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Abstract

We consider the problem of estimating a d-dimensional discrete distribution from
its samples observed under a b-bit communication constraint. In contrast to most
previous results that largely focus on the global minimax error, we study the local
behavior of the estimation error and provide pointwise bounds that depend on
the target distribution p. In particular, we show that the `2 error decays with

O
⇣

max
⇣kpk1/2

n2b
, 1
n

⌘⌘

when n is sufficiently large, hence it is governed by the

half-norm of p instead of the ambient dimension d. For the achievability result,
we propose a two-round sequentially interactive estimation scheme that achieves
this error rate uniformly over all p. This two-round scheme extends to `q loss with
q � 1, and hence gives pointwise upper bounds on `q error. We also develop a
new local minimax lower bound with (almost) matching `2 error, showing that any

interactive scheme must admit a Ω

⇣kpk(1+δ)/2

n2b

⌘

`2 error for any � > 0.

Our upper and lower bounds together indicate that the H1/2(p) , log(kpk1/2) bits
of communication is both sufficient and necessary to achieve the optimal (cen-
tralized) performance, where H1/2(p) is the Rényi entropy of order 2. Therefore,
under the `2 loss, the correct measure of the local communication complexity at p
is its Rényi entropy.

1 Introduction

Learning a distribution from its samples has been a fundamental task in unsupervised learning
dating back to the late nineteenth century [1]. This task, especially under distributed settings, has
gained growing popularity in the recent years as data is increasingly generated “at the edge” by
countless sensors, smartphones, and other devices. When data is distributed across multiple devices,
communication cost and bandwidth often become a bottleneck hampering the training of high-
accuracy machine learning models [2]. This is even more so for federated learning and analytics type
settings [3] which rely on wireless mobile links for communication.

To resolve this issue, several communication-efficient distribution learning schemes have been recently
proposed and studied in the literature (see Section 1.2 for a thorough discussion). On the positive
side, the state-of-the-art schemes are known to be worst-case (minimax) optimal as they have been
shown to achieve the information-theoretic lower bounds on the global minimax error [4–8]. On the
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negative side, however, the `2 estimation error achieved by these schemes scales as O( d
n2b

) under a
b-bit communication constraint on each sample, where d is the alphabet size of the unknown discrete
distribution p. This suggests that without additional assumptions on p the error scales linearly in d,
i.e. the introduction of communication constraints introduces a penalty d on the estimation accuracy.
This is true even if we allow for interaction between clients [8, 9].

A recent work [10] has moved a step forward from the “global minimax regime” by restricting the
target distribution p to be s-sparse and showing that the `2 error can be reduced to O( s log d

n2b
) in this

case, i.e. the error depends on the sparsity s rather than the ambient dimension d. However, their
scheme heavily relies on the s-sparse assumption and requires knowing s beforehand. Therefore,
when s is unknown and we need to work with a (potentially loose) upper bound on s, the estimation
error increases accordingly. In addition, little is known when the target distribution deviates slightly
from being exactly s-sparse.

In this paper, we argue that all these results can be overly pessimistic, as worst-case notions of
complexity and schemes designed to optimize these worst-case notions can be too conservative.
Instead, we seek a measure of local complexity that captures the hardness of estimating a specific
instance p. Ideally, we want a scheme that adapts to the hardness of the problem instead of being
tuned to the worst-case scenario; that is, a scheme achieving smaller error when p is “simpler.”

Our contributions Motivated by these observations, in this work we consider the local minimax
complexity of distribution estimation and quantify the hardness of estimating a specific p under
communication constraints. In particular, under the `2 loss, we show that the local complexity
of estimating p is captured by its half-norm1 kpk 1

2
: we propose a two-round interactive scheme

that uniformly achieves the O
⇣

max
⇣kpk1/2

n2b
, 1
n

⌘⌘

error under `2 loss2 which requires no prior

information on p. On the impossibility side, we also show that for any (arbitrarily) interactive
scheme, the local minimax error (which is formally defined in Theorem 2.4) must be at least

Ω

⇣

max
⇣kpk1+δ/2

n2b
, 1
n

⌘⌘

for any � > 0 when n is sufficiently large.

