The Poisson Binomial Mechanism for Unbiased Federated Learning with Secure
Aggregation

Wei-Ning Chen' Ayfer Ozgiir' Peter Kairouz

Abstract

We introduce the Poisson Binomial mechanism
(PBM), a discrete differential privacy mechanism
for distributed mean estimation (DME) with ap-
plications to federated learning and analytics. We
provide a tight analysis of its privacy guaran-
tees, showing that it achieves the same privacy-
accuracy trade-offs as the continuous Gaussian
mechanism. Our analysis is based on a novel
bound on the Rényi divergence of two Poisson
binomial distributions that may be of independent
interest.

Unlike previous discrete DP schemes based on ad-
ditive noise, our mechanism encodes local infor-
mation into a parameter of the binomial distribu-
tion, and hence the output distribution is discrete
with bounded support. Moreover, the support
does not increase as the privacy budget ¢ — 0
as in the case of additive schemes which require
the addition of more noise to achieve higher pri-
vacy; on the contrary, the support becomes smaller
as ¢ — 0. The bounded support enables us to
combine our mechanism with secure aggregation
(SecAgg), a multi-party cryptographic protocol,
without the need of performing modular clipping
which results in an unbiased estimator of the sum
of the local vectors. This in turn allows us to apply
it in the private FL setting and provide an upper
bound on the convergence rate of the SGD algo-
rithm. Moreover, since the support of the output
distribution becomes smaller as € — 0, the com-
munication cost of our scheme decreases with the
privacy constraint €, outperforming all previous
distributed DP schemes based on additive noise in
the high privacy or low communication regimes.
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1. Introduction

The standard technique for ensuring differential privacy
(DP) (Dwork et al., 2006b) of learning algorithms is to
add noise either to the output of a function evaluated on
the data (in the centralized setting) or locally to the data
itself (in federated settings (Kairouz et al., 2019; McMahan
et al., 2016)). Two commonly used distributions for noise
are the Gaussian and Laplace distributions. While simple
enough for mathematical reasoning and analysis, the con-
tinuous nature of these distributions presents a number of
challenges. First, it is not possible to represent real samples
on finite computers, making these mechanisms prone to nu-
merical errors that can break privacy guarantees (Mironov,
2012). Second, they cannot be used in the federated setting
where it may be desirable to first locally perturb the data
(e.g. the local model update computed by stochastic gra-
dient descent(SGD) iterations) and then use cryptographic
primitives such as secure aggregation (SecAgg) (Bonawitz
et al., 2016b) to allow the server to obtain a summary of the
local data (such as the mean of local model updates) without
having access to individual information. This combination
of local DP and secure aggregation is desirable as it does not
rely on the clients’ full trust in the server, while potentially
achieving the same utility-privacy trade-off as in the central-
ized case. However, secure aggregation is based on modular
arithmetic which is not compatible with the real output from
a privatization mechanism that relies on perturbing data
with continuous noise. This has led to an increasing recent
interest in mechanisms that perturb the data (or a function of
it) with the addition of discrete noise, such as the binomial
in (Dwork et al., 2006a; Agarwal et al., 2018), the discrete
Gaussian in (Canonne et al., 2020; Kairouz et al., 2021),
and Skellam noise in (Agarwal et al., 2021).

These additive discrete noise mechanisms however have a
few of their own shortcomings. First, when the data itself is
continuous, as in the case of local model updates obtained
from SGD iterations in federated learning, it has to be dis-
cretized before the addition of discrete noise. This adds
quantization noise and complicates analysis. Second, these
distributions have discrete yet unbounded support which
means that the privatized data has to go through modular
clipping when combined with secure aggregation protocols
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which operate on a finite group. This is the approach in
(Kairouz et al., 2021) and (Agarwal et al., 2021), which
focus on developing differentially private federated learn-
ing algorithms by using these additive noise mechanisms
locally at the clients and then feeding the privatized local
updates to the secure aggregation protocol. Upon modu-
lar clipping, however, the discrete additive noise becomes
no longer zero-mean, and hence the resulting estimator (of
the mean of the local model updates) is biased. The bias
makes it difficult to provide tight convergence guarantees
for stochastic first-order optimization methods which rely
on this estimate. In contrast, it is usually not difficult to
provide a tight convergence analysis when the optimization
method has access to a noisy but unbiased estimate of the
true mean of the updates. Finally, all additive noise mecha-
nism (continuous or discrete) share the common principle
of adding more noise to achieve higher privacy, i.e. they re-
quire a higher noise variance when higher privacy is desired.
This, however, has a direct impact on the communication
cost in federated settings when the noise is added locally. In-
deed, for all of the above mentioned schemes (Kairouz et al.,
2021; Agarwal et al., 2021; 2018) the communication cost
grows inversely with the privacy budget; when high privacy
is desired nodes need a large bit budget to communicate
the large noise they add to their updates. This contradicts
the conclusion of (Chen et al., 2020) which shows that in a
federated learning setting without secure aggregation the op-
timal communication cost can be made to decrease with the
privacy budget; intuitively we can use less bits in the high
privacy regime because we are required to communicate
less information about the local data.

In this paper, we develop a novel differential privacy mech-
anism that does not rely on additive noise. This mech-
anism, which we call the multi-dimensional Poisson Bi-
nomial mechanism (PBM), takes a continuous input, en-
codes it into the parameter p of a binomial distribution
Binom (m, p), and generates a sample from this distribu-
tion'. This results in a finite and discrete output in Z,,
which can be easily combined with the integer modular
arithmetic in SecAgg, without the need for quantization or
modular clipping. As a result, the estimate (of the average
model updates) obtained at the output of SecAgg is unbi-
ased leading, to our knowledge, to the first unbiased privacy
scheme compatible with SecAgg. Moreover, the commu-
nication cost of PBM decreases when the privacy budget €
decreases. This is because the first parameter m of the dis-
tribution Binom (m, p) is linear in the privacy budget & and
hence the logarithm of it, which dictates the communication

"We note that the binomial mechanism proposed in (Agarwal
et al., 2018) is an additive noise mechanism (it adds Binomial
noise to the data), and while it has a finite output range, it does
not provide any Rényi DP guarantees (which is the main focus of
this paper as RDP allows for tightly accounting privacy loss across
multiple rounds).

budget, decreases to 1 as ¢ — 0.

Our contributions. Our main technical contributions are
summarized as follows.

* We introduce the multi-dimensional Poisson binomial
mechanism, an unbiased and bounded discrete DP mecha-
nism for distributed mean estimation (DME). We provide
a tight analysis for its Rényi DP (RDP) guarantees show-
ing that it provides the same utility-privacy trade-off as
the continuous Gaussian mechanism. As a by-product,
our analysis yields a novel bound on the Rényi divergence
of two Poisson binomial distributions that can be useful
in other applications.

