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Abstract

We introduce the Poisson Binomial mechanism

(PBM), a discrete differential privacy mechanism

for distributed mean estimation (DME) with ap-

plications to federated learning and analytics. We

provide a tight analysis of its privacy guaran-

tees, showing that it achieves the same privacy-

accuracy trade-offs as the continuous Gaussian

mechanism. Our analysis is based on a novel

bound on the RÂenyi divergence of two Poisson

binomial distributions that may be of independent

interest.

Unlike previous discrete DP schemes based on ad-

ditive noise, our mechanism encodes local infor-

mation into a parameter of the binomial distribu-

tion, and hence the output distribution is discrete

with bounded support. Moreover, the support

does not increase as the privacy budget ε → 0
as in the case of additive schemes which require

the addition of more noise to achieve higher pri-

vacy; on the contrary, the support becomes smaller

as ε → 0. The bounded support enables us to

combine our mechanism with secure aggregation

(SecAgg), a multi-party cryptographic protocol,

without the need of performing modular clipping

which results in an unbiased estimator of the sum

of the local vectors. This in turn allows us to apply

it in the private FL setting and provide an upper

bound on the convergence rate of the SGD algo-

rithm. Moreover, since the support of the output

distribution becomes smaller as ε→ 0, the com-

munication cost of our scheme decreases with the

privacy constraint ε, outperforming all previous

distributed DP schemes based on additive noise in

the high privacy or low communication regimes.
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1. Introduction

The standard technique for ensuring differential privacy

(DP) (Dwork et al., 2006b) of learning algorithms is to

add noise either to the output of a function evaluated on

the data (in the centralized setting) or locally to the data

itself (in federated settings (Kairouz et al., 2019; McMahan

et al., 2016)). Two commonly used distributions for noise

are the Gaussian and Laplace distributions. While simple

enough for mathematical reasoning and analysis, the con-

tinuous nature of these distributions presents a number of

challenges. First, it is not possible to represent real samples

on finite computers, making these mechanisms prone to nu-

merical errors that can break privacy guarantees (Mironov,

2012). Second, they cannot be used in the federated setting

where it may be desirable to first locally perturb the data

(e.g. the local model update computed by stochastic gra-

dient descent(SGD) iterations) and then use cryptographic

primitives such as secure aggregation (SecAgg) (Bonawitz

et al., 2016b) to allow the server to obtain a summary of the

local data (such as the mean of local model updates) without

having access to individual information. This combination

of local DP and secure aggregation is desirable as it does not

rely on the clients’ full trust in the server, while potentially

achieving the same utility-privacy trade-off as in the central-

ized case. However, secure aggregation is based on modular

arithmetic which is not compatible with the real output from

a privatization mechanism that relies on perturbing data

with continuous noise. This has led to an increasing recent

interest in mechanisms that perturb the data (or a function of

it) with the addition of discrete noise, such as the binomial

in (Dwork et al., 2006a; Agarwal et al., 2018), the discrete

Gaussian in (Canonne et al., 2020; Kairouz et al., 2021),

and Skellam noise in (Agarwal et al., 2021).

These additive discrete noise mechanisms however have a

few of their own shortcomings. First, when the data itself is

continuous, as in the case of local model updates obtained

from SGD iterations in federated learning, it has to be dis-

cretized before the addition of discrete noise. This adds

quantization noise and complicates analysis. Second, these

distributions have discrete yet unbounded support which

means that the privatized data has to go through modular

clipping when combined with secure aggregation protocols
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which operate on a finite group. This is the approach in

(Kairouz et al., 2021) and (Agarwal et al., 2021), which

focus on developing differentially private federated learn-

ing algorithms by using these additive noise mechanisms

locally at the clients and then feeding the privatized local

updates to the secure aggregation protocol. Upon modu-

lar clipping, however, the discrete additive noise becomes

no longer zero-mean, and hence the resulting estimator (of

the mean of the local model updates) is biased. The bias

makes it difficult to provide tight convergence guarantees

for stochastic first-order optimization methods which rely

on this estimate. In contrast, it is usually not difficult to

provide a tight convergence analysis when the optimization

method has access to a noisy but unbiased estimate of the

true mean of the updates. Finally, all additive noise mecha-

nism (continuous or discrete) share the common principle

of adding more noise to achieve higher privacy, i.e. they re-

quire a higher noise variance when higher privacy is desired.

This, however, has a direct impact on the communication

cost in federated settings when the noise is added locally. In-

deed, for all of the above mentioned schemes (Kairouz et al.,

2021; Agarwal et al., 2021; 2018) the communication cost

grows inversely with the privacy budget; when high privacy

is desired nodes need a large bit budget to communicate

the large noise they add to their updates. This contradicts

the conclusion of (Chen et al., 2020) which shows that in a

federated learning setting without secure aggregation the op-

timal communication cost can be made to decrease with the

privacy budget; intuitively we can use less bits in the high

privacy regime because we are required to communicate

less information about the local data.

In this paper, we develop a novel differential privacy mech-

anism that does not rely on additive noise. This mech-

anism, which we call the multi-dimensional Poisson Bi-

nomial mechanism (PBM), takes a continuous input, en-

codes it into the parameter p of a binomial distribution

Binom (m, p), and generates a sample from this distribu-

tion1. This results in a finite and discrete output in Zm

which can be easily combined with the integer modular

arithmetic in SecAgg, without the need for quantization or

modular clipping. As a result, the estimate (of the average

model updates) obtained at the output of SecAgg is unbi-

ased leading, to our knowledge, to the first unbiased privacy

scheme compatible with SecAgg. Moreover, the commu-

nication cost of PBM decreases when the privacy budget ε
decreases. This is because the first parameter m of the dis-

tribution Binom (m, p) is linear in the privacy budget ε and

hence the logarithm of it, which dictates the communication

1We note that the binomial mechanism proposed in (Agarwal
et al., 2018) is an additive noise mechanism (it adds Binomial
noise to the data), and while it has a finite output range, it does
not provide any RÂenyi DP guarantees (which is the main focus of
this paper as RDP allows for tightly accounting privacy loss across
multiple rounds).

budget, decreases to 1 as ε→ 0.

Our contributions. Our main technical contributions are

summarized as follows.

• We introduce the multi-dimensional Poisson binomial

mechanism, an unbiased and bounded discrete DP mecha-

nism for distributed mean estimation (DME). We provide

a tight analysis for its RÂenyi DP (RDP) guarantees show-

ing that it provides the same utility-privacy trade-off as

the continuous Gaussian mechanism. As a by-product,

our analysis yields a novel bound on the RÂenyi divergence

of two Poisson binomial distributions that can be useful

in other applications.

• We show that the communication cost of our scheme

(defined as the number of bits needed to achieve the accu-

racy of the centralized DP model) decreases with the pri-

vacy budget, as opposed to previous discrete DP schemes

(Agarwal et al., 2018; Kairouz et al., 2021; Agarwal et al.,

2021). Thus in the high-privacy regime, our scheme uses

significantly less bandwidth while still achieving the right

order of accuracy.

• We combine PBM with distributed SGD and SecAgg in a

FL setting and analyze its convergence rate.

1.1. Problem setup and prerequisites

In this section, we present the distributed mean estimation

(DME) (Suresh et al., 2017) problem under differential pri-

vacy and SecAgg. Note that DME is closely related to

federated learning with SGD, where in each iteration, the

server updates the global model by a noisy mean of the local

model updates. This noisy estimate is typically obtained by

using a DME scheme, and thus one can easily build a dis-

tributed DP-SGD scheme (and hence a private FL scheme)

from a differentially private DME scheme.

Consider n clients each with local data xi ∈ R
d that satisfies

∥xi∥2 ≤ c (one can think of xi as a clipped local gradient).