These upper and the lower bounds together indicate that kpk1/2 plays a fundamental role in distributed

estimation and that the dlog(kpk1/2)e bits of communication is both sufficient and necessary to
achieve the optimal (centralized) performance when n is large enough. Indeed, this quantity is exactly
the Rényi entropy of order 2, i.e. H1/2(p) , log(kpk1/2), showing that under the `2 loss, the correct
measure of the local communication complexity at p is the Rényi entropy of p.

Compared to the global minimax results where the error scales as O( d
n2b

), we see that when we
move toward the local regime, the linear dependency on d in the convergence rate is replaced by
kpk1/2. This dimension independent convergence is also empirically verified by our experiments (see

Section 3 for more details). Note that kpk1/2 < d, so our proposed scheme is also globally minimax

optimal. Moreover, since kpk1/2 < kpk0, our scheme achieves the O( s
n2b

) convergence rate under

the s-sparse model [10], which improves the O( s log(d/s)
n2b

) upper bound in [10] by further shaving off
the additional log(d/s) term (though admittedly, their scheme is designed under the more stringent
non-interactive setting). As another immediate corollary, our pointwise upper bounds indicate that 1
bit suffices to attain the performance of the centralized model when the target distribution is highly
skewed, such as the (truncated) Geometric distributions and Zipf distributions with degree greater
than two.

Our techniques Our proposed two-round interactive scheme is based on a local refinement
approach, where in the first round, a standard (global) minimax optimal estimation scheme is applied
to localize p. In the second round, we use additional Θ(n) samples (clients), together with the
information obtained from the previous round, to locally refine the estimate. The localization-
refinement procedure enables us to tune the encoders (in the second round) to the target distribution p
and hence attain the optimal pointwise convergence rate uniformly.

On the other hand, our lower bound is based on the quantized Fisher information framework intro-
duced in [11]. However, in order to obtain a local bound around p, we develop a new approach that

1Here we generalize the notion of q-norm kpkq ,

⇣

Pd
i=1 p

q
i

⌘1/q

to q 2 [0, 1].
2Our scheme also guarantees pointwise upper bounds on `1 or general `q errors. See Theorem 2.2.
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first finds the best parametric sub-model containing p, and then upper bounds its Fisher information
in a neighborhood around p. To the best of our knowledge, this is the first impossibility result that
allows to capture the local complexity of high dimensional estimation under information constraints
and can be of independent interest, e.g. to derive pointwise lower bounds for other estimation models
under general information constraints.

1.1 Notation and Setup

The general distributed statistical task we consider in this paper can be formulated as follows. Each

one of the n clients has local data Xi ⇠ p, where p 2 Pd and Pd ,

n

p 2 R
d
+

�

�

�

P

j pj = 1
o

is the

collection of all d-dimensional discrete distributions. The i-th client then sends a message Yi 2 Y to
the server, who upon receiving Y n aims to estimate the unknown distribution p.

At client i, the message Yi is generated via a sequentially interactive protocol; that is, samples are
communicated sequentially by broadcasting the communication to all nodes in the system including
the server. Therefore, the encoding function Wi of the i-th client can depend on all previous messages
Y1, ..., Yi�1. Formally, it can be written as a randomized mapping (possibly using shared randomness
across participating clients and the server) of the form Wi(·|Xi, Y

i�1), and the b-bit communication
constraint restricts |Y|  2b. As a special case, when Wi depends only on Xi and is independent
of the other messages Y i�1 for all i (i.e. Wi(·|Xi, Y

i�1) = Wi(·|Xi)), we say the corresponding
protocol is non-interactive. Finally, we call the tuple (Wn, p̂(Y n)) an estimation scheme, where
p̂ (Y n) is an estimator of p. We use Πseq and Πind to denote the collections of all sequentially
interactive and non-interactive schemes respectively.

