
Distributed formation trajectory planning for multi-vehicle systems

Binh Nguyen1, Truong Nghiem2, Linh Nguyen3,
Tung Nguyen4, Hung La5, Mehdi Sookhak6, Thang Nguyen1⋆

Abstract— This paper addresses the problem of distributed
formation trajectory planning for multi-vehicle systems with
collision avoidance among vehicles. Unlike some previous dis-
tributed formation trajectory planning methods, our proposed
approach offers great flexibility in handling computational
tasks for each vehicle when the global formation of all the
vehicles changes. It affords the system the ability to adapt
to the computational capabilities of the vehicles. Furthermore,
global formation constraints can be handled at any selected
vehicles. Thus, any formation change can be effectively updated
without recomputing all local formations at all the vehicles. To
guarantee the above features, we first formulate a dynamic
consensus-based optimization problem to achieve desired for-
mations while guaranteeing collision avoidance among vehicles.
Then, the optimization problem is effectively solved by ADMM-
based or alternating projection-based algorithms, which are
also presented. Theoretical analysis is provided not only to
ensure the convergence of our method but also to show that
the proposed algorithm can surely be implemented in a fully
distributed manner. The effectiveness of the proposed method
is illustrated by a numerical example of a 9-vehicle system.

I. INTRODUCTION

Over the past decade, real-time trajectory planning plays
a crucial role in motion planning for autonomous vehicles in
unknown environments. Especially for sophisticated coopera-
tion, the planning problem has become more challenging due
to a large number of vehicles operating in a narrow space and
with limited computational resources. For this case, collision
avoidance and distributed computational framework are a
prerequisite for designing goal-oriented trajectories regarding
vehicle dynamics, neighbors, or dynamic obstacles [1]–[4].

There are fruitful approaches devoted to dealing with the
problems of trajectory planning for multiple vehicles. Among
them, the optimization-based approach where trajectories are
obtained by solutions to designed optimization problems
has gained much attention due to its solid mathematical
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foundation. The studies in [5], [6] formulated the planning
problem as mixed-integer linear and quadratic programming
(MILP and MIQP) to handle collision avoidance by mixed-
integer box constraints. The MILP and MIQP techniques face
significant challenges in online distributed implementation
due to their computational burdens. Recently, Sequential
Convex Programming (SCP) [7], and Distributed Model
Predictive Control (DMPC) [8] have succeeded in solving
point-to-point trajectory generation for multiple vehicles.
More recently, formation trajectory planning has been in-
vestigated in [9], [10] to address both target point tracking
and formation preserving problems.

In a typical distributed formation trajectory planning
method [9], [10], each vehicle solves a local problem that
involves its local dynamics and local formation constraints
with its neighboring vehicles. The neighborhood of a vehicle
usually determines both the communication topology and
the local formation maintained by the vehicle. While such
a method has computational and communication benefits,
it also has several drawbacks. First, as the vehicles move,
the communication topology may change, which varies the
neighborhood of each vehicle and therefore its local for-
mation constraints must be adjusted in real time. This is
difficult because each vehicle must then store its relative
formation to each and every other vehicle so that it can adjust
its local formation constraints based on which vehicles are
its neighbors at the current time. Second, the computation
distribution between vehicle agents is inflexible because each
must solve a local problem consisting of all local dynamics
and constraints. In practice, vehicles may have different
computational capabilities, thus it is beneficial to be able
to flexibly distribute computations among them according to
their capabilities. Finally, it is difficult to change the global
formation of all vehicles during operation since the local
formation of each vehicle agent must be updated in real
time. These drawbacks stem from the rigid structure of the
communication and computation of the vehicle network.