A server wants to learn an estimate µ̂ of the mean µ ≜
1
n

∑

i xi after communicating with the n clients.

Secure aggregation. In order to fully leverage the dis-

tributed nature of FL to enhance clients’ privacy, the honest-

but-curious server collects local data through a secure ag-

gregation protocol. More precisely, each client encodes xi
into a finite additive group Z by computing Zi ≜ Aenc(xi).
The n clients and the server then participate in the SecAgg

protocol, so that only
∑

i Zi can be revealed to the server.

Finally, the server computes µ̂ based on
∑

i Zi, an estimate

of the true mean. The goal is to jointly design an encoder

Aenc and an estimator µ̂, such that

1. µ̂ satisfies a differential privacy constraint (see Defini-

tion 1.1 and Definition 1.2 for formal statements).
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2. The per-client communication cost b = log |Z| is small.

3. µ̂ is unbiased (i.e. E[µ̂] = µ) and has small mean squared

error (MSE): E
[

∥µ̂− µ∥22
]

.

Without loss of generality, we will set Z to be (ZM )
l

for

some l,M ∈ N (where ZM is the group of integers modulo

M equipped with modulo M addition), so b = l logM is

the total number of communicated bits. The summation is

coordinate-wise modulo M addition, i.e.

SecAgg (Aenc(x1), ...,Aenc(xn)) =
∑

i

Aenc(xi)modM.

Differential Privacy. Finally, we introduce the notion of

differential privacy (Dwork et al., 2006b) and RÂenyi dif-

ferential privacy (RDP) (Mironov, 2017). We are mostly

interested in developing mechanisms that satisfy RDP, as it

allows for tight privacy accounting across training iterations.

Definition 1.1 ((Approximate) Differential Privacy). For

ε, δ ≥ 0, a randomized mechanism M satisfies (ε, δ)-DP if

for all neighboring datasets D,D′ and all S in the range of

M , we have that

Pr (M(D) ∈ S) ≤ eε Pr (M(D′) ∈ S) + δ,

where D and D′ are neighboring pairs if they can be ob-

tained from each other by adding or removing all the records

that belong to a particular user.

Definition 1.2 ( RÂenyi Differential Privacy (RDP)). A

randomized mechanism M satisfies (α, ε)-RDP if for

any two neighboring datasets D,D′, we have that

Dα

(
PM(D), PM(D′)

)
≤ ε where Dα (P,Q) is the RÂenyi

divergence between P and Q and is given by

Dα (P,Q) ≜
1

α
log

(

EQ

[(
P (X)

Q(X)

)α])

.

Note that one can cast RDP to (approximate) DP. See Sec-

tion B for details.

1.2. Related works

The closest works to ours are the distributed discrete DP

mechanisms cpSGD (Agarwal et al., 2018), DDG (Kairouz

et al., 2021), and Skellam (Agarwal et al., 2021). Unlike our

proposed scheme, these mechanisms achieve differential

privacy (DP) (Dwork et al., 2006b) by adding discrete noise

that (1) has a distribution that asymptotically converges to

a normal distribution, and (2) are (nearly) ªclosedº under

addition. However, since the noise is asymptotically normal,

in the high-privacy regimes where ε is small, the variance

of the noise (and hence the communication cost) explodes.

In addition, since the noise has infinite range (except for

cpSGD2), one has to perform modular clipping in order to

perform SecAgg. This leads to bias that can cause issues for

the downstream tasks such as SGD.

In this paper, we combine our discrete DP mechanism with

SecAgg (more precisely, single-server SecAgg) to achieve

distributed DP without introducing bias. Single-server

SecAgg is achieved via additive masking over a finite group

(Bonawitz et al., 2016a; Bell et al., 2020). To achieve prov-

able privacy guarantees, however, SecAgg is insufficient

as the sum of local model updates may still leak sensitive

information (Melis et al., 2019; Song & Shmatikov, 2019;

Carlini et al., 2019; Shokri et al., 2017). To address this

issue, DP-SGD or DP-FedAvg can be employed (Song et al.,

2013; Bassily et al., 2014; Geyer et al., 2017; McMahan

et al., 2017). In this work, we aim to provide privacy guar-

antees in the form of RÂenyi DP (Mironov, 2017) because it

allows for tracking the end-to-end privacy loss tightly.

We also distinguish our distributed DP setup from the local

DP setup (Kasiviswanathan et al., 2011; Evfimievski et al.,

2004; Warner, 1965), where the data is perturbed on the

client-side before it is collected by the server in the clear.

Although both local DP and distributed DP with SecAgg do

not rely on a fully trusted centralized server, the local DP

model provides stronger privacy guarantees as it allows the

server to observe individual (privatized) information, while

distributed DP requires that the server executes the SecAgg

protocol faithfully. Given its strong privacy guarantees, local

DP naturally suffers from poor privacy-utility trade-offs

(Kasiviswanathan et al., 2011; Duchi et al., 2013; Kairouz

et al., 2016). That is why we focus on distributed DP via

SecAgg in this paper.

Our scheme also makes use of Kashin’s representation

(Kashin, 1977; Lyubarskii & Vershynin, 2010), a power-

ful tool that enables us to transform the ℓ2 geometry of the

input data to an ℓ∞ one in a lossless fashion. This facilitates

the analysis and allows for decoupling the high-dimensional

problem into 1-dimensional sub-tasks. Similar idea has

been used in different settings; for instance, (Feldman et al.,

2017; Caldas et al., 2018; Chen et al., 2020).

2. Main Results

We introduce the Poisson Binomial mechanism for DME

with SecAgg and differential privacy. The proposed protocol

(Algorithm 1) consists of three stages:

• Each client computes the Kashin’s representation of lo-

cal data xi (denoted as yi), which allows for optimally

transforming the ℓ2 geometry of the data into ℓ∞.

2However, we note that cpSGD only satisfies approximate DP
but not Renyi DP, so we can only use strong composition theorems
(Dwork et al., 2010; Kairouz et al., 2016) to account privacy loss.
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• The n clients apply the scalar Poisson Binomial mecha-

nism (Algorithm 2) separately on each coordinate of yi,
and the server estimates µy ≜ 1

n

∑

i yi.

• The server reconstructs µ̂x from the Kashin representa-

tion of µ̂y .

Note that Algorithm 1 builds on Algorithm 2, the scalar

version of PBM, which we analyze in Section 3. Parameters

(m, θ) determine privacy, communication cost, and MSE;

in other words, the privacy-utility trade-offs of Algorithm 1

can be fully characterized by (m, θ), which we summarize

in the following theorem.

Theorem 2.1. Let ∥xi∥ ≤ c, m ∈ N, and θ ∈ [0, 1
4 ]. Then

with parameters m, θ, Algorithm 1:

• satisfies (α, ε(α))-RDP for any α > 1 and ε(α) =
Ω
(
dmθ2α/n

)
,

• requires O(d (logm+ log n)) bits of per-client commu-

nication,

• yields an unbiased estimator µ̂ with O
(

c2

nmθ2

)

MSE.

Remark 2.2. Although in Theorem 2.1 we present an asymp-

totic result, we remark that (1) the MSE can be upper bound

explicitly, and (2) the RÂenyi DP can be computed numeri-

cally (as shown in Section 2.1). Indeed, we show that when

we pick θ small enough, the MSE of PBM converges to the

(centralized continuous) Gaussian mechanism quickly.

