
Test Selection for Unified Regression Testing

Shuai Wang, Xinyu Lian, Darko Marinov, Tianyin Xu
University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA

{swang516, lian7, marinov, tyxu}@illinois.edu

Abstract—Today’s software failures have two dominating root
causes: code bugs and misconfigurations. To combat failure-
inducing software changes, unified regression testing (URT) is
needed to synergistically test the changed code and all changed
production configurations for deployment reliability. However,
URT could incur high cost, as it needs to run a large number
of tests under multiple configurations. Regression test selection
(RTS) can reduce regression testing cost. Unfortunately, no
existing RTS technique reasons about code and configuration
changes collectively.

We introduce Unified Regression Test Selection (uRTS) to
effectively reduce the cost of URT. uRTS supports project
changes on 1) code only, 2) configurations only, and 3) both code
and configurations. It selects regular tests and configuration tests
with a unified selection algorithm. The uRTS algorithm analyzes
code and configuration dependencies of each test across runs and
across configurations. uRTS provides the same safety guarantee
as the state-of-the-art RTS while selecting fewer tests and, more
importantly, reducing the end-to-end testing time.

We implemented uRTS on top of Ekstazi (a RTS tool for
code changes) and Ctest (a configuration testing framework).
We evaluate uRTS on hundreds of code revisions and dozens
of configurations of five large projects. The results show that
uRTS reduces the end-to-end testing time, on average, by 3.64X
compared to executing all tests and 1.87X compared to a
competitive reference solution that directly extends RTS for URT.

I. INTRODUCTION

Today’s software failures have two dominating root causes:

faults in program code (i.e., bugs) and errors in configuration

files (i.e., misconfigurations) [1]–[6]. Many software projects

include some default configuration together with the code

in the project repository. Modern continuous integration and

deployment (CI/CD) [7]–[10] aims to quickly check and

release project changes. To combat bugs and misconfigu-

rations introduced through project changes, modern CI/CD

environments widely use regression testing. Regression testing

checks that project changes do not break previously working

functionality. Traditional regression testing is mainly applied

to (potentially changed) code under the (potentially changed)

default configuration [11]–[13].

However, the deployed software uses production config-

urations that typically differ from the default configuration.

One limitation of traditional regression testing is that the code

changes are not tested under the production configurations;

likewise, changes in production configurations are not tested

with the code. Consequently, many code changes pass the

regression tests under the default configuration but lead to

failures in production. In fact, companies such as Google

and Meta change configurations frequently [2], [4], [14]–[18].

They report misconfigurations [1]–[4], [19], [20] as the main

cause of failures in production systems, even more frequent

than code bugs. While large software organizations have

started to treat configurations as important as code, e.g., using

version control for configurations and reviewing configuration

changes manually, much more remains to be done.

Recent research has proposed configuration testing to de-

tect erroneous changes to production configurations [21]–

[24]. A configuration test is a parameterized test [25], [26]

with input parameters being configuration parameters; it runs

by instantiating the input parameters with the values from

production configurations (§II-A). The key idea is to connect

configuration changes to tests, so that configuration changes

can be tested in the context of code affected by the changes.

Configuration testing can reason about the program behavior

under production configurations and detect sophisticated mis-

configurations that are missed by rule-based validation [14],

[15], [27]–[30] or data-driven approaches [4], [31]–[36]. How-

ever, a major limitation of prior work is that configuration

testing addresses only configuration changes of the same code

version—it assumes that the code does not change and has

only one production configuration (or if more, each production

configuration is tested in isolation).

Synergistically testing code and configuration changes re-

quires unified regression testing (URT). URT tests code

changes both under the default configuration and under pro-

duction configurations to increase deployment reliability. For

configuration changes, URT tests the changed configurations

against the latest code version, which may include code

changes since the previous test run. URT applies when project

changes are not only to code or configurations separately, but

also to both code and configurations together. In large soft-

ware organizations, code-configuration co-changes are com-

mon, partially due to the increasing popularity of monolithic

software repositories driven by the DevOps practice of main-

taining both code and production configurations [4], [37]–

[39]. Inconsistencies between code and configuration changes

constantly result in production failures, e.g., as Microsoft

reports [4]. So, the ability to test code-configuration co-

changes is important.

However, URT could be very costly because it has to run a

large number of tests under multiple configurations, including

the default configuration and several production configura-

tions. Note that it is a norm that multiple production con-

figurations co-exist in production deployments; for example,

production systems are constantly under staged deployments

with multiple versions of code or configurations [7], [24]. As a

reference, the cost of regression testing under only the default

configuration is already considered high [40]–[44]. If every

test needs to be run for every configuration, the regression

testing cost could become unaffordable.
Regression test selection (RTS) [11], [45]–[48] can effec-

tively reduce the cost of regression testing. RTS runs only a

subset of the regression tests that are affected by the project

changes; in other words, RTS does not run the tests whose

outcome cannot change due to the recent changes. RTS is

widely used in large software organizations, e.g., Google

and Meta publicly report on the practice [40]–[44]. RTS is

successful because project changes in CI/CD environment

are incremental—they typically change a small part of a

large software project, i.e., a small piece of code or a small

number of configuration values. It is well documented that

code changes are relatively small [49]–[51], and one study

reports that 49.5% of configuration changes alter only two

lines of configuration files.
Unfortunately, no existing RTS technique is tailored for

URT—existing RTS techniques are designed either for code

changes only [11] or for configuration changes only [21].

The former is done with regular tests and the latter with

configuration tests. We use the term “test” to generically

refer to either a regular test or a configuration test. No

RTS technique reasons about code and configuration changes

collectively, and no technique works with both regular tests

and configuration tests.
We introduce unified regression test selection (uRTS), the

first RTS technique for URT. uRTS works with project changes

on 1) code only, 2) configurations only, and 3) both code and

configurations. uRTS is based on the following observations:

• Configuration tests can be used to test code changes

under production configurations, in addition to testing

configuration changes (its original use case). In essence, a

configuration test exercises code under a specific (default

or production) configuration.

• A project change typically changes a small piece of code

or a small number of configuration values. Therefore,

only a subset of tests needs to be rerun for any change.

• The production configurations are typically largely simi-

lar. Therefore, a configuration test need not be repeatedly

run for every production configuration.

uRTS selects regular tests and configuration tests with a

unified algorithm. The algorithm analyzes code and configu-

ration dependencies of each test for all configurations. uRTS

first selects regular tests against the (potentially) changed code

under the (potentially) changed default configuration. Thus,

it checks for regression faults in the code under the default

configuration. It then selects configuration tests against the

(potentially) changed code under the (potentially) changed

production configurations. uRTS uses a two-dimensional com-

parison analysis—comparing dependencies to the previous

project revision, and comparing dependencies to the previously

run configurations—to select fewer configuration tests and thus

speed up testing. A configuration test is not selected iff both

its code and configuration dependencies remain unchanged.

Not selecting a test could, in general, lead to unsafe RTS that

misses a test failure.

uRTS provides the same safety guarantee as state-of-the-

art RTS for code-only (e.g., Ekstazi [12]) and configuration-

only changes (e.g., Ctest RTS [21]), and uRTS also guarantees

safety for code-configuration co-changes. Meanwhile, uRTS

is more effective than state-of-the-art RTS. Compared with

traditional RTS for code changes, e.g., Ekstazi, uRTS is aware

of changes on the parameter values. The parameter granularity

used by uRTS is more precise than the file granularity used by

Ekstazi, where any regular test that reads any default configu-

ration file needs to be rerun even if just one out of hundreds of

parameter values in the file is changed. Compared with Ctest

RTS for configuration changes, uRTS selects configuration

tests across multiple production configurations, while Ctest

RTS assumes only one production configuration.

We implemented uRTS for Java and JUnit on top of

Ekstazi [52], a state-of-the-art RTS tool, and Ctest [53], a

configuration testing framework. Specifically, our implemen-

tation employs Ekstazi to dynamically track file dependencies

of code changes and applies the instrumentation techniques of

Ctest to dynamically track configuration dependencies of each

test. It also uses Ctest to instantiate and run configuration tests.

We evaluate uRTS on a total of hundreds of code revisions

and dozens of configuration files of five large software projects

(HCommon, HDFS, HBase, Alluxio, and ZooKeeper). Some of

our experiments are the largest RTS experiments performed

on open-source projects, e.g., running all regression tests

in HDFS for just one project revision takes over 6 hours

on a powerful server machine. The results show that uRTS

reduces the end-to-end testing time, on average, by 3.64X

compared to executing all tests and 1.87X compared to a

competitive reference solution that directly extends RTS for

URT. Compared to unsafe RTS, uRTS increases the testing

time by 1.93X when run for three configurations.

In summary, this paper makes the following contributions:

• Concept: We introduce Unified Regression Testing

(URT) and motivate the need for RTS in URT.