This paper proposes a novel approach to overcome the
above challenges, which formulates a dynamic consensus-
based optimization problem to achieve desired formations
while guaranteeing collision avoidance among vehicles. Our
method allows the communication topology to vary in run
time without affecting the success of the algorithm, as long
as the resulting communication graph is strongly connected.
More importantly, our method allows the computation to be
freely distributed among the vehicle agents according to their
computational capabilities. This flexibility even enables the
computation tasks to be migrated or re-balanced during run



time, for example when a vehicle suddenly has computation
or energy issues. Moreover, because in our method the global
formation constraints can be handled at any selected vehicle
agents, any formation change can be easily and quickly
updated at those agents without having to recompute all local
formations at all agents.

Notation: CR stands for a circle with radius R, i.e.,
CR = {x ∈ R2| ∥x∥2 ≤ R}; ⊕ and 1 represent
Minkowski sum and 1-element vector; with the index set S =
{s1, s2, . . . , sn}, denote [vs]s∈S =

[
v⊤
s1 , vT

s2 , . . . ,v
⊤
sn

]⊤
.

For two vectors x = [xi] and y = [yi] with the same
dimension, we denote x ⪯ y when xi ≤ yi, ∀i.

II. PRELIMINARIES

A. Description of vehicles and formation

Consider a group of Nv vehicles in a two-dimensional
(2D) space. Let us define a bounded convex set S ∈ R2

as the space where the vehicles operate. Each vehicle is
considered a circle with radius R centered at pi(t) ∈ R2,
for i ∈ V = {1, 2, . . . , Nv}. Here, the variable t ∈ N
is the discrete-time instant. Among the group of vehicles,
let us select a leader indexed ℓ ∈ V , and the others are
followers. The leader must reach its destination point while
the group of vehicles achieves a given formation. We assume
that each vehicle can make bi-directional communication
with its neighbors and the communication network of the
vehicles forms a strongly connected graph G(t) at all times.
Note that the communication graph G(t) may vary over time
t but is always strongly connected. At time t, let Ni(t) be
the set of neighbors of vehicle i, |Ni(t)| denote the number
of elements in Ni(t), N̄i(t) = Ni(t) ∪ {i} and E(t) be the
set of (i, j) such that vehicle i has a communication channel
with vehicle j (i.e., E(t) is the set of edges of G(t)).

This work uses the definition of the displacement-based
formation [11] to define the desired formation in a group of
vehicles via their relative positions. Define the index set as
F = {(i, j) | i ∈ V , j ∈ V , i < j} such that for each (i, j) ∈
F , let Fij(t) ∈ R2 be the relative position between vehicle i
and vehicle j in the desired formation. Differing from other
distributed algorithms where each vehicle knows its relative
positions to other vehicles [12], [13] or references [14], this
paper proposes a distributed algorithm for leader-follower
formation trajectory planning, in which each follower is not
required to know its relative position in the formation. This
feature overcomes a challenge of conventional methods that,
when a change of formation occurs, will require updating
all relative positions for all vehicles, which takes at least Nv

communication channels.

B. Problem formulation

This section presents an online distributed trajectory plan-
ning problem for multiple vehicles. The sampling-based
motion planning approach [15] is used to design the reference
trajectory of each vehicle in the group with a small sampling
time τ > 0. Fig. 1 illustrates the motion planning approach.
Here, the reference trajectories are replanned every Np ≥ 1
sampling steps, the discrete time steps tk−1, tk, and tk+1

Replanning instant


predicted steps replanning after       steps

Fig. 1: Illustration of the MPC-based trajectory planning.

are consecutive replanning instants (where tk − tk−1 = Np),
and between these instants the reference trajectories are fixed.
See [16], [17] for methods for determining replanning period
Np and replanning instants. At each replanning instant tk,
we define the sampled trajectory planning as a sequence
{r(tk)i,h = ri(tk + h)}h=1,2,...,Nh

, where Nh ≥ Np is the
number of predictive steps of the planned trajectory. In this
work, we assume that Np and Nh are predetermined and
constant for all times.

