Balancing Effectiveness and Flakiness of
Non-Deterministic Machine Learning Tests

Saikat Dutta
University of lllinois
Urbana-Champaign
saikatd2 @illinois.edu

Chungiu Steven Xia
University of lllinois
Urbana-Champaign

chunqiu2 @illinois.edu

Abstract— Testing Machine Learning (ML) projects is chal-
lenging due to inherent non-determinism of various ML al-
gorithms and the lack of reliable ways to compute reference
results. Developers typically rely on their intuition when writing
tests to check whether ML algorithms produce accurate results.
However, this approach leads to conservative choices in selecting
assertion bounds for comparing actual and expected results in test
assertions. Because developers want to avoid false positive failures
in tests, they often set the bounds to be too loose, potentially
leading to missing critical bugs.

We present FASER - the first systematic approach for bal-
ancing the trade-off between the fault-detection effectiveness
and flakiness of non-deterministic tests by computing optimal
assertion bounds. FASER frames this trade-off as an optimization
problem between these competing objectives by varying the
assertion bound. FASER leverages 1) statistical methods to
estimate the flakiness rate, and 2) mutation testing to estimate
the fault-detection effectiveness. We evaluate FASER on 87
non-deterministic tests collected from 22 popular ML projects.
FASER finds that 23 out of 87 studied tests have conservative
bounds and proposes tighter assertion bounds that maximizes the
fault-detection effectiveness of the tests while limiting flakiness.
We have sent 19 pull requests to developers, each fixing one test,
out of which 14 pull requests have already been accepted.

I. INTRODUCTION

Machine Learning (ML) and Artificial Intelligence (Al) are
revolutionizing critical fields like autonomous driving [1] and
healthcare [2]. A key challenge in such fields is to avoid
inaccurate computations that may lead to faulty predictions
and consequently pose a risk to society [3], [4]. ML libraries
form an integral component of the ML infrastructure that
developers use to build ML applications. Subtle accuracy bugs
(i.e., non-crashing bugs that may produce incorrect results)
in such libraries can remain unnoticed but lead to wrong
results in user-facing applications. Hence, developers must
take appropriate measures to eliminate such bugs.

ML libraries primarily implement various algorithms such
as Deep Learning [5], Probabilistic Programming [6], and
Reinforcement Learning [7]. A common trait of such ML algo-
rithms is that they are non-deterministic — separate executions
can produce different results. As such, it is difficult to obtain
reference solutions to compare against the algorithms’ results.
Hence, developers often make conservative estimates when
selecting thresholds comparing the actual and expected results
(typically measured by metrics such as model accuracy). This

Sasa Misailovic
University of Illinois
Urbana-Champaign
misailo@illinois.edu

Darko Marinov
University of Illinois
Urbana-Champaign
marinov @illinois.edu

Lingming Zhang
University of Illinois

Urbana-Champaign
lingming @illinois.edu

1 def test_MLAlgorithm() :

2 train_data, val_data = generate_data/()
3 model = MLAlgorithm(train_data)

4 model.train ()

5 val_error = model.evaluate(val_data)

6 assert val_error < exp_max_error

Listing 1: A Common Pattern for Tests in ML Projects

choice diminishes the fault-detection effectiveness of tests
checking for accuracy of such ML algorithms.

Listing 1 shows a common pattern for many tests used
for checking the accuracy of ML algorithms. The test (i)
generates random training and validation data on Line 2, (ii)
trains a model using an ML algorithm on the training data on
Lines 3-4, (iii) evaluates the trained model on validation data
and computes a metric (validation error) on Line 5, and (iv)
asserts that the metric is below an acceptable constant value,
exp_max_error, on Line 6. Such test assertions that compare
the result against a pre-determined fixed threshold are known
as approximate assertions [8], [9], [10], [11] while the thresh-
old itself (exp_max_error) is known as the assertion bound.

Recent studies [10], [12] have found a significant number
of non-deterministic tests in ML projects, which account for a
major portion of the total test-suite running time (>31%) [9].
However, improving such tests requires careful analysis and
deep understanding of the code/algorithm under test. On one
hand, if the developers select a bound that is foo tight (or
liberal) it may make the test flaky — pass and fail non-
deterministically — due to the randomness of the underlying
ML algorithm. Test flakiness [13] hurts developer productivity
and reduces the reliability of test results. On the other hand, if
the bound is foo loose (or conservative), the test may miss
detecting accuracy bugs, thereby reducing its effectiveness.
Developers typically set these bounds based on their intuition
and are inclined to choose conservative bounds to avoid flaki-
ness, but can compromise on its fault-detection effectiveness.

Due to their importance in avoiding accuracy bugs, im-
proving the fault-detection effectiveness of such tests is very
important. Hence, the key question becomes: how can we
systematically determine assertion bounds that maximize the
fault-detection effectiveness of the test without making it
unacceptably flaky?

Our Work. To address this question, we propose FASER
— the first approach that systematically balances the trade-

off between the fault-detection effectiveness and flakiness of
non-deterministic regression tests for ML algorithms with the
goal of determining optimal assertion bounds. FASER frames
this trade-off as an optimization problem of two competing
objectives of 1) maximizing fault-detection effectiveness and 2)
minimizing flakiness, by varying the assertion bound. Since it
is practically not possible to exactly solve these two objectives,
the main challenge is to obtain a reliable estimate of the
objectives, in the presence of non-determinism.
FASER employs two key techniques:

o To estimate the passing probability (or conversely flaki-
ness) of the test, we leverage concentration inequalities
from probability theory [14], [15], [16], [17]. Concentration
Inequalities provide conservative probabilistic bounds on
how much a random variable deviates from a given value
(e.g., its mean). We use them to estimate the probability
that the variable (in the example val_error, sampled
over multiple runs) does not exceed a specific assertion
bound (exp_max_error). They key advantages of using
concentration inequalities are that they are non-parametric,
hold under very mild assumptions, and can be effectively
used to reason about a wide class of distributions.

« To determine the fault-detection effectiveness of the test, we
apply Mutating Testing [18] — a classic testing methodology
originally proposed for evaluating test effectiveness by gen-
erating artificial bugs (to simulate real bugs). In addition
to standard mutation operators, to simulate developer mis-
takes, we design domain-specific mutations that substitute
commonly used APIs with other APIs that share the same
input/output specifications and perform similar functions.
For FASER, we require mutants that simulate accuracy
bugs in code, i.e., mutants that 1) do not crash and 2)
produce a distribution of the assertion variable, X, that is
sufficiently different than the original distribution. We define
such mutants as effective mutants.

For a given test, FASER constructs an objective function as
the weighted sum of its passing probability (estimated using
concentration inequalities) and its fault-detection effectiveness
(mutation score — the average probability of killing a mutant).
FASER allows the developer to choose a test’s minimum pass-
ing probability, v € [0, 1]. FASER then solves the optimization
problem and computes the optimal bound, such that the fault-
detection effectiveness of the test is maximized while ensuring
the test passing probability is at least ~.

Results. We evaluate FASER on 87 non-deterministic tests
collected from the latest versions of 22 ML projects, chosen
from dependent projects of popular probabilistic program-
ming systems and machine learning frameworks such as
PyTorch [19], TensorFlow [20], Pyro [21], and PyMC [22].
These projects are popular, have a wide user base, and provide
various ML functionalities. For each project, we only select
tests that are non-deterministic due to randomness of the ML
algorithm under test and contain an approximate assertion.
FASER is able to improve the fault-detection effectiveness
for 26.4% (i.e., 23/87) of the studied tests by tightening the

assertion bounds while maintaining a high passing probability
() of over 99%. Overall, FASER increases the mutation score
of such tests by 15.76 percentage points on average. To date,
we have sent 19 pull requests, each improving one test, to
the developers. Developers have accepted 14 pull requests,
while the rest are pending response (no rejected pull requests).
The feedback from developers has been largely positive: they
appreciated the extensive analysis done in determining the
proposed bound, demonstrating the practical value of FASER.

Contributions. This paper makes the following contributions:

* Concept. This paper opens up a new dimension for balanc-
ing test flakiness and effectiveness of ML projects, and can
inspire more future works in this important direction.

* Implementation. We implement FASER, a technique
for improving the fault-detection effectiveness of non-
deterministic tests in ML projects by effectively combining
statistical techniques and mutation testing. FASER is avail-
able at: https://github.com/ise-uiuc/FASER

* Evaluation. We evaluate FASER on 22 popular ML
projects, and demonstrate that FASER can tighten the asser-
tion bounds in 12 studied projects and 23 out of 87 studied
non-deterministic tests for improving their test effectiveness
without incurring new flakiness issues.

* Practical Impacts. To date, we have sent 19 pull requests
fixing the tests with loose bounds, of which 14 have already
been accepted. We have received overwhelming positive
feedback from the developers, and the first two authors have
even been invited to a developer meeting for one of the
studied popular ML projects.

II. EXAMPLE

1 def test_adv_example_success_rate_linf (self,
model, *xkwargs) :

x=torch.randn (100, 2)

x_adv=self.attack (model_fn=model, x=x, xxkwargs)

_, ori_label=model (x) .max (1)

_, adv_label=model (x_adv) .max (1)

adv_acc=adv_label.eq(ori_label) .sum() .to(torch.

float) /x.size (0)
7 self.assertless (adv_acc, 0.5)

[o LB SOV 9]

Listing 2: Test in cleverhans

Listing 2 presents an non-deterministic
test, from
cleverhans-lab/cleverhans project [23]. Cleverhans provides
implementations of various adversarial attacks for machine
learning models and algorithms. The test contains an assertion
with a very conservative bound (Line 7), which allows many
potential faults to remain undetected. In this work, we aim to
improve the fault-detection effectiveness of such tests without
making them flaky. We describe the test next.