• Algorithm: We develop uRTS, the first RTS for URT.

uRTS works with project changes on code, configura-

tions, or both. It provides the same safety guarantee as

existing RTS but is more effective and applicable.

• Implementation: We implement uRTS on the state-of-

the-art RTS tools for regular tests and configuration tests.

• Evaluation: We show the effectiveness of uRTS in re-

ducing the cost of URT with large-scale experiments.

• Data Availability: https://github.com/xlab-uiuc/uRTS-ae

II. BACKGROUND

A. Configuration Testing

The terms “configuration” and “testing” refer to different

concepts in different lines of work. Following Sun et al. [21],

we view configuration testing as a technique for detecting

erroneous configuration changes (manifesting as failing tests)

early, to prevent them from being deployed to production

2

public void testGetMasterInfoPort() {...}

@Test @Ctest

The value of needed is 6,

larger than 5 in the change./* jetty-server-9.3.27.v20190418.jar */

protected void doStart() {

if (needed > max)

throw new IllegalStateException(String.format(

“Insufficient threads...”));

}

max = conf.getInt(“hbase.http.max.threads”);

/* http/HttpServer.java */

...

Production config change (for @Ctest)

- hbase.http.max.threads = 10

+ hbase.http.max.threads = 5

Source code

Configuration test

Default config in hbase-default.xml

(for @Test)

hbase.http.max.threads = 16

Fig. 1: A configuration test instantiated by a changed produc-

tion configuration. The test fails as the code under the new

production configuration throws an exception.

systems. The original idea of configuration testing was to

connect configurations to software tests, so that configuration

changes can be tested in the context of code affected by the

changes. Unlike Sun et al. [21] who assumed that code does

not change, in this work we support the general case where

the code, as well as configurations, can change.

A configuration test t̂(P̂) is parameterized by a set of

configuration parameters P̂ . Running a configuration test

instantiates each input parameter from P̂ with a concrete value

from a production configuration. Like regular tests, configu-

ration tests exercise the program and check (via assertions)

certain properties (e.g., correctness, performance, security).

Fig. 1 illustrates a configuration test (annotated by @Ctest)

from prior work [21]. Note that when a configuration test is

instantiated by the default configuration, it is equivalent to a

regular test. This equivalence is the foundation of designing a

unified solution for both configuration tests and regular tests.

Sun et al. [21] showed that configuration tests can be

generated by transforming regular tests, similar to parameter-

izing existing unit tests [54]. The basic idea is to selectively

parameterize a regular test t by the configuration parameters P̂

that are 1) read by the test and 2) generic to the test logic. For

a configuration test t̂(P̂), P̂ is a subset of all the parameters

read by the test t.

Configuration testing differs from approaches that explore

multiple configurations, e.g., configuration-aware testing, com-

binatorial testing, or misconfiguration-injection testing [55]–

[62], which sample representative configurations or miscon-

figurations. A configuration test focuses only on the specific

configurations to be deployed to the production system.

B. Regression Test Selection (RTS) and Ekstazi

Regression testing is widely used as projects evolve to

test whether the recent changes break existing functionality.

Regression testing is important but also costly as many tests

are run for many changes.

Regression test selection (RTS) [11], [40]–[45] reduces the

cost of regression testing by selecting to run only a subset

of tests, based on the most recent code changes. Traditional

regression testing does not consider configuration changes.

A typical RTS technique finds dependencies of each test on

code parts and selects to run only the tests whose execution

can reach the changed parts. Various techniques compute

dependencies dynamically or statically, and code parts range

from statements and basic blocks to methods and classes to

entire modules and projects.
Ekstazi. Ekstazi [12] is an open-source RTS tool [52] for

Java programs. Ekstazi determines test dependencies dynam-

ically, at the level of files, including code .class1 files and

optionally other files. When a test runs, Ekstazi monitors

the execution to determine what files the test depends on.

The Ekstazi tool provides many options, but one is crucially

relevant—what files to track in the dependencies for each test.

The tool default, which we call Ekstazi−, tracks only .class

files, although that option is unsafe [12]. We also evaluate an

alternative, which we call Ekstazi+, that tracks .class files and

configuration files.
For the test in Fig. 1, Ekstazi− finds that testGetMasterInfo-

Port depends on the test class HttpServerTest, the HttpServer class

directly under test, and all other project and library classes

that the execution reaches, including Server that contains the

shown doStart method. Ekstazi+ additionally finds that test-

GetMasterInfoPort depends on hbase-default.xml when run under

the default configuration (or on the production configuration

file when run under it). When the project changes, Ekstazi

selects to run testGetMasterInfoPort (or rather, selects the entire

class HttpServerTest) if any of the dependent files (including

HttpServerTest itself) changes in any way.
If all the classes (and other tracked files) remain the same,

Ekstazi does not select a test because its behavior will be

the same as before the changes. Ekstazi operates at the level

of classes, not methods: 1) it is safer for object-oriented

code [12], and 2) it was shown to, somewhat surprisingly,

work faster end-to-end [12], [64]. A key aspect of RTS is

to consider testing time end-to-end, from the moment when

developers initiate testing (e.g., via mvn test) until they get the

result. The time, called AE(C) [12], includes the analysis

phase (A) that determines what tests to run, the execution

phase (E) that executes the tests, and (together with the

execution or separately) the collection phase (C) that collects

the dependencies for the next revision. Although class-level

RTS selects some more tests than method-level RTS, and thus

has a slower E phase, class-level RTS has a much faster (and

safer) A phase. Note that in the very first run of a test (e.g., on

the first run of Ekstazi, or when a new test is added), Ekstazi

has no dependency info, so it always selects to run the test.
An important point is that Ekstazi is not configuration aware

and does not handle configuration files in any special way:

Ekstazi− ignores configuration files, and Ekstazi+ tracks entire

configuration files.

C. RTS for Configuration Tests

Prior work [21] developed a RTS algorithm for configura-

tion tests but under a restrictive assumption that the code never

1Ekstazi tracks compiled .class files rather than source .java files because
different sources can result in the same compiled file (e.g., correcting a
misspelling in a comment), and the same source can result in different
compiled files (e.g., using a different compiler or linking to a different
library [63]). JVM executes the compiled code.

3

+ p1 = 2

+ p2 = true

- p1 = 0.1

- p2 = false
p1 = 0.1

p2 = false

p3 = foo

p4 = /data

t1(p1,p2)

t2(p2,p3)

t3(p3)

t4(p3,p4)

t1(p1,p2)

t2(p2,p3)

Production config Production config changeConfig test suite

Selected tests

mvn test –Dtest=t1(p1=2,p2=true)

mvn test –Dtest=t2(p2=true,p3=foo)

Run selected configuration tests

Fig. 2: RTS of configuration tests for a configuration change.

changes. As typical configuration changes only update a small

number of configuration parameters [14], not all available

configuration tests need to run. A configuration test t̂(P̂) is

selected to run for a given configuration change if at least one

parameter in P̂ is changed. A configuration change passes

if all selected configuration tests pass, and it fails if any

selected configuration test fails. Fig. 2 shows an example RTS

of configuration tests for a configuration change.

Note that this prior RTS does not consider code changes.

III. UNIFIED REGRESSION TESTING

The goal of unified regression testing (URT) is to test code

changes and configuration changes collectively for production

reliability. We define a project change as a “diff” D that

updates the system code S, the default configuration Cdef ,

production configurations Cprod, the test suite T (for regular

tests), or the test suite T̂ (for configuration tests):

D : (S′, C ′
def ,C

′
prod, T

′, T̂ ′) → (S,Cdef ,Cprod, T, T̂)

Note that D can be one commit or a bundle of several commits,

depending on how the code/configuration repositories are

maintained and how the project changes are deployed [4], [14],

[37], [44], [49]. Table I lists the notation we use.

URT runs regression testing for the following combinations:

• Run regular tests T on the (changed) code S under the

(changed) default configuration Cdef ; and

• Run configuration tests T̂ on the (changed) code S under

every (changed) production configuration C ∈ Cprod.

The former tests code under the default configuration; the

latter tests code under production configurations.

URT generalizes traditional code-oriented regression testing

and configuration testing. On one hand, it generalizes tradi-

tional regression testing [11] by testing code changes under

not only the default configuration but also the production

configurations (§III-A). On the other hand, it generalizes

configuration testing [21] by testing configuration changes

against the new code (§III-B). Moreover, it handles diffs that

co-change both code and configurations, be they default or

production configurations (§III-C). We next discuss these three

cases one by one. For now, we assume no regression test

selection (RTS)—we are unaware of any prior RTS tailored

for URT.

