paths on the computation graph of GNN

. . Wi (G) The subset of W (G) that computes z ; (G)
GNN as learning node representations AW, (Go, G1) Altered paths in W (Go) as Go — G
zj, while the concatenation, pooling, Chp.i Contribution of the p-th altered path to Az,

sigmoid, and softmax at the last layer
that generate Pr(Y'|G) from the node representations are task-specific and separated from the GNN.

Evolving graphs. In a sequence of graph snapshots, let Gy = (1, £y) denote an arbitrary source
graph with edges & and nodes Vg, and G; = (V1, &) an arbitrary destination graph, so that the
edge set evolves from & to & and the node set evolves from V) to V;. We denote the evolution
by Gy — G1. Both sets can undergo addition, deletion, or both, and all such operations happen
deterministically so that the evolution is discrete. Let AE be the set of altered edges: AE = {e: e €
Eine¢Eorec & Ne ¢ &} As Gy — Gy, there is an evolution from Pr(Y'|Gy) to Pr(Y|Gy).

Definition (Differentiable evolution): Given a fixed GNN model, for Gy — G1, find a family of com-
putational models {Pr(Y|G(s)) : s € [0,1], Pr(Y|G(0)) = Pr(Y|Go),Pr(Y|G(1)) = Pr(Y|G1)}
and Pr(Y'|G(s)) is differentiable with respect to the time variable s.

Differential geometry. An n dimensional manifold M is a set of points, each of which can be
associated with a local n dimensional Euclidean tangent space. The manifold can be embedded in a

' A computational model that outputs Pr(Y|G (s)) does not necessarily correspond to a concrete input graph
G(s). We use the notation Pr(Y|G(s)) and G(s) for notation convenience only.
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global Euclidean space R™, so that each point can be assigned with m global coordinates. A smooth
curve on M is a smooth function v : [0,1] — M. A two dimensional manifold embedded in R?
with two curves is shown in Figure 1.

3 DIFFERENTIAL GEOMETRIC VIEW OF GNN ON EVOLVING GRAPHS

3.1 EMBED A MANIFOLD OF GNN PREDICTED DISTRIBUTIONS

While a manifold in general is coordinate-free, we aim to embed a manifold in an extrinsic Euclidean
space for a novel parameterization of Pr(Y|G). The GNN parameter 6 is fixed and cannot be used.
Pr(Y|G) is given by the softmax or sigmoid of the sufficient statistics z(G), which are used as
coordinates in information geometry Amari (2016). However, the logits sit at the ending layer of
the GNN and will not fully capture how graph evolution influences Pr(Y'|G) through the changes
in the computation of the logits. GNNExplainer Ying et al. (2019) adopts a soft element-wise mask
over node features or edges and thus parameterize Pr(Y'|G) using the mask. However, the mask
works on the input graph (edges or node features), without revealing changes in the internal GNN
computation process.

We propose a novel extrinsic coordinate based on the contributions of paths to Pr(Y|G) on the
computation graph of the GNN. z;(G) is generated by the computation graph of the given GNN,
which is a spanning tree rooted at .J of depth T". Figure 1 shows two computation graphs for G and
G1. On a computation graph, each node consists of neurons for the corresponding node in GG, and we
use the same labels (I, J, K, L, etc.) to identify nodes in the input and computational graphs. The
leaves of the tree contain neurons from the input layer (f = 0) and the root node contains neurons
of the output layer (t = T). The trees completely represent the computations in Eqgs. (1)-(2), where
each message is passed through a path from a leaf to the root. Let a path be (..., U, V,...,.J),
where U and V represent any two adjacent nodes and J is the root where z;(G) is generated. For a
GNN with T layers, the paths are sequences of 7'+ 1 nodes. Let W (G) be the paths ending at .J.

Consider a reference graph G* containing all nodes in the graphs during the evolution. The
symmetric set difference AW ;(G*,G) = W;(G*)AW,(G) contains all m paths rooted at .J
with at least one altered edge when G* — G. For example, in Figure 1, AW;(G*,G) =
{(J,K, D), (K,J,J),(K,K,J), (L, K,J)}. AW;(G*,G) causes the change in z; and Pr(Y|G)
through the computation graph. Let the difference in z; computed on G* and G be Az ;(G*,G) =
z;(G) — z;(G*) = [Az,...,Az] € R°. We adopt DeepLIFT to GNN (see Shrikumar et al.
(2017) and Appendix A.4) to compute the contribution C), ;(G) of each path p € AW ;(G*, G) to
Az;(Q) forany class j = 1,...,¢, so that [z1(G), ..., z.(G)] is reparameterized as

21(G), e 2 (G 4 | Y Ci(G)en .Y Coe(G)| = 25(G) +17CH(G) @)

Here, C;(G) is the contribution matrix with C,, ;(G) as elements and C.;(G) the j-th column. 1
is an all-1 m x 1 vector. By fixing G* and z;(G*), we use C), ;(G) as the extrinsic coordinates of
Pr(Y|G). In this coordinates system, the difference vector between two logits for node J is:

Az;(Go,G1) =2;(G1) —z(Go) =17 (Cy(G1) — C5(Gy)) =1TAC(Go,G1).  (5)

If we set G* = Gy, we have Az;(Go,G1) = 1T C;(G1). Even with a fixed G*, different graphs
G and nodes J can lead to different sets of AW ;(G*, G). We obtain a unified coordinate system
by taking the union Ug jeg AW (G*, G). We set the rows of C;(G) to zeros for those paths that
are not in AW ;(G*, G). In implementing our algorithm, we only rely on the observed graphs to
exhaust the relevant paths without computing Ug, jeg AW (G*, G). We now embed Pr(Y|G) in
the coordinate system.

