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Abstract

Zero-knowledge and succinctness are two important properties that arise in the study of non-interactive ar-
guments. Previously, Kitagawa et al. (TCC 2020) showed how to obtain a non-interactive zero-knowledge (NIZK)
argument for NP from a succinct non-interactive argument (SNARG) for NP. In particular, their work demonstrates
how to leverage the succinctness property from an argument system and transform it into a zero-knowledge property.

In this work, we study a similar question of leveraging succinctness for zero-knowledge. Our starting point is a
batch argument of NP, a primitive that allows a prover to convince a verifier of ) NP statements G1, . . . , G) with
a proof whose size scales sublinearly with ) . Unlike SNARGs for NP, batch arguments for NP can be built from
group-based assumptions in both pairing and pairing-free groups and from lattice-based assumptions. The challenge
with batch arguments is that the proof size is only amortized over the number of instances, but can still encode full
information about the witness to a small number of instances.

We show how to combine a batch argument for NP with a local pseudorandom generator (i.e., a pseudorandom
generator where each output bit only depends on a small number of input bits) and a dual-mode commitment scheme
to obtain a NIZK for NP. Our work provides a new generic approach of realizing zero-knowledge from succinctness
and highlights a new connection between succinctness and zero-knowledge.

1 Introduction

In a non-interactive argument system for an NP language L, a prover sends a single message c to try and convince an
efficient verifier that an NP statement G is true (i.e., G ∈ L). In an argument system [BCC88], we require soundness to
hold against computationally-bounded provers (i.e., a computationally-bounded prover should not be able to convince
the verifier of a false statement). Two of the most important properties considered in the context of cryptographic
argument systems are zero-knowledge and succinctness:

• Zero-knowledge: We say a non-interactive argument satisfies zero-knowledge [GMR85] if the proof c for
an NP statement G reveals nothing more about G other than the fact that the statement is true. We refer to
such arguments as non-interactive zero-knowledge (NIZK) arguments [BFM88]. While NIZKs for NP are
unlikely to exist in the plain model (unless NP ⊆ BPP), a long line of works have constructed NIZKs in the
common reference string (CRS) model from a broad range of algebraic assumptions including factoring [FLS90],
assumptions on pairing groups [CHK03, GOS06, GOS12, LPWW20] and pairing-free groups [JJ21], lattice-based
assumptions [CCH+19, PS19], and combinations of multiple assumptions [BKM20].

• Succinctness: A second property of interest is the length of the proof (and by correspondence, the verification
complexity). We say that an argument system for L is succinct if the length of the proof and the running time
of the verifier is sublinear (or more commonly, polylogarithmic) in the size of the NP relation associated with
L. Such arguments are referred to as succinct non-interactive arguments, or SNARGs [GW11]. We refer to
[Mic95, Gro10, BCCT12, DFH12, Lip13, PHGR13, GGPR13, BCI+13, BCPR14, Gro16, BISW17, BCC+17, BISW18,
BBHR18, COS20, CHM+20, Set20, ACL+22, BS23, CBBZ23] and the references therein for a survey of succinct
arguments.
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Many applications require non-interactive arguments that are simultaneously succinct and zero-knowledge (i.e.,
zkSNARGs). Given a SNARG and a NIZK (argument of knowledge), it is straightforward to obtain a zkSNARG by
direct composition (i.e., the zkSNARG is a NIZK argument of knowledge of a SNARG proof of the statement). A
natural question is whether there is a formal connection between these two fundamental properties of cryptographic
arguments. Previously Kitagawa et al. [KMY20] showed that SNARGs for NP and one-way functions together imply
NIZKs for NP (and by composition, a zkSNARG).1 The intuition underlying this result is that since the length of a
SNARG proof for an NP statement G is much shorter than the length of the associated witnessF , the SNARG proof
simply cannot reveal too many bits of the witness information-theoretically. Then, by composing the SNARG with
leakage-resilient cryptography, this intuition can be leveraged to obtain a NIZK.