* We show that the communication cost of our scheme
(defined as the number of bits needed to achieve the accu-
racy of the centralized DP model) decreases with the pri-
vacy budget, as opposed to previous discrete DP schemes
(Agarwal et al., 2018; Kairouz et al., 2021; Agarwal et al.,
2021). Thus in the high-privacy regime, our scheme uses
significantly less bandwidth while still achieving the right
order of accuracy.

* We combine PBM with distributed SGD and SecAgg in a
FL setting and analyze its convergence rate.

1.1. Problem setup and prerequisites

In this section, we present the distributed mean estimation
(DME) (Suresh et al., 2017) problem under differential pri-
vacy and SecAgg. Note that DME is closely related to
federated learning with SGD, where in each iteration, the
server updates the global model by a noisy mean of the local
model updates. This noisy estimate is typically obtained by
using a DME scheme, and thus one can easily build a dis-
tributed DP-SGD scheme (and hence a private FL scheme)
from a differentially private DME scheme.

Consider n clients each with local data z;; € R? that satisfies
[|lzi]|, < c (one can think of z; as a clipped local gradient).
A server wants to learn an estimate /i of the mean 1 £
% >, ; after communicating with the n clients.

Secure aggregation. In order to fully leverage the dis-
tributed nature of FL to enhance clients’ privacy, the honest-
but-curious server collects local data through a secure ag-
gregation protocol. More precisely, each client encodes x;
into a finite additive group Z by computing Z; 2 Aenc(1;).
The n clients and the server then participate in the SecAgg
protocol, so that only ZZ Z; can be revealed to the server.
Finally, the server computes /i based on ), Z;, an estimate
of the true mean. The goal is to jointly design an encoder
Aenc and an estimator fi, such that

1. [ satisfies a differential privacy constraint (see Defini-
tion 1.1 and Definition 1.2 for formal statements).
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2. The per-client communication cost b = log | Z| is small.

3. [iis unbiased (i.e. E[z] = u) and has small mean squared
error (MSE): E [||ﬂ - ,qu}

Without loss of generality, we will set Z to be (Zy;)" for
some [, M € N (where Z ), is the group of integers modulo
M equipped with modulo M addition), so b = [log M is
the total number of communicated bits. The summation is
coordinate-wise modulo M addition, i.e.

SeCAgg (Aenc(xl)a ceey Aenc(xn)) = Z Aenc(xi)mOdM-

Differential Privacy. Finally, we introduce the notion of
differential privacy (Dwork et al., 2006b) and Rényi dif-
ferential privacy (RDP) (Mironov, 2017). We are mostly
interested in developing mechanisms that satisfy RDP, as it
allows for tight privacy accounting across training iterations.

Definition 1.1 ((Approximate) Differential Privacy). For
g,0 > 0, arandomized mechanism M satisfies (g, §)-DP if
for all neighboring datasets D, D" and all S in the range of
M, we have that

Pr(M(D) € 8) < efPr(M(D') € S) + 6,

where D and D’ are neighboring pairs if they can be ob-
tained from each other by adding or removing all the records
that belong to a particular user.

Definition 1.2 ( Rényi Differential Privacy (RDP)). A
randomized mechanism M satisfies (a,e)-RDP if for
any two neighboring datasets D, D’, we have that
Do (Pri(py, Pr(pry) < € where Dy, (P, Q) is the Rényi
divergence between P and () and is given by

navrs o (1))

Note that one can cast RDP to (approximate) DP. See Sec-
tion B for details.

1.2. Related works

The closest works to ours are the distributed discrete DP
mechanisms cpSGD (Agarwal et al., 2018), DDG (Kairouz
etal., 2021), and Skellam (Agarwal et al., 2021). Unlike our
proposed scheme, these mechanisms achieve differential
privacy (DP) (Dwork et al., 2006b) by adding discrete noise
that (1) has a distribution that asymptotically converges to
a normal distribution, and (2) are (nearly) “closed” under
addition. However, since the noise is asymptotically normal,
in the high-privacy regimes where ¢ is small, the variance
of the noise (and hence the communication cost) explodes.
In addition, since the noise has infinite range (except for

cpSGD?), one has to perform modular clipping in order to
perform SecAgg. This leads to bias that can cause issues for
the downstream tasks such as SGD.

In this paper, we combine our discrete DP mechanism with
SecAgg (more precisely, single-server SecAgg) to achieve
distributed DP without introducing bias. Single-server
SecAgg is achieved via additive masking over a finite group
(Bonawitz et al., 2016a; Bell et al., 2020). To achieve prov-
able privacy guarantees, however, SecAgg is insufficient
as the sum of local model updates may still leak sensitive
information (Melis et al., 2019; Song & Shmatikov, 2019;
Carlini et al., 2019; Shokri et al., 2017). To address this
issue, DP-SGD or DP-FedAvg can be employed (Song et al.,
2013; Bassily et al., 2014; Geyer et al., 2017; McMahan
et al., 2017). In this work, we aim to provide privacy guar-
antees in the form of Rényi DP (Mironov, 2017) because it
allows for tracking the end-to-end privacy loss tightly.

We also distinguish our distributed DP setup from the local
DP setup (Kasiviswanathan et al., 2011; Evfimievski et al.,
2004; Warner, 1965), where the data is perturbed on the
client-side before it is collected by the server in the clear.
Although both local DP and distributed DP with SecAgg do
not rely on a fully trusted centralized server, the local DP
model provides stronger privacy guarantees as it allows the
server to observe individual (privatized) information, while
distributed DP requires that the server executes the SecAgg
protocol faithfully. Given its strong privacy guarantees, local
DP naturally suffers from poor privacy-utility trade-offs
(Kasiviswanathan et al., 2011; Duchi et al., 2013; Kairouz
et al., 2016). That is why we focus on distributed DP via
SecAgg in this paper.

Our scheme also makes use of Kashin’s representation
(Kashin, 1977; Lyubarskii & Vershynin, 2010), a power-
ful tool that enables us to transform the /5 geometry of the
input data to an /., one in a lossless fashion. This facilitates
the analysis and allows for decoupling the high-dimensional
problem into 1-dimensional sub-tasks. Similar idea has
been used in different settings; for instance, (Feldman et al.,
2017; Caldas et al., 2018; Chen et al., 2020).

2. Main Results

We introduce the Poisson Binomial mechanism for DME
with SecAgg and differential privacy. The proposed protocol
(Algorithm 1) consists of three stages:

 Each client computes the Kashin’s representation of lo-
cal data x; (denoted as y;), which allows for optimally
transforming the /> geometry of the data into /..