Our goal here is to design a scheme (Wn, p̂ (Y n)) to minimize the `2 (or `1) estimation error:
r (`2, p, (W

n, p̂)) , E[kp� p̂ (Y n)k22], for all p 2 Pd, as well as characterizing the best error
achievable by any scheme in Πseq. We note that while our impossibility bounds hold for any scheme
in Πseq, the particular scheme we propose uses only one round of interaction.For `1 error, we replace

k·k22 in the above expectations with k·k1. In this work, we mainly focus on the regime 1 ⌧ d ⌧ n,
aiming to characterize the statistical convergence rates when n is sufficiently large.

1.2 Related works

Estimating discrete distributions is a fundamental task in statistical inference and has a rich literature
[12–15]. Under communication constraints, the optimal convergence rate for discrete distribution
estimation was established in [4–8, 16] for the non-interactive setting, and [8, 9] for the general
(blackboard) interactive model. The recent work [10] considers the same task under the s sparse
assumption for the distribution under communication or privacy constraints. However, all these works
study the global minimax error and focus on minimizing the worst-case estimation error. Hence the
resultant schemes are tuned to minimize the error in the worst-case which may be too pessimistic for
most real-world applications.

A slightly different but closely related problem is distributed estimation of distributions [16–20] and
heavy hitter detection under local differential privacy (LDP) constraints [21–24]. Although originally
designed for preserving user privacy, some of these schemes can be made communication efficient.
For instance, the scheme in [20] suggests that one can use 1 bit communication to achieve O(d/n) `2
error (which is global minimax optimal); the non-interactive tree-based schemes proposed in [22, 23]
can be cast into a 1-bit frequency oracle, but since the scheme is optimized with respect to `1 error,

directly applying their frequency oracle leads to a sub-optimal convergence O
⇣

s(log d+logn)
n

⌘

in `2.

In the line of distributed estimation under LDP constraint, the recent work [25] studies local minimax
lower bounds and shows that the local modulus of continuity with respect to the variation distance
governs the rate of convergence under LDP. However, the notion of the local minimax error in [25] is
based on the two-point method, so their characterized lower bounds may not be uniformly attainable
in general high-dimensional settings.

Organization The rest of the paper is organized as follows. In Section 2, we present our main
results, including pointwise upper bounds and an (almost) matching local minimax lower bound. We
provide examples and experiments in Section 3 to demonstrate how our pointwise bounds improve
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upon previous global minimax results. In Section 4, we introduce our two-round interactive scheme
that achieves the pointwise bound. The analysis of this scheme, as well as the proof of the upper
bounds, is given in Section 5. Finally, in Section 6 we provide the proof of the local minimax lower
bound.

2 Main results

Our first contribution is the design of a two-round interactive scheme (see Section 4 for details) for
the problem described in the earlier section. The analysis of the convergence rate of this scheme
leads to the following pointwise upper bound on the `2 error:

Theorem 2.1 (Local `2 upper bound) For any b  blog2 dc, there exist a sequentially interactive
scheme (Wn, p̌) 2 Πseq, such that for all p 2 Pd,

r (`2, p, (W
n, p̌))  C1

1

n
+ C2

kpk 1
2

n2b
+ C3

d3 log(nd)

(n2b)
2 ⇣

kpk 1
2
+ on(1)

n2b
, (1)

where C1, C2, C3 > 0 are some universal constants (which are explicitly specified in Section 5). This

implies that as long as n = Ω

⇣

d3 log d
2bkpk1/2

⌘

, r (`2, p, (W
n, p̌)) = O

⇣

max
⇣kpk1/2

n2b
, 1
n

⌘⌘

.

In addition to the `2 error, by slightly tweaking the parameters in our proposed scheme, we can obtain
the following pointwise upper bound on the `1 (i.e. the total variation) error:

Theorem 2.2 (Local `1 upper bound) For any b  blog2 dc, there exists a sequentially interactive

scheme
⇣

W̃n, p̌
⌘

2 Πseq, such that for all p 2 Pd,

r
⇣

`1, p,
⇣

W̃n, p̌
⌘⌘

 C1

s

kpk 1
2

n
+ C2

s

kpk 1
3

n2b
+ C3

s

d4 log (nd)

(n2b)
2 ⇣

s

kpk 1
3
+ on(1)

n2b
,

where C1, C2, C3 > 0 are some universal constants. Hence as long as n = Ω

⇣

d4 log d
2bkpk1/3

⌘

,

r (`1, p, (W
n, p̌)) = O

✓

max

✓
q

kpk1/3

n2b
,

q

kpk1/2

n

◆◆

.

