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Abstract

Deep learning is increasingly moving towards a transfer learning paradigm whereby
large foundation models are fine-tuned on downstream tasks, starting from an
initialization learned on the source task. But an initialization contains relatively
little information about the source task, and does not reflect the belief that our
knowledge of the source task should affect the locations and shape of optima on the
downstream task. Instead, we show that we can learn highly informative posteriors
from the source task, through supervised or self-supervised approaches, which then
serve as the basis for priors that modify the whole loss surface on the downstream
task. This simple modular approach enables significant performance gains and more
data-efficient learning on a variety of downstream classification and segmentation
tasks, serving as a drop-in replacement for standard pre-training strategies. These
highly informative priors also can be saved for future use, similar to pre-trained
weights, and stand in contrast to the zero-mean isotropic uninformative priors that
are typically used in Bayesian deep learning.

1 Introduction

The ability to transfer what is learned from one task to another Ð learning to ride a bicycle to then
ride a unicycle Ð has historically set apart biological intelligence from machine learning approaches.
However, transfer learning is quickly becoming mainstream practice in deep learning. Typically,
large ªfoundation modelsº are pre-trained on massive volumes of source data, and then the learned
parameter vector is used as an initialization for training in a downstream task. While this approach
has had great empirical success, reliance on an initialization is a very limited way to perform transfer
learning. If we are doing a good job of optimization, then our final solution should be independent
of initialization, barring local minima with identical training loss. Moreover, our knowledge of the
source task should affect the locations and shapes of optima on the downstream knowledge.

We propose to instead use a re-scaled Bayesian parameter posterior from the first task as a pre-trained
prior for the downstream task. Since the negative log posterior on the downstream task is our loss
function, this procedure has the effect of reshaping our training objective on the downstream task,
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we instead make predictions with a Bayesian Model Average (BMA) of all models weighted by
their posterior probabilities: p(y|x,D, f) =

∫
p(y|x,w, f)p(w|D, f)dw. There are many ways to

approximate this integral, such as MCMC, or variational approaches, which take a finite number
of approximate samples wj from the parameter posterior to form the simple Monte Carlo estimate:

p(y|x,D, f) ≈ 1

J

∑
j p(y|x,wj , f). Almost always, one uses zero-mean isotropic priors [51]. There

are also specialized priors, including heavy-tailed priors [15, 25], noise-contrastive priors for high
uncertainty under distribution shift [17], and input-dependent priors for domain generalization [24].

Transfer Learning. In transfer learning, we wish to recycle the representation learned on one task
to improve performance on another. Transfer learning is now widely applied in deep learning, and
forms the basis for foundation models [1, 12, 8, 43, 4, 20, 10], which are exceptionally large neural
networks pre-trained on massive volumes of data, and then fine-tuned on a downstream task. Recent
work has found self-supervised pre-training can transfer better than supervised pre-training [19], in
line with our finding in Section 4 that self-supervised pre-trained priors transfer better.

In continual learning, we wish to learn tasks sequentially without forgetting what has been learned
previously. Elastic Weight Consolidation (EWC) prevents forgetting by imposing a penalty, the
diagonal of a Fisher information matrix computed on previous tasks, for adapting to a new task [29].
We can contextualize the EWC penalty within Bayesian transfer learning as a negative log Gaussian
prior with diagonal covariance used for maximum a posteriori (MAP) estimation on sequential tasks,
such as digit classification or RL [29]. In our experiments, we find that MAP estimation, diagonal
covariance, and supervised pre-training are all suboptimal in the transfer learning setting.