“However, we note that cpSGD only satisfies approximate DP
but not Renyi DP, so we can only use strong composition theorems
(Dwork et al., 2010; Kairouz et al., 2016) to account privacy loss.
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* The n clients apply the scalar Poisson Binomial mecha-
nism (Algorithm 2) separately on each coordinate of y;,
and the server estimates y, = 1 3" ;.

* The server reconstructs i, from the Kashin representa-
tion of fi,.

Note that Algorithm 1 builds on Algorithm 2, the scalar
version of PBM, which we analyze in Section 3. Parameters
(m, ) determine privacy, communication cost, and MSE;
in other words, the privacy-utility trade-offs of Algorithm 1
can be fully characterized by (m, #), which we summarize
in the following theorem.

Theorem 2.1. Let ||z;]| < ¢, m €N, and 0 € [0, 1]. Then
with parameters m, 0, Algorithm 1:

o satisfies (a,e(«))-RDP for any o > 1 and (o) =
Q (dm@za / n)

o requires O(d (logm + logn)) bits of per-client commu-
nication,

nmo?

* yields an unbiased estimator [i with O (C—z) MSE.

Remark 2.2. Although in Theorem 2.1 we present an asymp-
totic result, we remark that (1) the MSE can be upper bound
explicitly, and (2) the Rényi DP can be computed numeri-
cally (as shown in Section 2.1). Indeed, we show that when
we pick 6 small enough, the MSE of PBM converges to the
(centralized continuous) Gaussian mechanism quickly.

Several observations are given in order. First, the privacy
guarantee ¢(«) can be written as a function of the vari-

ance (i.e., the MSE): (o) = Q (#2&#)

accuracy trade-off matches that of the (centralized) Gaus-

). This privacy-

. . 3 . o de?
sian mechanism - given by £gauss(@@) = 2 (m)

3We notice that when the £ sensitivity is ¢?/n?, a Gaussian
mechanism that adds N (0, o%I;) noise achieves RDP £gayss(t) =

Algorithm 1 The Poisson Binomial Mechanism

Input: zq,..,2, € By(c), parameters § € [0, i],
m € N, a tight frame U associated with Kashin’s repre-
sentation at level K > 0
for each client ¢ do
Set y; to be the Kashin’s representation of x;, so y; €
RO and [lyil|, < L.
for coordinate j of y; do
Z;; < scalar_.PBM (yij,m,H,c’ = i)
end for
Send Z; to the server via SecAgg
end for
(Server) Computes /i, = < (32, Z; — ™)
(Server) Computes fi = U iy
Return: i

Algorithm 2 The (Scalar) Poisson Binomial Mechanism

Input: ¢ > 0, z; € [-¢,c],0 € [0, 3], m €N
Re-scaling x;: p; £ %Ii + 1.

Privatization: Z; £ Binom (m, p;) € Z,,.
Return: Z;

(which is obtained by bounding the sensitivity of the mean
function by 2 /n?). This implies that Algorithm 1 attains
order-optimal errors. In Section 2.1 below, we numerically
compute the MSE-privacy trade-offs of PBM and the Gaus-
sian mechanism.

Note that in Theorem 2.1, both ¢(«) and the the variance
of the estimator depend on the parameters m and 6 of the
algorithm through the product m#?. Hence, this leaves
some freedom in the choice of m and 6 if one is concerned
only with privacy and MSE. However, the choice of m also
dictates the communication cost. We next describe how
one can pick (#,m) to minimize the communication cost
for the same («,e(«))-RDP constraint and MSE, where
the latter is dictated by the first according to the above
trade-off. Observe that the privacy budget () fixes the
value of the product m#2, so to minimize m, and hence the
communication cost, we would like to pick 6 as large as
possible. However, 6 is restricted to [0, 1]. Therefore we
can determine m and 6 by the following two steps:

1. Set m = 1 and compute the corresponding 6 such that
the resulting privacy is e(«). If § > 1/4, clip 6 to 1/4.

ne(a)
da

This leads to 8§ = O (min (L

2. Then, we adjust m again according to 6. If 6 = 1/4
(i.e. when 6 clipped in the previous step), we set

m = O (%) Otherwise m = 1. Hence m is up-

per bounded by max (1, 9] (%(:‘))) .

Plugging the above upper bound on m to Theorem 2.1, the

communication cost becomes O (d <log (n + M)))

no

Next, to compare the communication cost of our scheme
with previous schemes, we convert it into (epp(4), d)-DP
via Lemma B.2 and arrive at the following corollary:

Corollary 2.3 (Approximate DP of PBM). By set-

. _ . 1 nlog(1/6) _

ting 0 = O(mln (Z? dgeigp)) and m =
2

f%&”ml Algorithm 1 satisfies (epp, d)-approximate

DP. Moreover, the (per-client) communication cost is
2
O (d <log (n + nlgg%))), and [i is unbiased with
MSE at most Og (n‘i‘% )
DP

252—‘;2, and the corresponding MSE ({igauss) = do>.
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We remark that the communication cost of PBM decreases
as epp) decreases, exhibiting the correct dependency on
epp in the high-privacy regime. The communication cost
of other discrete DP mechanisms based on additive noise,
such as (Agarwal et al., 2018; Kairouz et al., 2021; Agar-
wal et al.,, 2021) increase as ¢ gets smaller. For in-
stance, the DDG mechanism (Kairouz et al., 2021) requires

O (d <log (n + E%) )) bits of communication per-client,
DP

which becomes unbounded when epp — 0. See Table 2 for
a comparison.

communication MSE bias

o 0 (s ) | 0 (5] |

DDG ( (logf d ])) Os (nigp) yes

Skellam ( <log[ )) Os ( gi;lp) yes
2

Binomial | O ( <log[%])) Os (%Zg:l)) yes

Table 1. A comparison of the communication costs and MSEs of
different discrete DP schemes. For the communication cost, we
hide the dependency on logn since we are interested in high-
dimensional regimes where d >> n.

2.1. Numerical evaluation

Privacy-variance trade-offs (a=1.5, c=1, n=16)

0.016

—— PBM, m = 16 (6 bits)
PBM, m = 64 (8 bits)

—— PBM, m = 256 (9 bits)

—— Gaussian Mechanism

0.014 -

0.012 -

0.010 -

Variance

0.008 -

0.006 -

0.004 -

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Renyi DP ( £(a))

Figure 1. Privacy-MSE (variance) trade-offs of PBM and the Gaus-
sian mechanism.

In figure 1, we numerically compute the privacy guarantee
of Algorithm 1 and compared it with the Gaussian mech-
anism. For the PBM, we fix the communication cost (i.e.
fix m), vary parameter 6, and compute the corresponding
Rényi DP (i.e., () and MSE. We see that as m increases,
the privacy-MSE curve approaches to that of the Gaussian
mechanism, indicating that our scheme is also optimal in its
leading constant. We present another numerical results in
Section C, in wich we fix 6 and vary m to get the trade-off
curves.