For smoothness of the planned trajectories, we aim to
design r

(tk)
i,h that follows the discrete-time linear dynamics:

z
(tk)
i,h+1 = A

(tk)
d,i z

(tk)
i,h +B

(tk)
d,i u

(tk)
i,h , (1)

where z
(tk)
i,h =

[
r
(tk)
i,h , v

(tk)
i,h

]⊤ ∈ R4, A(tk)
d,i ∈ R4×4, B(tk)

d,i ∈
R4×2; v(tk)i,h and u

(tk)
i,h ∈ R2 denotes the designed velocities

and navigation input, respectively. Particularly, the linear
model (1) can be considered as the simplified or linearized
dynamics of vehicles where the matrices A(tk)

d,i and B
(tk)
d,i can

be obtained, for example, by linearizing nonlinear vehicle
dynamics at replanning instant tk.

With the initial conditions r
(tk)
i,0 = pi(tk), we assume that

the each vehicle can track its reference trajectory perfectly
(r(tk)i,h = pi(tk + h) for h = 1, 2, . . . , Np) and the planned
trajectories should meet the following requirements:

(i) vehicles i and j do not intersect, i.e, ∥r(tk)i,h −r
(tk)
j,h ∥2 ≥

2R for all (i, j) ∈ V × V \ {i}, h ∈ [0, H)

(ii) r
(tk)
i is bounded and differentiable, i.e., ∥r(tk)i,h ∥2 and

∥v(tk)i,h ∥2 are bounded by geometrical limitations.
(iii) The group of vehicles reaches its desired formation.
(iv) The leader reaches its destination rF as tk increases.

Further, we consider the following geometrical and phys-
ical limitations on the discrete model (1) as follow:
r
(tk)
i,h ∈ S, |v(tk)i,h | ⪯ v̄i1, |u(tk)

i,h | ⪯ ūi1, (v̄i, ūi > 0). (2)

III. METHOD

This section presents the MPC approach to designing
the trajectory r

(tk)
i,h for h = 1, . . . , Nh without collisions

among the group of vehicles where Nh is the predictive
horizon. For each vehicle, let ξ

(tk)
ij,h ∈ R2 be a predicted

(or virtual) position of vehicle j at predictive step h ∈ H =
{0, 1, 2, . . . , Nh} calculated by vehicle i for (i, j) ∈ V × V .
Accordingly, let ξ(tk)ii,0 = r

(tk)
i,0 = pi(tk) and ξ

(tk)
ii,h = r

(tk)
i,h . By

taking advantage of the consensus principle, the vehicle i can
create a replica of the predicted trajectory of vehicle j by



ξ
(tk)
ij even when there is no communication between them.

The advantages can guarantee collision avoidance since the
connection between two close vehicles is lost.

A. Collision avoidance between two vehicles

The collision avoidance requirement (i) can be rewritten as
r
(tk)
i,h − r

(tk)
j,h /∈ C2R. It should be noted that collision avoid-

ance results in non-convex constraints. Thus, the obtained
optimization problem is not solved effectively. With the help
of the above-defined virtual position, we are concerned with
a relaxed version of collision avoidance by the following
lemma:

Lemma 1: For vector functions f1, f2 : t → R2, if there
exists a unit vector e : t → R2 (∥e∥2 = 1) such that

(f1 − f2)
⊤e ≥ R. (3)

Then, one has ∥f1 − f2∥2 ≥ R for all t.
Proof: The proof of Lemma 1 is obtained by applying the
Cauchy-Schwarz inequality to the inequality (3).

Assumption 1: No collision occurs in the group of vehi-
cles at the initial time.

With the help of Lemma 1, let us propose the collision
avoidance condition between vehicles i and j as follows:(

r
(tk)
i,h − r

(tk)
j,h

)⊤
e
(tk−1)
ij,h ≥ 2R (4)

where the unit vector e
(tk−1)
ij,h+1 is calculated from predictive

positions of previous step:

e
(tk−1)
ij,h =

r
(tk−1)
i,h − r

(tk−1)
j,h∥∥r(tk−1)

i,h − r
(tk−1)
j,h

∥∥
2

, h = 1, 2, . . . , Nh (5)

and r
(tk−1)
i,h is the h-step predicted trajectory of vehicle i in

the previous time step tk − 1.
Remark 1: Since r

(tk)
j,h = ξ

(tk)
ij,h for all h ∈ H, the condi-

tion (4) does not require position information from vehicle
j. Hence, vehicle i does not need to detect or establish
communication with vehicle j if j /∈ N (tk)

i .
In light of the collision avoidance condition (4), we will

propose a distributed planning algorithm for each vehicle.
This algorithm not only ensures that the leader can reach
its given destination with formation achievement but also
guarantees a collision-free trajectories in the future.