¢ Node classification: the class distribution of node .J is
Pr(Y|G) = softmax(z;(G)) = softmax(z;(G*) + 1" C;(G)). (6)

* Link prediction: for a link (I, J) between nodes I and J, the logits z;(G) and z;(G) are con-
catenated as input to a linear layer O p (“LP” means “link prediction”). The class distribution of
the link is

Pr(Y|G) = sigmoid([z;(G*) + 17 C1(G); 25(G*) + 17 C;(G)]Op). @)
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¢ Graph classification: with a linear layer Og¢ (“GC” for “graph classification”) and average pool-
ing, the distribution of the graph class is

Pr(Y|G) = softmax(mean(z;(G*) + 1" C;(G) : J € V)Ogc). (8)

The arguments of the above softmax and sigmoid are linear in C;(G) for all J € V of G, and we
recover exponential families reparameterized by C;(G). For a specific prediction task, we let the
contribution matrices C';(G) in the corresponding equation of Egs. (6)-(8) vary smoothly, and the
resulting set {Pr(Y|G)} constitutes a manifold M(G, J). The dimension of the manifold is the
same as the number of sufficient statistics of Pr(Y'|G), though the embedding Euclidean space has
mc (2mc and |V|me, resp.) coordinates for node classification (link prediction and graph classifica-
tion, resp.), where m is the number of paths in AW ;(Gg, G1) and ¢ the number of classes.

3.2 A CURVED METRIC ON THE MANIFOLD

We will define a curved metric on the manifold M (G, J) of node classification probability distri-
bution (link prediction and graph classification can be done similarly). A well-defined metric is
vital to tasks such as metric learning on manifolds, which we will use to explain evolving GNN
predictions in Section 3.3. We could have approximated the distance between two distributions
Pr(Y|Go) and Pr(Y'|G;) by ||AC (G, G1)]|| with some matrix norm (e.g., the Frobenius norm),
as shown in Figure 1. As another example, DeepLIFT Shrikumar et al. (2017) uses the linear term
17(C.;(Go) — C.j(G1)) for two predicted classes j and j’ on G and G4, respectively. These op-
tions imply the Euclidean distance metric defined in the flat space spanned by elements in C;(G).
However, the evolution of Pr(Y|G) on M(G, J) depends on C;(Gy) and C;(G1) nonlinearly
through the sigmoid or softmax function as in Egs. (6)-(8), and the difference between Pr(Y|Gy)
and Pr(Y|G1) should reflect the curvatures over the manifold M(G, J) of class distributions.

We adopt information geometry Amari (2016) to defined a curved metric on the manifold M (G, J).
Take node classification as an example, the KL-divergence Dkp (Pr(Y|G1)||Pr(Y|Go)) between

any two class distributions on the manifold M(G, J) is defined as ), log Pr(Y|G1)%. As
the parameter C;(Gy) approaches C';(G1), Pr(Y|Gp) becomes close to Pr(Y|G1) (as measured
by the following Riemannian metric on M(G, J), rather than the Euclidean metric of the extrinsic

space), and the KL-divergence can be approximated locally at Pr(Y|G1) as

vec(AC;(Gr,Go)) " I(vee(Cy(Gh)))vee(AC; (G1, Go)), ©)
where vec(C;(G1)) is the column vector with all elements from C;(G;), and similar for
vec(AC;(G1,Gp)) with the matrix AC;(G1,Gyp). I(vec(Cy(Gy))) is the Fisher informa-
tion matrix of the distribution Pr(Y'|G;) with respect to parameters in vec(C;(G1)), evaluated
a8 (Vyee(cy (61)27(G1)) "By wpr(v(61) 52561154, (01)) (Vvee(cy (61)) 27 (G1)), With s,,q,) =
Va2, (G log Pr(Y|G1) being the gradient vector of the log-likelihood with respect to z;(G1) and
Vyee(Cy(G1)) 2 (G1) € Re*(M) the Jacobian of z;(G1) w.r.t vec(C;(G1)). See (Martens (2020)

and Appendix A.2 for the derivations). I is symmetric positive definite (SPD) and Eq. (9) defines a
non-Euclidean metric on the manifold to make M a Riemannian manifold.

3.3 CONNECTING TWO DISTRIBUTIONS VIA A SIMPLE CURVE

We formulate the problem of explaining the GNN prediction evolution as optimizing a curve on
the manifold M. Take node classification as an example 2. Let s € [0, 1] be the time variable.
As s — 1, Pr(Y|G(s)) moves smoothly over M along a curve y(s) € I'(Go,G1) = {y(s) =
{Pr(Y|G(s)) : s € [0,1],Pr(Y|G(0)) = Pr(Y|Gy),Pr(Y|G(1)) = Pr(Y|G1)} € M}. Two
possible curves 71 (s) and ~2(s) are shown in Figure 1. With the parameterization in Egs. (5)-
(6), we can specifically define the following curves by smoothly varying the path contributions to
Pr(Y|G(s)) through Az ;(G(s)) (s can be reversed to move in the opposite direction along v(s)).

* linear in the directional matrix AC;(Gy, G1), with AC;(Go, G(s)) = AC;(Go, G1)s;

e linear in the elements of AC;(Go,G1): AC;(Go, G(s)) = AC;(Go,G1) ® X (s), where © is
element-wise product and the matrix element X (s), ; is a function mapping s € [0, 1] — [0, 1];

’In the Appendix section A.3, we discuss the cases of link prediction and graph classification.
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e linear in the rows of AC;(Go, G1): let X = [21(5),...,7m(s)]" and z,(s) € [0, 1] weight the
p-th path as a whole, and

AC;(Go,G(s)) = AC;(Go,G1) © [Lixe @ X(s)], (10)
where @ is the Kronecker product creating the path weighting matrix 1. ® x(s) € [0, 1]™<.

According to the derivation in Appendix A.1, we can rewrite Dxy.(Pr(Y|G1)||Pr(Y|Gy)) as

Ejpr(vian[1T(C;j(G1) — Cj(Go))] — log Z(Gh) + 1OgZeXp{Zj(G*) +17C5(Go)} (1)

j=1

where the expectation has class j sampled from Pr(Y'|G;) and log Z(G) is the cumulant function
of Pr(Y|G1). In Eq. (11), by letting G vary along any ~(s) as parameterized above and replacing
C.;(Gp) with C.;(G(s)) = C.;(Go) + AC.;(Go, G(s)), we obtain Dk (Pr(Y|G1)||Pr(Y|G(s))).
Taking s — 1, the curve Pr(Y|G(s)) enters a neighborhood of Pr(Y|G1) on the manifold M to
approximate Pr(Y'|G1) and Dgp (Pr(Y|G1)||Pr(Y|G(s))) — 0 so that the curve y(s) parameter-
ized by x(s) smoothly mimics the movement from Pr(Y'|Gy) to Pr(Y|G1), at least locally in the
neighborhood of Pr(Y|Gy). Since v(s) € I'(Go, G1) C M(G, J), selecting a curve ~y(s) is differ-
ent from selecting some edges from G to approximate the distribution Pr(Y|G1) as in Ying et al.
(2019). Rather, the curves should move according to the geometry of the manifold M (G, J).

