pytest-inline: An Inline Testing Tool for Python

Yu Liu', Zachary Thurston?, Alan Han?, Pengyu Nie!, Milos Gligoric!, Owolabi Legunsen

2

yuki.liu@utexas.edu, {zwt3, ayh9}@cornell.edu, {pynie, gligoric} @utexas.edu, legunsen@cornell.edu

L'UT Austin, USA

Abstract—We present pytest-inline, the first inline testing
framework for Python. We recently proposed inline tests to make
it easier to test individual program statements. But, there is no
framework-level support for developers to write inline tests in
Python. To fill this gap, we design and implement pytest-inline as
a plugin for pytest, the most popular Python testing framework.
Using pytest-inline, a developer can write an inline test by assign-
ing test inputs to variables in a target statement and specifying
the expected test output. Then, pytest-inline runs each inline test
and fails if the target statement’s output does not match the
expected output. In this paper, we describe our design of pytest-
inline, the testing features that it provides, and the intended use
cases. Our evaluation on inline tests that we wrote for 80 target
statements from 31 open-source Python projects shows that using
pytest-inline incurs negligible overhead, at 0.012x. pytest-inline
is integrated into the pytest-dev organization, and a video demo
is at https://www.youtube.com/watch?v=pZgiAxR_ulJg.

Index Terms—inline tests, software testing, Python, pytest

I. INTRODUCTION

Software testing is the main way of checking code quality,
but there is a gap in today’s testing frameworks: they do
not support testing individual statements. That is, the unit
tests [5], integration tests [20], and system tests [28] supported
by current frameworks can be too coarse-grained or ill-suited
for developer testing needs that exist at the statement level.
Yet, developers may want to test statements because:

1) Single-statement bugs occur frequently [12], but unit tests
often do not catch single-statement bugs [14].

2) Some statements are hard to understand or error prone,
e.g., regular expressions (regexes) [19], bit manipula-
tion [1], string manipulation [6], or collection handling [8].

3) Statements can contain complex logic, e.g., Python one-
liners [18] or Java streams [10].

4) The statement that developers want to check, i.e., the rarget
statement, may be buried deeply in complicated logic that
is hard to check with unit tests.

Without framework-level support for testing statements, de-
velopers use ad hoc approaches, like (1) “printf debugging”—
printing values of variables to the console to gain visibil-
ity [21], or (2) using websites or in-IDE pop-ups to test
regexes [27]. These approaches are not ideal: developers
wastefully add and then remove print statements, and lose
mental focus and productivity to copy code to and from
websites and pop-ups. Also, developers cannot easily reuse
the outcomes of these approaches. Lastly, if a target statement
is in privately accessible code, some developers violate core
software engineering principles to enable unit testing.

2 Cornell University, USA

We proposed inline tests to meet developer needs for testing
statements [17]. An inline test is a statement that allows
providing arbitrary inputs and test oracles for checking the
immediately preceding statement that is not an inline test.
Inline tests can bring the power of unit tests to the statement
level, but they should not replace unit tests or debuggers [17].

We present pytest-inline, the first inline testing framework
for Python. Using pytest-inline, developers can assign test
inputs to variables in a target statement and use a provided
API to write oracles that specify the expected outputs. Also,
pytest-inline runs inline tests in an isolated context and does
not require interpreting the whole project. To ease installation,
usage, and adoption, we develop pytest-inline as a plugin for
pytest [22], the most popular Python testing framework.

We build pytest-inline by extending the prototype in our
original paper [17]. The original prototype supports three
kinds of test oracles, setting test display names, parameterized
tests, disabling tests, grouping tests by tags, and repeated
tests. In pytest-inline, we implement more features inspired
by JUnit [11] (a mature Java testing framework) that apply
to inline tests: 1) five other kinds of test oracles; 2) timeout;
3) specifying test order; 4) running inline tests in parallel; and
5) specifying assumptions. pytest-inline has been integrated as
an officially-supported pytest plugin [25].