3. The Scalar Poisson Binomial Mechanism

In this section, we analyze the utility and privacy guarantees
of the scalar version of PBM (i.e., with d = 1). Recall that
when d = 1, each x; in the DME task (see the formulation in
Section 1.1) becomes a bounded real number with |z;| < ¢
eliminating the Kashin step. Under this special case, Al-
gorithm 2 encodes each z; into a parameter of a binomial
distribution by 1) first mapping z; into [§ — 6,3 + 6] b
pi = 3 + 22, and then 2) generating a binomial random
variable Z; ~ Binom(m, p;).

Notice that from each Z;, one can obtain an unbiased esti-
mator on x; by computing #; = £ (£ Z; — 1) . Therefore,
upon collecting ). Z; from SecAgg protocol, the server
can estimate by i (3, Zi) £ 55 (30, Zi — ) (recall
that the server can only learn ) | ; Z; but not individual Z;).
Remark 3.1. As discussed before, m and 6 can be chosen to
achieve a desired privacy-utility-communciation trade-off.
Intuitively, with larger m, one can reduce the variance of the
estimator while weakening the privacy guarantees; similarly
with smaller 6, one would get a better privacy guarantee by
trading off the accuracy.

Utility of the scalar PBM. As mentioned above, /i yields

an unbiased estimate on p, and the variance can be calcu-
2

lated as Var (1) = —55z >, Var (Z;) <

On the other hand, since Z; < m, Zl Z; < nm. Thus to
avoid overflow, we will set M = nm, where recall that M
the size of the finite group SecAgg operates on. Therefore,
the communication cost of Algorithm 2 is log M = logn +
log m bits per client.

P
4nmo2 -

Privacy of the scalar PBM. Next, the privacy guarantee
(in an RDP form), is summarized in the following corollary.

Corollary 3.2. Let m € Nand § € [0, ;] be parameters of
Algorithm 2. Then Algorithm 2 satisfies («, e(«))-RDP for
any o > 1 and

92
e(a) > Co ((1_20)4> %7 (D

where Cy > 0 is an universal constant.

3.1. Analysis of the RDP

To analyze the privacy loss of Algorithm 1, let Y; ~
Binom(m, p;) and Y{ ~ Binom(m, p/), where recall that
D1y Pns Py € [ — 0,1 +6]. Forany o > 1, the e(a) is
given by

max Do (Pyy+vatotvi | Pri+vato4va) , - (@

P1yeeesPrsDy

. . 1 .
with the maximum taken over [% -0, % + 9] "+ Our main
technical contribution is the following (orderwise) tight up-
per bound on the Rényi divergence of two Poisson binomial
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distributions, which then characterizes the privacy loss of
our scheme.

Theorem 3.3. Leta > 1l andpy,...,pn, P} € [% -0, %—1—9].
LetY; ~ Binom(m,p;) and Y{ ~ Binom(m,p}). Then it
holds that

Do (Pyy Yot || Pyi ot 4v,)

62 o (4 o? m
(1-20) (mm( ’a—l)) n’

where Cy > 0 is an universal constant.

<y

Remark 3.4. Although we present an asymptotic result here,
using the quasi-convexity of Rényi divergence, one can
show that the worst-case scenario is attained by the ex-
tremal points (i.e., when p; € {% -0, % + 9}), as shown
in Lemma 3.5. This allows us to efficiently compute the
privacy loss exactly, as shown in Section 2.1.

An immediate corollary of Theorem 3.3 is the RDP guaran-
tee of the proposed PBM (summarized in Corollary 3.2).

In the rest of this section, we provide a proof of Theorem 3.3.

Step 0: decomposing Y;. To begin with, observe that
since Y; ~ Binom(m, p;), we can decompose it into sum
of m independent and identical copies of Ber(p;), i.e.,

Y, = Z;”IlXi(j), where X7 "X Ber(p;) for j € [m].
Therefore

>v- 33 -y (3,
i=1 i=1 j=1 j=1 \i=1
N— ——
ézj
and similarly we can write Y/ + >3, Y; = >, 77,
where Z) = X;(j) 3, X9,
Grouping the summation of X i(j ) according to j € [m)]

and applying the data processing inequality for Rényi diver-
gence, we upper bound (2) by

max Do (Pyi+¥ot..+v, || Pyysvas..4v,)
P1;---5Pn,Py

= max Do (Pz+. +42,||Pz..+2,)
P1seeyPnsDY
S max , mDa (P21HPZ{)
P15---PnsP7
= max  mDg (Px;+ X+ X, || PX] 1 Xat. 4X,) »
P1yeees Pn,Py
3)
where X; ~ Ber(p;) and X| ~ Ber(p}).
Step 1: maximum achieved by extremal points. Next,

since (P, Q) — D, (P||Q) is quasi-convex (Van Erven &
Harremos, 2014, Thoerem 13), we claim that (3) is maxi-
mized at extreme points:

Lemma 3.5. (3) is maximized at extreme points i.e., when
b1, 7pn7p/1 € {% - 87 % + 9}

This implies (3) can be upper bounded by the following
binomial form:

ké?r?z{l] DO‘ (PBinom(quk,%79)+Binom(nfk71,%+9) H

PBinom(k,%—0)+Binom(n_k7%+9)>. (4)

Step 2: applying data processing inequality. Next, we
simplify (4) by carefully applying the data processing in-
equality. Let £* € [n — 1] maximize (4). If &* < 3, we
apply the data processing inequality to discard the first half
of common binomial random variables (see Figure 2 for an
illustration), i.e.,

1 1
Binom <k*, 3~ 9) + Binom <n’ — k¥, 3 -|—0> ,

where n/ £ [21]. On the other hand, if k* > %, then we

apply the data processing inequality to remove the second
half of common parts, i.e.,

1 1
Binom <n’ + k¥, 5~ 9>—|—Binom (n —k* -1, 3 —|—0> )

'—  apply DP! on this part

|Binom (k*,1/2— a)l Binom (n — k* +1,1/2 +6) |

|Binom(k’+l,1/2—9)| Binom (n — k*, 1/2+ 8) |

Figure 2. An illustration of applying data processing inequality,
where under the scenario of k* < %, we discard the first half of
common binomial sum.

This leads to the following lemma:

Lemma 3.6. (4) is upper bounded by the maximum of the
following two quantities:

(a) Dq (PBer(%—O)—&-Binom(n’,%-&-G) HPBinom(n’-&-lé-&-G))’
(b) Do (PBinom(n’Jrl,%fO) HPBer(%+0)+Binom(n’,%79))’

Step 3: bounding the Rényi divergence via MGF. Fi-
nally, we upper bound each of the two terms in (7) separately.
We start with the following simple but useful lemma, which
bounds the Rényi divergence of two distributions by the
sub-Gaussian norm of their likelihood ratio (LR).