The test generates random input data from a normal dis-
tribution (Line 2). It generates adversarial input using SPSA
adversarial attack algorithm [24] on the original input data
(Line 3). It obtains the model output for both the input data and
the adversarial input (Lines 4-5). It computes the adversarial

example
test_adv_example_success_rate_linf,

accuracy by comparing the adversarial output with the original
output of the model (Line 6). Finally, the test checks that the
adversarial accuracy is less than the assertion bound of 0.5
(Line 7). Here, lower adversarial accuracy is better since it
means the attack is successful in altering the model’s output.

Sources of randomness. There are several sources of random-
ness in this test. Listing 3 shows how the attack algorithm
randomizes the starting state. The initial perturbation of the
adversarial attack is sampled uniformly between -0.5 and 0.5
(Line 3, with eps = 0.5). Further, the input data is also
generated randomly in the test (Listing 2, Line 2). Due to the
randomness present, the adversarial accuracy (adv_acc) will
be different across runs. We present the samples of adv_acc
across 100 test executions in Figure 1 (blue bars). We observe
that the distribution of samples falls below the assertion bound
of 0.5 (red dotted line). This is a problem since a bug in the
code can potentially reduce the adversarial attack effectiveness
and produce an output that is higher than the maximum legal
value but lower than the initial bound (0.5), allowing the bug
to remain undetected.

def spsa(model_fn, x, eps, norm, ...):

1

2 .

3 perturbation=(torch.rand_like (x)*2-1) xeps

4 _project_perturbation (perturbation, norm,eps, ...)

Listing 3: Random initialization in cleverhans

Example bug. Listing 4 shows an example bug that can be
introduced in the source code. We modify - to a + operator,

1 perturbation=(torch.rand_like (x)*2 - 1) xeps
2 perturbation=(torch.rand_like (x)*2 + 1) xeps

Listing 4: Example bug in source code

which changes the initial perturbation generation to sample
between [0.5, 1.5] instead of [-0.5, 0.5]. We present the output
samples of the adversarial accuracy when run under the buggy
version in Figure 1 (blue bars). The distribution of the buggy
values is below the original developer bound. However, the
buggy distribution has a higher mean value compared to the
original distribution — it means the bug is undesirably reducing
the attack effectiveness. However, due to the loose bound (red
line), the test cannot detect the bug. Bugs like these represent
subtle accuracy bugs that can remain undetected if the tests
are not properly designed. These tests cannot be fixed by the
tools that loosen the bound to reduce the flakiness [8] (they
move the red line to the right). Furthermore, making the test
deterministic by fixing the random seed may conceal faults
that can only be exposed from a different random input [12].
Instead, we want an assertion bound that is loose
enough to allow all valid executions to pass (and min-
imize flakiness) but tight enough to catch all such
buggy executions (i.e. move the red line to the left).
Our solution. To find an optimal assertion bound, we need to
carefully consider the trade-off between test passing probabil-
ity and its fault-detection effectiveness. To solve this problem,

FASER performs several steps. First, to estimate the fault-
detection effectiveness of the test, FASER uses mutation test-
ing to generate mutants on code lines covered by the test. Since
the test is non-deterministic, FASER runs both versions of the
test — with and without mutations — multiple times to obtain
the output samples of the assertion value. The mutants that
significantly change the output distribution are most relevant
since they represent bugs that the original assertion bound
may fail to detect. We refer to these mutants as effective
mutants. To identify effective mutants, FASER compares the
output distribution of each mutant with the original distribution
using Kolmogorov-Smirnov (KS) test and obtain a set of
effective mutants whose distribution is sufficiently different
from original. For a given assertion bound, FASER computes
the mutation score as the average probability of killing such
mutants. For this test, FASER generated 62 mutants and
identified 13 effective mutants.

Second, to estimate the passing probability of the test
FASER collects samples of the assertion variable (adv_acc)
by executing the test multiple times. FASER then applies
concentration inequalities to compute the probability that the
assertion variable does not exceed the given bound, which
approximates the passing probability of the test.

Finally, FASER determines the optimal bound that maxi-
mizes both the passing probability and mutation score of the
test. In this case, FASER estimates that the optimal bound is
0.29. FASER estimates that the passing probability of the test
using this bound is greater than 99% and it also increases the
mutation score of the test by 11%.

III. PROBLEM FORMULATION

We describe the problem FASER solves. Consider a test
T and an approximate assertion A of the form: assert
X < 0. We will refer to such 6 as the assertion bound.
The assertion bound set by a developer may be loose, i.e.,
the bound, 6, may be much higher than the possible legal
values of X. The problem with such a loose bound is that it
may miss detecting faults that produce erroneous values in
the region between the original maximum of X and bound
6. Our goal is to determine an optimal bound, 6*, that
maximizes both the fault-detection effectiveness and passing
probability of the test while keeping passing probability
above a developer-selected threshold «. Formally,

max |[Effectiveness(T, 6), PassingProb(T, 6)]

. ey
s.t. PassingProb(T,0) >

20
——- developer bound

——- FASER bound
mutant
original

1 1
1 1
1 1
1 1
1 1
10 A] 1
1 1
1 1
1 1
1 1
1

}

8- T ; I f
0.0 0.1 0.2 0.3 0.4 a.5 0.6 0.7
assertion bound

Fig. 1: Original and mutant samples of test in cleverhans

We need to tackle multiple challenges to solve this task. First,
since the nature of the underlying distribution of X is not
known, it is difficult to predict how likely is the test to pass
for a given bound: PassingProb(T,0). We address this chal-
lenge using several concentration inequalities from probability
theory (Section III-A) to estimate the probability of the given
variable (X) exceeding a given bound (#). We describe our
solution approach using the inequalities in Section III-B.

Second, estimating the fault-detection effectiveness of the
test, Effectiveness(T,0), is challenging because we need to
reason about how the distribution of values (for the assertion
variable X) shifts in presence of a fault in the code under test.
To solve this challenge, we extend traditional mutation testing
techniques to generate mutants that produce such distribution
shifts. We also propose a new metric for computing mutation
score for such non-deterministic tests (Section III-C).

Finally, since these two objectives are competing, we use
a multi-objective optimization technique to solve the prob-
lem. We show how we can easily solve this constrained
multi-objective problem (Eq. 1) by transforming it into an
unconstrained single-objective version whilst satisfying the
developer-selected minimum passing probability threshold, ~.
The threshold, v, allows us to prune the search space and
choose an optimal solution from the Pareto frontier. We
provide more details in Section III-D.

A. Concentration Inequalities

Chebyshev’s inequality [15] is a well-known result in prob-
ability theory that guarantees that, for a broad class of distri-
butions, no more than a certain proportion of its values will
exceed a certain distance from the mean. More formally, let X
be a scalar random variable with a finite mean x4 and variance
2. Then for any real number k > 0: Pr(|X — | > ko) < 5.

Chebyshev’s Inequality can be applied to any arbitrary
distribution, assuming known mean and variance. However,
it often provides a conservative estimate.

Dasgupta’s Inequality. Dasgupta [16] proposed a tighter
bound if the distribution is known to be Gaussian:
1
Pr(|X — | = ko) < g)

Dasgupta’s Inequality can also be used with estimated mean
(X) and variance (S?) [16], i.e., computed from available
samples. This provides a conservative estimate but is typically
tighter than Chebyshev. Since the distribution is Gaussian, it is
symmetric about mean. Hence, we can also use the one-sided
variant of this inequality (using estimated mean and variance):

Pr(X — X >kS) < L 3
Cantelli’s inequality with estimated mean and variance.
Often the mean and variance of a distribution are unknown.
Tolhurst [25] proposed a variant of Cantelli’s equation [17],
which is the one-sided version of Chebyshev’s Inequality. It
uses mean and variance estimated from available samples:

_ 1 N+1
Pr(X - X > kQn) < m \‘QQ—HJ 4

NE?

where N is number of samples, g> = N QY =
[2H] S2, and |.] is the floor function. Here, X and S are the
sample mean and variance respectively. This inequality holds
for k > 1 and N > 2. This bound converges to Cantelli’s
inequality as N — oo.

Sub-Gaussian Distributions. A Sub-Gaussian distribu-
tion [26] has a tail that decays (or converges) at least as fast as
a Gaussian distribution. Intuitively, the tail of a Sub-Gaussian
distribution is dominated by a Gaussian distribution. This is
a useful property since the tail properties of Gaussians can
be extended to such distributions directly. For instance, if we
know that the underlying distribution of a random variable
X is sub-gaussian, then we can directly use the Dasgupta
inequality (Eq. 3) to estimate the tail probabilities.

Kurtosis Test [27] is a statistical test that is used to check
whether the distribution is heavy-tailed or light-tailed (sub-
gaussian) relative to a Gaussian distribution. We use the
Kurtosis test to verify if the samples are drawn from a
Sub-Gaussian distribution and apply the Dasgupta Inequality
(Eqg. 3) to obtain the one-sided tail probability. This provides
a tighter tail bound than the more general estimate (Eq. 4).

B. Computing Passing Probability of Test

To compute the passing probability of test T, we first
execute the test several times and obtain the samples of the
variable, say X, in the assertion. Let N be the number of sam-
ples. Now, we want to compute the probability: Pr(X < 6),
where 0 is a given assertion bound. One potential solution is to
compute the empirical probability, i.e., the proportion of sam-
ples that fall below the assertion bound. However, this may not
be a reliable estimate when N is small and when the nature of
distribution is not known. Further, collecting a large number of
samples is expensive and hence may not always be feasible.