We evaluate pytest-inline on 87 inline tests that we wrote for
80 target statements in 31 open-source Python projects [17].
We find that inline tests’ runtime overhead is negligible, at
0.012x of unit testing time. Our user study on the original
prototype showed that all nine participants find inline tests
easy to write and say that most inline tests are beneficial. Our
pytest-inline tool will enable further research on inline testing.

We make pytest-inline publicly available via the pytest-dev
organization: https://github.com/pytest-dev/pytest-inline.

II. EXAMPLE

Fig. 1 shows an inline test for code that we simplify from
google-research/bert [3]. Line 5 checks if the variable, name,
matches a regex for a pattern that ends in a colon and at
least one digit. Directly checking the regex is not easy without

def get_assignment_map_from checkpoint (tvars, init_c):

1
2 A
3 for var in tvars:

4 name = var.name

5 m = re.match ("" (.*) :\\d+$", name)
6 itest () .given(name, "a:0").check_eg(m.group(l),
7 if m is not None:

8

9

name = m.group (1)

nan)

Fig. 1: Example Python code with an inline test in blue.

TABLE I: pytest-inline’s features. The top five are in our original prototype [17]; the bottom five are new.

Feature Description Example

display name Provide custom inline test name itest(test_name="check_match_name")...
8 | parameterization Provide multiple inputs to an inline test 1test(parametenzcd_Truci) 'f‘,gl\j?r}(l,l,ame’[a0 a1 1)
= .check_eq(m.group(1), ["a", "a:1"])
g repetition Specify number of times to run an inline test itest(repeated=2)...
& | tags Tag inline tests to aid filtering itest(tag=["regex"])...

$ pytest --inlinetest-group="tag-name"

disabling tests Disable an inline test itest(disabled=True)...

timeout Fail if inline test is still running after n seconds itest(timeout=5)...

assumptions Execute inline test only if an assumption holds itest().assume(platform.system() == "Linux")...
£ [inline tests order Prioritize inline tests S pytest --inlinetest-order="tag-name"
Z | parallel runs Run inline tests in parallel using pytest-xdist [23] S pytest -n auto

new oracles check_neq, check_none, check_not_none, itest().given(name, "a:a").check_none(m)

check_same, check_not_same

statement-level testing: it is in a for loop and the match result
is not returned from the function.

The inline test that we write for Line 5 is on Line 6. Every
inline test has three parts. The “Declare” (itest()) part tells
pytest-inline to process the statement as an inline test. The “As-
sign” (given(name, "a : 0")) part allows providing test inputs
for the variables in the target statement. Here, "a : 0" is the
input value for name. Lastly, the “Assert” (check_eq(m,"a"))
part allows specifying a test oracle. In this case, given the test
input for name, the m that the target statement computes should

be "a" for this inline test to pass.

III. THE pytest-inline FRAMEWORK
A. API
The pytest-inline API provides three components:

1) Declare. This API component, itest(), signals pyfest-
inline to process a statement as an inline test and allows
users to optionally specify (1) a custom test name, (2) if
the inline test is parameterized, (3) a number of times to
run the inline test, (4) a list of tags for filtering tests, (5) if
the inline test is disabled, or (6) a timeout.

2) Assign. This API component, given(), allows developers
to provide test inputs for inline tests; it takes two argu-
ments: a variable that is used in the target statement and
the value that should be assigned to that variable.

3) Assert. This API component, check_x, allows developers
to specify inline test oracles. The check_eq, check_neq,
check_same, and check_not_same functions take the
expected value and the actual value. The check_true,
check_false, check _none, and check_not_none func-
tions take only the actual value.

B. Features

Table I lists the features that we implement in pytest-inline
with examples. The top five rows show our original prototype’s
features [17], and the bottom five rows show pytest-inline’s
new features. To build upon our original prototype, we analyze
features that JUnit [11] provides and extend the pytest-inline
API to support those that apply to inline tests.