Theorem 2.1 implies that the convergence rate of the `2 error is dictated by the half-norm of the
target distribution p while Theorem 2.2 implies that the `1 error is dictated by the one-third norm
of the distribution. In general, we can optimize the encoding function with respect to any `q loss
for q 2 [1, 2] and the quantity that determines the convergence rate becomes the q

q+2 -norm (see
Remark C.1 for details). We also remark that the large second-order terms in Theorem 2.1 and
Theorem 2.2 are generally inevitable. See Appendix A.1 for a discussion. The proofs of Theorem 2.1
and Theorem 2.2 are given in Section 5 and Appendix C respectively.

Next, we complement our achievability results with the following minimax lower bounds.

Theorem 2.3 (Global minimax lower bound) For any (possibly interactive) scheme, it holds that

inf
(Wn,p̂)2Πseq

sup
p:kpk1/2h

EX⇠p

h

kp̂(Wn(Xn))� pk22
i

= Ω

✓

h

n2b

◆

.

Note that the lower bound in Theorem 2.3 can be uniformly attained by our scheme even if no
information on the target set of distributions, i.e. the parameter h is available, indicating that our
proposed scheme is global minimax optimal. The proof can be found in Section D.
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Theorem 2.4 (Local minimax lower bound) Let p 2 P 0
d ,

�

p 2 Pd

�

�

1
2 < p1 < 2

3

 

. Then for any

� > 0, B �
q

kpk1/2

d2b
, as long as n = Ω

⇣

d3 log d
kpk1/2

⌘

, it holds that3

inf
(Wn,p̂)2Πseq

sup
p0:kp0�pk1 Bp

n

Ep0

h

kp̂ (Wn(Xn))� p0k22
i

� 1

n2b
max

 

c� kpk 1+δ

2
,
c1 kpk 1

2

log d

!

+
c2
n
,

for some c�, c1, c2 > 0.

Remark 2.1 Note that in Theorem 2.4, the `1 neighborhood
n

p0 : kp0 � pk1  Bp
n

o

is

strictly smaller than the following `2 neighborhood:
n

p0 : kp0 � pk2 
q

kpk1/2/(2bn)
o

(since

Bd,`1( 1p
d
) ⇢ Bd,`2(1)). Therefore, in Theorem 2.4 we present a slightly stronger statement.

Theorem 2.4 indicates that our proposed scheme is (almost) optimal when n is sufficiently large and
that kpk1/2 is the fundamental limit for the estimation error. This conclusion implies that under `2
loss, the right measure of the hardness of an instance p is its half-norm, or equivalently its Rényi
entropy of order 1/2. The proof of Theorem 2.4 is given in Section 6.

Corollary 2.1 When n is sufficiently large, dlog(kpk1/2)e bits of communication is both sufficient

and necessary to achieve the convergence rate of the centralized setting under `2 loss. Similarly,
dlog(kpk1/3)e bits are sufficient for `1 loss.

In addition, observe that the quantities log(kpk1/2) and 1
2 log ((pk1/3) are the Rényi entropies of

order 1/2 and 1/3, denoted as H1/2(p) and H1/3(p), respectively. In other words, the communication
required to achieve the optimal (i.e. the centralized) rate is determined by the Rényi entropy of the
underlying distribution p.

Finally, we remark that when the goal is to achieve the centralized rate with minimal communication
(instead of achieving the best convergence rate for a fixed communication budget as we have assumed
so far), the performance promised in the above corollary can be achieved without knowing H1/2(p)
beforehand. See Appendix A.2 for a discussion.

3 Examples and experiments

Next, we demonstrate by several examples and experiments that our results can recover earlier global
minimax results and can significantly improve them when the target distribution is highly skewed.

Corollary 3.1 (s-sparse distributions) Let Ps,d ,
�

p 2 [0, 1]d
�

�

P

pi = 1, kpk0  s
 

. Then as

long as n large enough, there exists interactive schemes (Wn, p̌) and (W̃n, p̌) such that

r (`2, p, (W
n, p̌)) = O( s

n2b
) and r

⇣

`1, p,
⇣

W̃n, p̌
⌘⌘

= O(
p

s
n2b

).