Leveraging Auxiliary Data and Knowledge Transfer in Bayesian Modeling. A number of works
outside of deep learning have considered knowledge transfer in Bayesian modeling, especially in
settings such as domain adaptation or homogeneous transfer learning in which source and target
tasks contain similar feature and label spaces but differ in their marginal distributions. For example,
Xuan et al. [52] considers Bayesian transfer learning methods for probabilistic graphical models,
and Karbalayghareh et al. [28] develop a theoretical framework for understanding optimal Bayes
classifiers given prior knowledge from other domains. Other works on Bayesian transfer learning
learn a Dirichlet prior over naive Bayes classifiers [44]. Bayesian optimization methods can also find
transferable hyperparameter settings [40] or select data which will yield transferable models on shifted
domains [45]. Schnaus [47] uses the Laplace approximation to learn posteriors with Kronecker-
factored covariance and then adjusts the posteriors by optimizing PAC-Bayes generalization bounds
to create priors for downstream applications.

Bayesian tools have additionally been used for leveraging auxiliary data or multiple domains in deep
learning. Chandra and Kapoor [2] learn from multiple domains simultaneously using a round-robin
task sampling procedure and a single-layer neural network. Bayesian methods for continual learning
update the posterior to accommodate new tasks without forgetting how to perform previous ones
[35, 49, 13, 27, 46], or develop kernels based on neural networks trained on previous tasks for
Gaussian process inference [33, 37]. Semi-supervised algorithms can incorporate unlabeled data
into the training pipelines of BNNs using biologically plausible Bayesian Confidence Propagation
Neural Networks (BCPNN) which model the cortex [41], by perturbing weights and using consistency
regularization [11], or via semi-supervised deep kernel learning [26]. Gao et al. [16] also show how
to harness unlabeled data to learn reference priors, uninformative priors which depend on the amount
of training data and allow labels to most efficiently inform inference. Deep kernel learning has also
been used for Bayesian meta-learning in few-shot classification and regression [39].

In contrast to these works, we do not perform multi-task learning nor is our goal to harness auxiliary
unlabeled downstream data; we instead approach transfer learning in which we leverage pre-training
data for expressive priors that maximize performance on a single downstream task.

3 Bayesian Transfer Learning with Pre-Trained Priors

In order to transfer knowledge acquired through pre-training to downstream tasks, we adopt a pipeline
with three simple components, composed of easy-to-use existing tools:

1. First, we fit a probability distribution with closed-form density to the posterior over feature
extractor parameters using a pre-trained checkpoint and SWAG [34] (Section 3.1).
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2. Second, we re-scale this distribution, viewed as a prior for new tasks, to reflect the mismatch
between the pre-training and downstream tasks and to add coverage to parameter settings
which might be consistent with the downstream, but not pre-training, task. To this end, we
tune a single scalar coefficient on held out validation data (Section 3.2).

Finally, we use this re-scaled prior, along with a zero-mean isotropic Gaussian prior over
added parameters (e.g. classification head), to form a posterior on the downstream task. We
then either optimize the posterior, or use it to perform full Bayesian inference with SGLD
and SGHMC samplers [42, 5] (Section 3.3)

3. Finally, we plug the re-scaled prior into a Bayesian inference algorithm, along with a zero-
mean isotropic Gaussian prior over added parameters (e.g. classification head) to form a
posterior on the downstream task. We then either optimize the posterior, or use it to perform
full Bayesian inference with SGLD and SGHMC samplers [50, 5] (Section 3.3).

We illustrate this pipeline in Figure 5 in the Appendix. The simplicity and modularity of this
framework are key strengths: by carefully combining easy-to-use existing components, we will see
in Section 4 that we can straightforwardly improve the default approaches to deep transfer learning.
The potential for impact is significant: we can use this pipeline as a drop-in replacement for standard
procedures used in deploying foundation models. At the same time, there is significant novelty: while
Bayesian neural networks are typically used with simple zero-mean isotropic priors, we leverage the
significant developments in self-supervised learning to produce highly informative priors. Moreover,
in the following subsections (3.1, 3.2, and 3.3) we will gain a nuanced understanding of each of
these three components and the key considerations for practical success. We discuss computational
considerations in Section 3.4.

For experiments in this section, we use a prior learned over the parameters of an ImageNet pre-trained
SimCLR ResNet-50 feature extractor [9, 6, 18], and we choose CIFAR-10 and CIFAR-100 for
downstream tasks [30]. We perform Bayesian inference with stochastic gradient Hamiltonian Monte
Carlo (SGHMC) [5]. The experiments in this section are primarily intended to gain conceptual
insights into each step of our approach. In Section 4, we present our main empirical evaluations.