Several observations are given in order. First, the privacy

guarantee ε(α) can be written as a function of the vari-

ance (i.e., the MSE): ε(α) = Ω
(

dc2α
n2MSE(µ̂)

)

. This privacy-

accuracy trade-off matches that of the (centralized) Gaus-

sian mechanism 3 given by εGauss(α) = Ω
(

dc2α
n2MSE(µ̂Gauss)

)

3We notice that when the ℓ2 sensitivity is c2/n2, a Gaussian
mechanism that adds N(0, σ2

Id) noise achieves RDP εGauss(α) =

Algorithm 1 The Poisson Binomial Mechanism

Input: x1, ..., xn ∈ Bd(c), parameters θ ∈ [0, 1
4 ],

m ∈ N, a tight frame U associated with Kashin’s repre-

sentation at level K > 0
for each client i do

Set yi to be the Kashin’s representation of xi, so yi ∈
R

Θ(d) and ∥yi∥∞ ≤ cK√
d

.

for coordinate j of yi do

Zij ← scalar PBM
(

yij ,m, θ, c′ = cK√
d

)

end for

Send Zi to the server via SecAgg

end for

(Server) Computes µ̂y = c′

mnθ

(∑

i Zi − mn
2

)

(Server) Computes µ̂ = Uµ̂y
Return: µ̂

Algorithm 2 The (Scalar) Poisson Binomial Mechanism

Input: c > 0, xi ∈ [−c, c], θ ∈ [0, 1
4 ], m ∈ N

Re-scaling xi: pi ≜
θ
cxi +

1
2 .

Privatization: Zi ≜ Binom (m, pi) ∈ Zm.
Return: Zi

(which is obtained by bounding the sensitivity of the mean

function by c2/n2). This implies that Algorithm 1 attains

order-optimal errors. In Section 2.1 below, we numerically

compute the MSE-privacy trade-offs of PBM and the Gaus-

sian mechanism.

Note that in Theorem 2.1, both ε(α) and the the variance

of the estimator depend on the parameters m and θ of the

algorithm through the product mθ2. Hence, this leaves

some freedom in the choice of m and θ if one is concerned

only with privacy and MSE. However, the choice of m also

dictates the communication cost. We next describe how

one can pick (θ,m) to minimize the communication cost

for the same (α, ε(α))-RDP constraint and MSE, where

the latter is dictated by the first according to the above

trade-off. Observe that the privacy budget ε(α) fixes the

value of the product mθ2, so to minimize m, and hence the

communication cost, we would like to pick θ as large as

possible. However, θ is restricted to [0, 1
4 ]. Therefore we

can determine m and θ by the following two steps:

1. Set m = 1 and compute the corresponding θ such that

the resulting privacy is ε(α). If θ > 1/4, clip θ to 1/4.

This leads to θ = O

(

min

(

1
4 ,
√

nε(α)
dα

))

.

2. Then, we adjust m again according to θ. If θ = 1/4
(i.e. when θ clipped in the previous step), we set

m = O
(
nε(α)
dα

)

. Otherwise m = 1. Hence m is up-

per bounded by max
(

1, O
(
nε(α)
dα

))

.

Plugging the above upper bound on m to Theorem 2.1, the

communication cost becomes O
(

d
(

log
(

n+ dε(α)
nα

)))

.

Next, to compare the communication cost of our scheme

with previous schemes, we convert it into (εDP(δ), δ)-DP

via Lemma B.2 and arrive at the following corollary:

Corollary 2.3 (Approximate DP of PBM). By set-

ting θ = O
(

min
(

1
4 ,
√

n log(1/δ)
dε2

DP

))

and m =

⌈ dε2DP

n log(1/δ)⌉, Algorithm 1 satisfies (εDP, δ)-approximate

DP. Moreover, the (per-client) communication cost is

O
(

d
(

log
(

n+
dε2DP

n log(1/δ)

)))

, and µ̂ is unbiased with

MSE at most Oδ

(
c2d
n2ε2

DP

)

.

c
2
α

2n2σ2 , and the corresponding MSE(µ̂Gauss) = dσ2.
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We remark that the communication cost of PBM decreases

as εDP) decreases, exhibiting the correct dependency on

εDP in the high-privacy regime. The communication cost

of other discrete DP mechanisms based on additive noise,

such as (Agarwal et al., 2018; Kairouz et al., 2021; Agar-

wal et al., 2021) increase as ε gets smaller. For in-

stance, the DDG mechanism (Kairouz et al., 2021) requires

O
(

d
(

log
(

n+ d
ε2
DP

)))

bits of communication per-client,

which becomes unbounded when εDP → 0. See Table 2 for

a comparison.

communication MSE bias

PBM O
(

d
(

log⌈ dε
2
DP

n
⌉
))

Oδ

(

c
2
d

n2ε2
DP

)

no

DDG O
(

d
(

log⌈ d

ε2
DP

⌉
))

Oδ

(

c
2
d

n2ε2
DP

)

yes

Skellam O
(

d
(

log⌈ d

ε2
DP

⌉
))

Oδ

(

c
2
d

n2ε2
DP

)

yes

Binomial O
(

d
(

log⌈ d

ε2
DP

⌉
))

Oδ

(

c
2
d log(d)

n2ε2
DP

)

yes

Table 1. A comparison of the communication costs and MSEs of

different discrete DP schemes. For the communication cost, we

hide the dependency on log n since we are interested in high-

dimensional regimes where d ≫ n.

2.1. Numerical evaluation

Figure 1. Privacy-MSE (variance) trade-offs of PBM and the Gaus-

sian mechanism.

In figure 1, we numerically compute the privacy guarantee

of Algorithm 1 and compared it with the Gaussian mech-

anism. For the PBM, we fix the communication cost (i.e.

fix m), vary parameter θ, and compute the corresponding

RÂenyi DP (i.e., ε(α)) and MSE. We see that as m increases,

the privacy-MSE curve approaches to that of the Gaussian

mechanism, indicating that our scheme is also optimal in its

leading constant. We present another numerical results in

Section C, in wich we fix θ and vary m to get the trade-off

curves.

3. The Scalar Poisson Binomial Mechanism

In this section, we analyze the utility and privacy guarantees

of the scalar version of PBM (i.e., with d = 1). Recall that

when d = 1, each xi in the DME task (see the formulation in

Section 1.1) becomes a bounded real number with |xi| < c
eliminating the Kashin step. Under this special case, Al-

gorithm 2 encodes each xi into a parameter of a binomial

distribution by 1) first mapping xi into
[
1
2 − θ, 1

2 + θ
]

by

pi ≜
1
2 + θ

cxi, and then 2) generating a binomial random

variable Zi ∼ Binom(m, pi).

Notice that from each Zi, one can obtain an unbiased esti-

mator on xi by computing x̂i =
c
θ

(
1
mZi − 1

2

)
. Therefore,

upon collecting
∑

i Zi from SecAgg protocol, the server

can estimate µ by µ̂ (
∑

i Zi) ≜
c

nmθ

(∑

i Zi − mn
2

)
(recall

that the server can only learn
∑

i Zi but not individual Zi).

Remark 3.1. As discussed before, m and θ can be chosen to

achieve a desired privacy-utility-communciation trade-off.

Intuitively, with larger m, one can reduce the variance of the

estimator while weakening the privacy guarantees; similarly

with smaller θ, one would get a better privacy guarantee by

trading off the accuracy.

Utility of the scalar PBM. As mentioned above, µ̂ yields

an unbiased estimate on µ, and the variance can be calcu-

lated as Var (µ̂) = c2

m2θ2

∑

i Var (Zi) ≤ c2

4nmθ2 .

On the other hand, since Zi ≤ m,
∑

i Zi ≤ nm. Thus to

avoid overflow, we will set M = nm, where recall that M
the size of the finite group SecAgg operates on. Therefore,

the communication cost of Algorithm 2 is logM = log n+
logm bits per client.

Privacy of the scalar PBM. Next, the privacy guarantee

(in an RDP form), is summarized in the following corollary.