Parameterized inline tests allow testing the same target
statement on multiple pairs of inputs and outputs. Timeout can
be provided so that pytest-inline terminates after a specified

ipytest initialization collection! test running || reporting
H hooks hooks hooks hooks

[s S S T

pytest-inline

test
reports

from inline import itest ‘
. P InlineTest R
itest... stmt L . Runner

InlineTest

py file Finder

itest... stmt

Fig. 2: Architecture of pytest-inline.

duration (which can be useful, e.g., if there is an infinite loop).
Running inline tests in parallel can save time. Developers can
specify names, tags, and test orders to organize their inline
tests. Tags can be used for marking and filtering tests. An
inline test can have multiple tags but only one display name.
We also add new features to allow developers to specify
how many times to repeat an inline test and whether to
temporarily disable inline tests. Repeating inline tests is useful
for detecting flaky tests [2], [13]. Disabling tests can be used
to skip failing tests until the fault is fixed. With assumptions,
inline tests only run if a pre-condition holds. Finally, we add
five new kinds of test oracles for convenience.

C. Implementation

Fig. 2 shows the architecture of pytest-inline; it has three
components: (1) FINDER, (2) PARSER, and (3) RUNNER.
FINDER. It obtains the abstract syntax tree (AST) from a
given source file (using Python’s AST library [26]) and locates
imports of itest and statements that start with itest().
PARSER. Given the output of FINDER, PARSER first traverses
the AST to discover each inline test and its target statement—
the first non-inline-test statement that precedes the inline test.
Then PARSER (1) extracts values assigned to the arguments
in the itest() constructor, (2) extracts the assumption in
assume() if it exists, (3) constructs an assignment statement
from each given(), (4) constructs an assertion statement from
each check_x(). PARSER throws a MalformedException if
pytest-inline’s API is misused. Lastly, PARSER constructs a
program encapsulating the inline test with the parsed assign-
ment statements, target statement, and assertion statements. If
there is an assumption, PARSER wraps the program in an if
statement with the assumption as the condition.

RUNNER. Given the program encapsulating each inline test
from PARSER, RUNNER executes the program in an isolated

(inline-dev) liuyu@luzhou:~/bert$ pytest modeling.py
test session starts
platform linux — Python 3.9.15, pytest-7.2.0, pluggy-1.0.0
rootdir: /home/liuyu/bert

plugins: inline-0.1.0
collected 1 item

modeling.py . [100%]

1 passed in 0.02s

Fig. 3: Sample pytest-inline output when an inline test passes.

(inline-dev) liuyu@luzhou:~/bert$ pytest modeling.py
test session starts
platform linux —— Python 3.9.15, pytest-7.2.0, pluggy-1.0.0
rootdir: /home/liuyu/bert

plugins: inline-0.1.0
collected 1 item

modeling.py F [100%]

FAILURES
[inlinetest] line326

<ast>:7: AssertionError

E AssertionError: m.group(l) == 'aa’
E Actual: a

E Expected: aa

short test summary info
FAILED modeling.py::line326 - AssertionError: m.group(l) == 'aa’
1 failed in 0.06s

Fig. 4: Sample pytest-inline output when an inline test fails.

context containing only the local variables that it needs and
produces a pass/fail test outcome. RUNNER automatically im-
ports libraries required by the program (e.g., re), so developers
need not write import statements in inline tests. The test
outcome is formatted as standard pytest output, e.g., Fig. 3.
Integration with pytest. We use pytest’s hook functions
to implement pytest-inline as a pytest plugin, namely by
extending and customizing pytest’s configuration, collection,
running, and reporting phases. For example, we hook into the
pytest_exception_interact function to customize error
reporting to pretty-print the failing assertion, expected output,
and actual output instead of a long stack trace. Fig. 4 shows
the output of a failing inline test, obtained by changing
check_eq(m.group(1),"a") to check_eq(m.group(1),"aa")
in Fig. 1. Fig. 2 shows other hooks that pytest-inline uses.