To overcome these challenges, we apply the inequalities
described in Section III-A. Algorithm 1 describes the steps for
computing passing probability. First, we check if the underly-
ing distribution of X is Gaussian (Line 5) using Shapiro-Wilk
Test [28]. If the distribution is Gaussian, we use the one-sided
Dasgupta inequality (Eq. 3) to estimate the passing probability
of the test for the given bound (Line 6). Given a bound 6, we
compute Pr(X < 0) =1 —Pr(X — X > kS) as the passing
probability of the test, where k = (§ — X)/S (Line 4). Here,
X is the estimated mean and S is the estimated variance.

Second, if the distribution is not Gaussian, we check if it is
Sub-Gaussian (Line 5) using the Kurtosis Test (Section III-A).
If the test passes, we apply the one-sided Dasgupta inequality
(Eq. 3) in the same manner as the previous case (Line 6). This
provides a more conservative bound than the actual underlying
distribution but it is tighter than the general estimate.

Third, if the distribution is neither Gaussian nor Sub-
Gaussian, we apply Cantelli’s inequality using estimated mean
and variance (Eq. 4) to compute the passing probability of the
test (Line 8). This inequality gives us a conservative estimate
of the actual passing probability — i.e., in the limit, the actual
passing probability is guaranteed to be equal or greater than
the estimated passing probability. This property is desirable in

our case because it forces us to choose a slightly higher bound
than what may be required and avoid flaky failures.

Algorithm 1 Passing Probability Algorithm

Input: Samples D, Bound 6
Output: Passing probability Py
1: procedure PASSINGPROB(D,)

return P
end procedure

2: X = mean(D)
3 S = std(D)
6—X
4 k ===
5 if ISGAUSSIAN(D) or ISSUBGAUSSIAN(D) then
6: Py =1 — DASGUPTAINEQ(D, k) > Using Eq. 3
7. else o
8: Py =1 — CANTELLIINEQEST(D, X, S, k) > Using Eq. 4
9
0:

1

C. Estimating Fault-Detection Ability of Test

We use mutation testing to determine the fault-detection
effectiveness of the test. We generate mutants and select the
subset of mutants that produce distributions of the assertion
variable that are sufficiently different from the original distri-
bution. These mutants represent accuracy bugs in code, i.e.,
bugs that lead to wrong results (e.g., lower model accuracy).
We define such mutants as effective mutants.

Let mq,...,mx be the generated set of effective mutants.
For a given bound, 6, we define the probability that a mutant,
m; is killed as:

. 1
Pr(m; is killed) = Pr(Xp, > 6) = Do Z sy (5)
acesz.
where D,,, is the set of samples obtained and X,,, is the
assertion variable when 7' is executed with mutation m;.
We define the mutation score (MS) of the test, T, for a

given 6, as the average mutant kill rate:

MS(T,6) = % > " Pr(m; is killed) 6)

i=1..K o

Our definition of mutation score is different than that used in
traditional mutation testing where each mutant is deterministi-
cally either killed (1) or the mutant survives (0). In contrast, for
non-deterministic tests, we define whether a mutant is killed
as a probability, Prg € [0,1], and the mutation score as the
average probability of killing a mutant. For deterministic tests,
it reduces to standard mutation score metric, i.e., Prg € {0, 1}.

D. Finding Optimal Assertion Bound

Our goal is to find an assertion bound that has a high
fault-detection effectiveness and is not flaky. However, in
practical scenarios, there is a trade-off between these two
properties of a test. To select an optimal assertion bound 6*, we
transform the constrained optimization problem (Eq. 1) into an
unconstrained version by using the weighted sum method [29]:

0" = argmaxa - p(T,0) + (1 —«) - f(T,0) 7
0
where p(T', 6) represents the probability that the test 7' passes

for a given bound 6 and f(7, 0) represents the fault-detection
effectiveness of the test for the given bound 6. Here, we

approximate the probability of passing by estimating the prob-
ability of the assertion variable X not exceeding ¢ using Algo-
rithm 1 while incorporating developer-specified threshold, i.e.,
p(T,0) =Pr(X < 0) if (Pr(X < 0) >) else
We approximate the fault-detection effectiveness of the test
using mutation score (Eq. 6). Hence, f(T,0) = MS(T,0).
Here, a € [0,1] is a co-efficient that determines relative
importance of the two factors during optimization. For in-
stance, an o > 0.5 lays greater emphasis on the passing
probability of the test while v < 0.5 prioritizes the fault-
detection effectiveness of the test over test flakiness. Finally,
we solve this problem using the standard optimization algo-
rithm (basinhopping [30]) and obtain the new bound 6*.

— OQ.

IV. FASER

We propose FASER, an approach for improving the fault-
detection effectiveness of non-deterministic tests in Machine
Learning projects. Figure 2 presents the architecture of
FASER. At a high level, FASER takes a non-deterministic
test 7" with an assertion A of the form assert (X < 60),
and minimum passing probability v as inputs. FASER then
determines a new assertion bound 6* such that the mutation
score of the test is maximized while also ensuring that the test
passes with at least « passing probability.

!

\

Y Remove — A optimi .
Seed original— ptimizer

samples

| NN

Program 5 — A A N

4 [samples

assert |— Program

x<e w/o Seed “—J—J L|

Test l

effective
Mutants yes :

mutant samples
KS [Reject
Test Null? |

no i

i

Fig. 2: Overview of the FASER tool

sert
X< o

Updated
Test

Test
Runner

mutants

assert
X<o

Test w/o
Seed

Generate
Mutants

A. FASER Algorithm

Algorithm 2 describes the main algorithm of FASER. First,
FASER removes all seed setting code from common library
APIs (Python’s Random, NumPy, TensorFlow and PyTorch)
used in tests from the source project P (Line 2) and creates
a new version P*. Setting seeds makes the test execution
deterministic but prevents FASER from collecting the legal
range of values that X can take. Without knowing the legal
range of values for X, FASER may not be able to identify
erroneous values produced by a mutation.

FASER executes the test 7' using P* multiple times to
collect samples of the actual assertion values: Do (Line 3).
Then FASER computes code coverage of the test (Line 4) and
generates a set of mutants, M, by mutating covered lines of
code (Line 5). FASER generates each mutant using several
mutation operators (Section IV-B) that change a part of the
line. FASER initializes an empty set Djs that we use to

Algorithm 2 FASER Algorithm

Input: Test 7', Project P, Assertion A, Minimum Passing Probability ~y
Output: Updated test 7%, Original Mutation Score MSg, New Mutation
Score MSg+

1: procedure FASER(T, P, A)

2: P* < RemoveSeed(P)

3: Do < TestRunner(T, P*, A, ORIGINAI_SAMPLES)
4: coverage < RunTestCoverage(T, P*)
5: M < GenerateMutants(P*, coverage)
6.
7
8

Dy 1]
for m in M do
if 1TestCrash(T, m, A) then

9: dm < TestRunner(T, m, A,MUTANT_SAMPLES)
10: p + KSTest(dm, Do)
11: if p < p then > rejects null hypothesis

12: Dy <+ Dy Udm

13: MSg, MSg+,0* < Optimizer(T, A, Do, Das,)
14: return Patcher(T,0*), MSg, MSg~

15: end procedure

aggregate samples from the mutants that generate distributions
of X that are sufficiently different than the samples produced
by the original version of the test, Do (Line 6).

For each mutant, FASER first checks if the mutation does
not crash the test (Line 8). Then FASER collects samples from
assertion value over several test executions, d,,, (Line 9). Using
Kolmogorov-Smirnov (KS) test [31], [32], FASER compares
the mutant samples with the original samples (Line 10) to
see if their distributions are sufficiently different. This allows
us to select mutants that represent accuracy bugs. KS test
returns a p-value for testing the null hypothesis: the underlying
mutant distribution is identical to the original distribution. If
the p-value is less than the threshold p, we can reject the null
hypothesis, in which case FASER adds the mutant samples to
Djs (Line 12). We refer to the mutants that produce a different
distribution of samples than the original as effective mutants.

Finally, FASER solves the optimization Equation 1 using
the original and effective mutant samples (Line 13) to obtain
the optimal bound with at least v passing probability. FASER
returns the mutation score of the original bound and the
optimal bound along with the updated test (Line 14).

B. Mutant Generation

For each test, FASER generates mutations on code the test
covers. It first runs the test using Python’s Coverage.py [33]
to obtain a list of Python files and lines covered by the test. It
filters out all test files and uses only source files. To generate
mutations, FASER uses traditional mutation operators from the
mutmut [34] library and also implements new domain-specific
mutation operators for Machine Learning projects.

Simple mutation operators. FASER uses all mutmut mutation
operators, such as the ones on numeric constants, keywords
(e.g., break — continue), arithmetic operators, and con-
ditional expressions (and — or). The only one we did not
use is the string mutator (e.g., p="test" — p="XXtestXx")
because it most often leads to code crashes. Details of each
operator can be found on project page [34].