B. Planning Algorithm

As mentioned above, our distributed scheme is applicable
even if only the leader knows the formation. We design the
local cost function for the leader as follows:

f
(tk)
ℓ = f

(tk)
ℓ,track + f

(tk)
ℓ,form + β, (6)

where f
(tk)
ℓ,track =

∑Nh

h=1

∥∥r(tk)ℓ,h −rF
∥∥2
2
=

∑Nh

h=1

∥∥ξ(tk)ℓℓ,h−rF
∥∥2
2
,

f
(tk)
ℓ,form =

∑Nh

h=1

∑
(i,j)∈F α

∥∥ξ(tk)ℓi,h − ξ
(tk)
ℓj,h − F

(tk)
ij,h

∥∥2
2
, and β

is the attenuation factor. Here, f (tk)
ℓ,track stands for the tracking

action of the leader to its pre-planning trajectory, f
(tk)
ℓ,form

represents an attempt to reach the desired formation, α > 0

is a weighting factor, and F
(tk)
ij,h = Fij(tk+h). Furthermore,

the local cost functions of the followers are zero f
(tk)
i = 0.

At each time step tk, let us consider the following distributed

optimization problem

minimize
ξ
(tk)

ij,h

f (tk) = minimize
ξ
(tk)

ij,h

Nv∑
i=1

f
(tk)
i , (7a)

s.t. ξ(tk)1j,h = ξ
(tk)
2j,h = · · · = ξ

(tk)
Nj,h, (j, h) ∈ V ×H, (7b)

(1) and (2) with ξ
(tk)
ii,0 = pi(tk), v

(tk)
i,0 = ṗi(tk), (7c)(

ξ
(tk)
ii,h −ξ

(tk)
ij,h

)⊤
e
(tk−1)
ij,h ≥ 2R+ ε, (j < i), (7d)

f
(tk)
ℓ,track + f

(tk)
ℓ,form ≤ γ

(
f
(tk−1)
ℓ,track + f

(tk−1)
ℓ,form

)
+ βµtk (7e)

where e
(tk−1)
ij,h is given by (5) with r

(tk)
j,h = ξ

(tk)
ij,h ; ε is a

safe distance between two vehicles; γ ∈ (0, 1), µ ∈ (0, 1]
are given damping coefficients. The idea of using β is from
[18], [19] to relax the condition (7e) as well as maximize
the decrease of leader cost function (6).

Based on a solution of constrained convex optimization
problems given in [20], we take advantages of ADMM to
solve the optimization (7a). To begin with, let us denote the
following local constraint sets:
Ci =

{
col(q1, . . . , qNv

)
∣∣∣qi ∈ R2(H+1), qi = [qi,h]h∈H ;

∃vh, uh :
[
q⊤i,h+1, v

⊤
h+1

]⊤
= Ad,i

[
q⊤i,h, v

⊤
h

]⊤
+Bd,iuh,

qi,0 = pi(tk), v0 = ṗi(tk);

∀j ̸= i : (qi,h−qj,h)
⊤
e
(tk−1)
ij,h ≥ 2R+ε; and (2)

}
. (8)

Based on the optimization problem (7a), the path-planning
algorithm 1 shows the steps of the online formation trajectory
planning for multiple vehicles with collision avoidance.

Algorithm 1: Planning Algorithm

Input: Number of vehicles Nv , radius R, formation
F

(tk)
ij , predictive horizon Nh and current position r

(tk)
i,0 =

pi(tk).
Output: r(tk)i,h , h = 1, 2, . . . , Nh.