Batch arguments and zero knowledge. In this work, we continue this line of inquiry of studying the relation-
ship between succinctness and zero-knowledge. Instead of focusing on SNARGs for NP, which have a very strong
succinctness property and necessitates constructions in either idealized models or based on non-falsifiable assump-
tions [GW11], we start with the weaker notion of SNARGs for batch NP languages. This is a notion that has received
extensive study recently [KVZ21, CJJ21a, CJJ21b, HJKS22, WW22, DGKV22, GSWW22, CGJ+22, KLVW23] and can be
realized from standard cryptographic assumptions. At a high level, in a non-interactive batch argument (BARG), a
prover can convince a verifier of a collection of ) NP statements (G1, . . . , G) ) with a proof of size poly(_, B) · > () ),
where B is the size of the circuit computing the NP relation. In particular, a batch argument amortizes the cost of NP
verification across multiple instances. While this amortization still confers some succinctness, it is certainly possible
for a BARG proof to leak one or more of the underlying witnesses associated with the statements used to construct it.
Thus, we ask the question:

Can we construct a NIZK argument for NP from a non-interactive batch argument for NP?

Our results. In this work, we give a generic construction of NIZKs forNP from a non-interactive batch argument for
NP in conjunction with a dual-mode commitment scheme and a (sub-exponentially-hard) low-locality pseudorandom
generator (PRG) with super-linear stretch. Dual-mode commitment schemes can be built from any lossy/dual-mode
public-key encryption scheme, which is known from most standard assumptions [PW08, HLOV11, AFMP20]. A
low-locality PRG is a PRG where each output bit only depends on a small number of the seed bits. PRGs with constant
locality and super-linear stretch are a notable ingredient in the recent constructions of indistinguishability obfuscation
from well-studied assumptions [JLS21, JLS22]. Our instantiations can rely on locality as high as 2 log _, where 2 < 1
is a constant and _ is the seed length; this is a much weaker requirement compared to the constant locality PRGs
required for indistinguishability obfuscation. The local PRG can in turn be instantiated using Goldreich’s family of
PRGs [Gol00, CM01].

While the additional ingredients we rely on for constructing a NIZK for NP are (much) stronger than one-way
functions, we emphasize that no combination of the underlying primitives by themselves are known to imply NIZKs
for NP. We summarize our main result with the following theorem (see Corollary 3.15 for a formal description and
parameter specification):

Theorem 1.1 (Informal). Let � : {0, 1}_ → {0, 1}_
X
be a PRG with locality 2 log _ and super-linear stretch X > 1

for a (sufficiently-small) constant 2 < 1 and (sufficiently-large) X > 1. Then, assuming the existence of a dual-mode

commitment scheme, a non-interactive batch argument for NP with (sufficiently-small) proof size,2 and sub-exponential

hardness of � , there exists a NIZK for NP.

Our work highlights a new connection between the succinctness of an argument system and zero-knowledge. It also
provides a new generic approach for constructing NIZKs for NP. Finally, by composing a batch argument satisfying
certain efficiency properties (satisfied by most existing constructions [CJJ21b, WW22, CGJ+22]) with a NIZK for
NP, we obtain a zero-knowledge batch argument. Thus, our approach can also be used to generically upgrade a

1More recently, Chakraborty et al. [CPW23] showed a similar implication holds starting from a mildly-compact computational witness map (a
simpler primitive that is implied by a SNARG for NP).

2For instance, this is satisfied if the length of the proof scales polylogarithmically in the number of instances. More generally, we can instantiate
the theorem even if the proof size scales with) 1/2−Y , where) is the number of instances and Y > 0 is a constant. We refer to Corollary 3.15 for
the precise characterization.
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non-interactive batch argument for NP into a zero-knowledge batch argument by relying only on a low-locality PRG
and a dual-mode commitment (neither of which are known to imply NIZKs for NP).

1.1 Technical Overview

Our starting point is the generic approach of Kitagawa et al. [KMY20] who show how to generically transform a SNARG
for NP into a NIZK for NP. The approach of [KMY20] instantiates the hidden-bits paradigm of Feige et al. [FLS90] of
combining a NIZK in the idealized hidden-bits model with a hidden-bits generator (HBG) [QRW19].