Domain-specific mutation operators. Many Machine Learn-
ing projects utilize popular open-source libraries such as Ten-
sorFlow or PyTorch as they provide efficient implementations

1 x = tf.constant([[1, 1, 1], [1, 1, 1]])
2 tf.reduce_sum(x)
tf.reduce_max(x)
tf.reduce_mean(x)
3 tf.reduce_sum(x, 1, keepdims=True)
tf.reduce_max(x, 1, keepdims=True)
tf.reduce_mean(x, 1, keepdims=True)

a) Tensorflow

replaceable
functions

1 torch.zeros(2, 3) 1
torch.ones(2, 3)

a = np.array([[1, 2],
[3, 411)
torch.randn(2, 3)
torch.zeros(5)
torch.ones(5)
torch.randn(5)

np.mean(a)
np.std(a)
np.var(a)
np.mean(a, axis=0)

b) PyTorch c) NumPy 2
38 2

replaceable
functions

replaceable
functions |3

np.std(a, axis=0)
np.var(a, axis=e)

Fig. 3: Code snippets of replaceable APIs

of many common functionalities (e.g., random data generation,
matrix multiplication, and array/tensor manipulation). Many
APIs in these libraries share similar input/output specifica-
tions, i.e., they have same types of inputs and outputs and
perform similar functions. Hence, we can interchange such
API calls without causing a program crash. For example, in
PyTorch, tensor initialization functions such as torch.zeros
and torch.ones have the same input parameters (including
tensor shape and data type) and outputs a tensor that has
the specified shape with either all zeros or ones respectively.
We can replace one of them with another without causing
the program to crash. Actually, developers often make such
mistakes of choosing syntactically correct but semantically
incorrect APIs for their use-case [35], [36], [37]. By leveraging
this insight, we design a mutation operator that swaps such
commonly used interchangeable APIs from the same library.
We next describe how we collect such APIs.

We consider three popular open-source libraries: NumPy,
TensorFlow, and PyTorch as majority of projects in our dataset
have at least one of them as a dependency. We first extract all
public APIs from each library. We use pydoc, a built-in python
documentation generator, to obtain developer documentation
of each API. Since Python is not a strongly typed language,
we cannot directly compare the method signature to determine
APIs that have same input and output types. Instead, we
use the developer documentation that includes example code
snippets listing the usages for each APL

For each API (say A), we test whether replacing it with
another API (say B) causes a crash. If it does not crash, we
add the API B to A’s list of replaceable APIs and vice-versa.
We perform this for all APIs and obtain sets of replaceable
APIs for each API in the library. It is possible that developer
written examples do not cover all use-cases, which means the
replaced APIs might fail in some special cases.

Figure 3 shows code snippets of various APIs and their po-
tential replacements (in green) for the 3 open-source libraries
we used. In total, we obtain 108 replaceable APIs with an
average of 1.87 replacements for each. FASER leverages these
API specifications to generate mutations where applicable.

C. Estimating Optimal Assertion Bound

FASER uses the original and effective mutant samples as
inputs to the optimization equation (Equation 7), and obtains
the optimal assertion bound. Recall that the optimization is
parameterized by o — representing the relative importance
between passing rate and the mutation score. A high o means
we value the passing rate higher (i.e., low flakiness) compared

1.2

(]
oo

|
1
1.04 | iy
.84 /i \———l—___ alpha=8.1

i
1
1
|
+
1
1 1
: : alpha=6.9
1 1

8.6+ |

T T T T T
.2 0.3 6.4 0.5 0.6 0.7
assertion bound @

Fig. 4: Optimization graph of test in cleverhans

to the fault-detection effectiveness of the test. A low a means
we are willing to sacrifice the passing rate in favor of catching
more potential bugs in the source code.

To calculate the bound, FASER uses the optimization equa-
tion by varying . We start with @ = 0.5 (represents equal
emphasis on pass rate and fault-detection effectiveness). In
practice, developers favor tests that have a high pass rate to
minimize failures caused by flaky tests. FASER does a grid-
search over higher « values, solves the optimization problem,
and finally yields the bound that results the maximum fault
effectiveness and passing probability above ~.

Figure 4 presents the optimizing equation graph for the
example test described in Section II. The two solid lines
present the values of the optimization equation (y-axis) for
a of 0.9 and 0.1 as we vary the assertion bound (x-axis).
The vertical dotted lines denote the corresponding argmax
values of #. We chose a minimum passing probability v of
0.99. This passing probability is a conservative theoretical
estimate (Section III-A), and the empirical passing probability
would be higher — which we demonstrate in our evaluation
(Section VI-C). The optimal value using an « of 0.1 is
6 = 0.18 — while this gives us the best mutation score of 95%
(i.e., best fault-detection effectiveness), the test may become
very flaky (0.84 pass rate). An « of 0.9 gives an optimal bound:
6 = 0.29 — this has a high probability of passing (0.9903 pass
rate) and also maintains a high mutation score of 88%. Hence,
FASER selects 6 = 0.29 as the optimal bound.

D. Applicability of Assertion Bounds

In Section IV-C, we described FASER’s strategy for es-
timating a bound in the general case. However, some tests
may already have a tight bound or a high fault-detection
effectiveness. Hence, FASER must decide on how and if the
calculated bound should be applied.

FASER starts by computing the optimal bound as described
in Section IV-C. FASER then compares the fault-detection
effectiveness (mutation score) of the optimal bound and devel-
oper bound and decides whether the bound should be updated.
There are two possible scenarios: 1) If the increase in mutation
score is significant (greater than 5 percentage points), FASER
labels this test as a loose bound test and uses the proposed
bound suggested by FASER to improve this test. 2) If the
increase in mutation score is not significant (less than 5
percentage points), this means the developer bound is already
tight enough. As a result, the new bound proposed by FASER
cannot significantly improve the fault-detection effectiveness.
FASER labels this test as a tight bound test and does not
change the developer bound.

V. METHODOLOGY

Project and Test selection. To select tests for evaluation, we
use Python projects and tests used in previous work on testing
in ML projects [9], [8], [12]. Previous work find such projects
by first searching for the dependent projects of popular ML
Frameworks (PyTorch and TensorFlow) and Probabilistic Pro-
gramming Systems (Pyro, NumPyro, TensorFlow-Probability)
using GitHub’s APIL. Out of these, they select projects that
can be installed as a Python library and have at least 10 stars
to eliminate projects that are not actively developed and toy
projects. Due to the potential time cost of running FASER, we
randomly select 25 out of these 123 projects for our evaluation.
We only consider projects that were reported to contain at least
one non-deterministic test in previous works.

We run each test and record their assertion values to verify
the results vary across executions. We discard any tests where
the value remains the same across executions. We also discard
tests that may require special resources to run (e.g., GPU). We
do not include any tests that are flaky (i.e., do not have 100%
empirical pass rate with original bound), since this implies
that the original bound may already be very tight (i.e., close to
maximum observable value). From the remaining list of tests,
we randomly sample a subset to include in our experiment.
Finally, we end up with 87 non-deterministic tests across 22
projects from 25 total projects considered. Table I presents for
each selected project a description of its utility (Description)
and the number of selected tests (T).

Reporting Fixes to Developers. We prepare and send pull
requests to developers for fixing tests FASER can tighten. We
first manually inspect the proposed bound and determine if we
need to adjust it. For instance, we may round the proposed
bound to the nearest integer (e.g., 4.99 — 5) if the original
bound was also an integer (e.g., 20). We then run the test
with the proposed bound 500 times to verify that the proposed
bound is not flaky (greater than 0.99 pass rate). For each
project, we start by only sending one pull request for fixing one
test. If the developers accept the initial pull request, we send
more pull requests for fixing remaining tests in the project.
In each pull request, we explain FASER’s methodology, show
the distribution of original and mutant samples, and explain
trade-offs for pass rate vs. mutation score for the test.

Experimental setup. For our evaluation, we use the latest
versions of each project. We develop a custom installation
script for each project that creates a virtual environment using
Anaconda [38] and installs any dependencies required by each
project specified in requirements.txt or setup.py files
in the project. We additionally install two python libraries:
pytest [39] for running the tests and Coverage.py [33] for
obtaining the line coverage information.

We implement FASER entirely in Python. We configure
FASER to obtain 100 samples for both the original source code
(ORIGINAL_SAMPLES) and each mutant (MUTANT_SAMPLES).
We use a minimum passing probability of 0.99 (y). We use
a timeout of 300 seconds for each test execution. We use
two-sample KS Test from the scipy library [40] with p-value

TABLE I: Running FASER on Non-Deterministic Tests

| Project | Description | T|LB|TB|
allenai/allennlp [41] NLP 5 1| 4
pytorch/captum [42] ML Model Interpretability 11 0] 1
cleverhans-lab/cleverhans [23] Adversarial Attacks 5 2| 3
coax-dev/coax [43] Reinforcement Learning 11 0] 11
deepchem/deepchem [44] DL for Natural Science 6| 2| 4
RaRe-Technologies/gensim [45] | Topic Modelling I 1] 0
GPflow/GPflow [46] Gaussian Process Modelling| 2| 0| 2
cornellius-gp/gpytorch [47] Gaussian Process Modelling| 7| 5| 2
kornia/kornia [48] Computer Vision 21 0 2
learnables/learn2learn [49] Meta Learning 6| 0| 6
Unity-Technologies/ml-agents [50] | Training ML agents 31 1] 2
pyro-ppl/numpyro [51] Probabilistic Programming 20 1] 1
facebookresearch/ParlAl [52] Dialog Al modelling 1 11 0
pgmpy/pgmpy [53] Graph Model 41 0| 4
pymc-devs/pymc [22] Probabilistic Programming 41 1] 3
pyro-ppl/pyro [21] Probabilistic Programming 31 0] 3
refnex/refnx [54] Curve Fitting 21 0] 2
stellargraph/stellargraph [55] Graph Modelling 31 1] 2
WillianFuks/tfcausalimpact [56] Bayesian Optimization Il 0] 1
google/trax [57] Code Generation 6 4| 2
Imcinnes/umap [58] Visualization 91 3| 6
zfit/zfit [59] Model Fitting 3] 0] 3
\Total \ \87\ 23\ 64\

threshold of 0.01 (p) to compare the original and mutant
sample distributions. For solving the optimization equation, we
use the basinhopping algorithm [30] from the scipy library.