The above result shows that our scheme is minimax optimal over Pd,s. This recovers and improves (by
a factor of log d/s) the results from [10] on the `1 and `2 convergence rates for s-sparse distributions4.

Corollary 3.2 (Truncated geometric distributions) Let p , Geo�,d be the truncated geometric

distribution. That is, for all � 2 (0, 1] and k 2 [d], Geo�,d(k) ,
1��

�(1��d)
�k. Then if n =

Ω
�

d3 log d/2b
�

,

r (`2, p, (W
n, p̂)) = O

 

1

n2b
(1 +

p
�)(1�

p
�
d
)

(1�
p
�)(1 +

p
�
d
)

!

= O

✓

max

✓

1

n(1�
p
�)2b

,
1

n

◆◆

.

3Indeed, the lower bound holds for blackboard interactive schemes [26], a more general class of interactive
schemes than Πseq. See [8] for a discussion of blackboard schemes.

4We remark, however, that their scheme is non-interactive and has smaller minimum sample size requirement.
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This result shows that if � is constant for the truncated geometric distribution, 1 bit suffices to achieve
the centralized convergence rate O

�

1
n

�

in this case. Note that this is a significant improvement

over previous minimax bounds on the the `2 error which are O( d
n2b

) [4]. This suggests that the
corresponding minimax optimal scheme is suboptimal by a factor of d when the target distribution is
truncated geometric. Our results suggest that the `2 error should not depend on d at all, and Figure 1
provides empirical evidence to justify this observation.

Corollary 3.3 (Truncated Zipf distributions with � > 2) Let p , Zipf�,d be a truncated Zipf

distribution with � � 2. That is, for k 2 [d], Zipf�,d(k) , k�λ

Pd
k0=1

(k0)�λ
. Then the local

complexity of p is characterized by kpk1/2 = Θ

✓

⇣

1�d�λ/2+1

1�d�λ+1

⌘2
◆

= Θ(1). So in this case,

r (`2, p, (W
n, p̂)) = O

�

1
n

�

, as long as n = Ω
�

d3 log d/2b
�

.

We leave the complete characterization for all � > 0 to Section E in appendix. Note that since both
Geo�,d and Zipf�,d are not sparse distributions, [10] cannot be applied here. Therefore, the best
previously known scheme for these two cases is the global minimax optimal scheme achieving an
O
�

d
n2b

�

`2 error. Again, our results suggest that this is suboptimal by a factor of d.

In Figure 1, we empirically compare our scheme with [4] (which is globally minimax optimal). In
the left figure, we see that the error of our scheme is an order of magnitude smaller than the minimax
scheme and remains almost the same under different values of d. We illustrate that more clearly
in the right figure, where we fix n and increase d. It can be observed that the error of our scheme
remains bounded when d increases, while the error of the minimax scheme scales linearly in d. This
phenomenon is justified by Corollary 3.2.

Figure 1: Comparisons between our scheme (labeled as ‘localize-and-refine’) and the globally
minimax optimal scheme (labeled as ‘minimax’) [4]. The underlying distribution is set to be truncated
geometric distribution with � = 0.8.

4 The localization-refinement scheme

In this section, we introduce our two-round localization-refinement scheme and show how it locally
refines a global minimax estimator p̂ to obtain a pointwise upper bound.

The first round of our two-round estimation scheme (the localization phase) is built upon the global
minimax optimal scheme [4], in which symbols are partitioned into bd/(2b � 1)c subsets each
of size (2b � 1), and each of the first n/2 clients is assigned one of these subsets (each subset
is assigned to (n/2)/(d/(2b � 1)) clients). The client reports its observation only if it is in its
assigned subset by using b bits. This first round allows us to obtain a coarse estimate p̂ with
error E[kp� p̂k22] ⇣