3.1 Learning Transferable Priors

We begin by building a probability distribution over the parameters of a feature extractor which
represents knowledge we acquire from pre-training. To this end, we fit the distribution to the Bayesian
posterior, or regularized loss function, on the pre-training task. This pre-training posterior will
become the prior for downstream tasks and can be saved, or publicly released, for future use, similar
to pre-trained weights. This stage requires two major design choices: a pre-training task and an
algorithm for constructing the probability distribution.

Our downstream inference procedures require that our prior is represented as a closed-form density
function. Thus, we must use a method that can provide a closed-form posterior approximation
for the source task, which can be then re-scaled and used as a prior in the downstream task. We
opt for SWA-Gaussian (SWAG) [34] due to its simplicity, scalability, popularity, and non-diagonal
covariance. Other procedures that provide closed-form posterior approximations, such as the Laplace
approximation or variational methods, could also be applied, though as we will see, a non-diagonal
covariance is particularly important to the success of this approach.

SWAG starts from a pre-trained model, and runs a small number M of fine-tuning epochs with
a modified learning rate schedule [34]. The SWAG approximate posterior distribution is given

by N (w, 1

2
Σdiag + 1

2
Σlow-rank), where w = 1

M

∑M

t=1
wt is the SWA [23] solution, Σdiag =

1

L−1

∑M

t=M−L+1
diag(wt −w), and Σlow-rank = 1

L−1

∑M

t=M−L+1
(wt − w) (wt − w)

⊤
, where L is

a hyperparameter controlling the rank of the low-rank component of the covariance matrix. After
obtaining a closed-form distribution using SWAG, we remove the head from on top of the feature ex-
tractor, for example, a linear classification module, and we consider only the distribution’s restriction
to the parameters of the feature extractor. New layers that are added for downstream tasks receive a
non-learned prior over their parameters.

To highlight the versatility of Bayesian transfer learning, we will focus both on supervised image clas-
sification and also on self-supervised learning pre-training tasks and leverage existing torchvision

and SimCLR [6] checkpoints. For both torchvision and SimCLR models, we learn the prior
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using the associated loss function Ð cross-entropy and InfoNCE, respectively, regularized by weight
decay. In both settings, the regularized loss function can be represented as the sum of a negative
log-likelihood and the negative log Gaussian density (weight decay).

While standard SGD-based transfer learning uses a learned parameter vector, our Bayesian trans-
fer learning approach uses a covariance matrix over feature extractor parameters which contains
information about the pre-training loss surface geometry.

Can we really ªlearnº a prior? A data-dependent prior may sound odd, because a prior reflects our
beliefs ªbefore we see the dataº. However, it is entirely principled to learn a prior, as long as it is not
learned using exactly the same labeled data we use in our downstream likelihood for the downstream
task. Indeed, any informative prior is based on data that has shaped our beliefs.

Alignment of Pre-Training and Downstream Loss Geometry. If the covariance matrix of our
learned prior is to be more effective than an isotropic one, then it must not favour poorly generalizing
directions for the downstream task. Thus, we compare the alignment of the learned covariance matrix
with a downstream task’s test loss.

We begin by computing the top 5 leading singular vectors of a SWAG learned covariance matrix over
parameters of the SimCLR ImageNet-trained ResNet-50 feature extractor. We then train a linear
classifier head on CIFAR-10 training data on top of the fixed pre-trained feature extractor. Starting
at the learned parameter vector, we perturb the feature extractor parameters in the direction of the
singular vectors (fixing fully-connected classifier parameters), and measure the increase in test loss.
We compare to the test loss when instead perturbing by each of 10 random vectors. All perturbation
distances are filter normalized (as in [31, 21]), to account for invariance with respect to filter-wise
parameter rescaling. In Figure 2a, we see the CIFAR-10 test loss is far flatter in the directions of
leading eigenvectors of the pre-trained covariance than in a random direction, indicating the learned
prior indeed promotes directions consistent with the downstream task.