VI. EVALUATION

We evaluate FASER on the following research questions:
RQ1 For how many tests can FASER improve their fault-
detection effectiveness by tightening assertion bounds?
RQ2 By how much does FASER improve the fault-detection
effectiveness of the tests?

RQ3 How do developers respond to the tighter bounds sug-
gested by FASER?

RQ4 What is the cost of running FASER and can it be reduced?

A. RQI: Tests Improved by FASER

We run FASER on 87 tests collected across 22 projects
to improve their fault-detection effectiveness by tightening
assertion bounds. Table I presents the results. Each row in
the table corresponds to the tests in one project. Project is the
name of the project, T is the number of tests, LB is the number
of loose bound tests — tests for which FASER can improve the
mutation score by at least 5 percentage points by tightening
the assertion bound, TB is the number of tight bound tests
— tests for which FASER cannot improve the mutation score
by at least 5 percentage points by tightening bounds. We ob-
serve that approximately one out of four tests contain an
assertion bound that is loose (more conservative than needed).
We find that 12 out of 22 projects contain at least one test(s)
that has a loose bound. For these tests, FASER is able tighten
the bound and improve the mutation score of the tests.

Cases where FASER improves the mutation score of
test. Figure 5 presents a loose bound test with the de-
veloper bound of 0.5 (red dotted line) and FASER pro-
posed bound of 0.29 (blue dotted line). The test is test_-
adv_example_success_rate_linf from the cleverhans-
lab/cleverhans project. We observe that the new bound pro-
posed by FASER can improve the mutation score of the test.

——- developer bound

——- FASER bound
effective mutants
original

=

(H‘IE) @.‘2 @:4 @.‘5 @.‘8 ljﬂ

assertion bound
Fig. 5: Normalized output distribution of the original and
the effective mutants for a loose bound test in cleverhans

—==- developer bound

——- FASER bound
effective mutants
original

o

.Aasseruon boal;:d GIE I‘B
Fig. 6: Normalized output distribution of the original and
the effective mutants for a tight bound test in cleverhans

FASER generates a significant number of effective mutant
samples between the maximum value of the original samples
(0.24) and the developer bound (15.5% of all effective mutant
samples). Hence, FASER is able to improve the mutation score
of the test by 11 percentage points using the new bound,
increasing the mutation score from 76.7% to 87.8%. In total,
FASER tightens the bounds of 23 out of 87 non-flaky tests.

Cases where FASER cannot improve mutation score.
Figure 6 shows the original samples and aggregated mu-
tant samples of test_adv_example_success_rate_12
from cleverhans-lab/cleverhans project where FASER cannot
tighten the bound. We observe that even though FASER
proposed a bound of 0.4 (blue dotted line) that is less than the
original developer bound of 0.5 (red dotted line), the mutation
score of the new bound is not higher than the original. This
is because, in contrast to the previous example, there are
very few effective mutant samples (only 1.7% of all effective
mutant samples) between the original developer bound and
the maximum value of the original samples. Therefore, the
bound suggested by FASER cannot significantly improve the
mutation score (more than Spp) of the test. Further, to kill
1.7% of effective mutant samples, we need to set the bound
to be exactly the max value (0.27), which may decrease the
passing probability of the test, making it flaky. The bound set
by the developer in this case is already tight enough to kill
majority of the mutants (mutation score of 55%) and hence
fault-detection effectiveness cannot be improved significantly.

B. RQ2: Improvement in Fault-Detection Effectiveness

We next discuss tests that FASER can tighten and examine
by how much it improves the fault-detection effectiveness of
such tests. Table II presents the details of improvements in
fault-detection effectiveness. Each row presents a project with
at least one loose bound test. Column Project is the project
name, #T is the number of loose bound tests in the project,
Avg.# Eftv. mutants is the average number of effective mu-
tants generated by FASER, Avg.pp MS increase is the average
increase in mutation score (percentage points) obtained by
comparing the developer bound and the tight bound proposed
by FASER, Avg.% MS before is the average mutation score of
the original bound, Avg.% MS after is the average mutation

TABLE II: Improvement in Fault-Detection Effectiveness

TABLE III: Ablation Study of Mutation Operators

Avg. #Eftv.|Avg.% MS |Avg.% MS |Avg.pp MS

Project #T mutants before after increase Avg. o
allennlp 1 13.0 51.08 66.46 15.38 0.9
cleverhans 2 13.0 75.35 86.42 11.08 0.85
deepchem 2 6.5 20.66 25.75 5.08 0.75
gensim 1 29.0 57.55 77.93 20.38 0.9
gpytorch 5 47.8 33.28 57.88 24.6 0.9
ml-agents 1 6.0 33.33 66.17 32.83 0.9
numpyro 1 156.0 23.11 28.89 5.78 0.8
parlai 1 51.0 0.0 25.96 25.96 0.9
pymc 1 58.0 9.67 18.76 9.08 0.9
stellargraph | 1 9.0 50.63 55.88 5.25 0.9
trax 4 15.25 15.8 34.44 18.63 0.88
umap 3 12.0 63.0 69.22 6.22 0.8
\Tota]/Avg. \ 23\ 30.3\ 36.35\ 52.11 \ 15.76\ 0.86\

score using the new bound, Avg. « is the average « value
FASER uses for determining the optimal bound.

On average, FASER improves the mutation score of tests
by 15.76pp. The original developer bounds have an average
mutation score of 36.35%, by using the tighter bound, FASER
can improve the average mutation score to 52.11%. For the
test in facebookresearch/ParlAl, the original developer bound
has a zero mutation score - the bound is not able to kill off
any effective mutants. This is because the developer bound is
extremely loose. FASER proposes a tighter bound for this test
and increases mutation score to almost 26%. The significant
increase in mutation score indicates that the tests (with the
new bound) are more likely to detect potential bugs that would
previously remain undetected.

On average, FASER generates 30.3 effective mutants that
significantly change the output distribution of the test. Ef-
fective mutants represent potential accuracy bugs that the
test should detect. We observe that the number of effective
mutants vary across different projects and tests. This is because
FASER generates mutations based on lines covered by the
test. Different tests have different number of coverage lines,
while not all lines equally affect the test execution result —
leading to a high variance in the number of effective mutants
generated. FASER is able to generate a significant number of
effective mutants in most cases, which gives us confidence
that the computed mutation score is a practical estimate for
the fault-detection effectiveness of the test.

Impact of different mutation operators. We further evaluate
how each mutation operator (Section IV-B) contributes to the
performance of FASER. We perform an ablation study by
removing one mutation operator at a time and computing the
average increase in mutation score and effective mutants in
each case. Table III presents the results of this experiment.
Column Avg# Eftv. mutants is the average number of
effective mutants generated and Avg.pp MS increase is the
average increase in mutation score. Each row after the first
presents the results when removing one mutation operator with
the decrease in performance compared with FASER indicated
within the brackets. The first row (None) presents the original
results with FASER when using all mutation operators.

Recall that FASER obtained an average of 30.3 effective

| Operator Removed | Avg# Eftv. mutants | Avg.pp MS increase |

None 30.3 15.76
Numeric constants 23.1 (-7.2) 13.40 (-2.36)
Keywords 26.1 (-4.2) 14.22 (-1.54)
Arithmetic operators 21.8 (-8.5) 12.98 (-2.78)
Conditional expressions 28.2 (-2.1) 15.17 (-0.59)
Domain-specific operators 22.0 (-8.3) 13.21 (-2.55)

mutants and mutation score increase of 15.76pp. We observe
that each mutation operator helps to generate new effective
mutants and improve the mutation score. Our “Domain-
specific operators" on average generate more effective mutants
than most of the simple mutation operators which shows that
leveraging domain knowledge of interchangeable library APIs
to produce mutants that swap library APIs can further boost
the performance of FASER. By using all operators, we can
generate a substantial number of effective mutants per test,
increasing confidence that mutation score is a good estimate
of the fault-detection effectiveness.

Choice of optimization co-efficient. FASER uses an average
« of 0.86 to solve the optimization equation. Recall that the «
value balances the trade-off between mutation score and pass
rate of the test. In order to obtain a high pass rate, FASER
uses a high a value most commonly o = 0.9. However, we
also observed cases where FASER uses an « of 0.8 or lower
in order to obtain the bound that has a high mutation score.
FASER starts with a lower « and incrementally increases it
until the pass rate is at least 0.99. This allows FASER to
effectively tighten the bound to obtain the best mutation score
while not making the tests flaky.

C. RQ3: Developer Response

We send 19 pull requests (one for each test) to the devel-
opers for tightening the assertion bounds based on FASER’s
results. We follow the methodology described in Section V to
first open one pull request (PR) per project and only send the
rest if we receive positive feedback from the developer on the
first pull request. In each PR, we indicate to the developers
that the bound set in the test is too loose and briefly explain the
approach of FASER. We further monitor each PR to answer
any questions or concerns raised by the developers.