I'V. INSTALLATION AND USAGE

Installation. We recommend Conda [4] for installing pytest
and pytest-inline. A Conda environment with Python 3.9 can
be created like so (pytest requires Python 3.7 or higher):

$ conda create --name inlinetest python=3.9 pip -y

$ conda activate inlinetest

Next, install pytest and pytest-inline in the Conda environment:

$ pip install pytest-inline

Usage. By default, pytest recursively discovers and runs all
“test_*.py” or “*_test.py” files in the current directory. pytest-
inline also recursively processes all “.py” files in the current
directory. Users can specify what files to process, e.g., to run

inline tests in “.py” files that start with “a”:
$ pytest ax.py

Use inlinetest—-group to run tagged inline tests:

run only the tests with tags "str" and "bit"
$ pytest —--inlinetest-group="str" --inlinetest-group="bit"

The -k option allows specifying inline tests to run by name:

$ pytest -k "add" # run the inline tests whose names match
the given string expression

Inline tests can be run in three modes: default, inlinetest-
only, and inlinetest-disable. The default mode runs inline tests
and unit tests; inlinetest-only mode runs only inline tests; and
inlinetest-disable mode skips inline tests but runs unit tests:

$ pytest # run all tests
$ pytest —--inlinetest-only # run only inline tests
$ pytest --inlinetest-disable # skip inline tests

When collecting inline tests, pytest-inline imports dependen-
cies and throws an error if those dependencies are not installed.
Users can use inlinetest-ignore—import-errors
to ignore such errors and skip the collection of the affected
files (doing so also skips the inline tests in those files):

$ pytest —-—-inlinetest-ignore-import-errors

The default line-number order of running inline tests can be
overridden using tags and inlinetest-order:

run test tagged "str", then "bit", and then the rest

$ pytest —--inlinetest-order="str" --inlinetest-order="bit"
Inline tests can be run in parallel after installing pytest-

xdist [23] by using —n to specify the number of processes.

$ pip install pytest-xdist

$ pytest -n 4 # run tests in parallel with 4 processes

$ pytest -n auto # run tests in parallel with all CPU cores
Lastly, to generate HTML test reports, users can use the

pytest-html plugin and the html option:

$ pip install pytest-html
$ pytest —-—html=report.html

V. EVALUATION

We evaluate pytest-inline’s performance using the same
environment to run experiments as in our original paper [17].
Standalone experiments. To measure the cost of running
inline tests, we run the same inline tests as in our original
paper [17]. These are 87 inline tests that we manually wrote
for 80 target statements in 31 Python projects. Since inline
tests are still new and not abundant on open-source projects,
it is hard to assess pytest-inline costs as the number of inline
tests grows. For now, we simulate such costs as in our original
paper: by duplicating each inline test 10, 100, and 1000 times.

Table II shows the times to run pytest-inline with varying
number of tests. Without duplication, the average time per
inline test is 0.094s. With duplication, the average time per
inline test gradually reduces to 0.001s, likely for two reasons.
First, the cost of discovering inline tests is amortized with
duplication, so the actual cost per inline test could be slightly
higher. Second, repeatedly running an inline test benefits from
reduced warm-up time. The total time to run all inline tests is
almost constant when we duplicate each inline test 10 or 100
times, but that time grows greatly when we duplicate 1000
times. This dramatic growth suggests that regression testing
techniques [7], [9], [15], [16], [29] will be needed to reduce
inline testing costs. pytest-inline can be the basis on which to
build those regression testing techniques. Overall, we conclude
that the overhead of running these inline tests is tiny.
Integrated experiments. We also measure the overhead of
running inline tests and unit tests together in the runtime

TABLE II: Results of standalone experiments. Dup = dupli-
cation count, #IT= total no. of inline tests, Tyr[s]= total inline
tests run time, tyr[s]= average run time per inline test.