We can use Eq. (11) to explain how the computation of Pr(Y|Gy) evolves to that of Pr(Y'|G;)
following ~(s). There are mc coordinates in C;(G(s)), and can be large when J is a high-
degree node, while an explanation should be concise. We will identify a curve ~y(s) using a small
number of coordinates for conciseness. The parameterization Eq. (10) assigns a weight x,(s)
to each path p at time s, allowing thresholding the elements in X(s) to select a subset F,, of
n < m paths. The contributions from these few selected path is now AC;(Go, G(s)), which
should well-approximate AC;(Gy,G(1)) as s — 1. For example, in Figure 1, we can take
Ey, = {(K,J,J),(L,K,J)} € AW;(Go,G1) with n = 2. The selected paths span a low-
dimensional space to embed the neighborhood of Pr(Y'|G1) on the manifold M(J,G). Adding
paths in F,, to the computation graph of G leads to a new computation graph on the manifold.

We optimize E,, to minimize the KL-divergence in Eq. (11) with Eq. (10). Let z(s;p) € [0,1],
p =1,...,m be the weight of selecting path p into E,,. We solve the following problem:

;(s)nel[i(?l]m E;jpr(y=jic1) [1T(O:j (G1)—C.;(x(s))]+1og Z exp{z;(G")+ lTC’:j (x(s)} (12)

lx(s)ll=n
where C.;(x(s)) = C.;(Go) + AC.;(Go, G(s)) is a vector of path contributions to the logit of class
j. AC.;(Go, G(s)) is parameterized by Eq. (10) and is a function of x(s). The constants log Z (G )
is ignored from Eq. (11) as G is fixed. The linear constraint ensures the total probabilities of the
selected edges is n. The optimization problem is convex and has a unique optimal solution. We
select the paths with the highest x(s) values to constitute a curve y(s) that explains the change from
Pr(Y|Go) to Pr(Y|G1) as ~(s) approaches Pr(Y|G1). Concerning the Riemannian metric in Eq.
(9), the above optimization does not change the Riemannian metric I(vec(C;(G1))) at Pr(Y|G1)
since the objective function is based on the KL-divergence of distributions generated by the non-
linear softmax mapping, while C.;(X(s)) vary in the extrinsic coordinate system with X(s).

Jj=1

4 EXPERIMENTS

Datasets and tasks. We study node classification task on evolving graphs on the YelpChi, Yelp-
NYC, YelpZip Rayana & Akoglu (2015), Pheme Zubiaga et al. (2017) and Weibo Ma et al. (2018)
datasets, and study the link prediction task on the BC-OTC, BC-Alpha, and UCI datasets. These
datasets have time stamps and the graph evolutions can be identified. The molecular data (MUTAG
Debnath et al. (1991) is used for the graph classification. In searching molecules, slight perturba-
tions are applied to molecule graphs You et al. (2018). We simulate the perturbations by randomly
add or remove edges to create evolving graphs. Appendix A.5.1 gives more details.

Experimental setup. For each dataset, we optimize a GNN parameter 6 on the training set of static
graphs, using labeled nodes, edges, or graphs, depending on the tasks. For each graph snapshot ex-
cept the first one, target nodes/edges/graphs with a significantly large Dxp (Pr(Y|Go)||Pr(Y|G1))
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are collected and the change in Pr(Y'|G) is explained. We run Algorithm 1 to calculate the contribu-
tion matrix C';(G) for each node J € V*. We use the cvxpy library Diamond & Boyd to solve the
constrained convex optimization problem in Eq. (12), Eq.(14) and Eq.(15). This method is called
“AxiomPath-Convex”. We also adopt the following baselines.

* Gradient. Grad computes the gradients of the logit of the predicted class j with the maximal
Pr(Y = j|G) on Gy and G, respectively. Each computation path is assigned the sum of gradients
of the edges on the paths as its importance. The contribution of a path to the change in Pr(Y|G)
is the difference between the two path importance scores computed on G and G . If a path only
exists on one graph, the importance of the path is taken as the contribution. All paths with top
importance are selected into E,,.

* GNNExplainer (GNNExp) Ying et al. (2019) is designed to explain GNN predictions for node
and graph classification on static graphs. It weight edges on G1 to maximally preserve Pr(Y|G1)
regardless of Pr(Y'|Gy). Paths are weighted and selected as for Grad, with edge weights calculated
using GNNExplainer.

* GNN-LRP adopts the back-propagation attribution method LRP to GNN Schnake et al. (2020). It
attributes the class probability Pr(Y = j|G1) to input neurons regardless of Pr(Y'|G). It assigns
an importance score to paths and top paths are put in F,,.

* DeepLIFT Shrikumar et al. (2017) can attribute the log-odd between two probabilities Pr(Y =
J|Go) and Pr(Y = j'|G1), where j # j'. For a target node or edge or graph, if the predicted class
changes, the difference between a path’s contributions to the new and original predicted classes is
used to rank and select paths. If the predicted class remains the same but the distribution changes,
a path’s contributions to the same predicted class is used. Only paths from AW (G, G1) or in
AW (Go,G1) U AW ;(Go, G1) orin U ey AW (G, G1) are ranked and selected.

* AxiomPath-Topk is a variant of AxiomPath-Convex. It selects the top paths p from
AW (Go, Gy) or AW (Go, G1) U AW (Go, G1) or U ey AW (Go, G1) with the highest con-
tributions AC;(Gg, G1)1, where 1 is an all-1 ¢ x 1 vector. This baseline works in the Euclidean
space spanned by the paths as coordinates and rely on linear differences in C'(G) rather than the
nonlinear movement from Pr(Y|Gg) to Pr(Y|Gy).

* AxiomPath-Linear optimizes the AxiomPath-Convex objectives without the last log terms, lead-
ing to a linear programming.