P

j pj/n2
b = O(d/n2b). Then in the second round (the refinement phase),

we locally refine the estimate by adaptively assigning more “resources” (i.e. samples), according
to p̂ obtained from the first round, to the more difficult symbols (i.e. j 2 [d] with larger error
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Algorithm 1: uniform grouping [4] (at client i)

Input: Xi 2 [d], b 2 N

Compute M = d/
�

2b � 1
�

;
m imodM , Yi  0;

if Xi 2
⇥

(m� 1)(2b � 1) + 1 : m(2b � 1)
⇤

then
Yi  Xi mod (2b � 1)

end
return Yi

Algorithm 2: localize-and-refine (at client i)

Input: Xi 2 [d], b 2 N, p̂
(G1, ...,Gd) gen_group (p̂, d), Yi  0 ;

Compute Ji , {j 2 [d]|i 2 Gj} ;
if Xi 2 Ji then

Yi  the ranking of Xi in Ji

end
return Yi

E
⇥

(p̂j � pj)
2
⇤

). In particular, under the `2 loss, the number of samples assigned to symbol j will be
roughly in proportional to

p
pj . It turns out that the local refinement step can effectively mitigate the

estimation error, enabling us to move from a worst-case bound to a pointwise bound.

Round 1 (localization): In the first round, the first n/2 clients collaboratively produce a coarse
estimate p̂ = (p̂1, ..., p̂j) for the target distribution p via the grouping scheme described above (this is
the minimax optimal scheme proposed in [4], see Algorithm 1 for details). Note that in general, this
scheme can be replaced by any non-interactive minimax optimal scheme.

Round 2 (local refinement): Upon obtaining p̂ from the first round, the server then computes
⇡(p̂) : Pd ! Pd, where the exact definition of ⇡ depends on the loss function. ⇡ will be used in the

design of the rest n/2 clients’ encoders. In particular, for `2 loss, we set ⇡j(p) ,
p
pjP

k2[d]

p
pk

; for `1

loss, we set ⇡j(p) ,
3
p
pjP

k2[d]
3
p
pk

. For notational convenience, we denote ⇡ (p̂) as ⇡̂ = (⇡̂1, ..., ⇡̂d).

To design the encoding functions of the remaining n/2 clients, we group them into d (possibly
overlapping) sets G1, ...,Gd with

|Gj | = nj ,
n

2

✓

min

✓

1, (2b � 1)

✓

⇡̂j

4
+

1

4d

◆◆◆

, (2)

for all j 2 [d].

We require the grouping {Gj} to satisfy the following properties: 1) each {Gj} consists of nj distinct
clients, and 2) each client i is contained in at most (2b � 1) groups. Notice that these requirements
can always be attained (see, for instance, Algorithm 3 in Section B). We further write Ji to be the set
of indices of the groups that client i belongs to (i.e. Ji , {j 2 [d]|i 2 Gj}), so the second property
implies |Ji|  2b � 1 for all i.

As in the first round, client i will report its observation if it belongs to the subset Ji. Since |Ji| 
2b � 1, client i’s report can be encoded in b bits. Note that with this grouping strategy each symbol j

is reported by clients in Gj , hence the server can estimate pj by computing p̌j(Y
n) ,

P
i2Gj {Xi=j}

nj
.

Note that the size of Gj is dictated by the estimate for pj obtained in the first round. See Algorithm 2
for the details of the second round.

Remark 4.1 In the above two-round scheme, we see that the local refinement step is crucial for
moving from the worst-case performance guarantee to a pointwise one. Therefore we conjecture that
the local lower bound in Theorem 2.4 cannot be achieved by any non-interactive scheme.

5 Analysis of the `2 error (proof of Theorem 2.1)

In this section, we analyze the estimation errors of the above two-round localization-refinement
scheme and prove Theorem 2.1. Before entering the main proof, we give the following lemma that
controls the estimation error of between p̂ and ⇡.