1: Initiate: at k = 1, set ξ(tk−1)
ij,h = ξ

(0)
ij,0 = r

(tk)
i,0 .

2: Calculate matrices A
(tk)
d,i and B

(tk)
d,i in (1) by vehicles

dynamics at each replanning instant tk.
3: In vehicle i, at each time instant tk, solve the optimiza-

tion problem (7a) to obtain ξ
(tk)
ij,h , j = 1, 2, . . . , Nv .

4: Let r(tk)i,h = ξ
(tk)
ii,h .

C. Algorithm analysis

To analyze the convergence of Algorithm 1, we assume
that each vehicle can track its reference, i.e. pi(tk + h) =

r
(tk)
i,h for all h = 1, 2, . . . , Np, which implies that the end of

predicted trajectory in previous replanning step is coinciding
with the beginning of the current step r

(tk−1)
i,Np

= r
(tk)
i,0 .

Proposition 1: For µ ∈ (0, 1), suppose that the optimiza-
tion problem (7a) is feasible for all tk. Then, the leader ℓ
reaches its destination rF and the group of vehicles achieves
the desired formation F as tk increases.
Proof: Denote Jk = f

(tk)
ℓ,track + f

(tk)
ℓ,form. From (7e), we have

Jk ≤ γJk−1 + βkµ
k where βk is a scalar solution to the

optimization problem (7a). Taking a summation of both sides



of the inequality and noting that βk is upper bounded by β̄,
one has (1−γ)

∑k
m=0 Jk ≤ J0+β̄ 1−µk

1−µ . Through the limits,

we have
∑∞

m=0 Jm ≤ J0

1−γ + β̄
(1−γ)(1−µ) , which implies that

lim
k→∞

Jk = 0, lim
tk→∞

∥r(tk)ℓ,0 − rF ∥2 = 0, and lim
tk→∞

∥r(tk)i,0 −

r
(tk)
j,0 − F

(tk)
ij ∥2 = 0 for all (i, j) ∈ F .

Unlike the other works on online distributed trajectory
planning [10], [17], our paper discusses the convergence
analysis of the designed planning algorithm by introducing
(7e). The presence of the term βµk plays an important role
as a relaxation for the constraint Jk ≤ γJk−1. Moreover, for
the case r

(tk−1)
i,Np

̸= r
(tk)
i,0 the asymptotic convergence of Jk

is not guaranteed. Hence, let µ = 1 to keep Jk bounded. It
should be note that βk is only available in the leader.

Finding a solution to the optimization problem (7a) plays
the most important role in Algorithm 1. We will present how
to solve such a problem in a distributed manner in the next
section. The superscript (tk) will be removed to lighten the
notations afterward.

IV. DISTRIBUTED COMPUTATION FRAMEWORK

This section presents two algorithms to solve the optimiza-
tion problem (7a) in a fully distributed way. The advantages
of both algorithms are analyzed in communication and
computation views.

A. ADMM-based Algorithm

At the beginning, (7a) is rewritten in the consensus form

minimize
Nv∑
i=1

fi(ξi) + ICi
(wi) (9)

subject to ξi −wj = 0, ∀j ∈ N̄ (tk)
i ,

where IC is the indicator function of C; wi stands for con-
strained variables; and (•)i = [(•)ij ]j∈V =

[
[•ij,h]h∈H

]
j∈V

for (•) ∈ {ξ,w}. Then, the augmented Lagrangian of the
optimization problem (9) is given by: L =

∑Nv

i=1 Li, Li =

fi(ξi) + ICi
(wi) +

∑
j∈N̄ (tk)

i

λ⊤
ij (ξi−wj)+

ρ
2 ∥ξi−wj∥22 .