NIZKs in the hidden-bits model. The hidden-bits model is an idealized model for constructing non-interactive
zero-knowledge proofs. In this model, a trusted party first generates a string of uniformly random bits A1, . . . , A<

r
←

{0, 1} and gives them to the prover. To construct a proof for a statement G , the prover selects a subset of indices
� ⊆ [<] along with a proof c . The verifier then receives {A8 }8∈� and c from the trusted party. The model ensures that
the prover cannot influence the choice of bits A1, . . . , A< and that the verifier cannot learn the value of any unrevealed
bit A8 for 8 ∉ � . Feige et al. [FLS90] previously showed how to construct a NIZK with statistical soundness and perfect
zero-knowledge in the hidden-bits model for the NP-complete problem of graph Hamiltonicity.

Hidden-bits generators. Given a NIZK in the idealized hidden-bits model, a number of works have shown how to
transform it into a NIZK in the CRS model through a cryptographic compiler [FLS90, BY92, CHK03, GR13, CL18,
QRW19, LPWW20, KMY20]. In this work, we focus on the abstraction based on hidden-bits generators introduced
by Quach et al. [QRW19]. At a high-level, a hidden-bits generator is a cryptographic primitive that generates a
(pseudorandom) sequence of hidden bits. The prover can then open up a subset of the bits while ensuring the
unopened bits remain hidden. Moreover, the hidden-bits generator ensures that the prover has limited control over
the output sequence of bits. In a sense, hidden-bits generators provide a cryptographic realization of the trusted
sampling of the hidden-bits string in the hidden-bits model. Thus, combined with the (unconditional) NIZK for NP
in the hidden-bits model, a hidden-bits generator immediately implies a NIZK for NP in the CRS model. We now
describe the syntax of a hidden-bits generator more formally; we specifically consider the adaptation from [KMY20]:

• The setup algorithm Setup takes as input the security parameter _ and an output length < and outputs a
common reference string crs.

• The generator algorithm GenBits takes the common reference string crs and outputs a bit-string r ∈ {0, 1}< of
length< along with a generator state st. Here, r is the “hidden-bits string.”

• The prove algorithm Prove takes the generator state st and a subset of indices � ⊆ [<], and outputs a succinct
proof c . The proof c is an “opening” to the bits of r indexed by � ; we denote these bits by r� ∈ {0, 1}

|� | .

• The verification algorithm Verify takes as input the common reference string crs, a set of indices � ⊆ [<], a
collection of bits r� ∈ {0, 1}

|� | , and an opening c . The verification algorithms decides whether c is a valid
opening or not to the bits indexed by � (with respect to crs).

The hidden-bits generator must in turn satisfy the following properties:

• Correctness: Correctness says that if crs ← Setup(1_, 1<) and (r, st) ← GenBits(crs), then for all sets of
indices � ⊆ [<], the opening c output by Prove(st, � ) is valid with respect to Verify.

• Binding: The binding property restricts the set of possible openings that can be computed by a computationally-
bounded algorithm. Namely, for each crs in the support of Setup, there exists a subsetVcrs ⊂ {0, 1}< of “valid”
hidden-bits strings. Namely, no efficient adversary can come up with an accepting proof c for a set of indices
� ⊆ [<] and an assignment r� ∈ {0, 1}

|� | that is inconsistent with every r
′ ∈ Vcrs (i.e., an assignment r� such

that for all r′ ∈ Vcrs, r′� ≠ r� ). Moreover, the set of possible hidden-bits strings induced by a particular CRS

must be sparse: |Vcrs | ≤ 2<
W poly(_) for some constant W < 1 and where _ is a security parameter.
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• Hiding: The hiding property says that the unopened bits of r are pseudorandom. Namely, for any set � ⊆ [<]
and honestly-generated r and c , the distribution (crs, � , r� , r�̄ , c) is computationally indistinguishable from the
distribution (crs, � , r� , r̂�̄ , c) where r̂

r
← {0, 1}< and �̄ = [<] \ � .