Learned Covariance Outperforms Only a Learned Mean. After verifying that our pre-trained
priors do in fact identify flat directions of the pre-training loss which are aligned with the downstream
loss, we directly compare the performance benefits of our learned covariance over an isotropic
covariance with a learned mean. To this end, we swap out our learned prior’s covariance with
an isotropic version αI , where α is tuned on a held out validation set. Figure 2c shows that a
learned covariance consistently outperforms its isotropic counterpart, indicating that the shape of
the pre-training loss surface’s basin is informative for downstream tasks. The x-axis here denotes
the number of training samples used for fine-tuning on the downstream task. We also see Bayesian
model averaging provides further performance gains, which we discuss further in Section 3.3. We
now dissect just how important the low-rank component is.

How is the Prior Best Structured? In the context of continual learning, elastic weight consolidation
(EWC) [29] uses purely diagonal covariance priors to help prevent forgetting in continual learning.
In this paper, we are interested in transfer learning, and wish to understand the benefits of a low-
rank component for capturing particularly important directions in the pre-training loss surface for
transferring to downstream tasks. Omitting the low-rank component slightly reduces the memory
footprint, but loses potentially important information about the shape of the pre-training posterior
mode. In practice, the rank of the matrix is determined by the number of samples collected when
running SWAG. In Figure 2b, we present the performance of a prior learned via SWAG on a SimCLR
ResNet-50 feature extractor for transfer learning to CIFAR-10 and CIFAR-100. As the rank of the
low-rank component increases from zero (diagonal covariance), we see the performance improves
dramatically until it saturates, indicating that only a small number of dominant directions are important
for the transferability of the prior. Note that performance saturation occurs later for CIFAR-100 than
CIFAR-10 Ð likely due to the higher complexity of CIFAR-100 compared to CIFAR-10, which has
10× fewer classes.

3.2 Rescaling the Prior

In incremental learning, it is common to acquire some data, form a posterior, and then use this
posterior as our new prior in acquiring future data. This procedure is equivalent to forming the
posterior from all of the data at once, assuming all data are drawn from the same distribution with the
same likelihood. However, in transfer learning, we assume the data from the source and downstream
task are drawn from different but related distributions. Thus we do not want to directly re-use a
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3.3 Bayesian Inference

After learning a prior and re-scaling it, we finally must draw samples from the downstream task’s
posterior over the parameters of the entire model, including additional modules, such as classification
heads, which were added after pre-training specifically for a particular downstream task. We use a
zero-mean isotropic Gaussian prior over these additional parameters, with a scaling that is again tuned
on held-out training data from the downstream task. Since we obtain a closed-form prior, the re-scaled
distributions we learn are compatible with a wide variety of Bayesian inference algorithms. In our
experiments, we choose stochastic gradient Hamiltonian Monte Carlo (SGHMC) [5] and Stochastic
Gradient Langevin Dynamics (SGLD) [50] since these samplers simultaneously provide strong
performance and tractable computation costs. Once we have obtained samples from the downstream
posterior, we use these samples to form a Bayesian model average for test-time predictions.

In Figure 2c, we also observe the advantage of Bayesian inference (SGHMC) over MAP estimation
(SGD) on the negative log-posterior yielded by our learned prior. Bayesian inference outperforms
MAP estimation across all dataset sizes we consider.

In general, Bayesian inference can benefit most from an expressive prior. Indeed, priors reshape the
whole posterior landscape Ð and the distinctive feature of a Bayesian approach is that it marginalizes
over the whole posterior, rather than simply using an optimum as with standard training.

3.4 Practical Considerations

While our method requires a learned prior and a re-scaling coefficient, it is very easy to use and has
minimal computational costs over standard fine-tuning routines. In particular, no expert intervention
or knowledge of Bayesian methods is required, and only a single hyperparameter needs to be tuned.
In the Appendix Section A, we evaluate the costs of each of the three stages of our pipeline in detail:
(i) inferring the posterior on the source task; (ii) re-scaling the posterior to become an informative
prior for the downstream task; (iii) using the informative prior in the downstream task.