Lemma 3.7. Let P, Q be two probability measures on X
and let % (x) be the Radon-Nikodym derivative. Let X ~
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Q. Then for any o > 1,

Do (P]IQ) <

)
2

where || Z||,,, denotes the sub-Gaussian norm of Z and
Co > 0 is a universal constant.

To apply Lemma 3.7 to control (a) and (b) in Lemma 3.6,
we need to compute and bound the sub-Gaussian norms of
the likelihood ratio (LRs) of random variables in (a) and (b)
of Lemma 3.6, respectively.

PBer( 1 —9)+Binom(n’ s % +9) ©)
PBlnom(n/+1,%+9)(i) ’

Then the LRs corresponding to random variables of (a) and

(b) in Lemma 3.6 are R(I) and 1/R(I") respectively, where

I~ PB and I’ ~ PBer(%—B)—&-Binom(n’,%-‘rG)'

To this end, let us define R(i) =

inom(n/+1,%+9)
It turns out that R(7) is a linear function of ¢, and since
both I and I’ are sum of binary random variables, one can
control their sub-gaussian norms (and hence that of R([)
and 1/R(I")). We summarize the bound in the following
lemma and defer the proof to Section D.5.

Lemma 3.8. Ler R(i) be defined as above and let I ~

and I' ~ P,

PBinom(n’+1,%+9) Ber(f—9)+B|nom(n ,2+9)

Then
2 0>
* 1RU) =1y, < Crg=gm e
2 2
* 1/RUI) =1y, < Coragm s
for some C,Cy > 0.

Step 4: putting everything together. Combining
Lemma 3.8, Lemma 3.7, and Lemma 3.6, we obtain that

62 a? 1
4) < .
()—03(1—29)4 (a—l) n +1

Together with Lemma 3.5 and (3), we conclude that

o (Pyi Yot v, || Pyyvat.. 4v,)

62 a? m
< Cr ((1—20)4) <a— 1) n +1

62 a? m
o) (22 o

for some Cj > 0 large enough. Finally, since Rényi diver-
gence is increasing with a, we also have for a < 2,

max Do (Pyi4vat..4v, || Prisvat.. 4v.,)
P1y---5Pn, Py
< max D, (Py1+y2+,,‘+yn|’Py1/+y2+...+yn)
P1s--es DPn,P7

62 dm
<o () 5 ©

Combining (5) and (6), we establish Theorem 3.3.

4. The Multi-dimensional PBM

Next, we extend the scalar PBM into the multi-dimensional
setting, where z; € R? and ||z;||, < c. The description
of multi-dimensional PBM is given in Algorithm 1. The
key step that allows us to cast the multi-dimensional DME
into the scalar one is via Kashin’s representation, which
transforms the /5 geometry of the data into an ., geometry
and hence enables us to decompose the problem into scalar
sub-tasks.

4.1. Kashin’s representation

We first introduce the idea of a tight frame in Kashin’s
representation. A tight frame is a set of vectors
{u; }le € R? that satisfy Parseval’s identity, i.e. Hx||§ =
Z]il(uj,x)Q for all z € R%.

A frame can be viewed as a generalization of the notion of an
orthogonal basis in R? for N > d. To increase robustness,
we wish the information to be spread evenly across different
coefficients, which motivates the following definition of a
Kashin’s representation:

Definition 4.1 (Kashln s representation(Kashin, 1977)). For
a set of vectors {u]} 1> we say the expansion

D
x = E a;u;, with max|aj| <
Jj=1

\f [l
is a Kashin’s representation of vector x at level K .

By Theorem 3.5 and Theorem 4.1 in (Lyubarskii & Ver-
shynin, 2010), we have the following lemma:

Lemma 4.2 (Uncertainty principle). There exists a tight
frameU = [uq, ...,up]with (1) D = ©(d) and (2) Kashin’s
level K = O (1).

Lemma 4.2 implies that for each x; € R? such that ||z;|, <
1, one can always represent each x; with coefficients y; €
[—70/\/3, 70/\/3]71‘1 for some vg,v1 > 0 and z; = Uy;.

4.2. Proof of Theorem 2.1

With Lemma 4.2, we are well-prepared to analyze the per-
formance of Algorithm 1. Recall that the three main steps
in the multi-dimensional PBM are:

1. (Clients) compute a Kashin’s representation of x; with
respect to a (common) tight frame U (denoted as y;).

2. (Clients) sequentially transmit each coordinate of y; via
the scalar PBM.

3. (Server) reconstructs . by fi = Ufiy.

Let us denote y;(j) as the j-th coordinate of y; for j € [y1d],
and /1, (j) as the j-th coordinate of 1, = £ 3" | y;. Due
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to the property of the Kashin’s representation, we know that
Joc

if lzifl, < e llyillo <3
Therefore, using the scalar PBM (with parameters 6, m) for
coordinate j and applying Theorem 3.3, it holds that

am.
n °

* the privacy loss is ¢j(a) = Cp (%)

~ . A ~ . 2 2c?
* E iy (7)] = iy (1) and E [ (i () = 15)°] < 535
 The communication cost is O (logn + logm) bits.

Repeating for j = 1, .., y1d and accounting the overall pri-
vacy loss via the composition theorem of RDP (Mironov,
2017, Proposition 1), the end-to-end RDP guarantee of Algo-
H 03413 2
rithm 2 becomes e(a) = 3, €;(a) = 7100%.
ilarly, the communication cost is y1d (log n + log m) bits.

Sim-

Finally, we control the ¢5 estimation error E |||u — [L||§ .

Note that since x; = Uy; for all © = 1,...,n, we have
e = =3, Uy; = Upy,. Also,
~ 2 ~ . . 2
E (- )] =E |||, (1) - ()|
(@)

SE[Y ()~ my )] =E [l — )]

J

where (a) is due to the Cauchy-Schwarz inequality.
Hence to bound the MSE of [, it suffices to bound

N 2 02
E I — 18] < mid g = O (55

5. Empirical evaluations

In this section, we evaluate PBM on the distributed mean es-
timation (DME) task. We follow the set-up of Kairouz et al.
(2021); Agarwal et al. (2021): we generate n = 1000 client
vectors with dimension d = 250, i.e., 21,...,z, € R
. Each local vector has bounded /5 and /., norms, i.e.
[lzi]l, < 1and ||z < ﬁ“. Our goal is to demonstrate
that the utility of PBM matches that of the continuous Gaus-
sian mechanism under the same privacy guarantees when
given sufficient communication budget.