Corollary 3.2. Let m ∈ N and θ ∈ [0, 1
4 ] be parameters of

Algorithm 2. Then Algorithm 2 satisfies (α, ε(α))-RDP for

any α > 1 and

ε(α) ≥ C0

(
θ2

(1− 2θ)4

)
αm

n
, (1)

where C0 > 0 is an universal constant.

3.1. Analysis of the RDP

To analyze the privacy loss of Algorithm 1, let Yi ∼
Binom(m, pi) and Y ′

1 ∼ Binom(m, p′1), where recall that

p1, ..., pn, p
′
1 ∈

[
1
2 − θ, 1

2 + θ
]
. For any α > 1, the ε(α) is

given by

max
p1,...,pn,p′1

Dα

(
PY1+Y2+...+Yn

∥
∥PY ′

1+Y2+...+Yn

)
, (2)

with the maximum taken over
[
1
2 − θ, 1

2 + θ
]n+1

. Our main

technical contribution is the following (orderwise) tight up-

per bound on the RÂenyi divergence of two Poisson binomial
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distributions, which then characterizes the privacy loss of

our scheme.

Theorem 3.3. Let α > 1 and p1, ..., pn, p
′
1 ∈ [ 12 −θ, 1

2 +θ].
Let Yi ∼ Binom(m, pi) and Y ′

1 ∼ Binom(m, p′1). Then it

holds that

Dα

(
PY1+Y2+...+Yn

∥
∥PY ′

1+Y2+...+Yn

)

≤ C0
θ2

(1− 2θ)4

(

min

(

4,
α2

α− 1

))
m

n
,

where C0 > 0 is an universal constant.

Remark 3.4. Although we present an asymptotic result here,

using the quasi-convexity of RÂenyi divergence, one can

show that the worst-case scenario is attained by the ex-

tremal points (i.e., when pi ∈
{

1
2 − θ, 1

2 + θ
}

), as shown

in Lemma 3.5. This allows us to efficiently compute the

privacy loss exactly, as shown in Section 2.1.

An immediate corollary of Theorem 3.3 is the RDP guaran-

tee of the proposed PBM (summarized in Corollary 3.2).

In the rest of this section, we provide a proof of Theorem 3.3.

Step 0: decomposing Yi. To begin with, observe that

since Yi ∼ Binom(m, pi), we can decompose it into sum

of m independent and identical copies of Ber(pi), i.e.,

Yi =
∑m
j=1 X

(j)
i , where X

(j)
i

i.i.d.∼ Ber(pi) for j ∈ [m].
Therefore

n∑

i=1

Yi =

n∑

i=1

m∑

j=1

X
(j)
i =

m∑

j=1

(
n∑

i=1

X
(j)
i

)

︸ ︷︷ ︸

≜Zj

,

and similarly we can write Y ′
1 +

∑n
i=2 Yi =

∑m
j=1 Z

′
j ,

where Z ′
j = X

′(j)
1 +

∑n
i=2 X

(j)
i .

Grouping the summation of X
(j)
i according to j ∈ [m]

and applying the data processing inequality for RÂenyi diver-

gence, we upper bound (2) by

max
p1,...,pn,p′1

Dα

(
PY1+Y2+...+Yn

∥
∥PY ′

1+Y2+...+Yn

)

= max
p1,...,pn,p′1

Dα

(
PZ1+...+Zm

∥
∥PZ′

1...+Z
′
m

)

≤ max
p1,...,pn,p′1

mDα

(
PZ1

∥
∥PZ′

1

)

= max
p1,...,pn,p′1

mDα

(
PX1+X2+...+Xn

∥
∥PX′

1+X2+...+Xn

)
,

(3)

where Xi ∼ Ber(pi) and X ′
1 ∼ Ber(p′1).

Step 1: maximum achieved by extremal points. Next,

since (P,Q) 7→ Dα (P∥Q) is quasi-convex (Van Erven &

Harremos, 2014, Thoerem 13), we claim that (3) is maxi-

mized at extreme points:

Lemma 3.5. (3) is maximized at extreme points i.e., when

p1, ..., pn, p
′
1 ∈

{
1
2 − θ, 1

2 + θ
}

.

This implies (3) can be upper bounded by the following

binomial form:

max
k∈[n−1]

Dα

(

P
Binom(1+k, 12−θ)+Binom(n−k−1, 12+θ)

∥
∥

P
Binom(k, 12−θ)+Binom(n−k, 12+θ)

)

. (4)

Step 2: applying data processing inequality. Next, we

simplify (4) by carefully applying the data processing in-

equality. Let k∗ ∈ [n − 1] maximize (4). If k∗ ≤ n
2 , we

apply the data processing inequality to discard the first half

of common binomial random variables (see Figure 2 for an

illustration), i.e.,

Binom

(

k∗,
1

2
− θ

)

+ Binom

(

n′ − k∗,
1

2
+ θ

)

,

where n′ ≜ ⌈n−1
2 ⌉. On the other hand, if k∗ ≥ n

2 , then we

apply the data processing inequality to remove the second

half of common parts, i.e.,

Binom

(

n′ + k∗,
1

2
− θ

)

+Binom

(

n− k∗ − 1,
1

2
+ θ

)

.

Figure 2. An illustration of applying data processing inequality,

where under the scenario of k∗ ≤ 1
2

, we discard the first half of

common binomial sum.

This leads to the following lemma:

Lemma 3.6. (4) is upper bounded by the maximum of the

following two quantities:

(a) Dα

(

P
Ber( 1

2−θ)+Binom(n′, 12+θ)

∥
∥
∥PBinom(n′+1, 12+θ)

)

,

(b) Dα

(

P
Binom(n′+1, 12−θ)

∥
∥
∥PBer( 1

2+θ)+Binom(n′, 12−θ)

)

.

Step 3: bounding the RÂenyi divergence via MGF. Fi-

nally, we upper bound each of the two terms in (7) separately.

We start with the following simple but useful lemma, which

bounds the RÂenyi divergence of two distributions by the

sub-Gaussian norm of their likelihood ratio (LR).

Lemma 3.7. Let P,Q be two probability measures on X
and let dPdQ (x) be the Radon-Nikodym derivative. Let X ∼
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Q. Then for any α > 1,

Dα (P∥Q) ≤ C0
α2

α− 1

∥
∥
∥
∥

dP

dQ
(X)− 1

∥
∥
∥
∥

2

ψ2

,

where ∥Z∥ψ2
denotes the sub-Gaussian norm of Z and

C0 > 0 is a universal constant.

To apply Lemma 3.7 to control (a) and (b) in Lemma 3.6,

we need to compute and bound the sub-Gaussian norms of

the likelihood ratio (LRs) of random variables in (a) and (b)

of Lemma 3.6, respectively.

To this end, let us define R(i) ≜
P

Ber( 1
2
−θ)+Binom(n′, 1

2
+θ)

(i)

P
Binom(n′+1, 1

2
+θ)

(i) .

Then the LRs corresponding to random variables of (a) and

(b) in Lemma 3.6 are R(I) and 1/R(I ′) respectively, where

I ∼ P
Binom(n′+1, 12+θ)

and I ′ ∼ P
Ber( 1

2−θ)+Binom(n′, 12+θ)
.

It turns out that R(i) is a linear function of i, and since

both I and I ′ are sum of binary random variables, one can

control their sub-gaussian norms (and hence that of R(I)
and 1/R(I ′)). We summarize the bound in the following

lemma and defer the proof to Section D.5.

Lemma 3.8. Let R(i) be defined as above and let I ∼
P
Binom(n′+1, 12+θ)

and I ′ ∼ P
Ber( 1

2−θ)+Binom(n′, 12+θ)
.