A. Testing Code Changes

For a diff that only changes code or the default configu-

ration, URT tests the changed code S under 1) the default

configuration Cdef and 2) every production configuration

Notation Description

S The code (including test code) of the target system
Cdef The default configuration
Cprod The set of production configurations

t̂(P̂) A configuration test, where P̂ is its input parameter set

T̂ The configuration test suite of all configuration tests T̂ = {t̂(P̂)}
T The regular test suite T = {t}, where each t only runs with Cdef

D A diff from (S′, C′

def ,C
′

prod, T
′, T̂ ′) to new (S,Cdef ,Cprod, T, T̂)

TABLE I: Notations used in the paper and their descriptions.

C ∈ Cprod. The former is equivalent to traditional regression

testing: Basically, URT runs all the tests in the test suite T ;

URT passes iff all the tests pass and fails otherwise.

However, traditional regression testing does not test code

changes under production configurations. URT runs configu-

ration tests in T̂ to check whether the code can be deployed

under different production configurations. This checking is

viable because each configuration test essentially tests the

code under a specific configuration—a configuration test t̂(P̂)
should pass for any correct values of parameters in P̂ . Thus,

a configuration test can check the correctness of not only

configuration changes but also code changes.

Without RTS, for a diff that only changes code or the default

configuration, URT runs |T |+ |T̂ | × |Cprod| tests.

B. Testing Production Configuration Changes

For a diff that only changes production configurations, URT

tests the code under the changed configurations Cprod. This

checking is done by running configuration tests T̂ against the

code S = S′ under each C ∈ Cprod. Specifically, URT runs

every configuration test t̂(P̂) in T̂ by instantiating P̂ with

values in each production configuration C. URT passes iff

every t̂(P̂) under every C passes. This part is equivalent to

the original configuration testing described in §II-A, except

that all prior work [21]–[23] assumes there is only one dis-

tinct production configuration, while we allow multiple. Note

that multiple production configurations are the norm in real-

world deployments, e.g., real-world production systems are

constantly under staged deployments with multiple production

configurations in place [7], [24].

Without RTS, for a diff that only changes production

configurations, URT needs to run |T̂ | × |Cprod| tests.

C. Testing Code-Configuration Co-Changes

For a diff that co-changes both code and production config-

urations, URT runs tests against the changed code S with all

changed configurations {Cdef}∪Cprod. URT runs all the tests

in T against S under Cdef . URT also runs all the configuration

tests in T̂ against S under every C ∈ Cprod.

Without RTS, for a diff that co-changes both code and

production configurations, URT runs |T | + |T̂ |× |Cprod| tests.

IV. THE URTS ALGORITHM

As discussed in §III, unified regression testing (URT) is very

expensive without effective regression test selection (RTS).

However, no existing RTS technique is directly tailored for

4

Change Type Run T Run T̂

S′ ̸= S ∨ C′

def ̸= Cdef ,
Prior work

C
′

prod = Cprod
Our work

S′ = S, C′

def = Cdef ,
Need not run

Recent work [21] for |Cprod| = 1

C
′

prod ̸= Cprod Our extension for |Cprod| > 1

S′ ̸= S ∨ C′

def ̸= Cdef ,

C
′

prod ̸= Cprod
Our work Our work

TABLE II: Type of tests run for various types of changes.

URT due to not being able to reason about code and configu-

ration co-changes collectively and precisely. Table II presents

the types of tests run for different types of project changes,

which highlights our contributions over existing RTS.

We develop the unified regression test selection (uRTS) to

fill this important gap. The goal of uRTS is to reduce the

testing time by minimizing the number of tests (including both

regular tests from T and configuration tests from T̂) to run for

a given diff that could change code, configurations, or both.

We base uRTS on the following key observations:

• A diff typically changes a small piece of code or a

small number of configuration values [14]. Thus, only

a subset of T or T̂ needs to be run for any diff. The

basic assumption of any RTS is that a relatively cheap

analysis can select a subset of tests and, thus, save the

time that would have been spent running unselected tests.

• A production configuration typically changes only a

small number of configuration values from the default

values [65]. Assuming T̂ has been run against Cdef , a

configuration test t̂(P̂) ∈ T̂ need not be run for any

production configuration that changes none of p ∈ P̂

from the default.

• The n production configurations typically only differ in a

small number of configuration values [65]. A configura-

tion test t̂(P̂) need not be repeatedly run for production

configurations that share the same values of P̂ .

For a diff D:(S′, C ′
def ,C

′
prod, T

′, T̂ ′)→(S,Cdef ,Cprod, T, T̂),
uRTS employs a two-step test selection algorithm:

1) Select a subset of regular tests from T to check the new

code S for the new default configuration Cdef .

2) Select a subset of configuration tests from T̂ to check the

new code S for each production configuration in Cprod.

A. Step 1: Selecting Regular Tests

If the target diff D changes the code (i.e., S′ ̸= S), uRTS

first selects regular tests from T to test the code changes. uRTS

applies the traditional RTS to select the tests, i.e., a test t is

selected as long as D changes some code exercised by t. Our

implementation uses Ekstazi, which checks for each t ∈ T

whether D changes any code file on which t depends.

If the target diff D changes the default configuration (i.e.,

C ′
def ̸= Cdef), uRTS further selects from the remaining t ∈ T

every test that exercises at least one configuration parameter

whose values differ in C ′
def and Cdef , i.e., the change of

C ′
def → Cdef by D could affect the test results of t. We

discuss in §V-B1 how to track configuration parameters read

S′

S

𝐶′

𝐶

𝐶′

𝐶

𝐶′

𝐶

		𝐶	
"#

𝐶′$
"#

𝑆′

	𝐶	
"

2	𝑑𝑒𝑓	

Vertical

comparison

of code and

configuration

Horizonal comparison of only configuration (not code)

Code Production configsDefault config

𝑡̂(𝑃')
𝑆

"

𝑆 	
		𝑑𝑒𝑓	

	𝐶	
"#
1
	

𝑆%
&'

Old

New

Fig. 3: Illustration of Step 2: t̂(P̂) is not selected for S and

C2 if either vertical or horizontal comparison matches. One

optimization: not compare code dependencies horizontally.

by each test. Finally, uRTS runs every selected t against S

under Cdef .

Recall that a configuration test t̂(P̂) is parameterized by a

set of configuration parameters P̂ . Running t̂(P̂) against S

under Cdef is equivalent to running a regular test t against S.

B. Step 2: Selecting Configuration Tests

In this step, uRTS checks the new code S under every

new production configuration C ∈ Cprod. uRTS only selects

configuration tests from T̂ because not all tests in T can test

production configurations that differ from the default.

One can use file-level RTS, like Ekstazi+, to track the

(default or production) configuration but at the level of the

entire file(s). Configurations are stored in files, usually in a

standard format like INI or XML. Ekstazi+ can track for each

test what file(s) the test reads. However, tracking configuration

at the file granularity is rather inefficient. A configuration file

could include hundreds of parameters and their values, and be

several KBs or even MBs [14]. Even if a diff only changes

one configuration value, all the configuration tests need to be

run because they read the configuration file. So, uRTS works

at the granularity of configuration parameters instead of entire

configuration files.

For each C ∈ Cprod, uRTS selects a t̂(P̂) ∈ T̂ iff no prior

test run of t̂(P̂) exercises the same code under the same values

of all configuration parameters in P̂ . In other words, uRTS

unselects a configuration test t̂(P̂) as long as it has been run

against the same code dependencies and the same values of

all parameters from P̂ in either 1) Step 1, where a regular

test t is equivalent to a configuration test t̂ instantiated with

Cdef ; or 2) the last test round, on (S′, C ′
def ,C

′
prod). Consider

a configuration test t̂(P̂) for a production configuration C ∈
Cprod, and let C<C

prod be the set of production configurations

that run before C. Effectively, the analysis for selecting a test

uses a two-dimensional comparison, illustrated in Fig. 3:

• Horizontal comparison: if the value of every parameter

p ∈ P̂ is the same in C as in another C∗ ∈ {Cdef} ∪
C

<C
prod (i.e., the test was executed against S under C∗),

then t̂(P̂) is not selected to run for C, because running t̂

against S under C is equivalent to a prior test run. Note

that this case does not compare code dependencies; it is

an intentional optimization as code is the same.

• Vertical comparison: if the value of every parameter p ∈
P̂ is the same in C as in C ′ and every code dependency of

5

t̂ under C ′ has the same content in S′ as in S, then t̂(P̂)
is not selected to run for C, because running t̂ against S

under C is equivalent to running t̂ against S′ under C ′,

which was done in the last test round.

C. Correctness

Safety. A critical property of RTS is safety [11], [45]—

selecting all tests whose results could change due to the

project changes. For diffs that only change code or the

default configuration, uRTS provides the same safety as tradi-

tional file-based RTS such as Ekstazi [12], in the Ekstazi+

mode, which implicitly considers the default configuration.

uRTS tracks configuration dependencies at the granularity of

configuration parameters instead of configuration files, thus

providing more efficient end-to-end testing. uRTS collects

configuration dependencies by making an over-approximate

estimate, which assumes that each configuration parameter

read by a test influences the execution of the test. This

approach simplifies the implementation and ensures that the

analysis is comprehensive.