Table IV presents the details of the PRs that we sent.
Column Project is the name of the project, #Tests is the
number of loose bound tests in the project, #PRs is the
total number of PRs we send for each project, Accepted
is the number of accepted PRs, Pending is the number of
PRs pending developer response, Rejected is the number of
rejected PRs, Unsubmitted is the number of tests for which
we did not submit the PR since we are waiting for feedback
on the first PR. Developers have accepted 14 of them, rejected
none while 5 PRs are still awaiting developer response.

Overall, we received overwhelmingly positive feedback for
the pull requests. Developers are happy about the thorough
analysis of FASER in determining the new bound. For in-
stance, developers of cornellius-gp/gpytorch commented: "...
this seems very reasonable to me, thanks for the detailed

TABLE 1IV: Details of Pull Requests
| #Tests | #PRs | Accepted | Pending | Rejected | Unsubmitted |

| Project

allennlp
cleverhans
deepchem
gensim
gpytorch
ml-agents
numpyro
parlai
pymc
stellagraph
trax

umap

| Total |

FElwoo——~—~rOoU——O—
Alowocoocoocococoocoo~oO

)
[Sx3) IRV SRR S (S

Sl mr =N~
N O o000~ ——O
=l NeloleoNoleloleloNele NNl

profile!". Developers of facebookresearch/ParlAl commented:
"Super cool! Awesome analysis. Very happy to try this for a
bit and see how it goes.”. As we are not active contributors of
the projects, we do not know the details about each developer
who responded to the PR. However, we observe that all
developers who responded (11/11) have contributed multiple
times to their respective projects. Additionally, the developers
of deepchem/deepchem invited us to their developer meeting
on Zoom where the core team of the project discussed about
our proposed change (accepted) and potentially incorporating
FASER to test more bounds in their project.

The developers of deepchem/deepchem indicated to us that
their main concern is the flakiness of the tests in the project
— which forced them to choose loose bounds in the first
place. They mentioned that, in the past, flaky tests have
caused their developers to waste time in investigating spurious
failures, which is a big concern, especially for smaller teams
like theirs. However, they also appreciated our systematic
approach, saying — "I really like this style of analysis and
want to see if we can tighten up our tests without blowing up
false positive counts” and accepted our proposed bound and
PR. FASER addresses the flakiness concerns by enforcing a
high predicted passing probability during optimization.

To demonstrate that the proposed bound from FASER is not
flaky, we evaluate the passing probability estimated by FASER
by comparing against the empirical pass rate of the proposed
bound. We select 10 tests that FASER proposes a tighter bound
for and calculate the pass rate with the proposed bound from
10,000 executions. We obtain an average pass rate of 99.88%,
with 4 tests achieving 100% pass rate and the lowest pass rate
being 99.64%. This confirms our hypothesis that the estimated
predicted probability produced by FASER is a conversative
measure and the developers can be confident that the tighter
bound proposed by FASER is not flaky.

We closely monitor the tests that developers have accepted
the new bound by scraping the CI logs of test runs. Out of
14 tests, only 2 tests have seen failures across thousands of
CI runs. The single failure from test_improper_normal
in pyro-ppl/numpyro is due to a faulty PR that triggered the
CI where many tests in the test suite failed. The failures
from test_sample_after_set_data in pymc-devs/pymc
are caused by changes in source code that shifted the distribu-

TABLE V: Time, Cost, and Improvement Trade-off when
Executing a Fraction of Mutants.

Project 100% 75% 50% 25%

T $ # T $ # T $ # T $
deepchem | 1 257 6.68[0 193 5.02|0 129 3.35|0 64 1.66
gensim 1 145 3771 109 2831 73 1.90|1 36 0.94
numpyro 1 112 291|0 84 2.18|0 56 1.47|0 28 0.73
parlai 1 133 294|1 100 260[1 66 1.72|1 33 0.86
pymc 1 232 6.03|1 174 4521 116 3.02|0 58 1.51
umap 3 397 1032)2 298 7.75|1 199 5.17|0 99 2.57
trax 3 333 8.66|2 250 6.50|2 167 4.34|2 83 2.16
| Count/Avg | 11 279 7.25|8 209 5.44|7 140 3.62|5 70 1.81|

tion of the assertion value in the test. The bound suggested by
FASER is calculated based on the old distribution that caused
the test to fail on the new source code. This is confirmed
by the developers as they have now adjusted the bound to
reflect the updated source code. The positive feedback from
the developers demonstrates that FASER provides practical
value by improving the quality of tests in ML projects by
tightening approximate assertion bounds.

D. RQA4: Efficiency of FASER

We collected 8700 original test samples corresponding to 87
tests in our experiement. Our experiment took around 9000
CPU-hours with majority of the time spent on running and
collecting mutant samples. On average, each test required
100 CPU-hours. The corresponding estimated dollar cost of
running FASER on a dedicated (more expensive than spot)
Amazon EC2 al.large instance ($0.026 / CPU hour) [60]
would be $2.55 on average per test.

We expect developers to run FASER offline (once per test).
However, we evaluate if it is possible to further reduce the cost
of FASER when developers have a limited budget. We select
11 tests that FASER can tighten and have high run time (>
100 CPU-hours). We attempt to reduce their runtime cost by
randomly selecting a portion (75, 50, 25%) of mutants to run
for these tests. Table V presents the results of this experiment
with the number of tests that can be improved ‘#’, run time ‘T’
(in CPU-hours) and cost ‘$’. To account for the randomness,
we repeat each experiment 10 times with different random
seeds and report averages.

We observe that even without running the full set of gen-
erated mutants, FASER can still tighten/improve the bounds
of majority of these tests and achieve a significant decrease
in execution time and cost of running FASER. The results
demonstrate that developers can potentially reduce the cost of
running FASER by using only a subset of mutants and still
achieve close to best results.

VII. THREATS TO VALIDITY

Internal. There can be potential implementation issues in
FASER. To reduce such threats, the first two authors regularly
checked the results and code to eliminate potential bugs.

External. Our results may not generalize beyond selected
projects and tests. To reduce this threat, similar to prior
work [10], [9], [8], we select from the dependent projects

of popular, actively-maintained ML and probabilistic pro-
gramming libraries. We believe these tests and projects are
representative. Further, the number of selected tests is also on
a similar scale as previous works in this domain [10], [9], [8],
[12]. Similar to these works, we also assume that the code
under test is correct, which means that FASER’s bounds are
based on the intended implementation of the source code.

Construct. Mutants may not be representative of real accuracy
bugs. To mitigate this risk, we choose mutation operators
commonly used in literature and also design domain-specific
mutations that simulate real bugs. It may be possible to further
optimize the bounds proposed by FASER. Since the tests are
non-deterministic and we employ various statistical heuristics,
FASER may suggest inaccurate bounds. To minimize this risk,
we collect a large number of samples both for original test and
all mutants to improve confidence in our results.

VIII. RELATED WORK

Flaky Tests. Previous works have characterized the common
causes of flaky tests in real world open-source projects [13],
[61], [62], [63] as well as in industry [64], [62]. Researchers
have developed general and specialized approaches for detect-
ing [10], [65], [66], [67] and fixing [68], [69], [8] flaky tests.

Dutta et al. [10] studied the characteristics of flaky tests in
Machine Learning and Probabilistic Programming projects. In
a subsequent work, they developed an approach TERA [9],
which reduces the execution time of such non-deterministic
tests without making them unacceptably flaky. In contrast to
FASER, TERA changes algorithm hyper-parameters and does
not significantly impact fault-detection effectiveness.

FLEX [8] is an approach for fixing flaky tests by leveraging
extreme value theory to loosen assertion bounds. Similar
to FASER, FLEX also updates the assertion bounds of the
test. However, unlike FASER, FLEX’s approach is based on
conservative estimates stemming from applying extreme value
theory. Further, FLEX only reduces flakiness, but does not
discuss its impact on fault-detection effectiveness of the test. It
may often require thousands of samples to reach convergence
and provide very conservative bounds when it converges to
a heavy tailed distribution. In contrast, FASER’s statistical
approach aims to identify subtle accuracy differences and
requires fewer samples (100 in our case).

Mutation Testing. Mutating testing has been widely studied
over past few decades in the context of measuring test effec-
tiveness in detecting faults. Jia and Harman [70] provide a
comprehensive survey of mutation testing techniques. Several
approaches improve mutation testing through custom mutation
operators [71], [72], test prioritization and selection [73], [74],
[75], and eliminate duplicate/equivalent mutants [76], [77].
Shi et al. [78] investigated the effects of flaky tests on muta-
tion testing. They proposed techniques to mitigate the effects
of flakiness by strategically re-running tests. In contrast, we
apply mutation testing to help improve non-deterministic tests.
Also, we execute each mutation 100 times. This allows us to
use a probabilistic version for mutation score unlike traditional
mutation testing, which expects deterministic behavior.

Metamorphic Testing. Metamorphic testing [79] has been
widely used to leverage the relationships between multiple
inputs (metamorphic relations) to address the test oracle
problem. Because the ML domain typically lacks reliable test
oracles, researchers have identified metamorphic relations for
specific applications, including autonomous driving [80], [81],
[82] (e.g., insensitivity of the result to weather conditions),
search engines [83], [84], and machine translation [85], [86].
FASER targets tests where the metamorphic relationship be-
tween outputs is numerical (continuous).

FASER plays a complementary role to metamorphic testing
(i.e., it fixes loose bounds in existing tests) and, as a special
case, can be used to improve the ML tests generated by
applying metamorphic relations. For example, let us consider
a scenario where a developer uses metamorphic testing to
provide relevant test inputs (e.g., image of an animal and
the same image with slightly altered background) and output
relationships (e.g., classification likelihoods of images should
be similar) [87]. However, due to the non-deterministic nature
of ML systems, the appropriate folerance bound of the output
relationship (e.g., allowable difference between the classifica-
tion likelihoods) may not be known. FASER can help tackle
this problem by running the test with different animal/altered-
background images to build a distribution of the differences of
the classification likelihood of the true label and estimate the
optimal bound (e.g., within 5%) that aims to minimize flaki-
ness and maximize fault-detection effectiveness of the test.