Quantitative evaluation metrics. Let Pr(Y|—G(s)) be computed on the computation graph of
G, with those from F,, disabled. That should bring G; close to G along ~(s) so that KLt =
Dx1Pr;(Go)Pr;(—G(s)) should be small if F,, does contain the paths vital to the evolution. Sim-
ilarly, we expect Pr;(G(s)) to move close to Pr;(G1) after the paths E,, are enabled on the com-
putation graph of Gy, and KL~ = KL(Pr;(G1)||Prs(G(s))) should be smaller. Intuitively, if E,,
indeed contains the more salient altered paths that turn G into GG1, the less information the remain-
ing paths can propagate, the more similar should G, be to G; and =G,, be to G, and thus the
smaller the KL-divergence. Prior work Suermondt (1992); Yuan et al. (2020a); Ying et al. (2019)
use KL-divergence to measure the approximation quality of a static predicted distribution Pr(Y|G),
while the above metrics evaluate how distribution on the curve ~(s) approach the target Pr(Y'|G1).
A similar metric can be defined for the link prediction task and the graph classification task, where
the KL-divergence is calculated using predicted distributions over the target edge or graph. The
target nodes (links or graphs ) are grouped based on the number altered paths in AW ;(Gg, G1) for
the results to be comparable, since alternating different number of paths can lead to significantly dif-
ferent performance. For each group, we let n = |E,,| range in a pre-defined 5-level of explanation
simplicity and all methods are compared under the same level of simplicity. Appendix A.5.2 and
Appendix A.5.3 gives more details of the experimental setup.

4.1 PERFORMANCE EVALUATION AND COMPARISON

We compare the performance of the methods on three tasks (node classification, link prediction
and graph classification) under different graph evolutions (adding and/or deleting edges). For the
node classification, in Figure 2, we demonstrate the effectiveness of the salient path selection of
AxiomPath-Convex. For each dataset, we report the average KL ™ over target nodes/edges on three
datasets (results with the KL~ metric, and results on the remaining datasets are given Figure 6, 7,
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Figure 2: Performance in KLt as Gy — G1 on the node classification tasks. Each column is a dataset and
each row is one type of evolution.

and 8 in the Appendix). From the figures, we can see that AxiomPath-Convex has the smallest KL.™
over all levels of explanation complexities and over all datasets. On six settings (Weibo-adding
edges only and mixture of adding and removing edges, and all cases on YelpChi), the gap between
AxiomPath-Convex and the runner-up is significant. On the remaining settings, AxiomPath-Convex
slightly outperforms or is comparable to the runner-ups. AxiomPath-Topk and AxiomPath-Linear
underperform AxiomPath-Convex, indicating that modeling the geometry of the manifold of proba-
bility distributions has obvious advantage over working in the linear parameters of the distributions.
On two link prediction tasks and one graph classification task, in Figure 3, we show that AxiomPath-
Convex significantly uniformly outperform the runner-ups (results on the remaining link prediction
task and regarding the KL~ metrics are give in the Figure 6, 8 and 9 in the Appendix). DeepLIFT
and GNNExplainer always, and Grad sometimes, fails to find the salient paths to explain the change,
as they are designed for static graphs. In Appendix A.7, we provide cases where AxiomPath-Convex
identifies edges and subgraphs that help make sense of the evolving predictions. In Appendix A.6,
we analyze how long each component of the AxiomPath-Convex algorithms take on several datasets.
In Appendix A.8, we analysis the limit of our method.

5 RELATED WORK

Differential geometry of probability distributions are explored in the field called “information geom-
etry” Amari (2016), which has been applied to optimization Chen et al. (2020); Osawa et al. (2019);
Kunstner et al. (2019); Seroussi & Zeitouni (2022); Soen & Sun (2021), machine learning Lebanon
(2002); Karakida et al. (2020); Nock et al. (2017); Bernstein et al. (2020), and computer vision Shao
etal. (2018). However, taking the geometric viewpoint of GNN evolution and its explanation is novel
and has not been observed within the information geometry literature and explainable/interpretable
machine learning.

Prior work explain GNN predictions on static graphs. There are methods explaining the predicted
class distribution of graphs or nodes using mutual information Ying et al. (2019). Other works
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Figure 3: Average K L on the link prediction and graph classification tasks. Each row is a dataset and each
column is one evolution setting.

explained the logit or probability of a single class Schnake et al. (2020). CAM, GradCAM, Gradln-
put, SmoothGrad, IntegratedGrad, Excitation Backpropagation, and attention models are evaluated
in Sanchez-Lengeling et al. (2020); Pope et al. (2019) with the focus on explaining the static pre-
diction of a single class. CAM and Grad-CAM are not applicable since they cannot explain node
classification models Yuan et al. (2020b). DeepLIFT Shrikumar et al. (2017) and counterfactual
explanations Lucic et al. (2021) do not explain multi-class distributions change over arbitrary graph
evolution, as they assume G is fixed at the empty graph. To compose an explanation, simple
surrogate models Vu & Thai (2020) edges Schnake et al. (2020); Ying et al. (2019); Shrikumar
et al. (2017); Lucic et al. (2021), subgraphs Yuan et al. (2021; 2020a) or graph samples Yuan et al.
(2020a) , and nodes Pope et al. (2019) have been used to construct explanations. These works can-
not axiomatically isolate contributions of paths that causally lead to the prediction changes on the
computation graphs. Most of the prior work evaluates the faithfulness of the explanations of a static
prediction. To explain distributional evolution, faithfulness should be evaluated based on approxi-
mation of the curve of evolution on the manifold so that the geometry will be respected. None prior
work has taken a differential geometric viewpoint of distributional evolution of GNN. Optimally se-
lecting salient elements to compose a simple and faithful explanation is less focused. With the novel
reparameterization of curves on the manifold, we formulate a convex programming to select a curve
that can concisely explain the distributional evolution while respecting the manifold geometry.

6 CONCLUSIONS

We studied the problem of explaining change in GNN predictions over evolving graphs. We ad-
dressed the issues of prior works that treat the evolution linearly. The proposed model view evo-
lution of GNN output with respect to graph evolution as a smooth curve on a manifold of all class
distributions. This viewpoint help formulate a convex optimization problem to select a small subset
of paths to explain the distributional evolution on the manifold. Experiments showed the superior-
ity of the proposed method over the state-of-the-art. In the future, we will explore more geometric
properties of the construct manifold to enable a deeper understanding of GNN on evolving graphs.
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A APPENDIX

You may include other additional sections here.

A.1 MIisC. PROOFS

Here we give the detailed derivations of Eq. (11).