Kitagawa et al. [KMY20] show how to construct a hidden-bits generator satisfying the above properties by combining
a SNARG for NP with a leakage-resilient (weak) pseudorandom function (PRF):

• The CRS contains< random points in the domain of the PRF G1, . . . , G< and the CRS for the SNARG.

• The hidden-bits string is constructed by sampling a PRF key : and setting A8 ← PRF(:, G8 ) for each 8 ∈ [<].

• The opening for a subset � ⊆ [<] is a SNARG proof that there exists : such that for all 8 ∈ � , A8 = PRF(:, G8 ).

In this case, binding follows from security of the (weak) PRF (as long as the length of the PRF key is smaller than the
output length<) in conjunction with soundness of the SNARG (i.e., the only possible openings are to those consistent
with an evaluation under a PRF key : on the inputs G1, . . . , G<). The hiding property follows by treating the SNARG
proof in the opening as “leakage” on the PRF key and then appealing to leakage-resilient pseudorandomness of the
underlying PRF. Critically, this latter step relies on the length of the SNARG being sublinear in the length of the PRF
key.

Replacing the SNARG with a batch argument. We first observe that the SNARG proof in the opening is almost

a batch language. Namely, the proof is showing that for each index 8 ∈ � , the bit A8 satisfies A8 = PRF(:, G8 ). Each
instance is described by a tuple (8, G8 , A8 ) and the witness is the PRF key : . The caveat is that in a batch language,
there is no requirement that the prover uses the same witness (i.e., the PRF key :) for each instance. Namely, if
we use replace the SNARG in the [KMY20] construction with a BARG, then the proof only suffices to argue “local
consistency” (i.e., there exists some key :8 that explains each output bit A8 ) rather than “global consistency” (i.e., there
exists a single key : that explains each output bit A8 ). Certainly, local consistency is insufficient as it is trivial to find a
tuple of keys (:1, . . . , :<) that explains any candidate hidden-bits string r ∈ {0, 1}< .

Enforcing consistency. To force the prover to use a consistent PRF key : across all of the instances when
constructing the batch argument, we have the prover include a commitment 2 to the PRF key : as part of the opening.
Each instance of the batch NP language is now

∃: : 2 is a commitment to : and PRF(:, G8 ) = A8 .

In fact, we note that we can replace the PRF with a pseudorandom generator PRG : {0, 1}_ → {0, 1}< , and indeed, the
(weak) PRF in the [KMY20] construction is essentially used as a PRG. We will write PRG8 : {0, 1}

_ → {0, 1} to denote
the function that takes as input the seed s ∈ {0, 1}_ and outputs the 8th bit of PRG(s). To generate the hidden-bits
string, the generator now samples s r

← {0, 1}_ and commits to s with a commitment 2 . The hidden-bits string is
r← PRG(s) and the opening to r� is a batch argument c for the following language:

∀8 ∈ � , ∃s ∈ {0, 1}_ : 2 is a commitment to s and PRG8 (s) = A8 .

As long as the commitment is statistically binding (i.e., the commitment 2 can be opened to at most one seed s) and
the batch argument is computationally sound, the scheme satisfies the binding requirement. In our security analysis
(Theorem 3.3), we technically require a stronger extractability property on the commitment, which allows us to base
binding on semi-adaptive soundness of the underlying BARG; this is the notion achieved by most recent constructions
from standard assumptions [CJJ21b, WW22, HJKS22, DGKV22, HJKS22].3 In contrast, the construction of [KMY20]
relied on a SNARG with adaptive soundness. This is a stronger requirement that cannot be proven under a black-box
reduction to a falsifiable assumption [GW11]. However, this approach for constructing a hidden bits generator does
not satisfy hiding. There are two issues:

3Semi-adaptive soundness for a batch argument says that the adversary must first commit to the index 8 of the false statement in the soundness
game. It can adaptively choose the statements G1, . . . , G) after seeing the CRS, with the restriction that instance G8 must be false.
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• Length of the commitment: The opening now contains a commitment 2 to the PRG seed s. Since 2 is
statistically binding, the length of 2 is at least as long as the seed s.