Dup #IT | Tiyls] | tirls]
x1 87 8.21 0.094
x10 870 8.84 | 0.010
x100 | 8,700 15.21 0.002
x1000 | 87,000 120.17 | 0.001

TABLE III: Results of integrated experiments. Dup = duplica-
tion times, #UT= total no. of unit tests, #IT= total no. of inline
tests, Tyt [s]= total time to run unit tests, Tyrg [S]= total time
to run unit tests with inline tests enabled, Oyrg= overhead of
running unit tests with inline tests enabled, Tirp[s]= total time
to run unit tests with inline tests disabled, Oyrp= overhead of
running unit tests with inline tests disabled.

Dup #UT #IT | Tur [s] | Tire [s] | Ome | Tirols] Orp
x1 160,111 27 599.09 606.19 | 0.012 | 601.22 0.004
x10 160,111 270 603.29 607.20 | 0.006 | 601.94 | -0.002
x100 160,112 2,700 593.93 638.02 | 0.074 | 630.42 0.061
x1000 | 160,113 | 27,000 | 649.53 689.50 | 0.062 | 640.93 | -0.013

environment specified by each project. To do so, we run inline
tests and unit tests four times. The first run is for warm-up,
and we average the times for the last three runs. Among 31
Python projects in our original paper, we choose the ten whose
unit testing environment we can successfully configure with
Python 3.7 or greater (as required by pytest): bokeh/bokeh,
RaRe-Technologies/gensim, geekcomputers/Python,
joke2k/faker, mitmproxy/mitmproxy, numpy/numpy,
pandas-dev/pandas, psf/black, pypa/pipenv, and
scrapy/scrapy. Table Il shows the results. There, Orrg
is the overhead when inline tests are enabled and run with
unit tests. Without duplication, the overhead per inline
test is negligible, at 0.012x. The overhead is similar with
duplication. For example, when duplicating inline tests 1000
times, which brings the number of inline tests close to that
of unit tests, the overhead is 0.062x.

On user perceptions. The user study that we performed using
the original Python prototype [17] showed that participants
found inline testing easy to use and beneficial. Now that we
released pytest-inline, and have it integrated as an official
pytest plugin for developers and researchers to use, we will
be able to continuously obtain user feedback. For example,
based on the feedback from pytest developers, we renamed
the constructor from Here to itest, which is more pythonic.

VI. CONCLUSION AND FUTURE WORK

We presented pytest-inline for writing inline tests in Python.
We implemented pytest-inline as a pytest plugin, and it
has been integrated into pytest-dev [24] as an official and
community-maintained plugin. Our performance evaluation of
pytest-inline showed that the cost of running inline tests is
negligible, and our original prototype helped find two accepted
bugs. In the future, we will add more features to pytest-inline
based on user feedback, and use it to advance research on
inline testing. pytest-inline could also be integrated with other

pytest plugins such as pytest-mock to perform inline testing
of statements that require data from files, databases, etc.

ACKNOWLEDGMENTS

We thank Nader Al Awar, Darko Marinov, August Shi,
Aditya Thimmaiah, Zhiqiang Zang, Jiyang Zhang and the
anonymous reviewers for their feedback on this work. This
work was partially supported by a Google Faculty Research
Award and the US National Science Foundation under Grant
Nos. 1652517, 2019277, 2045596, 2107291, 2217696.

REFERENCES

[1] S. Bae, “Bit manipulation,” in JavaScript Data Structures and Algo-
rithms, 2019, pp. 339-349.

[2] J. Bell, O. Legunsen, M. Hilton, L. Eloussi, T. Yung, and D. Marinov,
“DeFlaker: Automatically detecting flaky tests,” in ICSE, 2018, pp. 433—
444,

[3] “Bert,” https://github.com/google-research/bert.

[4] “Conda,” https://docs.conda.io/projects/conda/en/stable.