Then

• ∥R(I)− 1∥2ψ2
≤ C1

θ2

(1−4θ2)2(n′+1) ,

• ∥1/R(I ′)− 1∥2ψ2
≤ C2

θ2

(1−2θ)4
1

n′+1 ,

for some C1, C2 > 0.

Step 4: putting everything together. Combining

Lemma 3.8, Lemma 3.7, and Lemma 3.6, we obtain that

(4) ≤ C3
θ2

(1− 2θ)4

(
α2

α− 1

)
1

n′ + 1
.

Together with Lemma 3.5 and (3), we conclude that

max
p1,...,pn,p′1

Dα

(
PY1+Y2+...+Yn

∥
∥PY ′

1+Y2+...+Yn

)

≤ C7

(
θ2

(1− 2θ)4

)(
α2

α− 1

)
m

n′ + 1

≤ C0

(
θ2

(1− 2θ)4

)(
α2

α− 1

)
m

n
, (5)

for some C0 > 0 large enough. Finally, since RÂenyi diver-

gence is increasing with α, we also have for α < 2,

max
p1,...,pn,p′1

Dα

(
PY1+Y2+...+Yn

∥
∥PY ′

1+Y2+...+Yn

)

≤ max
p1,...,pn,p′1

D2

(
PY1+Y2+...+Yn

∥
∥PY ′

1+Y2+...+Yn

)

≤ C0

(
θ2

(1− 2θ)4

)
4m

n
. (6)

Combining (5) and (6), we establish Theorem 3.3.

4. The Multi-dimensional PBM

Next, we extend the scalar PBM into the multi-dimensional

setting, where xi ∈ R
d and ∥xi∥2 ≤ c. The description

of multi-dimensional PBM is given in Algorithm 1. The

key step that allows us to cast the multi-dimensional DME

into the scalar one is via Kashin’s representation, which

transforms the ℓ2 geometry of the data into an ℓ∞ geometry

and hence enables us to decompose the problem into scalar

sub-tasks.

4.1. Kashin’s representation

We first introduce the idea of a tight frame in Kashin’s

representation. A tight frame is a set of vectors

{uj}Dj=1 ∈ R
d that satisfy Parseval’s identity, i.e. ∥x∥22 =

∑D
j=1⟨uj , x⟩2 for all x ∈ R

d.

A frame can be viewed as a generalization of the notion of an

orthogonal basis in R
d for N > d. To increase robustness,

we wish the information to be spread evenly across different

coefficients, which motivates the following definition of a

Kashin’s representation:

Definition 4.1 (Kashin’s representation(Kashin, 1977)). For

a set of vectors {uj}Dj=1, we say the expansion

x =

D∑

j=1

ajuj , with max
j
|aj | ≤

K√
D
∥x∥2

is a Kashin’s representation of vector x at level K .

By Theorem 3.5 and Theorem 4.1 in (Lyubarskii & Ver-

shynin, 2010), we have the following lemma:

Lemma 4.2 (Uncertainty principle). There exists a tight

frame U = [u1, ..., uD] with (1) D = Θ(d) and (2) Kashin’s

level K = O (1).

Lemma 4.2 implies that for each xi ∈ R
d such that ∥xi∥2 ≤

1, one can always represent each xi with coefficients yi ∈
[−γ0/

√
d, γ0/

√
d]γ1d for some γ0, γ1 > 0 and xi = Uyi.

4.2. Proof of Theorem 2.1

With Lemma 4.2, we are well-prepared to analyze the per-

formance of Algorithm 1. Recall that the three main steps

in the multi-dimensional PBM are:

1. (Clients) compute a Kashin’s representation of xi with

respect to a (common) tight frame U (denoted as yi).

2. (Clients) sequentially transmit each coordinate of yi via

the scalar PBM.

3. (Server) reconstructs µ by µ̂ = Uµ̂y .

Let us denote yi(j) as the j-th coordinate of yi for j ∈ [γ1d],
and µy(j) as the j-th coordinate of µy = 1

n

∑n
i=1 yi. Due
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to the property of the Kashin’s representation, we know that

if ∥xi∥2 ≤ c, ∥yi∥∞ ≤ γ0c√
d

.

Therefore, using the scalar PBM (with parameters θ,m) for

coordinate j and applying Theorem 3.3, it holds that

• the privacy loss is εj(α) = C0

(
θ2

(1−2θ)4

)
αm
n ;

• E [µ̂y(j)] = µ̂y(i) and E

[

(µ̂y(j)− µj)
2
]

≤ γ2
0c

2

4dnmθ ;

• The communication cost is O (log n+ logm) bits.

Repeating for j = 1, .., γ1d and accounting the overall pri-

vacy loss via the composition theorem of RDP (Mironov,

2017, Proposition 1), the end-to-end RDP guarantee of Algo-

rithm 2 becomes ε(α) =
∑

j εj(α) = γ1C0
dαmθ2

(1−2θ)4n . Sim-

ilarly, the communication cost is γ1d (log n+ logm) bits.

Finally, we control the ℓ2 estimation error E
[

∥µ− µ̂∥22
]

.

Note that since xi = Uyi for all i = 1, ..., n, we have

µx = 1
n

∑

i Uyi = Uµy. Also,

E

[

(µ̂− µ)
2
]

= E

[∥
∥
∥

∑

j
(µ̂y(j)− µy(j))uj

∥
∥
∥

2

2

]

(a)

≤ E

[∑

j
(µ̂y(j)− µy(j))

2
]

= E

[

∥µ̂y − µy∥22
]

,

where (a) is due to the Cauchy±Schwarz inequality.

Hence to bound the MSE of µ̂, it suffices to bound

E
[
∥µ̂y − µy∥22

]
≤ γ1γ

2
0

c2

4mnθ = O
(

c2

4mnθ

)

.

5. Empirical evaluations

In this section, we evaluate PBM on the distributed mean es-

timation (DME) task. We follow the set-up of Kairouz et al.

(2021); Agarwal et al. (2021): we generate n = 1000 client

vectors with dimension d = 250, i.e., x1, ..., xn ∈ R
250

. Each local vector has bounded ℓ2 and ℓ∞ norms, i.e.

∥xi∥2 ≤ 1 and ∥xi∥∞ ≤ 1√
d

4. Our goal is to demonstrate

that the utility of PBM matches that of the continuous Gaus-

sian mechanism under the same privacy guarantees when

given sufficient communication budget.

In Figure 3, we apply PBM with different m’s (which dictate

the communication cost) under a given privacy requirement

ε. Note that once m is determined, the field that SecAgg op-

erates on will be Z2⌈log2(n·m)⌉ and hence the communication

cost becomes ⌈log2(n ·m)⌉ bits.

Reducing communication via modular clipping. Note

that since the sum of encoded messages (i.e.,
∑

Zi in Al-

gorithm 2) follows a Poisson-binomial distribution with

pi ∈
[
1
2 − θ, 1

2 + θ
]
, with high-probability,

∑
Zi ∈

4We perform the experiments under an ℓ∞ geometry. Under ℓ2
geometry, one can either apply random rotation and ℓ∞ clipping,
or compute the Kashin’s representation, as discussed in Section 4.

Figure 3. A comparison of PBM with the continuous Gaussian

mechanism. We set m = {2, 4, 6, 16}, and the corresponding

communication costs (i.e., the logarithmic of the field size that

SecAgg operates on) are B = {11, 12, 13, 14}.

[
nm(1−θ)

2 − c
√

nm
4 , nm(1+θ)

2 + c
√

nm
4

]

(where c is a pa-

rameter used to control the failure probability). Therefore

one can (modularly) clip local message in that range to fur-

ther reduce and hence communication cost the field size to

nmθ + c
√
nm (this, however, will incur bias to the final

estimator). We report the result in Figure 5 of the appendix.