Dy (Pr(Y|G1)||Pr(YGo)) ZPV = J|G1)log[Pr(Y = j|G1)/Pr(Y = j|Go)] (13)

= Z Pr(Y = j|G1)[z;(G1) — 2 (Go)] — log[Z(G1)/Z(Go)]

_ZPr = j|G1)1TAC,;(Go, G1) + log Z(Go) logZexp H(G*) + 17 [C4(Go) + AC.;(Go, G1)]

=C:;(G1)

—ZPr = j|G1)1T AC,;(Go, G1) —log Z(G1) +log > exp {z;(G*) +17C,;(Go)}
j=1

A.2 SECOND-ORDERED APPROXIMATION OF THE KL DIVERGENCE WITH THE FISHER
INFORMATION MATRIX

To help understand Eq. (9) that defines the Riemannian metric, we need to second-order approx-
imation of the KL-divergence. We reproduce the derivations from the note “Information Geom-
etry and Natural Gradients” posted on https://www.nathanratliff.com/pedagogy/
mathematics-for-intelligent-systems by Nathan Ratliff (Disclaimer: we make no
contribution to these derivations and the author of the note owns all credits). In the following, the
term 6 should be understood as the vector vec(C';(G1)) and 0 should be understood as the difference
vector vec(AC;(G1, Gyp)) in Eq. (9). z is understood as the random variable Y, the class variable,
in our case.

KL (p (2;0) [|p (x;6 + 9))
%/p(a:;e) logp (x;0) dx

N T
- /p(m;@) <logp(x;9) + (W) 0+ %6T (Vi logp(z;0)) 5) dx

:/p(a:;&)logzgigdx— (/Vep(a:;ﬁ)dx)T(S

=0 =0

3 %ﬂ (/p(x;g) V2 logp(x;@t)> s

By assuming that the differentiation and integration in the second term can be exchanged, we have

/Vp(x;@)dsz/p(x;G)dszl:0

VZlogp (;0) = V2p (2;0) — Vlogp (x;0) Viogp (x;0) "

p(z;0)
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KL (p (;0) [lp (z;0 + 6))
~ =67 (/p(ac;@)V”ogp(m;G)dx)&

V2p (2;6) dm) )

(
=0
+ 267 (/p(x;@) [Vlogp(m;G)Vlogp(x;G)T} dm) 1)

G(61)

The matrix G (6) is known as the Fisher Information matrix.

A.3 OPTIMIZE A CURVE ON THE LINK PREDICTION TASK AND GRAPH CLASSIFICATION TASK

Similar to node classification, according to the Eq.( 12), for the link prediction, we solve the follow-
ing problem:

N 1 N

X )Ig[igll]m Epr(v|c,)[Cit(G1)—Ca(X(s),x (5 )]0p+log D exp{z;(G)+Cu(X(s), x (s)) }0rp
e ’ 1=0
x ()0,
()4 (s, =n
N (14)
where Cy(G1) = [17C4(G1);17C4(G)l, Cu(x(s),X (s)) = [x(5)"(Cu(Go) +
AC.i(Go, G(5)));x (s)T(Cy(Go) + AC,(Go, G(s)))].
For the graph classification, we solve the following problem:
. exp z =
comin - Bervian[Cig(Gr) = Cg(X() HGc-l-logZ{ p|§| () 4 o ()06 (15)
<)l =n
where |V| denotes the number of nodes in the h, C. = Zyepl Cy(Gy) < =
grapn, :g(Gl) = VI > C:g(XJ(S)) =
ey X(5) T (C:4(Go) +AC;(Go,G(5))))
VI ‘

A.4 ATTRIBUTING THE CHANGE TO PATHS

We describe the computation of C), ; in the previous section.

A.4.1 DEEPLIFT FOR MLP

DeepLIFT Shrikumar et al. (2017) serves as a foundation. Let the activation of a neuron at layer
t 4+ 1 be K1) € R, which is computed by A+1) = f([a{" ... h{P]), Given the reference ac-
tivation vector h®)(0) = [hgt)(o)7 . hY (0)] at layer ¢ at time O, we can calculate the scalar
reference activation h(*+1(0) = f(h®)(0)) at layer t + 1. The difference-from-reference is
AR = Rt — pt+D(0) and AR = AP — p{P(0), i = 1,...,n. With (or without)
the 0 in parentheses indicate the reference (or the current) activations. The contribution of Ahz(-t) to
ARCFY s Capd apcn) Such that S Cantd anwsn = ARCFYD (preservation of AR(HD),

The DeepLIFT method defines multiplier and the chain rule so that given the multipliers for each
neuron to each immediate successor neuron, DeepLIFT can compute the multipliers for any neuron

14



Published as a conference paper at ICLR 2023

to a given target neuron efficiently via backpropagation. DeepLIFT defines the multiplier as:
mAh(.t)Ah“"'l) = OAh(_‘)Ah(H—l)/Ahz('t) (16)

_ 01@ linear layer
ARG+ / Ahgt) nonlinear activation

If the neurons are connected by a linear layer, C,, ) o pr1) = Ahgt) X 61@ where 92@ is the

element of the parameter matrix #(*) that multiplies the activation hl(t) to contribute to A(**1), For

element-wise nonlinear activation functions, we adopt the Rescale rule to obtain the multiplier such
- t+1

that CAhEt)Ah(t+1> = ApUFD),

DeepLIFT defines the chain rule for the multipliers as:

mAhEO)Ah<T> = Z - Z mAhEO)Ahgl) o mAh;Tq)Ah(T) a7
l J

A.4.2 DEEPLIFT FOR GNN

We linearly attribute the change to paths by the linear rule and Rescale rule, even with nonlinear
activation functions.

When Gy — G1, there may be multiple added or removed edges, or both. These seemingly compli-
cated and different situations can be reduced to the case with a single added edge. First, any altered
path can only have multiple added edges or removed edges but not both. If there were a removed
edge that is closer to the root than an added edge, the added edge would have appeared in a different
path and the removed edge must be from an existing path leading to the root. If there were an added
edge closer to the root than a removed edge, the nodes after the removed edge have no contribution
in Gy and the situation is the same as with added edges. Second, a path with removed edges only
when Gy — (7 can be treated as a path with added edges only when G; — Gy. Lastly, as shown
below, only the altered edge closest to the root is relevant even with multiple added edges. Let U
and V' be any adjacent nodes in a path, where V' is closer to the root J.