[5] E.Daka and G. Fraser, “A survey on unit testing practices and problems,”
in ISSRE, 2014, pp. 201-211.

[6] A. Eghbali and M. Pradel, “No strings attached: An empirical study of
string-related software bugs,” in ASE, 2020, pp. 956-967.

[71 M. Gligoric, L. Eloussi, and D. Marinov, “Practical regression test
selection with dynamic file dependencies,” in ISSTA, 2015, pp. 211-
222.

[8] M. Gruber, S. Lukasczyk, F. Kroi, and G. Fraser, “An empirical study
of flaky tests in Python,” in /CST, 2021, pp. 148-158.

[91 A. Gyori, O. Legunsen, F. Hariri, and D. Marinov, “Evaluating regression

test selection opportunities in a very large open-source ecosystem,” in

ISSRE, 2018, pp. 112-122.

“Java stream api,” https://docs.oracle.com/javase/8/docs/api/java/util/

stream/Stream.html.

“Junit5,” https://junit.org/junit5/.

A. V. Kamienski, L. Palechor, C.-P. Bezemer, and A. Hindle, “PySStuBs:

Characterizing single-statement bugs in popular open-source python

projects,” in MSR, 2021, pp. 520-524.

W. Lam, R. Oei, A. Shi, D. Marinov, and T. Xie, “iDFlakies: A

framework for detecting and partially classifying flaky tests,” in ICST,

2019, pp. 312-322.

J. Latendresse, R. Abdalkareem, D. E. Costa, and E. Shihab, “How

effective is continuous integration in indicating single-statement bugs?”

in MSR, 2021, pp. 500-504.

O. Legunsen, F. Hariri, A. Shi, Y. Lu, L. Zhang, and D. Marinov, “An

extensive study of static regression test selection in modern software

evolution,” in FSE, 2016, pp. 583-594.

O. Legunsen, A. Shi, and D. Marinov, “STARTS: STAtic regression test

selection,” in ASE Demo, 2017, pp. 949-954.

Y. Liu, P. Nie, O. Legunsen, and M. Gligoric, “Inline tests,” in ASE,

2022, pp. 1-13.

C. Mayer, Python One-Liners: Write Concise, Eloquent Python Like a

Professional. No Starch Press, 2020.

L. G. Michael, J. Donohue, J. C. Davis, D. Lee, and F. Servant, “Regexes

are hard: Decision-making, difficulties, and risks in programming regular

expressions,” in ASE, 2019, pp. 415-426.

A. Orso, “Integration testing of object-oriented software,” p. 119, 1998.

M. Perscheid, B. Siegmund, M. Taeumel, and R. Hirschfeld, “Studying

the advancement in debugging practice of professional software devel-

opers,” SQJ, vol. 25, no. 1, pp. 83-110, 2017.

“Pytest,” https://docs.pytest.org/en/7.2.x.

“Pytest-xdist,” https://github.com/pytest-dev/pytest-xdist.

“pytest-dev,” https://github.com/pytest-dev.

“pytest-inline,” https://pypi.org/project/pytest-inline.

“Python ast library,” https://github.com/python/cpython/blob/main/Lib/

ast.py.

“RegEx101,” https://regex101.com.

W. Tsai, X. Bai, R. Paul, W. Shao, and V. Agarwal, “End-to-end

integration testing design,” in COMPSAC, 2001, pp. 166-171.

J. Zhang, Y. Liu, M. Gligoric, O. Legunsen, and A. Shi, “Comparing and

combining analysis-based and learning-based regression test selection,”

in AST, 2022, pp. 17-28.

[10]

(11]

[12]

[13]

[14]

[15]

[16]
(17]
(18]
[19]

[20]
[21]

[22]
[23]
[24]
[25]
[26]

[27]
(28]

[29]

	Introduction
	Example
	The pytest-inline Framework
	API
	Features
	Implementation

	Installation and Usage
	Evaluation
	Conclusion and Future Work
	References