For diffs that only change production configurations, uRTS

provides the same level of safety as the RTS for configuration

testing [21]; uRTS is more efficient than the prior work when

multiple production configurations exist. Thus, uRTS provides

the same safety guarantees when reduced to special cases.

Moreover, uRTS supports the most general case where both

code and configurations change.

Precision. For a regular test t, uRTS selects t iff the test

result could change due to the changed code S or Cdef . For

a configuration test t̂(P̂), uRTS selects t̂ iff the code and the

configuration parameters exercised by t̂ were not already run

in the current test round (“horizontal comparison”) or the last

test round (“vertical comparison”). In summary, t̂(P̂) runs only

once for the same code and the same set of configuration

values of P̂ .

V. THE URTS IMPLEMENTATION

We implemented uRTS for Java and JUnit on top of Ek-

stazi [12] and Ctest [21]. Ekstazi is a state-of-the-art RTS tool

which dynamically tracks files that each test depends on and

selects tests to run if any dependency file is changed. Ctest is

a configuration testing framework that intercepts configuration

APIs to assign production configuration values to instantiate

configuration tests. We use Ekstazi to track the code executed

by each test, be it a regular or configuration test. We integrate

Ctest into Ekstazi to support running configuration tests. More-

over, we extend Ekstazi’s dependency collection and analysis

to track configuration parameters and their values during each

test run; we also encode the configuration parameters and their

values in the dependency file format that Ekstazi stores for

each test [52].

Fig. 4 shows the workflow of our uRTS implementation.

uRTS first selects tests (§IV) during the analysis phase (§V-B).

To execute regular tests, uRTS uses the existing Ekstazi

integration with JUnit and Maven Surefire. For each test that is

not selected, uRTS reuses the test’s dependency file generated

Test selection

Analysis

Dep. checking

Execution

Ctest runner

Test runner

Collection

Dep. gen.

Dep. reuse

not selected

selected

D
ep

. files
𝑡	or 𝑡̂

compare for the next revision

Fig. 4: uRTS implementation uses Ekstazi’s integration with

JUnit; we added or enhanced the grayed components.

by an earlier equivalent run; for each test that is selected, uRTS

runs the test and generates the new dependency file (§V-C).

A. Dependencies

uRTS maintains two types of dependencies for each test

under each configuration C ∈ {Cdef} ∪ Cprod:

• Code dependency: the code files that the test depends

on, in the Ekstazi form of ⟨URI, checksum⟩ pairs, where

the file URI could be a .class file in a directory or in

a .jar archive, and the checksum is a hash of the file

content. Note that the same test could have different code

dependencies when run under different configurations.

• Configuration dependency: the names and values of

configuration parameters read by the test, in the form

of ⟨parameter, value⟩ pairs. For each configuration test

t̂(P̂), its configuration dependencies only include the

parameters in P̂ .

uRTS maintains a dependency file (with code and configu-

ration dependencies) for each pair of a test (identified by the

test name) and a configuration (with a separate directory for

dependency files for each configuration). Each dependency file

is 1) (re)generated during the test run if the test is selected, or

2) reused from a dependency file of an equivalent run if the

test is not selected.

B. Analysis Phase

The analysis phase of uRTS analyzes the latest code and

configuration dependencies for each test (§V-B1), and decides

whether or not to select the test to execute (§V-B2).

1) Analyzing Dependency Changes: As Ekstazi, uRTS

checks whether a file dependency changes between two code

versions by comparing the checksums of the file content

in S′ and S. To analyze configuration dependencies, uRTS

needs to obtain the value of each configuration parameter in

corresponding configuration C ∈ {Cdef}∪Cprod and compare

the current value with that recorded in a dependency file.

A seemingly easy solution is to simply parse the configura-

tion files based on their format, which is typically a standard

file format such as INI or XML. However, our experience

in implementing uRTS for real-world projects shows that

configurations could have complex representations, making it

difficult to understand how they are interpreted by the project.

Table III presents some examples from Hadoop, involving

configuration variables and complex dependencies based on

configuration values. It is hard to duplicate such sophisticated

logic for each project.

6

Type Parameter Value

Value hadoop.tmp.dir /tmp/hadoop-${user.name}
dep. io.seqfile.local.dir ${hadoop.tmp.dir}/io/local

Complex dfs.ha.namenodes.CID NN1,NN2

dep. dfs.namenode.rpc-address.CID.NN1 machine1.example.com:8020
dfs.namenode.rpc-address.CID.NN2 machine2.example.com:8020

TABLE III: Two examples of sophisticated configuration in

the Hadoop project which makes it difficult to analyze config-

uration changes by simply parsing a configuration file.

Rather than reverse-engineering sophisticated configuration

logic, our insight is to use a more general, cleaner solution to

obtain configuration parameter values by reusing the project’s

own configuration APIs for reading configuration parameter

values.2 uRTS instruments the same configuration APIs for

the collection phase (§V-C). Using the same interface to

collect and compare configuration dependencies ensures the

consistency of the analysis. Specifically, we implement a

configuration reader that invokes the Get API to read the

configuration values of a configuration parameter. The reader

returns all the configuration parameters and their values from

a given configuration file.

2) Test Selection: uRTS implements the test selection

algorithm (§IV) based on dependency analysis. If there is no

dependency file recorded (e.g., on the first run of uRTS, or

when a new test or a new production configuration is added),

the test is selected to run.

Step 1 (§IV-A) Selecting regular tests. For each test

t against S under Cdef , uRTS checks whether or not the

configuration dependencies of t (the default parameter values

read by t) change. If so, t is selected to run. Otherwise, uRTS

further checks whether any code-dependency changes. If so,

uRTS selects the test t to execute. Otherwise, if neither the

configuration nor the code dependencies change, uRTS does

not select t.

Step 2 (§IV-B) Selecting configuration tests. For each

configuration test t̂(P̂) under a given production configuration

file C ∈ Cprod, uRTS first “horizontally” checks whether

any value of the t̂’s input parameters P̂ in C differs from

the corresponding value in the configuration-dependency of

t̂ previously executed under both Cdef and other production

configurations. (Note that t̂ could read more parameters than

those in P̂ , but the values of parameters not in P̂ are the

same as in the default configuration.) If there is no such

configuration difference, uRTS does not select t̂.

Otherwise, uRTS further “vertically” compares 1) the cur-

rent values of P̂ in C against the prior configuration depen-

dency of C ′ and 2) the current code dependency against the

prior code dependency of t̂. uRTS selects t̂ iff either code or

configuration dependencies change.

2Modern software projects use uniform APIs for reading configurations,
which is the basis for recent configuration analysis techniques [21], [22],
[61], [66]–[73]. For example, in many Java projects, the Get APIs can be
abstracted as a method of the form String get(String parameter).
It takes a parameter name as the input and returns its value (which is further
typecast by higher level APIs). Many Get APIs are declared in wrapper
classes on top of java.util.Properties for Java projects. Ctest [21]
instruments the Get APIs to generate configuration tests from regular tests.

1 public String get(String name) {

2 + String urtParam = name;

3 String[] names = handleDeprecation(

deprecationContext.get(), name);

4 String result = null;

5 for(String n : names) {

6 + urtParam = n;

7 result = substituteVars(getProperty(n));

8 }

9 + ConfigListener.record(urtParam, result);

10 return result;

11 } /* .../hadoop/conf/Configuration.java */

Fig. 5: Instrumentation for the Get API in Hadoop. The get

method is the lowest level API used by high-level APIs, e.g., getInt

and getBool. handleDeprecation replaces deprecated names.

1 public static void recordConfig(String confFile) {

2 Configuration conf = new Configuration(confFile);

3 for(String parameter : conf.getAllKeys()) {

4 String value = conf.get(parameter);

5 ConfigListener.record(parameter, value);

6 }

7 }

Fig. 6: The method we added for the Hadoop project to read

all the configuration parameter values of a given file. Hadoop

code uses the Get API to read configuration values.

C. Collection Phase

1) Not selected tests: If a test under C ∈ {Cdef} ∪Cprod

is not selected, it means that uRTS finds an equivalent test

run with the same code and configuration dependencies during

horizontal/vertical comparison. In this case, uRTS copies cor-

responding dependency files to update current dependencies.

2) Selected tests: For tests that are selected to run, uRTS

executes the test and (re)generates the code and configuration

dependencies. uRTS uses Ekstazi to track code dependencies,

as the .class files on which the test execution depends (§II-B).

Ekstazi instruments class loading and other class uses (e.g.,

dereference of static fields) to track the classes, and then maps

each class name to the URI file location that stores the class.

uRTS collects configuration dependencies with the instru-

mentation of the configuration APIs. uRTS applies the tech-

niques of Ctest [21] to instrument the configuration APIs to

monitor the configuration parameters read by each test during

the test execution. Fig. 5 shows the instrumentation for the

Get API of the Hadoop project, which invokes the same record

method as in Fig. 6.