Difference-from-reference of neuron activation and logits. When handling the path with multiple
added edges, we let the reference activations be computed by the GNN on the graph G, Gy = Go,
the graph at the current moment is Gy, G, = G1. For a path p in AW ;(Gy, G1), let p[t] denote
the node or the neurons of the node at layer ¢. For example, if p = (I,...,U,V,...,J), p[T]
represents J or the neurons of J, and p[0] represents I or the neurons of I. Given a path p, let
t=max{r|T =1,...,T,p[r] = Vand p[r — 1] = U and if (U, V) is newly added}. When ¢ > ¢,
the reference activation of plt] is hl()t[i] (Go). While when ¢ < ¢, the reference activation of pl[t] is

zero, because the message of p[t] cannot be passed along the path (p[t],...,J) to J in Gy, and the
edge (U, V') must be added to G to connect p[t] to J in the path. We thus calculate the difference-
from-reference of neurons at each layer for the specific path as follows:

® (t) _
AR = hyi(G1) = By (Go) t=>t, as)
ot hl(f[i] (G1) otherwise.

Figure 4: Circles in rectangles are neurons, and a neuron has a specific color if it contributes to the prediction
change in a class. Left: DeepLIFT finds the contribution of an input neuron to the change in an output neuron
of an MLP for link prediction, where the input layer is the output of a GNN. Right: A two-layer GNN. The
four colored quadrants in Az; at the top layer, which can be the input layer to the MLP, can be attributed to the
changes in the input neurons at the input layer (e.g., the two blue quadrants at .J at the top is attributed to the
blue neurons in node K at the input layer through paths (K, K, J) and (K, J, J).
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For example, in Figure 4, the added edge is (J, K). For the path p = (J, K, J) in Gy, ¢ = 2 and
Ah;o) = h;o)(Gl), because in Gy, the neuron j at layer 0 cannot pass message to the neuron j

at the output layer along the path (J, K, J) in G. The change in the logits AZS[Z] can be handled
similarly.

Multiplier of a neuron to its immediate successor. We choose element-wise sum as the fagg

function to ensure that the attribution by DeepLIFT can preserve the total change in the logits such
that Az; = Y77 | O ;. Then, 2 = S ven(v) (ZueU hgfl)ﬂfﬂ), where 6, denotes the
element of the parameter matrix #(*) that links neuron v to neuron v. According to the Eq. (16),

AR
_ A (19)

—p®
>—9W, m Zl()t).

AR GE=D) AL Az ARP

Then we can obtain the multiplier of the neuron w to its immediate successor neuron v according to
Eq. (17):

(®)

Mo (t—1) ap (1) = —~ X 027 (20)
ARS ™Y ARY Azf,t) u,v
. (D) .
Note that the output of GNN model is z;, thus m A’lffr_ji] Az = 9;;[T—1],j' We can obtain the

multiplier of each neuron to its immediate successor in the path according to Eq. (20) by letting
t=T— 1.

After obtaining the mAh;%]Ah%],...,mAh;[TTf_li]yAzj, according to Eq. (17), we can obtain
m ., (o) as
Ahp[O]AZj
mAh(o) Azi E E mAhm) AR ...mAh(T—l) Az (21)
p[0] =77 p[0] p[1] p[T—1]77J
p[0] [T—1]

Calculate the contribution of each path. For the path p in AW (G, G1), we obtain the contri-
bution of the path by summing up the input neurons’ contributions:

— (0)
Cp_’j = ZmAh;?é]zj X Ahp[O]’ (22)
p[0]
where p[0] indexes the neurons of the input (a leaf node in the computation graph of the GNN) and
Aoy =gy
pl0 plO]*

Algorithm 1 Compute C), ; for a target node J.

1: Input: two graph snapshots Gy and (G;. Pre-trained GNN parameters 6 n for node classifi-
cation,

2: Obtain the altered path set AW ;(Gy, G1).

3: Initialize C' € RIW7(Go.G1)lxe a5 an all-zero matrix

4: for p € AW;(Gop,G1) do

5:  if p contains removed edges then

6: Reverse Gy — G4 to G1 — Gy.

7 Compute C, ; according to Eq. (22) and let —C), ; be the contribution of p as Go — G'1.
8: else

9: Compute Cp, ; according to Eq. (22) as the contribution of p as Gg — G.
10:  end if
11: end for

12: Output: the contribution matrix C.

Algorithm 1 describes how to attribute the change in a root node J’s logit Az; to each path p €
AW ;(Go, Gr).
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The computational complexity of C), ;. Supposing that we have the 1" layer GNN, the dimension
of hidden vector h(t)of layer t is d¢(t = 1,2,...,T) and the dimension of the input feature vector

is d. The time complexity of determining the contribution of each path is O( H d; x d). In the

calculation, according to the Eq.20, we can obtain the multiplier m ARE=D AR Then according to
the Eq. 21 and the Eq. 22, we use the chain rule to obtain the final multlpher and then obtain the
contribution. Because the multiplier m , , «-1) , ,» i8 sparse, obtaining the final multiplier matrix

is also relatively fast. For the dense edge structure, the number of paths is large. But for these
paths with the same nodes after layer ¢ (for example, the path (K, K, J) and the path (J, K, J)), the

multipliers after the layer ¢ are(for example m AR A h(z)) the same. The proportion of paths that can
¢ ,
share multiplier matrices is large. Because of this, the calculation will speed up.

Theorem 1. The GNN-LRP is a special case if the reference activation is set to the empty graph.

Proof. Considering the pathp = (I,...,U,V, ... J) on the graph G, we let Gy is the empty graph.

®)
Then, Ah{) = D) (G1), A2lf) = 2{f (Gl) ARSI AR = 3oty X 0. While, for the GNN-
) h(' 1)9(’5) h(t 1)97(‘})"
LRP, when v = 0, R; = z;, we note LRPW) =5 T 1)0“) = that represents the
UEN(V) u
allocation rule of neuron v to its predecessor neuron u. The contribution of this path is
_ (1) (T)
Ry = Z Z LRP; oy -+ LRPy iy 5 8
@ p[T—1]
0) (1) (T-1) (T)
_ Y.y gy POy
= RO = j
i plr-1 Al ’
(1)[ |
_ (0) i,p[1 (T)
= 2h Z > O Y
p[T 1 Al
= ZmAhg‘”Az,- i
= Gy

A.5 EXPERIMENTS
A.5.1 DATASETS

* YelpChi, YelpNYC, and YelpZip Rayana & Akoglu (2015): each node represents a review, prod-
uct, or user. If a user posts a review to a product, there are edges between the user and the review,
and between the review and the product. The data sets are used for node classification.