In short, (i) has a minor cost (e.g., 1

4
of an epoch on ImageNet) that is a one-time cost when a

pre-trained posterior is publicly released, as we have done; (ii) involves a single hyperparameter that
can be tuned in the same way as other hyperparameters (simple validation grid search), does not
require specialized expertise, and adds 1

7
to the runtime of fine-tuning; (iii) has no additional cost if

we do MAP optimization and has a cost comparable to deep ensembles if we run our implementation
of Bayesian inference, both in terms of fine-tuning and test-time, and we show that Bayesian inference
significantly outperforms deep ensembles.

4 Experiments

We now conduct a thorough empirical evaluation of our transfer learning pipeline on image classifi-
cation and semantic segmentation. We generally consider five approaches, which we find have the
following performance ordering: (1) Bayesian inference with learned priors, (2) SGD with learned
priors, (3) SGD with standard pre-training, (4) Bayesian inference with non-learned zero-mean priors,
(5) SGD with non-learned zero-mean priors. We note that both (1) and (2) are part of our framework,
and that SGD with learned priors (2) significantly outperforms standard transfer learning (3).

4.1 Experimental Setting

We adopt the ResNet-50 and ResNet-101 architectures [18], and we scale the input image to 224×224
pixels to accommodate these feature extractors designed for ImageNet data. We use a SimCLR (SSL)
ResNet-50 checkpoint [6] pre-trained on the ImageNet 1k dataset [9] and fit our prior to the SimCLR
loss function. For the supervised setting, we use pre-trained torchvision ResNet-50 and ResNet-
101 backbones. We perform image classification experiments on four downstream tasks: CIFAR-10,
CIFAR-100 [30], Oxford Flowers-102 [36], and Oxford-IIIT Pets [38]. On semantic segmentation,
we use a DeepLabv3+ system [4] with ResNet-50 and ResNet-101 backbone architectures, and
we evaluate performance on the Pascal VOC 2012 [14] and Cityscapes [7] datasets. All error bars
represent one standard error over 5 runs. We evaluate over a variety of downstream training set sizes,
as transfer learning often involves limited downstream data.We provide a detailed description of
hyperparameters in Appendix C.1.
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for the loss functions induced by both learned priors in Appendix C.2. We again find that our learned
priors boost the performance of MAP estimates as well, and thus are preferable to standard transfer
learning, even for practitioners who do not intend to perform Bayesian inference.

Dataset Backbone
SGD

Transfer
Non-Learned

Prior
Learned Prior

Supervised
Learned Prior

SSL

PASCAL VOC 2012
ResNet-50 73.17 73.16 73.72 74.15
ResNet-101 75.53 75.79 76.27 *

Cityscapes
ResNet-50 73.17 75.52 76.09 76.52
ResNet-101 77.04 77.02 77.63 *

Table 1: Bayesian inference for semantic segmentation. The performance (Mean-IoU) of SGLD
with learned priors (both supervised and SSL) and a non-learned prior over ResNet-50 and ResNet-
101 parameters for segmentation tasks. *SimCLR ResNet-101 checkpoints have not been released.

5 Discussion

Our work reveals several new key insights about deep transfer learning:

• Modifying the loss surface on the downstream task through informative priors leads to
significant performance gains, with and without Bayesian inference.

• Bayesian inference provides a particular performance boost with the informative priors.

• Informative priors lead to more data-efficient performance on the downstream task.

• The success of this approach depends on capturing key directions in the loss surface of the
source task, which we represent through a low-rank plus diagonal covariance matrix.

• Standard transfer learning can be significantly miscalibrated, even providing worse likeli-
hood than Bayesian methods from scratch on the downstream task.

• Priors learned via self-supervised pre-training transfer better than those learning via
supervised learning.

In short, pre-training your loss with care provides an easy drop-in replacement for conventional
transfer learning that relies on initialization.
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