D. Optimizations

We apply several optimizations in the uRTS implementation

to reduce the analysis time.

First, the horizontal comparison only analyzes configuration

dependencies, not code dependencies. The reason is that the

code revision (and, thus, the content/checksum of the .class

files) does not change when testing Cdef and any C ∈ Cprod

(see Fig. 3); hence, if the configuration dependencies are

the same, the test executes the same, and both code and

configuration dependencies are the same. If the configuration

dependencies differ, then the test is selected to rerun anyway,

so both its code and configuration dependencies will be

updated. Recall that code dependencies for a configuration

7

test can differ when running the test under Cdef or some

C ∈ Cprod. This optimization reduces the analysis time,

because checking the new code dependencies is expensive due

to the need to recompute checksums of all the dependent files.

Moreover, because configuration dependency comparison is

computationally much cheaper than code dependency com-

parison (the former only involves string comparison without

checksum calculation), our implementation always analyzes

configuration dependencies before code dependencies. When

configuration dependencies differ, it saves the overhead of

comparing code dependencies (as the test is selected already).

VI. EXPERIMENTAL METHODOLOGY

Evaluating uRTS on open-source projects is challenging,

because most projects do not offer a DevOps-based environ-

ment with both code and production configuration changes.

RTS research often uses commits from the revision history

of open-source projects for code (and default configuration)

changes [12], [13], [74], but it is non-trivial to collect real-

world production configurations and their revision histories,

which are typically proprietary.

We create an evaluation set on top of the Ctest dataset [53]

which contains 100 deployed configurations collected from

public Docker images on DockerHub [75] for five large,

widely used open-source projects. We treat those deployed

configurations as production configurations and use multiple

deployed configurations as different, evolving revisions of

one production configuration. Moreover, we use the most

recent compilable commits as our evaluation project changes.

Table IV shows the evaluated projects, the statistics of code

commits and configurations, and the test suites.

Evaluated Projects and Commits. We use the same set

of open-source projects as recent work on configuration test-

ing [21], [22]: HCommon, HDFS, HBase, Alluxio, and ZooKeeper.

As all these projects use JUnit as their testing framework,3 we

integrated Ekstazi and uRTS into their build and test systems.

All the projects use Apache Maven for building source code

and the Maven Surefire plugin for running tests.

For each project, our evaluation uses 50 recent commits.

Specifically, we used the newest released version as of January

2022 of each project as the last commit and checked out 49

prior compilable commits that each modifies relevant code

or configuration. Among these commits, some in HCommon,

HDFS, and Alluxio change the default configuration included

as a part of the codebases. No commit in HBase and ZooKeeper

changes the default configuration.

Production Configs. We use real-world configurations of

each project from public Docker images as the production

configurations in our evaluation. Those configurations were

collected in the Ctest dataset [53]. We treat each project

as having two production configurations in the evolution,

to represent the simplest case of multiple configurations. In

general, the more production configurations a system deploys,

the more benefits uRTS brings.

3The Ekstazi tool that we obtained [52] supported only JUnit 4 (and 3);
we extended Ekstazi to support JUnit 5 to evaluate ZooKeeper.

Project Module LOC # Rev.
Conf. # Rev. on # Test Classes [avg]

files Cprod Regular Config

HCommon hadoop-common 256K 50 20 18 510 259

HDFS hadoop-hdfs 371K 50 20 18 751 751

HBase hbase-server 427K 50 20 17 295 158

Alluxio core 154K 50 20 17 247 118

ZooKeeper zookeeper-server 101K 50 20 19 299 187

TABLE IV: Projects, commits, configuration files, and tests

(regular and configuration) used in the evaluation.

Unfortunately, Docker images do not provide a revision

history of the deployed configurations. Therefore, we use the

configurations to simulate changes in the production config-

urations. For each project, we divide all the configurations

into two groups to represent two production configurations.

For each group with n configurations, we assume they are n

revisions of one configuration.

We associate each configuration change with randomly

chosen project commits; each commit could change either

code (with default configuration) or both code (with default

configuration) and some production configuration(s). For each

of the two groups of n configurations, we independently

choose commits, so some commits change both configuration

files. The number of commits with at least one production

configuration change is 18 for HCommon, 18 for HDFS, 17 for

HBase, 17 for Alluxio, and 19 for ZooKeeper (Table IV). We

have no commit that changes only a production configuration;

for such commits, uRTS would bring even more benefits.

Configuration Tests. The evaluated projects do not come

with explicit configuration test suites. We use Ctest [53] to

transform existing tests into configuration tests by parameter-

izing those tests with configuration parameters (§II-A). While

the Ctest dataset [53] provides the configuration tests for the

five evaluated projects, those provided configuration tests were

generated for only one version of each project (as the Ctest

work did not consider code evolution [21]), and the version

is older than all the versions used in our evaluation. Thus,

we generate all the configuration tests for each commit in our

evaluation following Sun et al. [21].

Hardware and System Settings. All the experiments

are run on Azure VMs with dual-core CPUs and 14GB

of RAM [76], Ubuntu 20.04.2, and Java 64-bit 1.8.0. The

experiments spent 2000+ hours of machine time in total.

Baseline. We compare uRTS with the ReTestAll baseline

that conducts URT without RTS (§III). ReTestAll is a common

baseline used in RTS research [45]. ReTestAll runs all the

regular tests in T if the target commit changes the code or the

default configuration; it also runs all the configuration tests

in T̂ for each production configuration. With the setup of

two production configurations, ReTestAll runs |T | + 2 × |T̂ |
tests for every commit. To limit the machine time used in our

experiments, we do not measure ReTestAll time for all 50

commits but only run the first and last commit in the range

and use their average time for all the commits. The difference

between the time for the first and last commit is, on average,

just 1.0%. For the number of test classes, we extract the precise

number for every commit, but the difference is again small,

8

Project
ReTestAll Ekstazi+ uRTS

T+R% N+R% TUR% NUR% TU+% NU+%
Ekstazi−

TU−% NU−%
time [sec] # classes time [sec] # classes time [sec] # classes time [sec] # classes

HCommon 4467.06 1030.50 1303.06 133.40 542.01 51.12 29.17% 12.94% 12.13% 4.96% 41.60% 38.32% 220.67 14.82 245.62% 345.03%

HDFS 65283.01 2049.00 45346.87 759.27 30614.97 478.44 69.46% 37.06% 46.90% 23.35% 67.51% 63.01% 13818.32 199.58 221.55% 239.72%

HBase 2844.60 611.00 1303.90 105.76 652.03 45.27 45.84% 17.31% 22.92% 7.41% 50.01% 42.81% 381.32 31.38 170.99% 144.27%

Alluxio 1831.13 485.50 1401.36 212.22 998.18 97.53 76.53% 43.71% 54.51% 20.09% 71.23% 45.96% 529.78 73.65 188.42% 132.43%

ZooKeeper 3168.50 677.00 1624.30 208.54 701.71 69.21 51.26% 30.80% 22.15% 10.22% 43.20% 33.19% 458.92 46.59 152.91% 148.53%

Σ/avg 5451.09 842.33 2810.57 216.35 1499.39 94.34 51.56% 25.69% 27.51% 11.20% 53.35% 43.61% 776.72 50.19 193.04% 187.98%

TABLE V: Test run results of ReTestAll, Ekstazi+, uRTS, and Ekstazi−. The average reduction of testing time and the number

of selected test classes are denoted by T+R%, N+R% when comparing Ekstazi+ to ReTestAll; TUR%, NUR% when comparing uRTS to

ReTestAll; TU+%, NU+% when comparing uRTS to Ekstazi+; and TU−
%, NU−

% when comparing uRTS to Ekstazi−.

on average, just 0.6% between the min and max.

References. We compare uRTS with two reference so-

lutions, Ekstazi+ and Ekstazi− (§ II-B). For Ekstazi+, we

integrated Ctest with Ekstazi, and configured Ekstazi to track

for each configuration test its file dependencies that include

both code and configuration files. If a configuration test

depends on a configuration file that had any change from a

previous run, then the test is selected. We expect Ekstazi+ to

be less effective than uRTS because file granularity is rather

coarse for configuration dependencies—a configuration file

could include hundreds of configuration values [65], while a

configuration change typically modifies only a small number

of parameters [14]. In contrast, uRTS tracks configuration

dependencies at the parameter granularity.

We also evaluate Ekstazi−, the Ekstazi default that does not

track configuration files and only concerns code changes. The

goal is to understand the cost of URT and uRTS over unsafe,

code-driven regression testing.