Lemma 5.1 Let (Wn, p̂) be the grouping scheme given in Algorithm 1. Then with probability at

least 1� 1
nd , it holds that

�

�

p
pj �

p

p̂j
�

�  p
"n and

�

� 3
p
pj � 3

p

p̂j
�

�  3
p
"n, where "n ,

3d log(nd)
n2b

.
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Now consider the scheme described in Section 4. After the first round, we obtain a coarse estimate
p̂ = (p̂1, ..., p̂j). Set E ,

T

j2[d]

�p

p̂j 2
⇥p

pj �
p
"n,

p
pj +

p
"n
⇤ 

. Then by Lemma 5.1 and

taking the union bound over j 2 [d], we have P {E} � 1� 1
n . In order to distinguish the estimate

obtained from the first round to the final estimator, we use p̌j to denote the final estimator.

Now observe that the `2 estimation error can be decomposed into

E

h

kp� p̌k22
i

= P {Ec}E
h

kp� p̌k22
�

�

�
Ec
i

+ P {E}E
h

kp� p̌k22
�

�

�
E
i (a)
 2

n
+ E

h

kp� p̌k22
�

�

�
E
i

where (a) holds since kp� p̌k22  2 almost surely. Hence it remains to bound E

h

kp� p̌k22
�

�

�
E
i

. Next,

as described in Section 4, we partition the second n/2 clients into d overlapping groups G1, ...,Gd

according to (2). The reason we choose nj in this way is to ensure that 1) for symbols with larger pj
(which implies larger estimation error), we allocate them more samples; 2) every symbol is assigned
with at least Θ(n/d) samples.

Clients in Gj then collaboratively estimate pj . In particular, client i reports her observation if

Xi 2 Ji , {j|i 2 Gj}, and the server computes p̌j(Y n|p̂) ,

P
i2Gj {Xi=j}

nj
⇠ 1

nj
Binom(nj , pj).

Finally, the following lemma controls E
h

kp� p̌k22
�

�

�
E
i

, completing the proof of Theorem 2.1.

Lemma 5.2 Let p̌ be defined as above. Then E

h

kp� p̌k22
�

�

�
E
i

 6
n2b

⇣

P

j2[d]

p
pj

⌘2

+ 10d2"n
n2b

+ 1
n .

For the `1 error, we set ⇡j(p) ,
3
p
p
jP

k
3
p
pk

. Following the similar but slightly more sophisticated

analysis, we obtain Theorem 2.2. The detailed proof is left to Section C in appendix.

6 The local minimax lower bound (proof of Theorem 2.4)

Our proof is based on the framework introduced in [8], where a global upper bound on the quantized
Fisher information is given and used to derive the minimax lower bound on the `2 error. We extend
their results to the local regime and develop a local upper bound on the quantized Fisher information
around a neighborhood of p.

To obtain a local upper bound, we construct an h-dimensional parametric sub-model Θh
p that contains

p and is a subset of Pd, where h 2 [d] is a tuning parameter and will be determined later. By
considering the sub-model Θh

p , we can control its Fisher information around p with a function of h
and p. Optimizing over h 2 [d] yield an upper bound that depends on kpk 1

2
. Finally, the local upper

bound on the quantized Fisher information can then be transformed to the local minimax lower bound
on the `2 error via van Tree’s inequality [27].

Before entering the main proof, we first introduce some notation that will be used through this section.
Let (p(1), p(2), ..., p(d)) be the sorted sequence of p = (p1, p2, ..., pd) in the non-increasing order;
that is, p(i) � p(j) for all i > j. Denote ⇡ : [d] ! [d] as the corresponding sorting function5, i.e.
p(i) = p⇡(i) for all i 2 [d].

Constructing the sub-model Θh
p We construct Θh

p by “freezing” the (d� h) smallest coordinates
of p and only letting the largest (h� 1) coordinates to be free parameters. Mathematically, let

Θ
h
p ,

�

(✓2, ✓3, ..., ✓h)
�

�⇡�1
�

✓1, ✓2, ..., ✓h, p(h+1), p(h+2), ..., p(d)
�

2 Pd

 

, (3)

where ✓1 = 1 �Ph
i=2 ✓i �

Pd
i=h+1 pi is fixed when (✓2, ..., ✓h) are determined. For instance, if

p =
�

1
16 ,

1
8 ,

1
2 ,

1
16 ,

1
4

�

(so d = 5) and h = 3, then the corresponding sub-model is

Θ
h
p ,

⇢

(✓2, ✓3)

�

�

�

�

✓

1

16
, ✓3, ✓1,

1

16
, ✓2

◆

2 Pd

�

.