Testing Non-Deterministic Systems. Machine Learning
frameworks like TensorFlow [20] and PyTorch [19] are pre-
dominantly used to develop machine learning applications.
Similarly probabilistic programming systems [88], [89], [90],
[91] are also gaining in importance in recent years. Recently,
researchers have proposed approaches for testing machine
learning frameworks [92], [93], [94], [95], [96], [97], [98],
[99], [100], [101], [102], probabilistic programming sys-
tems [37], [103], [104], and randomized algorithms [105].
While these approaches focus on detecting new bugs, in this
work we focus on improving fault-detection effectiveness of
existing regression tests in such projects.

IX. CONCLUSION

We proposed a novel approach, FASER, for balancing the
trade-offs between flakiness and fault-detection effectiveness
of non-deterministic tests in ML projects. We found that 23 out
of 87 studied non-deterministic tests contain bounds that can
be tightened to improve their fault-detection effectiveness. Our
observations and the positive feedback from developers reflect
that FASER is practically useful.

ACKNOWLEDGMENTS

This work was partially supported by NSF grants CCF-
1763788, CCF-1956374, CCF-1846354, CCF-2008883, CCF-
2131943, and CCF-2141474. We acknowledge support for
research on flaky tests and ML systems from Meta and Google.

(1]

[2]
(3]

(4]

(3]
[6]
[7]
(8]

[91

[10]

[11]

[12]

[13]
[14]
[15]
[16]
[17]
[18]
[19]
[20]
[21]
[22]
[23]
[24]
[25]
[26]
[27]
[28]

[29]

[30]

[31]
[32]

[33]

REFERENCES

B. Huval, T. Wang, S. Tandon, J. Kiske, W. Song, J. Pazhayampallil,
M. Andriluka, P. Rajpurkar, T. Migimatsu, R. Cheng-Yue, F. Mujica,
A. Coates, and A. Y. Ng, “An empirical evaluation of deep learning
on highway driving,” 2015.

T. Davenport and R. Kalakota, “The potential for artificial intelligence
in healthcare,” Future Hospital Journal, vol. 6, pp. 94-98, 06 2019.
“Understanding the fatal tesla accident on autopilot and the
nhtsa probe,” electrek, 2016, https://electrek.co/2016/07/01/
understanding-fatal-tesla-accident- autopilot-nhtsa-probe.

“A google self-driving car caused a crash for the first time,”
The Verge, 2016, https://www.theverge.com/2016/2/29/11134344/
google-self-driving-car-crash-report.

I. Goodfellow, Y. Bengio, A. Courville, and Y. Bengio, Deep learning.
MIT Press Cambridge, 2016.

N. D. Goodman and A. Stuhlmiiller, “The design and implementation
of probabilistic programming languages,” 2014.

V. Francois-Lavet, P. Henderson, R. Islam, M. G. Bellemare, and
J. Pineau, “An introduction to deep reinforcement learning,” 2018.

S. Dutta, A. Shi, and S. Misailovic, “Flex: Fixing flaky tests in machine
learning projects by updating assertion bounds,” in Proceedings of the
29th ACM Joint Meeting on European Software Engineering Confer-
ence and Symposium on the Foundations of Software Engineering,
2021.

S. Dutta, J. Selvam, A. Jain, and S. Misailovic, “Tera: Optimizing
stochastic regression tests in machine learning projects,” in ISSTA,
2021.

S. Dutta, A. Shi, R. Choudhary, Z. Zhang, A. Jain, and S. Misailovic,
“Detecting flaky tests in probabilistic and machine learning applica-
tions,” in ISSTA, 2020.

M. Nejadgholi and J. Yang, “A study of oracle approximations in testing
deep learning libraries,” in ASE, 2019.

S. Dutta, A. Arunachalam, and S. Misailovic, “To seed or not to seed?
an empirical analysis of usage of seeds for testing in machine learning
projects,” in ICST, 2022.

Q. Luo, F. Hariri, L. Eloussi, and D. Marinov, “An empirical analysis
of flaky tests,” in FSE, 2014.

M. Mitzenmacher and E. Upfal, Probability and computing: Random-
ization and probabilistic techniques in algorithms and data analysis.
Cambridge university press, 2017.

P. L. Chebyshev, “Des valeurs moyennes,” J. Math. Pures Appl, 1867.
A. DasGupta, “Best constants in chebyshev inequalities with various
applications,” Metrika, 2000.

E. P. Cantelli, Intorno ad un teorema fondamentale della teoria del
rischio. Tip. degli operai, 1910.

Y. Jia and M. Harman, “An analysis and survey of the development of
mutation testing,” IEEE Transactions on Software Engineering, 2011.
“Pytorch,” 2018, http://pytorch.org.

“Tensorflow,” 2020, https://www.tensorflow.org.

“Pyro,” 2022, https://github.com/pyro-ppl/pyro.

“Pymc,” 2022, https://github.com/pymc-devs/pymc.

“Cleverhans,” 2022, https://github.com/cleverhans-lab/cleverhans.

J. Uesato, B. O’Donoghue, A. van den Oord, and P. Kohli, “Adversarial
risk and the dangers of evaluating against weak attacks,” 2018.

T. N. Tolhurst, “Model-free tests and evidence of bubbles in real
markets,” Ph.D. dissertation, University of California, Davis, 2020.

V. V. Buldygin and Y. V. Kozachenko, “Sub-gaussian random vari-
ables,” Ukrainian Mathematical Journal, 1980.

F. J. Anscombe and W. J. Glynn, “Distribution of the kurtosis statistic
b 2 for normal samples,” Biometrika, 1983.

S. S. Shapiro and M. B. Wilk, “An analysis of variance test for
normality (complete samples),” Biometrika, 1965.

R. T. Marler and J. S. Arora, “The weighted sum method for multi-
objective optimization: new insights,” Structural and multidisciplinary
optimization, 2010.

D. J. Wales and J. P. K. Doye, “Global optimization by basin-hopping
and the lowest energy structures of lennard-jones clusters containing
up to 110 atoms,” The Journal of Physical Chemistry A, 1997.

F. J. Massey Jr, “The kolmogorov-smirnov test for goodness of fit,”
Journal of the American statistical Association, 1951.

V. W. Berger and Y. Zhou, “Kolmogorov—smirnov test: Overview,”
Wiley statsref: Statistics reference online, 2014.

2009, https://coverage.readthedocs.io/en/6.2/.

[34]
[35]

[36]

[37]

[38]
[39]
[40]

[41]
[42]
[43]
[44]
[45]
[46]
[47]
[48]
[49]
[50]
[51]
[52]
[53]
[54]
[55]
[56]
[57]
[58]
[59]
[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]
[74]
[75]

[76]

“Mutmut: Python mutation tester,” 2020, https://github.com/boxed/
mutmut.

Y. Zhang, Y. Chen, S.-C. Cheung, Y. Xiong, and L. Zhang, “An
empirical study on tensorflow program bugs,” in ISSTA, 2018.

N. Humbatova, G. Jahangirova, G. Bavota, V. Riccio, A. Stocco, and
P. Tonella, “Taxonomy of real faults in deep learning systems,” in /CSE,
2020.

S. Dutta, O. Legunsen, Z. Huang, and S. Misailovic, “Testing proba-
bilistic programming systems,” in FSE, 2018.

2017, https://docs.conda.io.

2020, https://docs.pytest.org/en/stable.

“Scipy ks-test,” 2022, https://docs.scipy.org/doc/scipy/reference/
generated/scipy.stats.kstest.html.

“Allennlp,” 2022, https://github.com/allenai/allennlp.

“Captum,” 2022, https://github.com/pytorch/captum.

“Coax,” 2022, https://github.com/microsoft/coax.

“Deepchem,” 2022, https://github.com/deepchem/deepchem.
“Gensim,” 2022, https://github.com/RaRe-Technologies/gensim.
“Gpflow,” 2022, https://github.com/GPflow/GPflow.

“Gpytorch,” 2022, https://github.com/cornellius- gp/gpytorch.
“Kornia,” 2022, https://github.com/kornia/kornia.

“learn2learn,” 2022, https://github.com/learnables/learn2learn.
“Ml-agents,” 2022, https://github.com/Unity-Technologies/ml-agents.
“numpyro,” 2022, https://github.com/pyro-ppl/numpyro.

“Parlai,” 2022, https://github.com/facebookresearch/Parl Al

“pgmpy,” 2022, https://github.com/pgmpy/pgmpy.

“refnx,” 2022, https://github.com/refnx/refnx.

“stellargraph,” 2022, https://github.com/stellargraph/stellargraph.
“tfcausalimpact,” 2022, https://github.com/WillianFuks/tfcausalimpact.
“trax,” 2022, https://github.com/google/trax.

“umap,” 2022, https://github.com/Imcinnes/umap.

“zfit,” 2022, https://github.com/zfit/zfit.

“Amazon ec2 on-demand pricing,” 2022, https://aws.amazon.com/ec2/
pricing/on-demand/.

J. M. Zhang, M. Harman, L. Ma, and Y. Liu, “Machine learning testing:
Survey, landscapes and horizons,” TSE, 2020.

M. Harman and P. O’Hearn, “From start-ups to scale-ups: Opportunities
and open problems for static and dynamic program analysis,” in SCAM,
2018.