Granularity. We select tests at the granularity of test classes

(not test methods). The reasons are: 1) selecting classes is

safer than methods (e.g., due to code changes that affect

dynamic dispatch) [12], and 2) selecting classes was shown

to outperform selecting methods [12], [64], [77].

Metrics. To evaluate RTS, we measure two main metrics:

1) the end-to-end testing time, and 2) the number of selected

test classes. For the testing time, we measure the time to

execute the build command that developers use to execute

tests, specifically mvn test for all the evaluated projects. For

the commonly running tests, we did not modify any build

configuration in any project’s build files; hence, the speedup

that we observe in our experiments reflects what developers

would have experienced.

VII. EVALUATION RESULTS

Our evaluation aims to answer the following questions:

1) How effective is uRTS?

2) What is the overhead to support URT?

3) How much does uRTS save for configuration changes?

4) Are both of the two-dimensional comparisons needed?

A. RQ1: Savings of Testing Time and The Number of Tests

End-to-end testing time is the key metric to measure the

effectiveness of RTS in reducing the testing costs; as an

additional metric, we use the number of selected test classes.

Table V shows the RTS results, in terms of the two metrics,

of uRTS, compared with ReTestAll and Ekstazi+. (uRTS

provides the same safety guarantees as Ekstazi+.)

For each project, Table V shows the average number of

all revisions; lower numbers are better. We compare uRTS

over ReTestAll and Ekstazi+ in terms of testing time (TUR%,

TU+%) and the number of test classes (NUR%, NU+%),

respectively. We compute the ratio for each commit, average

the ratios via geometric mean over all commits, and then

average the results across all projects, obtaining an unweighted

average that equally treats all projects (so the results from the

largest project do not dominate the overall average).

Main Results. On average, uRTS only takes 53.35% of test-

ing time compared with Ekstazi+ and 27.51% of testing time

compared with ReTestAll. Stated differently, uRTS reduces the

end-to-end testing time by 1.87X compared with Ekstazi+ and

3.64X compared with ReTestAll.

In terms of the number of test classes, uRTS only selects

43.61% and 11.20% of test classes compared with Ekstazi+

and ReTestAll, respectively. It is not uncommon for RTS to

select a smaller percentage of tests than the percentage of

the overall time savings [12], [13], for two reasons: 1) the

overall time includes not just the test execution time but also

the building overhead that is the same both with and without

RTS; and 2) the test execution time itself is not proportional

to the number of selected tests because the selected tests are

typically longer-running and larger, with more dependencies,

than the unselected tests.

For example, for Alluxio, the test class FileSystemFactory-

Test runs significantly longer than others. If it is selected,

its running time dominates the overall testing time. It is

selected often in our evaluation (104 times by uRTS and

135 times by Ekstazi+, out of 150=50×3 cases), which

explains the gap between TU+% of 71.23% and NU+%
of 45.96%. For HDFS, both TU+% and NU+% are higher

than for the other projects due to a configuration parame-

ter, dfs.namenode.datanode.registration.ip-hostname-check. 584 test

classes depend on this parameter, so when it is changed, all

584 tests are selected.

The T+R%, N+R% results of Ekstazi+ show the effective-

ness of RTS in reducing the test cost of URT. We can see

that even a coarse-grained RTS technique like Ekstazi+ can

effectively reduce the testing time to 51.56%, on average,

and the number of test classes to 25.69%, compared with

the baseline (ReTestAll). The TU+%, NU+% results of uRTS

show the further effectiveness of configuration-aware RTS for

9

the results show that the comparisons in both dimensions are

necessary—neither dimension subsumes the other. On average,

uRTS selects 330 test classes by vertical comparison, 164

by horizontal comparison, and only 108 by two-dimensional

comparisons. We omit detailed per-project information due to

the space limitation.

VIII. THREATS TO VALIDITY

The threats to external validity mainly lie in the evaluated

projects and datasets. To reduce such threats, we use recent

releases of real-world projects and deployed configuration

files from the Ctest dataset [21]. However, we synthesized

configuration changes using different configuration files from

DockerHub as different versions. Future work should consider

more diverse datasets.

The threats to internal validity mainly lie in the potential

bugs in our implementations and experimental scripts. We

extensively review the code and carefully check the results.

The threats to construction validity mainly lie in the metrics.

We consider not only the number of selected tests but chiefly

the end-to-end testing time. The time that the developers wait,

from initiating a test-suite run for a new code revision until all

the test outcomes are available, is the most relevant for RTS.

IX. DISCUSSION

Generality. Our uRTS implementation builds on Ekstazi

with dynamic RTS. We chose Ekstazi because it is open

source [52], robust, and was used in several studies [12], [64],

[78]–[80]. However, the key principles of uRTS—1) tracking

configuration dependencies at the level of configuration pa-

rameters rather than configuration files, 2) performing both

horizontal and vertical comparisons, 3) comparing parame-

ter values across multiple production configurations not just

against the default—can be applied to other dynamic RTS,

whether at a finer granularity of code dependencies (e.g.,

method) or coarser (e.g., modules).

In fact, we can view the idea of tracking configuration

parameters rather than configuration files as an application of

a general idea to track dependencies at a finer rather than

coarser granularity whenever it provides a benefit, i.e., the

somewhat higher cost of collection and analysis provides an

even higher savings by unselecting tests. Nanda et al. [81]

discuss tracking configuration files, like Ekstazi+, but not

the granularity of tracking configuration parameters instead

of files. For any novel application of RTS, it is important to

evaluate what granularity level provides a better end-to-end

time, even if it selects more tests to run (e.g., class-level RTS

is better than method-level RTS despite selecting more tests).

Our experiments show that uRTS provides a better end-to-end

time than Ekstazi+ and also selects fewer tests.

Selection granularity. Our evaluation uses test class as the

selection granularity. uRTS supports other selection granularity

such as test method—both Ekstazi and Ctest can select tests

at the method granularity. Although prior studies [12], [64],

[77] found that RTS based on class dependencies was more

effective, recent work [64] shows that RTS can potentially

benefit from a hybrid approach that uses different granularities.

We leave the hybrid approach for uRTS as future work.

Nondeterministic tests. One concern, especially for large

codebases, is that tests may be nondeterministic and have a

different outcome even for the same code and configuration

dependencies. An RTS technique is still safe if it unselects a

test when its executions observed in prior runs do not change,

even if the test may have other executions that could change.

If developers want to check more executions of a test, they

need to run the test multiple times.

X. OTHER RELATED WORK

RTS has been studied for 25+ years since seminal work

in the late 1990’s [45], [82]. Several surveys [11], [46]–[48]

provide a broad overview. Early research focused on selecting

as few tests as possible from the regression test suites, but later

work focused on reducing the end-to-end regression testing

time. While early techniques tracked test dependencies at fine

granularity levels (e.g., basic blocks [45], [83]), over time

the dependencies got coarser (e.g., methods [84], classes [12],

[64], [77], [80], [85], and modules [13], [86]). RTS is widely

used in practice [40]–[44], [87], [88].

RTS for configuration-aware regression testing [57], [89]

focuses on the generation of configurations and prioritiza-

tion of configurations during regression testing, while uRTS

focuses on production configurations and selection of tests.

The prior work implicitly assumes that all regular tests can be

used as configuration tests (i.e., T̂ = T) and aims to generate

(or “select”) configurations from the large configuration space.

However, bugs that manifest for generated configurations may

not manifest for real production configurations. Likewise,

bugs (and misconfigurations) that manifest for production

configurations may be missed with generated configurations.

XI. CONCLUDING REMARKS

We have presented test selection uRTS for unified regression

testing (URT) for both code and configuration changes. uRTS

selects a subset of tests to run and provides the safety

guarantees as traditional RTS. uRTS reduces the end-to-end

testing time by 1.87X, on average, compared to Ekstazi+,

and by 3.64X compared to executing all tests. uRTS is a step

toward making URT practical and widely adopted.

Data Availability: https://github.com/xlab-uiuc/uRTS-ae

ACKNOWLEDGMENTS

We thank Runxiang Cheng and Xudong Sun for their con-

tinuous help and discussion on configuration testing. We thank

Lilia Tang, Tyler Gu, and Yinfang Chen for valuable feedback.

This work was partially supported by NSF grants CCF-

1763788, CCF-1956374, and CNS-2145295. We acknowledge

support for research from Microsoft, Qualcomm, and Meta.

REFERENCES

[1] L. A. Barroso, J. Clidaras, and U. Hölzle, The Datacenter as a

Computer: An Introduction to the Design of Warehouse-scale Machines,
2nd ed. Morgan and Claypool Publishers, 2013.

[2] B. Maurer, “Fail at Scale: Reliability in the Face of Rapid Change,”
Communications of the ACM, vol. 58, no. 11, 2015.

11

[3] D. Oppenheimer, A. Ganapathi, and D. A. Patterson, “Why Do Internet
Services Fail, and What Can Be Done About It?” in USITS, 2003.