5With a slight abuse of notation, we overload ⇡ so that ⇡ ((p1, ..., pd)) , (p
π(1), ..., pπ(d))
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Bounding the quantized Fisher information Next, under this model, we control the quantized
Fisher information in the following lemma.

Lemma 6.1 Let W be any b-bit quantization scheme and IW (✓) be the Fisher information of Y at ✓

where Y ⇠ W (·|X) and X ⇠ p✓. Let 0 < B  p(h)

3 and p 2 P 0
d ,

�

p 2 Pd

�

�

1
2 < p1 < 5

6

 

. Define

the neighborhood NB,h(p) , ✓(p) + [�B,B]h (note that under this definition, NB,h(p) must be

contained in Θh
p ). Then

8✓0 2 NB,h(p), Tr (IW (✓0))  2b
✓

6h+
3

2p(h)

◆

.

Bounding the `2 error Applying [8, Theorem 3] on NB,h(p), we obtain

sup
✓02NB,h(p)

E



�

�

�
✓̂ � ✓0

�

�

�

2

2

�

� h2

n2b
⇣

6h+ 3
2p(h)

⌘

+ h⇡2

B2

� h2p(h)

10n2b +
10hp(h)

B2

� h2p(h)

20n2b
, (4)

where the second inequality is due to hp(h)  1, and the third inequality holds if we pick B �
q

hp(h)

n2b
.

Notice that in order to satisfy the condition NB,h(p) ✓ Θh
p , B must be at most

p(h)

3 , so we have an

implicit sample size requirement: n must be at least 3h
2bp(h)

.

Optimizing over h Finally, we maximize h2p(h) over h 2 [d] to obtain the best lower bound. The
following simple but crucial lemma relates h2p(h) to kpk 1

2
.

Lemma 6.2 For any p 2 Pd and � > 0, it holds that

kpk 1
2
� max

h2[d]
h2p(h) � max

⇣

C� kpk 1+δ

2
, Ckpk 1

2
/log d

⌘

,

for C� ,

⇣

�
1+�

⌘
2

1+δ

and a universal constant C small enough.

Picking h⇤ = argmaxh2[d] h
2p(h) and by Lemma 6.2 and (4), we obtain that for all ✓̂

sup
✓02NBn,h⇤ (p)

E



�

�

�
✓̂ � ✓0

�

�

�

2

2

�

� max

 

C 0
�

kpk 1+δ

2

n2b
, C 0 kpk 1

2

n2b log d

!

,

as long as p 2 P 0
d and Bn =

q

h⇤p(h⇤)

n2b

(a)

r

d
n2bkpk 1

2

, where (a) holds due to the second result of

Lemma 6.2 and h⇤  d. In addition, the sample size constraint that n must be larger than 3h⇤

2bp(h⇤)
can

be satisfied if n = Ω

✓

d3 log d
2bkpk 1

2

◆

since h⇤

p(h⇤)
 (h⇤)3 log d

Ckpk 1
2

 d3 log d
Ckpk 1

2

, where the first inequality is due

to Lemma 6.2 and the second one is due to h⇤  d. The proof is complete by observing that

inf
(Wn,p̂)

sup
p0:kp0�pk1Bn

E

h

kp̂� p0k22
i

� inf
(Wn,✓̂)

sup
✓02NBn,h⇤ (p)

E



�

�

�
✓̂ � ✓0

�

�

�

2

2

�

.

7 Conclusion and open problems

We have investigated distribution estimation under b-bit communication constraints and characterized
the local complexity of a target distribution p. We show that under `2 loss, the half-norm of p
dictates the convergence rate of the estimation error. In addition, to achieve the optimal (centralized)
convergence rate, Θ(H1/2(p)) bits of communication is both necessary and sufficient.

Many interesting questions remain to be addressed, including investigating if the same lower bound
can be achieved by non-interactive schemes, deriving the local complexity under general informa-
tion constraints (such as "-local differential privacy constraint), and extending this results to the
distribution-free setting (i.e. the frequency estimation problem).
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