In Figure 3, we apply PBM with different m’s (which dictate
the communication cost) under a given privacy requirement
€. Note that once m is determined, the field that SecAgg op-
erates on Will be Zyriog, (»-my1 and hence the communication
cost becomes [log,(n - m)] bits.

Reducing communication via modular clipping. Note
that since the sum of encoded messages (i.e., Y . Z; in Al-
gorithm 2) follows a Poisson-binomial distribution with
pi € [3—0,3+0], with high-probability, > Z; €

“We perform the experiments under an /., geometry. Under 2
geometry, one can either apply random rotation and ¢, clipping,
or compute the Kashin’s representation, as discussed in Section 4.

PBM (n = 1000, d = 250, £, clip = 1.0)

—— 11.0 bits

12.0 bits
= 13.0 bits
—— 14.0 bits
= = Gaussian

10-34

MSE

104

0 1 2 3 4 5 6
Privacy (g)

Figure 3. A comparison of PBM with the continuous Gaussian
mechanism. We set m = {2,4,6,16}, and the corresponding
communication costs (i.e., the logarithmic of the field size that
SecAgg operates on) are B = {11,12,13,14}.

[7”’"(21_0) — /5, 7"7”(21%) + c\/@} (where c is a pa-
rameter used to control the failure probability). Therefore
one can (modularly) clip local message in that range to fur-
ther reduce and hence communication cost the field size to
nmb + cy/nm (this, however, will incur bias to the final
estimator). We report the result in Figure 5 of the appendix.

6. Application to private SGD

In this section, we apply PBM to distributed SGD. In each
round, the server samples n out of IV clients randomly, each
(sampled) client computes a local gradient from its data,
and the server aggregates the mean of the local gradients
via PBM. Since PBM ensures distributed DP, we call the
resulting scheme DDP-SGD.

We summarize DDP-SGD in Algorithm 3, in which we use
PBM.,. to denote the clients’ procedure in Algorithm 1
(which includes computing Kashin’s representation, sequen-
tially applying the scalar PBM, and performing SecAgg)
and PBM .. to denote the server’s procedure.

Analysis of convergence rates. Next, we analyze the con-
vergence rate of Algorithm 3. Due to the unbiased nature of
PBM, one can easily control the convergence rate of DDP-
SGD by the variance of PBM through the following lemma
(which originates from (Ghadimi & Lan, 2013) but we use
a version adapted from (Agarwal et al., 2018)):

Lemma 6.1 (Corollar% 1 in (Agarwal et al., 2018)). As-
sume F(w) = % 3.0, U(w;d;), where ((-,d) is an L-
smooth and c-Lipschitz function for all d € D. Let wg
satisfies F (wo) — F (w*) < Dp. Let i, be the noisy

model updates at round t and let the learning rate v =
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Algorithm 3 Distributed DP-SGD
Input: Clients data set dy, ...,dy € D, PBM parameters
(6, m), loss function ¢(d, w).
Goal: Compute wy &~ arg min,, Zf\il £(d;,w).
Server generates an initial model weights wy € W
for iterationt =1, ..., 7 do
Server samples a subset of n clients C; C [N] and
broadcasts w;_1 to them.
for each client ¢ € C; do
Computes g = Clipy, . (V£ (ds, w;—1))
Computes Z! = PBMc,.. (g?)
Send Z! to the server via SecAgg
end for
(Server) decodes fif, = PBMgcc (3, Zf).
(Server) updates the model by w; = ws—1 + Wﬂf].
end for
Return: wp

—1
min {Ll, V2Dp (cr LT) } Then after T rounds,

2DpL N 2v20+/LDp
T VT

Egunitcr) | IVF(w0)]3] < +cB,

2
where 02 = 2<121ta§XTE [H“Z - VF(wt)HJ

~+ 112
+ max Eo ||y - 1] ).

and B = maxj<i<T HEQ [Mfy - ﬂf}} H2 :

Note that in each round, (1) M; (the true mean of (the sam-
pled) clients’ gradients) is an unbiased estimator of V F(w;)
(because clients are sampled uniformly at random), and
(2) i, is an unbiased estimator of x! since PBM is unbi-
ased®. This implies B = 0 and 0® = max; Var (u}) +
Var (jif,|uf)) . where the first term is bounded by ¢?, and ap-
plying Theorem 2.1, we can bound the second Var (i} |1.f))
by ﬁ. Thus we arrive at the following conclusion:

Corollary 6.2 (Convergence of DDP-SGD). Under the
same assumptions of Lemma 6.1, after 7 ~ uniform(T)
iterations, the output of Algorithm 3 satisfies

LDF vV SCZLDF 1
E, [IVF@)l3] < =55+ = 214

Remark 6.3. Note that due to the convergence guarantees
of Lemma 6.1, in Corollary 6.2 we apply Algorithm 3 with
a random stopping time.

SNotice that the clipping step in Algorithm 3 does not increase
bias since by the Lipschitz condition, || V£]|, < c.

Accounting for total privacy loss. To account for the total
privacy loss, we first note that the per-round RDP guarantee
is amplified by the sub-sampling of the clients with sam-
pling rate k = . To quantify the tight amplification rate,
one can apply (Wang et al., 2019, Theorem 9) and obtain a
non-asymptotic upper bound on ampled (). For instance,
(Wang et al., 2019, Theorem 9) shows that when « is not
too large (e.g., when a < 2), fampled(a) = O (k%e()).
= dm0%a i this

. To account

Applying Theorem 2.1 and plugging &(«)

2
bound, we have egampled (@) = O (”dﬁ#)

for the privacy loss over all the T iterations, we apply the
composition theorem for RDP (Mironov, 2017, Proposi-
tion 1), concluding that Algorithm 3 satisfies (v, €final) With

Efinal(@) = O (’“‘l"}v#) when o < 2.

For high-privacy (where nmf? < 1) and small o regimes,
we obtain a convergence rate-privacy trade-off:

cAda
N25fina| (a) '

This achieves the optimal rate of reported in (Bassily et al.,
2014, Table 1) (though admittedly, our results only hold for
high privacy regime and for o < 2). Finally, we remark
to obtain non-asymptotic trade-offs for full o > 1 regimes,
one has to resort to (Wang et al., 2019, Theorem 9).

m@Wﬂw»ﬂw0<

7. Conclusion

In this paper, we present the Poisson Binomial mechanism,
a discrete (Rényi) DP mechanism that can be combined with
SecAgg for distributed mean estimation or federated learn-
ing/analytics. Unlike previous schemes, our mechanism
is not based on additive noise, so in addition to achieving
the optimal privacy-accuracy trade-off, it offers two extra
advantages: (1) it results in an unbiased estimator, and (2)
the communication cost with SecAgg decreases with the
privacy budget . Leveraging the unbiasedness property,
we propose a distributed DP-SGD algorithm and analyze
its convergence rate. Several important open problems in-
clude deriving a lower bound on the communication cost
for DME with DP and SecAgg, and evaluating our scheme
on real-world FL datasets.
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A. Societal Considerations

Harnessing distributed data holds the promise of impacting many facets of our lives. It could enable truly large scale
smart infrastructure and IoT applications; having a profound and positive impact on power-grid efficiency, traffic, health-
monitoring, medical diagnoses, carbon emissions, and many other areas. A foundational understanding of distributed
learning and estimation can also benefit many different fields of study such as neuroscience, medicine, economics, and social
networks, where statistical tools are often used to analyze information that is generated and processed in large networks.