[4] S. Mehta, R. Bhagwan, R. Kumar, B. Ashok, C. Bansal, C. Maddila,
C. Bird, S. Asthana, and A. Kumar, “Rex: Preventing Bugs and Mis-
configuration in Large Services using Correlated Change Analysis,” in
NSDI, 2020.

[5] H. S. Gunawi, M. Hao, R. O. Suminto, A. Laksono, A. D. Satria,
J. Adityatama, and K. J. Eliazar, “Why Does the Cloud Stop Computing?
Lessons from Hundreds of Service Outages,” in SoCC, 2016.

[6] T. Xu and Y. Zhou, “Systems Approaches to Tackling Configuration
Errors: A Survey,” ACM Computing Surveys, vol. 47, no. 4, Jul. 2015.

[7] T. Savor, M. Douglas, M. Gentili, L. Williams, K. Beck, and M. Stumm,
“Continuous Deployment at Facebook and OANDA,” in ICSE, 2016.

[8] C. Parnin, E. Helms, C. Atlee, H. Boughton, M. Ghattas, A. Glover,
J. Holman, J. Micco, B. Murphy, T. Savor, M. Stumm, S. Whitaker, and
L. Williams, “The Top 10 Adages in Continuous Deployment,” IEEE

Software, vol. 34, no. 3, 2017.
[9] C. Rossi, E. Shibley, S. Su, K. Beck, T. Savor, and M. Stumm,

“Continuous Deployment of Mobile Software at Facebook,” in FSE,
2016.

[10] M. Hilton, T. Tunnell, K. Huang, D. Marinov, and D. Dig, “Usage,
Costs, and Benefits of Continuous Integration in Open-Source Projects,”
in ASE, 2016.

[11] S. Yoo and M. Harman, “Regression Testing Minimisation, Selection and
Prioritization: A Survey,” Software Testing, Verification, and Reliability,
vol. 22, no. 2, 2012.

[12] M. Gligoric, L. Eloussi, and D. Marinov, “Practical Regression Test
Selection with Dynamic File Dependencies,” in ISSTA, 2015.

[13] A. Shi, P. Zhao, and D. Marinov, “Understanding and Improving
Regression Test Selection in Continuous Integration,” in ISSRE, 2019.

[14] C. Tang, T. Kooburat, P. Venkatachalam, A. Chander, Z. Wen,
A. Narayanan, P. Dowell, and R. Karl, “Holistic Configuration Man-
agement at Facebook,” in SOSP, 2015.

[15] P. Huang, W. J. Bolosky, A. Sigh, and Y. Zhou, “ConfValley: A
Systematic Configuration Validation Framework for Cloud Services,”
in EuroSys, 2015.

[16] “Google Configuration Specifics,” https://sre.google/workbook/
configuration-specifics/.

[17] L. Hochstein, “Why Do Config Changes Keep Coming Up
in Major Incidents?” https://surfingcomplexity.blog/2021/05/29/
why-do-config-changes-keep-coming-up-in-major-incidents/.

[18] “How AWS Config Works,” https://docs.aws.amazon.com/config/latest/
developerguide/how-does-config-work.html.

[19] S. Kendrick, “What Takes Us Down?” USENIX ;login:, vol. 37, no. 5,
2012.

[20] Z. Yin, X. Ma, J. Zheng, Y. Zhou, L. N. Bairavasundaram, and S. Pa-
supathy, “An Empirical Study on Configuration Errors in Commercial
and Open Source Systems,” in SOSP, 2011.

[21] X. Sun, R. Cheng, J. Chen, E. Ang, O. Legunsen, and T. Xu, “Testing
Configuration Changes in Context to Prevent Production Failures,” in
OSDI, 2020.

[22] R. Cheng, L. Zhang, D. Marinov, and T. Xu, “Test-Case Prioritization
for Configuration Testing,” in ISSTA, 2021.

[23] T. Xu and O. Legunsen, “Configuration Testing: Testing Configuration
Values as Code and with Code,” arXiv:1905.12195, 2019.

[24] S. Ma, F. Zhou, M. D. Bond, and Y. Wang, “Finding Heterogeneous-
Unsafe Configuration Parameters in Cloud Systems,” in EuroSys, 2021.

[25] N. Tillmann and W. Schulte, “Parameterized Unit Tests,” in ESEC/FSE,
2005.

[26] N. Tillmann and W. Schulte, “Unit Tests Reloaded: Parameterized Unit
Testing with Symbolic Execution,” IEEE Software, vol. 23, no. 4, 2006.

[27] S. Baset, S. Suneja, N. Bila, O. Tuncer, and C. Isci, “Usable Declarative
Configuration Specification and Validation for Applications, Systems,
and Cloud,” in Middleware, 2017.

[28] R. Potharaju, J. Chan, L. Hu, C. Nita-Rotaru, M. Wang, L. Zhang, and
N. Jain, “ConfSeer: Leveraging Customer Support Knowledge Bases for
Automated Misconfiguration Detection,” in VLDB, 2015.

[29] Q. Chen, T. Wang, O. Legunsen, S. Li, and T. Xu, “Understanding
and Discovering Software Configuration Dependencies in Cloud and
Datacenter Systems,” in ESEC/FSE, 2020.

[30] J. Zhang, R. Piskac, E. Zhai, and T. Xu, “Static Detection of Silent
Misconfigurations with Deep Interaction Analysis,” in OOPSLA, 2021.

[31] N. Palatin, A. Leizarowitz, A. Schuster, and R. Wolff, “Mining for
Misconfigured Machines in Grid Systems,” in KDD, 2006.

[32] M. Santolucito, E. Zhai, R. Dhodapkar, A. Shim, and R. Piskac,
“Synthesizing Configuration File Specifications with Association Rule
Learning,” in OOPSLA, 2017.

[33] M. Santolucito, E. Zhai, and R. Piskac, “Probabilistic Automated Lan-
guage Learning for Configuration Files,” in CAV, 2016.

[34] O. Tuncer, N. Bila, S. Duri, C. Isci, and A. K. Coskun, “ConfEx:
Towards Automating Software Configuration Analytics in the Cloud,”
in DSN-W, 2018.

[35] D. Yuan, Y. Xie, R. Panigrahy, J. Yang, C. Verbowski, and A. Kumar,
“Context-based Online Configuration Error Detection,” in ATC, 2011.

[36] J. Zhang, L. Renganarayana, X. Zhang, N. Ge, V. Bala, T. Xu, and
Y. Zhou, “EnCore: Exploiting System Environment and Correlation
Information for Misconfiguration Detection,” in ASPLOS, 2014.

[37] R. Potvin and J. Levenberg, “Why Google Stores Billions of Lines of
Code in a Single Repository,” Communications of the ACM, vol. 59,
no. 7, 2016.

[38] M. Sayagh, N. Kerzazi, B. Adams, and F. Petrillo, “Software Config-
uration Engineering in Practice: Interviews, Surveys, and Systematic
Literature Review,” TSE, vol. 46, no. 6, 2020.

[39] C. Jaspan, M. Jorde, A. Knight, C. Sadowski, E. K. Smith, C. Winter,
and E. Murphy-Hill, “Advantages and Disadvantages of a Monolithic
Repository: A Case Study at Google,” in ICSE, 2018.

[40] S. Elbaum, G. Rothermel, and J. Penix, “Techniques for Improving Re-
gression Testing in Continuous Integration Development Environments,”
in FSE, 2014.

[41] Z. Mi, “Mobile Performance: Tooling Infrastructure at
Facebook,” https://engineering.fb.com/2015/04/10/developer-tools/
mobile-performance-tooling-infrastructure-at-facebook, 2015.

[42] A. Memon, Z. Gao, B. Nguyen, S. Dhanda, E. Nickell, R. Siemborski,
and J. Micco, “Taming Google-Scale Continuous Testing,” in ICSE-

SEIP, 2017.

[43] C. Leong, A. Singh, J. Micco, M. Papadakis, and Y. le Traon, “Assessing
Transition-based Test Selection Algorithms at Google,” in ICSE-SEIP,
2019.

[44] M. Machalica, A. Samylkin, M. Porth, and S. Chandra, “Predictive Test
Selection,” in ICSE-SEIP, 2019.

[45] G. Rothermel and M. J. Harrold, “A Safe, Efficient Regression Test
Selection Technique,” ACM Trans. Softw. Eng. Methodol., vol. 6, no. 2,
1997.

[46] E. Engström, P. Runeson, and M. Skoglund, “A Systematic Review
on Regression Test Selection Techniques,” Information and Software

Technology, vol. 52, no. 1, 2010.

[47] S. Biswas, R. Mall, M. Satpathy, and S. Sukumaran, “Regression Test
Selection Techniques: A Survey,” Informatica, vol. 35, 2011.