6. Application to private SGD

In this section, we apply PBM to distributed SGD. In each

round, the server samples n out of N clients randomly, each

(sampled) client computes a local gradient from its data,

and the server aggregates the mean of the local gradients

via PBM. Since PBM ensures distributed DP, we call the

resulting scheme DDP-SGD.

We summarize DDP-SGD in Algorithm 3, in which we use

PBMenc to denote the clients’ procedure in Algorithm 1

(which includes computing Kashin’s representation, sequen-

tially applying the scalar PBM, and performing SecAgg)

and PBMdec to denote the server’s procedure.

Analysis of convergence rates. Next, we analyze the con-

vergence rate of Algorithm 3. Due to the unbiased nature of

PBM, one can easily control the convergence rate of DDP-

SGD by the variance of PBM through the following lemma

(which originates from (Ghadimi & Lan, 2013) but we use

a version adapted from (Agarwal et al., 2018)):

Lemma 6.1 (Corollary 1 in (Agarwal et al., 2018)). As-

sume F (w) ≜ 1
N

∑N
i=1 ℓ(w; di), where ℓ(·, d) is an L-

smooth and c-Lipschitz function for all d ∈ D. Let w0

satisfies F (w0) − F (w∗) ≤ DF . Let µ̂tg be the noisy

model updates at round t and let the learning rate γ ≜
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Algorithm 3 Distributed DP-SGD

Input: Clients data set d1, ..., dN ∈ D, PBM parameters

(θ,m), loss function ℓ(d, w).

Goal: Compute wT ≈ argminw
∑N
i=1 ℓ (di, w).

Server generates an initial model weights w0 ∈W

for iteration t = 1, ..., T do

Server samples a subset of n clients Ct ⊂ [N ] and

broadcasts wt−1 to them.

for each client i ∈ Ct do

Computes gti = Clipℓ2,c (∇ℓ (di, wt−1))
Computes Zti = PBMenc (g

t
i)

Send Zti to the server via SecAgg

end for

(Server) decodes µ̂tg = PBMdec (
∑

i Z
t
i ).

(Server) updates the model by wt = wt−1 + γµ̂tg .

end for

Return: wT

min

{

L−1,
√
2DF

(

σ
√
LT
)−1

}

. Then after T rounds,

Et∼unif(T )

[

∥∇F (wt)∥22
]

≤ 2DFL

T
+
2
√
2σ
√
LDF√
T

+cB,

where σ2 = 2
(

max
1≤t≤T

E

[∥
∥µtg −∇F (wt)

∥
∥
2

2

]

+ max
1≤t≤T

EQ

[∥
∥µtg − µ̃tg

∥
∥
2

2

] )

,

and B = max1≤t≤T
∥
∥EQ

[
µtg − µ̂tg

]∥
∥
2
.

Note that in each round, (1) µtg (the true mean of (the sam-

pled) clients’ gradients) is an unbiased estimator of∇F (wt)
(because clients are sampled uniformly at random), and

(2) µ̂tg is an unbiased estimator of µtg since PBM is unbi-

ased5. This implies B = 0 and σ2 = maxt Var
(
µtg
)
+

Var
(
µ̂tg
∣
∣µtg
)
, where the first term is bounded by c2, and ap-

plying Theorem 2.1, we can bound the second Var
(
µ̂tg
∣
∣µtg
)

by c2

4nmθ2 . Thus we arrive at the following conclusion:

Corollary 6.2 (Convergence of DDP-SGD). Under the

same assumptions of Lemma 6.1, after τ ∼ uniform(T )
iterations, the output of Algorithm 3 satisfies

Eτ

[

∥∇F (wτ )∥22
]

≤ LDF

T
+

√
8c2LDF√

T

√

1 +
1

4nmθ2
.

Remark 6.3. Note that due to the convergence guarantees

of Lemma 6.1, in Corollary 6.2 we apply Algorithm 3 with

a random stopping time.

5Notice that the clipping step in Algorithm 3 does not increase
bias since by the Lipschitz condition, ∥∇ℓ∥2 ≤ c.

Accounting for total privacy loss. To account for the total

privacy loss, we first note that the per-round RDP guarantee

is amplified by the sub-sampling of the clients with sam-

pling rate κ = n
N . To quantify the tight amplification rate,

one can apply (Wang et al., 2019, Theorem 9) and obtain a

non-asymptotic upper bound on εsampled(α). For instance,

(Wang et al., 2019, Theorem 9) shows that when α is not

too large (e.g., when α ≤ 2), εsampled(α) = O
(
κ2ε(α)

)
.

Applying Theorem 2.1 and plugging ε(α) = dmθ2α
n in this

bound, we have εsampled(α) = O
(
ndmθ2α
N2

)

. To account

for the privacy loss over all the T iterations, we apply the

composition theorem for RDP (Mironov, 2017, Proposi-

tion 1), concluding that Algorithm 3 satisfies (α, εfinal) with

εfinal(α) = O
(
ndmθ2αT

N2

)

when α ≤ 2 .

For high-privacy (where nmθ2 ≪ 1) and small α regimes,

we obtain a convergence rate-privacy trade-off:

Eτ

[

∥∇F (wτ )∥22
]

≈ O

(√

c2dα

N2εfinal (α)

)

.

This achieves the optimal rate of reported in (Bassily et al.,

2014, Table 1) (though admittedly, our results only hold for

high privacy regime and for α < 2). Finally, we remark

to obtain non-asymptotic trade-offs for full α > 1 regimes,

one has to resort to (Wang et al., 2019, Theorem 9).

7. Conclusion

In this paper, we present the Poisson Binomial mechanism,

a discrete (RÂenyi) DP mechanism that can be combined with

SecAgg for distributed mean estimation or federated learn-

ing/analytics. Unlike previous schemes, our mechanism

is not based on additive noise, so in addition to achieving

the optimal privacy-accuracy trade-off, it offers two extra

advantages: (1) it results in an unbiased estimator, and (2)

the communication cost with SecAgg decreases with the

privacy budget ε. Leveraging the unbiasedness property,

we propose a distributed DP-SGD algorithm and analyze

its convergence rate. Several important open problems in-

clude deriving a lower bound on the communication cost

for DME with DP and SecAgg, and evaluating our scheme

on real-world FL datasets.
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A. Societal Considerations

Harnessing distributed data holds the promise of impacting many facets of our lives. It could enable truly large scale

smart infrastructure and IoT applications; having a profound and positive impact on power-grid efficiency, traffic, health-

monitoring, medical diagnoses, carbon emissions, and many other areas. A foundational understanding of distributed

learning and estimation can also benefit many different fields of study such as neuroscience, medicine, economics, and social

networks, where statistical tools are often used to analyze information that is generated and processed in large networks.

While the above vision is expected to generate many disruptive business and social opportunities, it presents a number

of unprecedented challenges. First, massive amounts of data need to be collected by, and transferred across, resource-

constrained devices. Second, the collected data needs to be stored, processed, and analyzed at scales never previously seen.

Third, serious concerns such as access control, data privacy, and security should be rigorously addressed.

Our work tackles the above challenges by examining the trade-off between communication, privacy, and accuracy by taking

a holistic approach that examines all these constraints simultaneously and designing provably private FL mechanisms.

Our work therefore serves as a stepping stone towards harnessing large-scale distributed data in a privacy-preserving and

bandwidth efficient way.

B. Conversion of RDP to approximate DP

The following conversion lemma from (Asoodeh et al., 2020; Canonne et al., 2020; Bun & Steinke, 2016) relates RDP to

(εDP(δ), δ)-DP.

Lemma B.1. If M satisfies (α, ε(α))-RDP for all α > 1, then, for any δ > 0, M satisfies (εDP(δ), δ)-DP, where

εDP(δ) = inf
α>1

ε(α) +
log (1/αδ)

α− 1
+ log(1− 1/α).