While the above vision is expected to generate many disruptive business and social opportunities, it presents a number
of unprecedented challenges. First, massive amounts of data need to be collected by, and transferred across, resource-
constrained devices. Second, the collected data needs to be stored, processed, and analyzed at scales never previously seen.
Third, serious concerns such as access control, data privacy, and security should be rigorously addressed.

Our work tackles the above challenges by examining the trade-off between communication, privacy, and accuracy by taking
a holistic approach that examines all these constraints simultaneously and designing provably private FL. mechanisms.
Our work therefore serves as a stepping stone towards harnessing large-scale distributed data in a privacy-preserving and
bandwidth efficient way.

B. Conversion of RDP to approximate DP

The following conversion lemma from (Asoodeh et al., 2020; Canonne et al., 2020; Bun & Steinke, 2016) relates RDP to
(5DP (5), 5)-DP.

Lemma B.1. If M satisfies (o, e(c))-RDP for all o > 1, then, for any 6 > 0, M satisfies (epp(9), §)-DP, where

epp(0) = inf e(a) + log (1/ad)

a>1 a—1

+log(l—1/a).

To compare the privacy-utility trade-off of our mechanism with previous works, it will be useful sometimes to convert
the stronger RDP guarantees to an approximate DP guarantee. The following lemma, which is a simple application of
Lemma B.1, provides a simple form for the resulting approximate DP guarantees.

Lemma B.2. [f M satisfies (o, e(c))-RDP for all o > 1, then, for any 6 > 0, M satisfies (epp(9), §)-DP, where

epp(6) = © <\/<sup E(aa)> log(1/5)> .

C. Additional plots

Numerical evaluation of the scalar PBM. In figure 4, we compute the privacy guarantee of Algorithm 1 and compared it
with the Gaussian mechanism. For the PBM, we fix 0, vary parameter m, and compute the corresponding Rényi DP (i.e.,
£(a)) and MSE. We see that as § — 0, the privacy-MSE curve converges to that of the Gaussian mechanism fast.

Reducing communication via modular clipping. Since the sum of encoded messages (i.e., Y, Z; in Algo-
rithm 2) follows a Poisson-binomial distribution with p; € [% - 0,%4—0], with high-probability, > Z; €

[M — ¢/, M +cy/ %} (where c is a parameter used to control the failure probability). Therefore one can

(modularly) clip local message in that range to further reduce and hence communication cost the field size to nm#é + c/nm
(this, however, will incur bias to the final estimator). In Figure 5, we perform PBM with modular clipping and set ¢ = v/30.
Since c is large enough, we observe almost no impact to the errors while saving the (per-parameter) communication by 1 bit.



The Poisson binomial mechanism for secure and private federated learning

Privacy-variance trade-offs (a=1.5, c=1, n=10)

0.0254 \ —— PBM, 6 = 0.05
' \ —— PBM, 8=0.10
—— PBM, 6 =0.20
0.020 \ —— Gaussian Mechanism
[0}
1)
f
-2 0.015 4
s
0.010 -
0.005 A

0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8
Renyi DP ( g(a))

Figure 4. Privacy-MSE (variance) trade-offs of PBM and the Gaussian mechanism.

PBM w/ modular clipping (n = 103, d = 250, £, clip = 1.0)

—— 10.0 bits
——— 11.0 bits
— 12.0 bits
— 13.0 bits
= = Gaussian

1073

MSE

10—4 4

0 1 2 3 4 5 6
Privacy (¢)

Figure 5. PBM with modular clipping, where m = {2,4,6,16}. We set the modular clippiing parameter ¢ = +/30 and report the MSEs
and the corresponding communication cost.

D. Additional Proofs
D.1. Proof of Lemma B.2
epp(9) < e(a) + % +log(l —1/a)
log(1/4)
SO
_cl0) | sl0) ) los(1/d)
« a a—1

Next, take o* = 1+ , /sup,, ﬁ, we get

eop(0) < sup % + 2\/<sgp Ef)> log(1/6) = © <\/<Sgp ef)) 10g(1/5)> :
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if Ef‘) = O(1). This suggests that («, e(«))-RDP implies (epp(d), 6)-DP with epp(d) = Oy ( (bupa 5(0‘))>

D.2. Proof of Lemma 3.5

To see this, observe that Px, 4 x,+..+x, = Px,+..+x,_, © Px,, where o denotes the convolution operator. Since the
convolution operator is linear, we have

1 1
Px, 4. +x,,°Px, =\ (PX1+...+Xn1 o Ber <2 - 9)) +(1=2) <PX1+...+XW1 o Ber (2 + 9)) )

where A > 0 is such that p, = A(3—6) + (1 — \) (3 +6). By the quasi-convexty of D,(:|-), it holds that
Do (Px,4Xo+..4X, || PX{+X2+...4+x,,) is upper bounded by

P

max (D (P X1+Xo+...4+Ber(+6 H X|+Xo+...4+Ber(4 +9)))'

X1+Xo+.. +Ber H X1 +Xo+.. +Ber(f 0))’D (

By repetitively applying the quasi-convexity and the extrema argument for n — 1 times, we arrive at

Do (Pxy 4 X4+, || PX{ 1 X014 X0 ) <kg[1aX]D (Px,+ || Pxgv)

where N, ~ Binom(k, 3 — 0) + Binom(n — k — 1, 1 + 6).
In the last step, by making use of the joint quasi-convexity of Rényi divergence (i.e., (P, Q) — D, (P||Q) is quasi-convex),
it suffices to show that

(PX1+Nk7PX{+Nk) = Al (PBer(%—g)—‘rNk’PBer(%—@)-i—Nk)

+ )\; (PBer(%fg)ﬁ*Nk’PBer( +9) ) + )\3 (PBer(%+9)+Nk’

PBer(%— 0)+N. ) + Al ( Ber(4 +9)+Nk’PBer(%+9)+Nk)

for some A} € [0, 1] and ZZ L A = 1. Tothis end, since X; ~ Ber(p;) and X/ ~ Ber(p}) for some p;, p} € [3 — 0,5 + 0],
we must have

PX1+Nk = APBer(%—Q)-‘,—Nk + (1 - )\)PBer(%—&-O)-‘rNk’ and
Pxpin, =N PBer(1 —0)+Ny +(1- /\/)PBer(%+0)+Nk
for some A, X’ € [0, 1]. Therefore, by setting A7 = AN, A5 = A1 = XN), Al =1 —=XN)N,and \j = (1 — A\)(1 = N), we

arrive at the desired result.