[48] R. Kazmi, D. N. A. Jawawi, R. Mohamad, and I. Ghani, “Effective
Regression Test Case Selection: A Systematic Literature Review,” ACM

Comput. Surv., vol. 50, no. 2, 2017.

[49] C. Brindescu, M. Codoban, S. Shmarkatiuk, and D. Dig, “How Do
Centralized and Distributed Version Control Systems Impact Software
Changes?” in ICSE, 2014.

[50] Y. Zhao, A. Serebrenik, Y. Zhou, V. Filkov, and B. Vasilescu, “The
Impact of Continuous Integration on Other Software Development
Practices: A Large-Scale Empirical Study,” in ASE, 2017.

[51] H. L. Nguyen and C.-L. Ignat, “An Analysis of Merge Conflicts and
Resolutions in Git-Based Open Source Projects,” Comput. Supported

Coop. Work, vol. 27, no. 3–6, 2018.

[52] M. Gligoric, L. Eloussi, and D. Marinov, “Ekstazi: Lightweight Test
Selection,” in ICSE (Demo), 2015.

[53] “openctest,” https://github.com/xlab-uiuc/openctest, 2022.

[54] S. Thummalapenta, M. R. Marri, T. Xie, N. Tillmann, and J. de Halleux,
“Retrofitting Unit Tests for Parameterized Unit Testing,” in FASE, 2011.

[55] H. Srikanth, M. B. Cohen, and X. Qu, “Reducing Field Failures in
System Configurable Software: Cost-Based Prioritization,” in ISSRE,
2009.

[56] C. H. P. Kim, D. Marinov, S. Khurshid, D. Batory, S. Souto, P. Barros,
and M. D’Amorim, “SPLat: Lightweight Dynamic Analysis for Re-
ducing Combinatorics in Testing Configurable Systems,” in ESEC/FSE,
2013.

[57] X. Qu, M. B. Cohen, and G. Rothermel, “Configuration-Aware Regres-
sion Testing: An Empirical Study of Sampling and Prioritization,” in
ISSTA, 2008.

[58] C. Henard, M. Papadakis, G. Perrouin, J. Klein, P. Heymans, and Y. L.
Traon, “Bypassing the Combinatorial Explosion: Using Similarity to

12

Generate and Prioritize T-Wise Test Configurations for Software Product
Lines,” TSE, vol. 40, no. 7, 2014.

[59] M. Mukelabai, D. Nešić, S. Maro, T. Berger, and J.-P. Steghöfer,
“Tackling Combinatorial Explosion: A Study of Industrial Needs and
Practices for Analyzing Highly Configurable Systems,” in ASE, 2018.

[60] F. Medeiros, C. Kästner, M. Ribeiro, R. Gheyi, and S. Apel, “A
Comparison of 10 Sampling Algorithms for Configurable Systems,” in
ICSE, 2016.

[61] T. Xu, J. Zhang, P. Huang, J. Zheng, T. Sheng, D. Yuan, Y. Zhou, and
S. Pasupathy, “Do Not Blame Users for Misconfigurations,” in SOSP,
2013.

[62] L. Keller, P. Upadhyaya, and G. Candea, “ConfErr: A Tool for Assessing
Resilience to Human Configuration Errors,” 2008.

[63] J. Dietrich, K. Jezek, and P. Brada, “What Java Developers Know About
Compatibility, And Why This Matters,” Empirical Software Engineering,
vol. 21, no. 3, 2016.

[64] L. Zhang, “Hybrid Regression Test Selection,” in ICSE, 2018.

[65] T. Xu, L. Jin, X. Fan, Y. Zhou, S. Pasupathy, and R. Talwadker, “Hey,
You Have Given Me Too Many Knobs! Understanding and Dealing with
Over-Designed Configuration in System Software,” in ESEC/FSE, 2015.

[66] M. Lillack, C. Kästner, and E. Bodden, “Tracking Load-time Configu-
ration Options,” TSE, vol. 44, no. 12, 2018.

[67] M. Lillack, C. Kästner, and E. Bodden, “Tracking Load-time Configu-
ration Options,” in ASE, 2014.

[68] T. Xu, X. Jin, P. Huang, Y. Zhou, S. Lu, L. Jin, and S. Pasupathy, “Early
Detection of Configuration Errors to Reduce Failure Damage,” in OSDI,
2016.

[69] A. Rabkin and R. Katz, “Static Extraction of Program Configuration
Options,” in ICSE, 2011.

[70] A. Rabkin and R. Katz, “Precomputing Possible Configuration Error
Diagnosis,” in ASE, 2011.

[71] F. Behrang, M. B. Cohen, and A. Orso, “Users Beware: Preference
Inconsistencies Ahead,” in ESEC/FSE, 2015.

[72] S. Zhang and M. D. Ernst, “Automated Diagnosis of Software Config-
uration Errors,” in ICSE, 2013.

[73] S. Zhang and M. D. Ernst, “Which Configuration Option Should I
Change?” in ICSE, 2014.

[74] D. Elsner, F. Hauer, A. Pretschner, and S. Reimer, “Empirically Eval-

uating Readily Available Information for Regression Test Optimization
in Continuous Integration,” in ISSTA, 2021.

[75] T. Xu and D. Marinov, “Mining Container Image Repositories for
Software Configuration and Beyond,” in ICSE-NIER, 2018.

[76] “Azure Linux Virtual Machines Pricing,” https://azure.microsoft.com/
en-us/pricing/details/virtual-machines/linux/#pricing.

[77] O. Legunsen, F. Hariri, A. Shi, Y. Lu, L. Zhang, and D. Marinov, “An
Extensive Study of Static Regression Test Selection in Modern Software
Evolution,” in FSE, 2016.

[78] A. Celik, M. Vasic, A. Milicevic, and M. Gligoric, “Regression Test
Selection Across JVM Boundaries,” in ESEC/FSE, 2017.

[79] C. Zhu, O. Legunsen, A. Shi, and M. Gligoric, “A Framework for
Checking Regression Test Selection Tools,” in ICSE, 2019.

[80] A. Shi, M. Hadzi-Tanovic, L. Zhang, D. Marinov, and O. Legunsen,
“Reflection-Aware Static Regression Test Selection,” in OOPSLA, 2019.

[81] A. Nanda, S. Mani, S. Sinha, M. J. Harrold, and A. Orso, “Regression
Testing in the Presence of Non-Code Changes,” in ICST, 2011.

[82] G. Rothermel and M. Harrold, “Analyzing Regression Test Selection
Techniques,” TSE, vol. 22, no. 8, 1996.

[83] M. J. Harrold, J. A. Jones, T. Li, D. Liang, A. Orso, M. Pennings,
S. Sinha, S. A. Spoon, and A. Gujarathi, “Regression Test Selection for
Java Software,” in OOPSLA, 2001.

[84] L. Zhang, M. Kim, and S. Khurshid, “FaultTracer: A Change Impact and
Regression Fault Analysis Tool for Evolving Java Programs,” in FSE,
2012.

[85] A. Orso, N. Shi, and M. J. Harrold, “Scaling Regression Testing to Large
Software Systems,” in FSE, 2004.

[86] M. Vasic, Z. Parvez, A. Milicevic, and M. Gligoric, “File-level vs.
Module-level Regression Test Selection for .NET,” in ESEC/FSE, 2017.

[87] A. Shi, S. Thummalapenta, S. K. Lahiri, N. Bjorner, and J. Czerwonka,
“Optimizing Test Placement for Module-level Regression Testing,” in
ICSE, 2017.

[88] D. Elsner, S. Kacianka, S. Lipp, A. Pretschner, A. Habermann,
M. Graber, and S. Reimer, “BinaryRTS: Cross-language Regression Test
Selection for C++ Binaries in CI,” in ICST, 2023.

[89] M. B. Cohen, J. Snyder, and G. Rothermel, “Testing across Configu-
rations: Implications for Combinatorial Testing,” in Proceedings of the

2nd Workshop on Advances in Model Based Testing (A-MOST), 2006.

13

	Introduction
	Background
	Configuration Testing
	Regression Test Selection (RTS) and Ekstazi
	RTS for Configuration Tests

	Unified Regression Testing
	Testing Code Changes
	Testing Production Configuration Changes
	Testing Code-Configuration Co-Changes

	The uRTS Algorithm
	Step 1: Selecting Regular Tests
	Step 2: Selecting Configuration Tests
	Correctness

	The uRTS Implementation
	Dependencies
	Analysis Phase
	Analyzing Dependency Changes
	Test Selection

	Collection Phase
	Not selected tests
	Selected tests

	Optimizations

	Experimental Methodology
	Evaluation Results
	RQ1: Savings of Testing Time and The Number of Tests
	RQ2: Overhead of URT
	RQ3: Focus on Configuration Changes
	RQ4: Effectiveness of Two-Dimensional Comparison

	Threats to Validity
	Discussion
	Other Related Work
	Concluding Remarks
	References