* Pheme Zubiaga et al. (2017) and Weibo Ma et al. (2018): they are collected from Twitter and
Weibo. A social event is represented as a trace of information propagation. Each event has a label,
rumor or non-rumor. Consider the propagation tree of each event as a graph. The data sets are
used for node classification.

» BC-OTC? and BC-Alpha®: is a who trusts-whom network of bitcoin users trading on the platform.
The data sets are used for link prediction.

e UCI’: is an online community of students from the University of California, Irvine, where in the
links of this social network indicate sent messages between users. The data sets are used for link
prediction.

* MUTAG Morris et al. (2020): A molecule is represented as a graph of atoms where an edge
represents two bounding atoms.

*http://snap.stanford.edu/data/soc-sign-bitcoin-otc.html
‘nttp://snap.stanford.edu/data/soc-sign-bitcoin-alpha.html
‘http://konect.cc/networks/opsahl-ucsocial
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A.5.2 EXPERIMENTAL SETUP

We trained the two layers GNN. We choose element-wise sum as the fagc function. The logit
for node J is denoted by z;(G). For node classification, z;(G) is mapped to the class distribution
through the softmax (number of classes ¢ > 2) or sigmoid (number of classes ¢ = 2) function. For the
link prediction, we concatenate z;(G) and z;(G) as the input to a linear layer to obtain the logits.
Then it be mapped to the probability that the edge (I, J) exists using the sigmoid function. For the
graph classification task, the average pooling of z;(G) of all nodes from G can be used to obtain a
single vector representation z(G) of G for classification. It can be mapped to the class probability
distribution through the sigmoid or softmax function. We set the learning rate to 0.01, the dropout
to 0.2 and the hidden size to 16 when we train the GNN model. The model is trained and then fixed
during the prediction and explanation stages.

The node or edge or graph is selected as the target node or edge or graph, if
KL(Pr;(G1)||Prs(Go)) > threshold, where threshold=0.001.

For the MUTAG dataset, we randomly add or delete five edges to obtain the ;. For other datasets,
we use the ¢;,,;1;4; and the t.,4 to obtain a pair of graph snapshots. We get the graph containing all
edges from t;,;iq1 tO tenq. Then two consecutive graph snapshots can be considered as Gy and G .
For Weibo and Pheme datasets, according to the time-stamps of the edges, for each event, we can
divide the edges into three equal parts. On the YelpZip(both) and UCI, we convert time to weeks
since 2004. On the BC-OTC and BC-Alpha datasets, we convert time to months since 2010. On
other Yelp datasets, we convert time to months since 2004. See the table 2 for details.

Table 2: The details for datasets

Datasets | Nodes | Edges | Settings | tinitial | tend
YelpChi | 105659 | 375239 add (remove) o 0(,)82’8 4] [8468948%5966,,818%2)1]08]
YelpNYC | 520200 | 1,956,408 add (remove) [78,79(,)80,8 . [7[88;5,%’?;’68;’78]6]
YelpZip | 873919 | 3308311 e [338,340(,)342,344 T é@ié@é‘%é‘;?ﬁé T
BC-OTC | 5881 35,588 A o) [24,26(,)28,30] [4[231’5';5%3,2'5’25;’2]6 :
BC-Alpha | 3,777 24,173 e [24,26(,)28,30] [4[%;}5’3,‘;’25;’2]0 ]
ver | resy | sogas | MR L o Tssoro
Weibo 4,657 e g:trl? o) [0,(1)/3] [lg}iﬁi”
MUTAG | 1793 | 1979 | add (remove, both) | |

To show that as n increases, Pr ;(G,,) is gradually approaching Pr ;(G1), we let n gradually increase.
We choose n according to the number of the altered paths . See the table 3 for details.

A.5.3 QUANTITATIVE EVALUATION METRICS

We illustrate the calculation process of our method in Figure 5.

A.5.4 EXPERIMENTAL RESULT

See the Figure 6 for the result on the KL on the YelpNYC, YelpZip and BC-OTC datasets. See
the Figure 7, Figure 8 and Figure 9 for the result on the KL~ on the all datasets. The method
AxiomPath-Convex is significantly better than the runner-up method.
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Table 3: The the number of selected paths according to the number of altered paths.

The the number of

Task settings the number of altered paths selected paths
(1000, +o0] [15,16,17,18,19]
. . (500, 1000] [10,11,12,13,14]
Node classification add, remove and both (100, 500] [6.7.8.9.10]
(10, 100] [1,2,3,4,5]
(1000, +o0] [60,70,80,90,100]
. N (500, 1000] [10,20,30,40,50]
Link prediction add, remove and both (100, 500] [10.12.14.16.18]
(10, 100] [1,2,3,4,5]
(1000, +00] [10,11,12,13,14]
. . (500, 1000] [6,7,8,9,10]
Graph classification add, remove and both (100, 500] [3.4,5.6.7]
(10, 100] [1,2,3.45]

A.6 SCALABILITY

Running time overhead of convex optimization. We plot the base running time for searching
paths in AW (Go, G1) (or AW (Go, G1) U AW ;(Go, G1)) and attribution vs. the running time of
the convex optimization. In Figure 10, we see that in the two top cases, the larger AW ; (G, G1) (or
AW (Go, G1)UAW (G, G1)) lead to higher cost in the optimization step compared to path search
and attribution. In the lower two cases, the graphs are less regular and the search and attribution
can spend the majority computation time. The overall absolution running time is acceptable. In
practice, one can design incremental path search for different graph topology, and more specific
convex optimization algorithm to speed up the algorithm.