Thus, the ADMM-based algorithm is formulated in
ξn+1 = argmin

ξ
L(ξ,wn,λn), (10a)

wn+1 = argmin
w

L(ξn+1,w,λn), (10b)

λn+1
ij = λn

ij + ρ
(
ξn+1
j −wn+1

i

)
, j ∈ N̄ (tk)

i , (10c)
where λij = [λij,h]h∈H. Note that problem (10a) can
be solved in a parallel manner by unconstrained quadratic
programming

ξn+1
i =argmin

ξi

fi(ξi)+
∑

j∈N̄ (tk)

i

ρ

2

∥∥∥∥ξi−wn
j +

1

ρ
λn
ij

∥∥∥∥2
2

. (11)

Apart from this, (10b) is simplified by the following least
square problem

wn+1
i =argmin

wi∈Ci

∑
j∈N̄ (tk)

i

∥∥∥∥ξn+1
j −wi+

1

ρ
λn
ji

∥∥∥∥2
2

. (12)

The solving process is summarized in Algorithm 2. As can
be seen in Algorithm 2 that each vehicle requires both con-
straint update wn

j and dual update λn
ij for its computations.

Algorithm 2: ADMM-based algorithm

Input: Number of vehicles Nv , radius R; primal resid-
ual error ϵpri, penalty parameter ρ, maximum ADMM
iteration number nmax, and ξii,0.
Output: ξ1j,h, ξ2j,h, . . . , ξNvj,h.

1: Initiate: λ0 = 0, w0
i ∈ Ci.

2: for n = 1, 2, . . . , nmax do
3: Vehicle i sends wn

i to j and gathers wn
j from its

neighbors, solve (11) to obtain ξn+1
i .

4: Vehicle i sends 1
ρλ

n
ij+ξn+1

i to j and gathers 1
ρλ

n
ji+

ξn+1
j from its neighbors, calculate wn+1

i by (12).
5: if ∥ξn+1

i −wn+1
i ∥ < ϵpri then

6: return wn+1
i .

7: else
8: Calculate λn+1

ij by (10c).
9: end if

10: end for

Here, each robot is set up with the same ρ initially. The
computations seem to be the weakness of Algorithm 2. To
deal with such an issue, we then introduce an alternative
algorithm to avoid this drawback.

B. Alternating projection-based algorithm

The alternating projection is a simple method for com-
puting a point at the intersection of some convex sets.
In this case, our work is to find a point in intersection
∩Nv
i=1Ci corresponding to the cost function

∑Nv

i f
(tk)
i . From

the literature on the dynamic consensus-based optimization
problem [21], optimization problem (7a) can be solved by

ξn+1
i =

1

|N̄ (tk)
i |

∑
j∈N̄ (tk)

i

wn
j , (13)

wn+1
i = ProjCi

(
ξn+1
i − γn∇fi(ξ

n+1
i )

)
, (14)

where the positive sequence {γn}n≥0 is chosen such that∑∞
n=0 γn = ∞ and

∑∞
n=0 γ

2
n < ∞. Then, the alternating

projection-based algorithm is summarized in Algorithm 3.
Remark 2: Compared to the Algorithm 2, Algorithm 3 is

quite simpler, i.e. it does not require the additional dual
update λn

ij (10c). Thus, it can reduce at least twice the
communication burdens in the vehicle network. However,
Algorithm 2 converges faster than Algorithm 3 in general and
can work with various types of cost functions; for example,
we can add energy cost as f

(tk)
i =

∑H−1
h=0 ∥u(tk)

i,h ∥22.

C. Convergence analysis

Intuitively, the local constraint set Ci is nonempty and
convex at all time steps, and the local cost function f

(tk)
i

is formulated in terms of a quadratic form. Consequently,
the optimization (7a) is strictly convex. Then, for both
algorithms, their convergences are ensured by preceding
work [20], [21] if the optimization problem is feasible. For
the fast convergence, ρ can be chosen increasingly as of [22].



Algorithm 3: Alternating projection-based algorithm

Input: Nv , R, ϵpri, maximum iteration nmax, and ξii,0.
Output: ξ1j,h, ξ2j,h, . . . , ξNvj,h.