To compare the privacy-utility trade-off of our mechanism with previous works, it will be useful sometimes to convert

the stronger RDP guarantees to an approximate DP guarantee. The following lemma, which is a simple application of

Lemma B.1, provides a simple form for the resulting approximate DP guarantees.

Lemma B.2. If M satisfies (α, ε(α))-RDP for all α > 1, then, for any δ > 0, M satisfies (εDP(δ), δ)-DP, where

εDP(δ) = Θ

(√(

sup
α

ε(α)

α

)

log(1/δ)

)

.

C. Additional plots

Numerical evaluation of the scalar PBM. In figure 4, we compute the privacy guarantee of Algorithm 1 and compared it

with the Gaussian mechanism. For the PBM, we fix θ, vary parameter m, and compute the corresponding RÂenyi DP (i.e.,

ε(α)) and MSE. We see that as θ → 0, the privacy-MSE curve converges to that of the Gaussian mechanism fast.

Reducing communication via modular clipping. Since the sum of encoded messages (i.e.,
∑

Zi in Algo-

rithm 2) follows a Poisson-binomial distribution with pi ∈
[
1
2 − θ, 1

2 + θ
]
, with high-probability,

∑
Zi ∈

[
nm(1−θ)

2 − c
√

nm
4 , nm(1+θ)

2 + c
√

nm
4

]

(where c is a parameter used to control the failure probability). Therefore one can

(modularly) clip local message in that range to further reduce and hence communication cost the field size to nmθ + c
√
nm

(this, however, will incur bias to the final estimator). In Figure 5, we perform PBM with modular clipping and set c =
√
30.

Since c is large enough, we observe almost no impact to the errors while saving the (per-parameter) communication by 1 bit.
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Figure 4. Privacy-MSE (variance) trade-offs of PBM and the Gaussian mechanism.

Figure 5. PBM with modular clipping, where m = {2, 4, 6, 16}. We set the modular clippiing parameter c =
√
30 and report the MSEs

and the corresponding communication cost.

D. Additional Proofs

D.1. Proof of Lemma B.2

εDP(δ) ≤ ε(α) +
log (1/αδ)

α− 1
+ log(1− 1/α)

≤ ε(α) +
log(1/δ)

α− 1

=
ε(α)

α
+

ε(α)

α
(α− 1) +

log(1/δ)

α− 1
.

Next, take α∗ = 1 +
√

supα
α
ε(α) , we get

εDP(δ) ≤ sup
α

ε(α)

α
+ 2

√
(

sup
α

ε(α)

α

)

log(1/δ) = Θ

(√(

sup
α

ε(α)

α

)

log(1/δ)

)

,
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if
ε(α)
α = O(1). This suggests that (α, ε(α))-RDP implies (εDP(δ), δ)-DP with εDP(δ) = Θδ

(√(

supα
ε(α)
α

))

.

D.2. Proof of Lemma 3.5

To see this, observe that PX1+X2+...+Xn = PX1+...+Xn−1
◦ PXn , where ◦ denotes the convolution operator. Since the

convolution operator is linear, we have

PX1+...+Xn−1
◦ PXn = λ

(

PX1+...+Xn−1
◦ Ber

(
1

2
− θ

))

+ (1− λ)

(

PX1+...+Xn−1
◦ Ber

(
1

2
+ θ

))

,

where λ > 0 is such that pn = λ
(
1
2 − θ

)
+ (1 − λ)

(
1
2 + θ

)
. By the quasi-convexty of Dα(·∥·), it holds that

Dα

(
PX1+X2+...+Xn

∥
∥PX′

1+X2+...+Xn

)
is upper bounded by

max
(

Dα

(

PX1+X2+...+Ber( 1
2−θ)

∥
∥
∥PX′

1+X2+...+Ber( 1
2−θ)

)

, Dα

(

PX1+X2+...+Ber( 1
2+θ)

∥
∥
∥PX′

1+X2+...+Ber( 1
2+θ)

))

.

By repetitively applying the quasi-convexity and the extrema argument for n− 1 times, we arrive at

Dα

(
PX1+X2+...+Xn

∥
∥PX′

1+X2+...+Xn

)
≤ max
k∈[n−1]

Dα

(
PX1+Nk

∥
∥PX′

1+Nk

)
,

where Nk ∼ Binom(k, 1
2 − θ) + Binom(n− k − 1, 1

2 + θ).

In the last step, by making use of the joint quasi-convexity of RÂenyi divergence (i.e., (P,Q) 7→ Dα(P∥Q) is quasi-convex),

it suffices to show that

(
PX1+Nk , PX′

1+Nk

)
= λ∗

1

(

P
Ber( 1

2−θ)+Nk
, P

Ber( 1
2−θ)+Nk

)

+ λ∗
2

(

P
Ber( 1

2−θ)+Nk
, P

Ber( 1
2+θ)+Nk

)

+ λ∗
3

(

P
Ber( 1

2+θ)+Nk
,

P
Ber( 1

2−θ)+Nk

)

+ λ∗
4

(

P
Ber( 1

2+θ)+Nk
, P

Ber( 1
2+θ)+Nk

)

for some λ∗
i ∈ [0, 1] and

∑4
i=1 λ

∗
i = 1. To this end, since Xi ∼ Ber(pi) and X ′

i ∼ Ber(p′i) for some pi, p
′
i ∈
[
1
2 − θ, 1

2 + θ
]
,

we must have

PX1+Nk = λP
Ber( 1

2−θ)+Nk
+ (1− λ)P

Ber( 1
2+θ)+Nk

, and

PX′
1+Nk

= λ′P
Ber( 1

2−θ)+Nk
+ (1− λ′)P

Ber( 1
2+θ)+Nk

for some λ, λ′ ∈ [0, 1]. Therefore, by setting λ∗
1 = λλ′, λ∗

2 = λ(1− λ′), λ∗
3 = (1− λ)λ′, and λ∗

4 = (1− λ)(1− λ′), we

arrive at the desired result.

D.3. Proof of Lemma 3.6

P
Binom(1+k∗, 12−θ)+Binom(n−k∗−1, 12+θ)

= P
Ber( 1

2−θ)+Binom(n−k∗−1, 12+θ)
◦ P

Binom(k∗, 12−θ)

P
Binom(k∗, 12−θ)+Binom(n−k∗, 12+θ)

= P
Binom(n−k∗, 12+θ)

◦ P
Binom(k∗, 12−θ)

,

and by a data processing inequality, we have

Dα

(

P
Binom(1+k∗, 12−θ)+Binom(n−k∗−1, 12+θ)

∥
∥
∥PBinom(k∗, 12−θ)+Binom(n−k∗, 12+θ)

)

≤ Dα

(

P
Ber( 1

2−θ)+Binom(n−k∗−1, 12+θ)

∥
∥
∥PBinom(n−k∗, 12+θ)

)

≤ Dα

(

P
Ber( 1

2−θ)+Binom(n′, 12+θ)

∥
∥
∥PBer( 1

2+θ)+Binom(n′, 12+θ)

)

,
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where in the last inequality we use a data processing inequality and define n′ = ⌈n−1
2 ⌉. Similarly, when k∗ > n

2 , we

decompose

P
Binom(1+k∗, 12−θ)+Binom(n−k∗−1, 12+θ)

= P
Binom(1+k∗, 12−θ)

◦ P
Binom(n−k∗−1, 12+θ)

P
Binom(k∗, 12−θ)+Binom(n−k∗, 12+θ)

= P
Ber( 1

2+θ)+Binom(k∗, 12−θ)
◦ P

Binom(n−k∗−1, 12+θ)
.