We plot the running of the baseline methods.(See the Figure 11,Figure 12 and Figure 13). The order
of running time by the baseline methods is: AxiomPath-Convex, AxiomPath-Linear > DeepLIFT,
AxiomPath-Topk > Gradient, GNNLRP. About for the GNNExplainer methods, they cost more time
than AxiomPath-Convex when the the graph is small and they cost less time than DeepLIFT when
the graph is large. Although the running time of Gradient and GNNLRP is less, the Gradient method
cannot obtain the contribution value of the path, it only obtain the contribution value of the edge in
the input layer. GNNLRP, like DeepLIFT, was originally designed to find the path contributions to
the probability distribution in the static graph, and cannot handle changing graphs. If considering
the running time of calculating path contribution values, we can use GNNLPR to obtain the paths
contribution value in the Gy and (G; and subtracted them as the of the final contribution value.
After obtaining C), ;, we can still use our theory to choose the critical path to explain the change of
probability distribution. GNNLPR can be a faster replacement for DeepLIFT.

A.7 CASE STUDY

It is necessary to show that AxiomPath-Convex selects salient paths to provide insight regarding the
relationship between the altered paths and the changed predictions.

On Cora, we add and/or remove edges randomly, and for the target nodes that the predicted class
changed, we calculate the percentages of nodes on the paths selected by AxiomPath-Convex that
have the same ground truth labels as the predicted classes on G (class 0) and G (class 1), respec-
tively. We expect that there are more nodes of class 1 on the added paths, and more nodes of class 0
on the removed paths. We conducted 10 random experiments and calculate the means and standard
deviations of the ratios. Figure 14 shows that the percentages behave as we expected. It further con-
firms that the fidelity metric aligns well with the dynamics of the class distribution that contributed
to the prediction changes®.

In Figure 15, on the MUTAG dataset, we demonstrate how the probability of the graph changes as
some edges are added/removed. We add or remove edges, adding or destroying new rings in the
molecule. The AxiomPath-Convex can identify the salient paths that justify the probability changes.

8 AxiomPath-Convex has performance on Cora similar to those in Figure 2.
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2,(Gp) = [3.,3,4] 2,(G) = [3,2,5] -05 01 0
"o N o 0 0 ]

Pry(Gy) =[0.21,0.21,0.58] Pry(G;) = [0.12,0.04,0.84]

Linear attribution Az to path contributions

@ Az=1[0.0 —1.0 1.0]

Convex unique path selection
E, (K—=(7)—(]) added path
The important @-’@-’@ removed path

paths (K—>(K—>(]) added path
Explain why Pr;(Go)—Pr;(G1)

Remove the

Pr;(G,)Add the added
(G1) added path 5(Go)

path
K—>J—>] K—>J—>J
K—>K 7EJ K7>K7[ éJ
Add the Remove the
removed path removed path
J—>I—>] J—>I—>]
KL, = KL(Pri(Gp) | | Pri(=G(s))) KL_ =XKL(Pry(G) || Pry(G(s))

Figure 5: Top left: Go (e.g., a citation network) at time ¢ = 0 is updated to G at time ¢ = 1 after the
edge (J, K) is added and the edge (I, J) is removed, and the logits z s (Go) and predicted class distribution
Prs(Go) of node J changes accordingly. Prior counterfactual methods attribute the change to the edges (J, K)
and (I, J). Center lefr: the GNN computational graph that propagates information from leaves to the root
J. Top right: Any paths from the computational graph containing a dashed edge contribute to the prediction
change, and we axiomatically attribute the logits changes to these paths with contribution C), ; (for the p-
th path to the component Az;). Center right: Not all paths are significant contributors and we formulate a
convex program to uniquely identify a few paths to maximally approximate the changes. Botfom: We show the
calculation process of KL.™ and KL~ after obtaining ,,. Other situations, including edge deletion, mixture of
addition and deletion, and link prediction can be reduced to this simple case.

A.8 FURTHER EXPERIMENTAL RESULTS

We analyzed how the method performs on the spectrum of varying KL(Pr;(Gy)||Pr;G(0)) for
the YelpChi, YelpZip, UCI, BC-OTC and MUTAG datasets when edges are added and removed
(See Figure 16). For some nodes with the lower KL(Pr;(G1)||Pr;G(0)), the KLT or KL~ is
higher. Through the further analysis, we find that it may because of the Pr;(G1) or Pr;(Gp) has all
probability mass concentrated at one class. (See Figure 17). For the some target nodes/edges/graphs
with the classification probability in G} or G close to 1, the KL or KL~ is high. That means the
selected paths may not explain the change of probability distribution well. When the classification
probability is close to 1 in the G(G1), it is more difficult to select a few paths to make the probability
distribution close G'1(Gy), so the KL or KL~ is high.
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Figure 6: Performance on the node classification task and link prediction task. Each column is a dataset and
each row is one setting. Each figure shows the KL* as Go — G for a pair of snapshots.
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Figure 7: Performance on the node classification tasks. Each column is a dataset and each row is one setting.

Each figure shows the KL~ as Go — G for a pair of snapshots.
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Figure 8: Performance on the node classification task and graph classification task. Each column is a dataset
and each row is one setting. Each figure shows the KL~ as Go — G for a pair of snapshots.
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Figure 9: : Performance on the link prediction tasks. Average KL~ on the link prediction and graph classifi-
cation tasks. Each row is a dataset. Each column is one setting. Each figure shows the results of a pair of graph

snapshots.
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Figure 10: Decomposition of running time of AxiomPath-Convex.
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Figure 11: The running time of GNN-LRP.
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Figure 12: The running time of Gradient.
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Figure 13: The running time of GNNExplainer.
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Figure 14: Case study on the Cora dataset. Adding edges only, removing edges only and both adding and
removing edges. As AxiomPath-Convex selects different number of salient paths, we show the percentages of
nodes on the selected paths from any previously predicted class on G (class 0) and in any newly predicted
class on G (class 1).
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Figure 15: Case study on the MUTAG dataset. The circles denotes the nodes and the different types of nodes
have different colors. Left: The black edges deonte the edges in the graph G and G1, the red/blue edges
denote the added/removed edges. Right: The red edges on the paths selected by AxiomPath-Convex that lead
to prediction changes. When adding or removing edges, the information gathered by neighbor nodes changed,

thus affecting the classification probability. When masking or adding these red paths, KL* and KL~ approach
Zero.
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Figure 16: The KL~ and KL performance on the KL(Pr;(G1)||Pr;G(0)).
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Figure 17: The KL~ and KL" performance on the Pr;(G1) or Pr;(Go).
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