D.3. Proof of Lemma 3.6

= PBer(%70)+Binom(n7k*71,%+0)

°© PBlnom(k %—0) ’

PBinom(1+k*,%79)+Binom(n7k*fl,%+0) ° PBinom(k*,%fe)
Binom(k*,%—0)+Binom(n—k*7%+9) = PBinom(n—k*,%—i—@)

and by a data processing inequality, we have

D (PBlnom(lJrk* 1 9)+B|nom(n k*—1, 1+9 H Blnom(k*,%70)+8inom(n7k*,%Jre))
< DO‘ (PBer(——G)-i-Bmom n k*—1, 1+9 H Blnom n k*,%—&-e))

< D0 (Pt oyt

Ber(%JrG) +Binom (n’ s % +0) ) ’
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where in the last inequality we use a data processing inequality and define n’ = (”T’l] Similarly, when k* > 5, we
decompose
PBinom(l—',—k*,%—0)+Binom(n—k*—l,%+9) = ]-)Binom(l-',-lc",1 ) © PBlnom(n k*—l,%-{-@)
Binom(k,*,%—9)+Binom(n—k*,%+0) = PBer(%-{—f))-&-Binom(k*,l ) ° PBlnom(n k*—1, ——H‘))
By a data processing inequality, we obtain
Dq (PBinom<1+k*,%—0)+Binom(n—k*—1 1+6 HP inom(k*,%—f))—&—Binom(n—k*,%+9))
< Da <PBer(1 6)+B|nom n’ H Ber +0 +B|nom(n - 0)) :
Therefore we conclude that (4) can be upper bounded by
kér[ly?i(l] Da (PBlnom(lJrk l719)+B|nom(n k—1, 1+0 H Blnom(k 9)+B|nom(n kL +(~)))
S max (D (PBer(——9)+B|nom H Ber +0 +B|nom( 1+9)> )’
Do, (PBer(%—9)+Binom(n’,%—9) HPBer(%-&-G)—i-Binom(n',%— )) ' 7

(b)

D.4. Proof of Lemma 3.7

Using the inequality ¢ < e!~!, we have

Do (P[Q) =

log

% |(io ) |

a5

o[t

Coo? 45001 >

/N

\ N

log

/N

I A

log

— log

INE
| —
/\ /—\

2

)

2 |ldpP

2

where (a) holds for any sub-gaussian random variable (see, for instance, Vershynin (2018, Proposition 2.5.2), which states
2 2
that for a zero-mean random variable Z with finite sub-gaussian norm, E [e®#] < ¢ 1711,
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D.5. Proof of Lemma 3.8

Bounding (a) For notational simplicity, we denote the LR of term (a) in (7) as R(¢) for ¢ € [n’ + 1] and bound it as
follows.

Ber(% 0)+Binom(n/,%+9)<i)
PBlnom(n/Jrl l+0) (Z)

I CE) RO M S ) Mt
(TGO G0 (Y G G0t

n4+1—i\ [(1-26 i 1426
( o) () (en) (5539)
1-26 i 1+ 26 1-26
<1+29) n' +1 ((1—29) a <1+29)>
1-26 i 80

<1+29) n' +1 (1—492>'

I — E[I] has a sub-gaussian norm || — E[[] ||12p2 < 02(n’ + 1) for some universal constant

When I ~ PBinom(n/JrL%Jrg),

oo (since I is sum of n’ 4 1 independent binary random variables). Also notice that E[R(I)] = 1, so R(I) — 1, which is a
linear function of I, can be written as

80
R =1 = o =gy (B

Therefore, R(I) — 1 has a sub-gaussian norm bounded by

92
1—402)2(n/ + 1)

IR(T) = 13, < Cl(

By Lemma 3.7, we conclude that term (a) in (7) can be controlled by

D (PBer(%—G)—&-Binom(n’,%-&-G) HPBinom(n’-&-L%-&-Q))

62 a? 1

<C 8

=042 a—1n + 1 ®
for some constant Cy > 0.
Bounding (b) Similarly, let us denote the LR of term (b) in (7) as R/ (i) = m fori € [n’ + 1]. Let

I~ PBer(%fe)qLBinom(n’,%JrG)
and we control the sub-gaussian norm of R/(I) — 1 as follows:
E[R(I)]— R(I 1-E[R(I
R 1~ BRI RO) | 1-ER(D) o

R(I) R(I)
For the first term in the right hand side of (9), observe that

E[R(I)] - R(I) _ [E[R(I)] — R(I)|

RIS IR
< (1535) BRG] - RO (10
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where the last inequality holds since R(I) > (%) almost surely. Therefore

H E[R(I)] - R(J) ||*
R(I)

< <1j§§> |R(D) ~ BRI,

2 2 2
<0 1+ 20 0 o 1
1-20) (1-4602)2a—1n"+1

62 1
(1—-20)4n +1’

P2

= (4 arn

where the second inequality is due to the fact that I — E[I] is sum of n’ + 1 zero-mean bounded random variables.

Next, the second term in (9) can be controlled by

’1-;;(%(1)}‘ . Gj;;’) IR(T) 1]

_(1+26 1—20 N E[I] 86 .
S \1-26 1+26 n' +1 \ 1—462

- Gj;Z) ((1 —49§§2(n’+ 1))

862
= 12
(1—20)°(n' +1) (12

]E[I]:n’<1+z>+<1—z>.

Combining (11) and (12), we obtain an upper bound on (9):

where the second equality holds since

IR'(1) =113,
_ 2 2
. 2HE[R(I)] R(I) +2‘ 83
R(I) " (1-26)" (' +1)]|,
2
62 1 892
<203——— +C
TR )T INEE R ((120)2(n’+1)>
2
ot 1

(1—20)*n/ +1’

for some C5 > 0. Also notice that E[R'(I) — 1] = 0 when [ ~ PBer(lfﬁ)
2
we conclude that term (b) in (7) can be controlled by

+Binom(n’, 1 +6)" Therefore, applying Lemma 3.7,

D, (PBinom(n’Jrl,%Jr@) "PBer(%,9)+Binom(n/,%+6)>

62 a? 1

<
*06(1—29)4a—1n/+1’

13)

for some Cg > 0.