By a data processing inequality, we obtain

Dα

(

P
Binom(1+k∗, 12−θ)+Binom(n−k∗−1, 12+θ)

∥
∥
∥PBinom(k∗, 12−θ)+Binom(n−k∗, 12+θ)

)

≤ Dα

(

P
Ber( 1

2−θ)+Binom(n′, 12−θ)

∥
∥
∥PBer( 1

2+θ)+Binom(n′, 12−θ)

)

.

Therefore we conclude that (4) can be upper bounded by

max
k∈[n−1]

Dα

(

P
Binom(1+k, 12−θ)+Binom(n−k−1, 12+θ)

∥
∥
∥PBinom(k, 12−θ)+Binom(n−k, 12+θ)

)

≤ max
(

Dα

(

P
Ber( 1

2−θ)+Binom(n′, 12+θ)

∥
∥
∥PBer( 1

2+θ)+Binom(n′, 12+θ)

)

︸ ︷︷ ︸

(a)

)

,

Dα

(

P
Ber( 1

2−θ)+Binom(n′, 12−θ)

∥
∥
∥PBer( 1

2+θ)+Binom(n′, 12−θ)

)

︸ ︷︷ ︸

(b)

. (7)

D.4. Proof of Lemma 3.7

Using the inequality t ≤ et−1, we have

Dα (P∥Q) =
1

α− 1
log

(

EQ

[(
dP

dQ
(X)

)α])

≤ 1

α− 1
log
(

EQ

[

eα(
dP
dQ

(X)−1)
])

≤ 1

α− 1
log
(

EQ

[

eα(
dP
dQ

(X)−1)
])

(a)

≤ 1

α− 1
log

(

e
C0α

2∥ dPdQ (X)−1∥2
ψ2

)

= C0
α2

α− 1

∥
∥
∥
∥

dP

dQ
(X)− 1

∥
∥
∥
∥

2

ψ2

,

where (a) holds for any sub-gaussian random variable (see, for instance, Vershynin (2018, Proposition 2.5.2), which states

that for a zero-mean random variable Z with finite sub-gaussian norm, E
[
eαZ

]
≤ eC0α

2∥Z∥2
ψ2 ).
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D.5. Proof of Lemma 3.8

Bounding (a) For notational simplicity, we denote the LR of term (a) in (7) as R(i) for i ∈ [n′ + 1] and bound it as

follows.

R(i) ≜
P
Ber( 1

2−θ)+Binom(n′, 12+θ)
(i)

P
Binom(n′+1, 12+θ)

(i)

=

(
n′

i

) (
1
2 + θ

)i+1 ( 1
2 − θ

)n′−i

(
n′+1
i

) (
1
2 + θ

)i ( 1
2 − θ

)n′+1−i +

(
n′

i−1

) (
1
2 + θ

)i ( 1
2 − θ

)n′−i+1

(
n′+1
i

) (
1
2 + θ

)i ( 1
2 − θ

)n′+1−i

=

(
n′ + 1− i

n′ + 1

)(
1− 2θ

1 + 2θ

)

+

(
i

n′ + 1

)(
1 + 2θ

1− 2θ

)

=

(
1− 2θ

1 + 2θ

)

+
i

n′ + 1

((
1 + 2θ

1− 2θ

)

−
(
1− 2θ

1 + 2θ

))

=

(
1− 2θ

1 + 2θ

)

+
i

n′ + 1

(
8θ

1− 4θ2

)

.

When I ∼ P
Binom(n′+1, 12+θ)

, I − E[I] has a sub-gaussian norm ∥I − E[I]∥2ψ2
≤ σ2

0(n
′ + 1) for some universal constant

σ0 (since I is sum of n′ + 1 independent binary random variables). Also notice that E[R(I)] = 1, so R(I)− 1, which is a

linear function of I , can be written as

R(I)− 1 =
8θ

(n′ + 1)(1− 4θ2)
(I − E[I]) .

Therefore, R(I)− 1 has a sub-gaussian norm bounded by

∥R(I)− 1∥2ψ2
≤ C1

θ2

(1− 4θ2)2(n′ + 1)
.

By Lemma 3.7, we conclude that term (a) in (7) can be controlled by

Dα

(

P
Ber( 1

2−θ)+Binom(n′, 12+θ)

∥
∥
∥PBinom(n′+1, 12+θ)

)

≤ C2
θ2

(1− 4θ2)2
α2

α− 1

1

n′ + 1
, (8)

for some constant C2 > 0.

Bounding (b) Similarly, let us denote the LR of term (b) in (7) as R′(i) = 1
R(i) for i ∈ [n′ + 1]. Let

I ∼ P
Ber( 1

2−θ)+Binom(n′, 12+θ)

and we control the sub-gaussian norm of R′(I)− 1 as follows:

R′(I)− 1 =
E[R(I)]−R(I)

R(I)
+

1− E[R(I)]

R(I)
. (9)

For the first term in the right hand side of (9), observe that

E[R(I)]−R(I)

R(I)
≤ |E[R(I)]−R(I)|

|R(I)|

≤
(
1 + 2θ

1− 2θ

)

|E[R(I)]−R(I)| (10)
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where the last inequality holds since R(I) ≥
(

1+2θ
1−2θ

)

almost surely. Therefore

∥
∥
∥
∥

E[R(I)]−R(I)

R(I)

∥
∥
∥
∥

2

ψ2

≤
(
1 + 2θ

1− 2θ

)2

∥R(I)− E[R(I)]∥2ψ2

≤ C3

(
1 + 2θ

1− 2θ

)2
θ2

(1− 4θ2)2
α2

α− 1

1

n′ + 1

= C3
θ2

(1− 2θ)4
1

n′ + 1
, (11)

where the second inequality is due to the fact that I − E[I] is sum of n′ + 1 zero-mean bounded random variables.

Next, the second term in (9) can be controlled by

∣
∣
∣
∣

1− E[R(I)]

R(I)

∣
∣
∣
∣
≤
(
1 + 2θ

1− 2θ

)

|R(I)− 1|

=

(
1 + 2θ

1− 2θ

) ∣
∣
∣
∣

(
1− 2θ

1 + 2θ

)

+
E[I]

n′ + 1

(
8θ

1− 4θ2

)

− 1

∣
∣
∣
∣

=

(
1 + 2θ

1− 2θ

)(
8θ2

(1− 4θ2) (n′ + 1)

)

=
8θ2

(1− 2θ)
2
(n′ + 1)

, (12)

where the second equality holds since

E[I] = n′
(

1 +
θ

2

)

+

(

1− θ

2

)

.

Combining (11) and (12), we obtain an upper bound on (9):

∥R′(I)− 1∥2ψ2

≤ 2

∥
∥
∥
∥

E[R(I)]−R(I)

R(I)

∥
∥
∥
∥

2

ψ2

+ 2

∥
∥
∥
∥
∥

8θ2

(1− 2θ)
2
(n′ + 1)

∥
∥
∥
∥
∥

2

ψ2

≤ 2C3
θ2

(1− 2θ)4
1

n′ + 1
+ C4

(

8θ2

(1− 2θ)
2
(n′ + 1)

)2

≤ C5
θ2

(1− 2θ)4
1

n′ + 1
,

for some C5 > 0. Also notice that E[R′(I)− 1] = 0 when I ∼ P
Ber( 1

2−θ)+Binom(n′, 12+θ)
. Therefore, applying Lemma 3.7,

we conclude that term (b) in (7) can be controlled by

Dα

(

P
Binom(n′+1, 12+θ)

∥
∥
∥PBer( 1

2−θ)+Binom(n′, 12+θ)

)

≤ C6
θ2

(1− 2θ)4
α2

α− 1

1

n′ + 1
, (13)

for some C6 > 0.