1: Initiate: w0
i ∈ Ci.

2: for n = 1, 2, . . . , nmax do
3: Gather wn

j and calculate wn+1
i by (13).

4: Obtain ξn+1
i by (14).

5: if ∥ξn+1
i −wn+1

i ∥ < ϵpri then
6: return wn+1

i .
7: end if
8: end for

Fig. 2: Minimum distance of every pair of two vehicles

V. NUMERICAL EXAMPLES

To demonstrate the effectiveness of the proposed algo-
rithm 1, we present a numerical example of a 9-vehicle
system that consists of a leader and eight followers moving
in the interest space S = {(x, y) ∈ R2|0 ≤ x, y ≤ 15}. We
consider that each vehicle i shares the same linear dynamics
with the trajectory generator by the double integral linear
dynamics by r̈i(t) = ui(t) or z

(tk)
i,h+1 = Az

(tk)
i,h + Bu

(tk)
i,h

as in (1). With the sampling time τ = 0.2[s], we proceed
to replan trajectories after each time step Np = 1. The
other parameters are selected as follows: prediction horizon
H = 5, radius of a vehicle R = 0.3, safety distance ε = 0.05.

The system is required to consecutively reach three dif-
ferent formations at three different locations in the interest
space S without any collisions among the vehicles. To clearly
represent the collision avoidance of the group, we define
the minimum distance of every pair of vehicles as follows
Dtk = min(i,j)∈V×V ∥r(tk)i,0 − r

(tk)
j,0 ∥2 − 2R. Figs. 3a–3o

illustrate snapshots of the movements of the vehicles in
84 time instants in which the leader is highlighted by a
red circle and the others are followers. At the initial time
instant tk = 1, the vehicles are spotted at unorganized
positions that highly probably result in collisions among
them when moving. The first required formation is a diamond
shape where the desired destination of the leader is given
as rF = [2, 8]

⊤. Figs. 3a–3e show how the group of the
vehicles fulfils the first requirement without any collisions.
The achievement of collision avoidance is represented by
checking minimum distances of every pair of vehicles (see
Fig. 2 from 1-st to 22-nd time instant). In this mission, we
set the parameters α = 0.1 in the optimization problem

(6) that prioritizes steering the group of vehicles to the
destination point rF rather than forming the given diamond.
The second required formation is a hexagon shape where the
desired destination of the leader is given as rF = [9, 9]

⊤

(see Figs. 3f–3j). It is worth noting that positions of all the
vehicles in the formation are reorganized, e.g., the leader is
no longer located at the center of the desired formation as
the first diamond shape. This arrangement causes collisions
among the vehicles. Thanks to Algorithm 1, no collisions
occur (see Fig. 2). The last required formation is a square
shape where the desired destination of the leader is given as
rF = [9, 2]

⊤ (see Figs. 3k–3o). Once again, positions of all
the vehicles in the formation are reorganized, which might
cause collisions among the vehicles. However, collisions do
not still occur (see Fig. 2 from 53-rd to 84-th time instant). In
the last two missions, we set α = 1 in the optimization (6) to
prioritize that the group of vehicles forms the given formation
shapes rather than going to the destination points. This tuning
costs more time instants for the group to complete the given
missions than the first mission.

VI. CONCLUDING REMARKS

This paper has addressed the problem of online distributed
leader-follower formation trajectory planning for multiple
vehicles with regard to collision avoidance. Our proposed
method took the advantage of MPC-based motion planning
approaches to design reference trajectories at each replanning
instant. With the help of the global consensus scheme, each
vehicle has replicas of its neighbors by which the collision
avoidance among all the vehicles is established even for
disconnected vehicles. Moreover, the key achievement of this
paper is the formation preservation since the network topol-
ogy is time-varying. The formation information is distributed
to selective vehicles or only the leader while the group
of vehicles maintains its desired formation and reaches the
leader’s destination. The validation of the planning algorithm
was verified by the numerical simulation with the three
different formation shapes and the leader’s destinations.
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