A. Romano, Z. Song, S. Grandhi, W. Yang, and W. Wang, “An
empirical analysis of ui-based flaky tests,” in ICSE, 2021.

W. Lam, P. Godefroid, S. Nath, A. Santhiar, and S. Thummalapenta,
“Root causing flaky tests in a large-scale industrial setting,” in ISSTA,
2019.

J. Bell, O. Legunsen, M. Hilton, L. Eloussi, T. Yung, and D. Marinov,
“DeFlaker: Automatically detecting flaky tests,” in /CSE, 2018.

W. Lam, R. Oei, A. Shi, D. Marinov, and T. Xie, “iDFlakies: A
framework for detecting and partially classifying flaky tests,” in /CST,
2019.

A. Shi, A. Gyori, O. Legunsen, and D. Marinov, “Detecting assump-
tions on deterministic implementations of non-deterministic specifica-
tions,” in ICST, 2016.

A. Shi, W. Lam, R. Oei, T. Xie, and D. Marinov, “ifixflakies: A
framework for automatically fixing order-dependent flaky tests,” in
FSE, 2019.

P. Zhang, Y. Jiang, A. Wei, V. Stodden, D. Marinov, and A. Shi,
“Domain-specific fixes for flaky tests with wrong assumptions on
underdetermined specifications,” in ICSE, 2021.

Y. Jia and M. Harman, “An analysis and survey of the development of
mutation testing,” IEEE transactions on software engineering, 2010.
O. L. Vera-Pérez, M. Monperrus, and B. Baudry, “Descartes: a pitest
engine to detect pseudo-tested methods: tool demonstration,” in ASE,
2018.

F. Hariri, A. Shi, O. Legunsen, M. Gligoric, S. Khurshid, and S. Mis-
ailovic, “Approximate transformations as mutation operators,” in /CST,
2018.

L. Zhang, D. Marinov, and S. Khurshid, “Faster mutation testing
inspired by test prioritization and reduction,” in ISSTA, 2013.

M. Gligoric, L. Zhang, C. Pereira, and G. Pokam, “Selective mutation
testing for concurrent code,” in ISSTA, 2013.

L. Zhang, M. Gligoric, D. Marinov, and S. Khurshid, “Operator-based
and random mutant selection: Better together,” in ASE, 2013.

B. J. Griin, D. Schuler, and A. Zeller, “The impact of equivalent
mutants,” in 2009 International Conference on Software Testing, Veri-
fication, and Validation Workshops, 2009.

[77]

[78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

[89]

M. Papadakis, Y. Jia, M. Harman, and Y. Le Traon, “Trivial compiler
equivalence: A large scale empirical study of a simple, fast and effective
equivalent mutant detection technique,” in 2015 IEEE/ACM 37th IEEE
International Conference on Software Engineering, 2015.

A. Shi, J. Bell, and D. Marinov, “Mitigating the effects of flaky tests
on mutation testing,” in ISSTA, 2019.

T. Y. Chen, S. C. Cheung, and S. M. Yiu, “Metamorphic testing: a new
approach for generating next test cases,” CS Department, Hong Kong
University of Science and Technology, Tech. Rep., 1998.

Y. Tian, K. Pei, S. Jana, and B. Ray, “Deeptest: Automated testing of
deep-neural-network-driven autonomous cars,” in Proceedings of the
40th international conference on software engineering, 2018, pp. 303—
314.

Z. Q. Zhou and L. Sun, “Metamorphic testing of driverless cars,”
Communications of the ACM, vol. 62, no. 3, pp. 61-67, 2019.

M. Zhang, Y. Zhang, L. Zhang, C. Liu, and S. Khurshid, “Deeproad:
Gan-based metamorphic testing and input validation framework for
autonomous driving systems,” in 2018 33rd IEEE/ACM International
Conference on Automated Software Engineering (ASE). 1EEE, 2018,
pp. 132-142.

Z. Q. Zhou, S. Xiang, and T. Y. Chen, “Metamorphic testing for
software quality assessment: A study of search engines,” IEEE Trans-
actions on Software Engineering, vol. 42, no. 3, pp. 264-284, 2016.
T. Y. Chen, E-C. Kuo, W. Ma, W. Susilo, D. Towey, J. Voas, and Z. Q.
Zhou, “Metamorphic testing for cybersecurity,” Computer, vol. 49,
no. 6, pp. 48-55, 2016.

P. He, C. Meister, and Z. Su, “Structure-invariant testing for machine
translation,” in 2020 IEEE/ACM 42nd International Conference on
Software Engineering (ICSE). 1EEE, 2020, pp. 961-973.

Z. Sun, J. M. Zhang, M. Harman, M. Papadakis, and L. Zhang,
“Automatic testing and improvement of machine translation,” in Pro-
ceedings of the ACM/IEEE 42nd International Conference on Software
Engineering, 2020, pp. 974-985.

Y. Tian, S. Ma, M. Wen, Y. Liu, S.-C. Cheung, and X. Zhang, “To
what extent do dnn-based image classification models make unreliable
inferences?” Empirical Softw. Engg., vol. 26, no. 5, sep 2021.

N. D. Goodman, V. K. Mansinghka, D. Roy, K. Bonawitz, and J. B.
Tenenbaum, “Church: a language for generative models,” in UAI, 2008.
B. Carpenter, A. Gelman, M. Hoffman, D. Lee, B. Goodrich, M. Be-
tancourt, M. A. Brubaker, J. Guo, P. Li, A. Riddell et al., “Stan:
A probabilistic programming language,” JSTATSOFT, vol. 20, no. 2,
2016.

[90]
[91]

[92]

[93]

[94]

[95]

[96]

[97]

[98]

[99]
[100]

[101]

[102]

[103]

[104]

[105]

T. Gehr, S. Misailovic, and M. Vechev, “PSI: Exact symbolic inference
for probabilistic programs,” in CAV, 2016.

Z. Huang, S. Dutta, and S. Misailovic, “Aqua: Automated quantized
inference for probabilistic programs,” in ATVA, 2021.

H. V. Pham, T. Lutellier, W. Qi, and L. Tan, “Cradle: cross-backend
validation to detect and localize bugs in deep learning libraries,” in
ICSE, 2019.

A. Dwarakanath, M. Ahuja, S. Sikand, R. M. Rao, R. J. C. Bose,
N. Dubash, and S. Podder, “Identifying implementation bugs in ma-
chine learning based image classifiers using metamorphic testing,” in
ISSTA, 2018.

Y. Zhang, L. Ren, L. Chen, Y. Xiong, S.-C. Cheung, and T. Xie,
“Detecting numerical bugs in neural network architectures,” in FSE,
2020.

Q. Guo, X. Xie, Y. Li, X. Zhang, Y. Liu, X. Li, and C. Shen, “Audee:
Automated testing for deep learning frameworks,” in ASE, 2020.

Q. Hu, L. Ma, X. Xie, B. Yu, Y. Liu, and J. Zhao, “Deepmutation++: A
mutation testing framework for deep learning systems,” in ASE, 2019.
A. Wei, Y. Deng, C. Yang, and L. Zhang, “Free lunch for testing:
Fuzzing deep-learning libraries from open source,” in 2022 IEEE/ACM
44th International Conference on Software Engineering (ICSE), 2022,
pp- 995-1007.

J. Liu, Y. Wei, S. Yang, Y. Deng, and L. Zhang, “Coverage-guided
tensor compiler fuzzing with joint ir-pass mutation,” Proc. ACM
Program. Lang., vol. 6, no. OOPSLA1, 2022.

Y. Deng, C. Yang, A. Wei, and L. Zhang, “Fuzzing deep-learning
libraries via automated relational api inference,” in FSE, 2022.

C. Yang, Y. Deng, J. Yao, Y. Tu, H. Li, and L. Zhang, “Fuzzing
automatic differentiation in deep-learning libraries,” in /CSE, 2023.
Y. Deng, C. S. Xia, H. Peng, C. Yang, and L. Zhang, “Fuzzing
deep-learning libraries via large language models,” arXiv preprint
arXiv:2212.14834, 2022.

J. Liu, J. Lin, E. Ruffy, C. Tan, J. Li, A. Panda, and L. Zhang, “Nnsmith:
Generating diverse and valid test cases for deep learning compilers,”
in ASPLOS, 2023.

S. Dutta, W. Zhang, Z. Huang, and S. Misailovic, “Storm: program re-
duction for testing and debugging probabilistic programming systems,”
in FSE, 2019.

Y. R. S. Llerena, M. Bohme, M. Briinink, G. Su, and D. S. Rosenblum,
“Verifying the long-run behavior of probabilistic system models in the
presence of uncertainty,” in FSE, 2018.

K. Joshi, V. Fernando, and S. Misailovic, “Statistical algorithmic
profiling for randomized approximate programs,” in /CSE, 2019.

	Introduction
	Example
	Problem Formulation
	Concentration Inequalities
	Computing Passing Probability of Test
	Estimating Fault-Detection Ability of Test
	Finding Optimal Assertion Bound

	FASER
	FASER Algorithm
	Mutant Generation
	Estimating Optimal Assertion Bound
	Applicability of Assertion Bounds

	Methodology
	Evaluation
	RQ1: Tests Improved by FASER
	RQ2: Improvement in Fault-Detection Effectiveness
	RQ3: Developer Response
	RQ4: Efficiency of FASER

	Threats to Validity
	Related Work
	Conclusion
	References