• Length of the proof: Succinctness of the batch argument says that the length of the proof c satisfies |c | =
poly(_, |� |, log |� |), where � is the circuit that takes as input (8, s, A8 ) and checks that 2 is a commitment to s

and PRG8 (s) = A8 . Unlike the case of a SNARG, the length of c scales polynomially with the size of the circuit
|� |. Since � takes the PRG seed as input, |� | ≥ |s|, so the length of c is at least as long as the seed s.

The [KMY20] construction argues hiding by relying on leakage resilience of the underlying weak PRF. In their setting,
the only leakage on the PRF key is from the SNARG, whose length is smaller than the length of the PRF key. As such,
the analysis reduces to a standard leakage-resilience argument. In our setting, both the commitment to the PRG seed
and the length of the BARG proof potentially leak too much information about the PRG seed, and we cannot directly
leverage leakage resilience to argue hiding.

Leveraging locality. Our first observation is that each individual instance in the batch language is checking a
single output bit of the PRG. Since the length of the BARG proof scales with the size of the circuit checking a single
instance, this means that if the circuit for validating a single output bit of the PRG is much smaller than the length
of the overall PRG seed, we can rely on BARG succinctness. One way to construct PRGs with this property is by
relying on locality. We say that a PRG is :-local if each output bit only depends on at most : bits of the seed. If a
PRG is :-local, then each output bit can be verified with a circuit of size at most 2: · poly(_). In this case, to check
that output bit 8 is correctly computed, the relation only needs to check (local) openings for the : bits of s that
determine PRG8 (s). For instance, if the PRG has constant locality [Gol00, CM01], and we take the commitment 2 to
be a bit-by-bit commitment to the bits of s, then verifying a single output bit only requires a circuit of size _X , for
some fixed constant X > 0 that depends on the BARG scheme and the commitment scheme (but not the seed length of
the PRG). Here _ is the main security parameter (for the BARG and for the commitment scheme). If we set the length
of the PRG seed to be at least = > _X , then we can hope to rely on leakage resilience of the PRG to argue that the
output still has high min-entropy even given the BARG proof. In our constructions (Theorem 1.1 and Corollary 3.15),
we can use :-local PRGs with locality as high as : = 2 log _ for some constant 2 < 1.

We additionally require that our :-local PRGs be leakage resilient. Here, we rely on sub-exponential hardness and
the Gentry-Wichs leakage-simulation lemma [GW11]. Roughly speaking, it says that if PRG(s) is computationally
indistinguishable from t

r
← {0, 1}< against (non-uniform) adversaries of size at most B , then there exists an auxiliary

distribution over strings (t, aux∗) such that (PRG(s), aux) is computationally indistinguishable from (t, aux∗) against
(non-uniform) adversaries of size at most B/2 |aux | . Here aux is a string that can be arbitrarily correlated with s. Thus,
as long as the leakage aux is sufficiently short (as a function of the seed length) and the PRG satisfies sub-exponential
security, we can argue that the outputs are still pseudorandom. Finally, we can apply a standard randomness extractor
to t to obtain a sequence of bits that are statistically close to uniform (even given aux∗).

Dual-mode commitments. The only remaining challenge is to ensure that the (statistically-binding) commitment
to the PRG seed s does not leak information about the seed. While it is tempting to rely on computational hiding of
the commitment scheme and replace the commitment to the seed with a commitment to the all-zeroes string, this
hybrid strategy does not work. The BARG proof (in the opening) is generated using the openings to the commitment
scheme (i.e., the openings to the commitment are part of the witness for the BARG). Alternatively, we can apply
the Gentry-Wichs leakage lemma to argue that the joint distribution (Commit(s), PRG(s), aux) is computationally
indistinguishable from (Commit(0), t, aux∗). As long as the commitment scheme is hiding even for adversaries of
size 2 |aux | , then security follows. However, there is a circular dependency here, as the length of aux is the length of
the BARG proof, which is at least as long as the commitment (since the commitment is an input to the BARG relation).
As a result, we cannot use complexity leveraging on the commitment as we could with the PRG.

We instead take a different “dual-mode” strategy [GOS06, PW08]. Specifically, we consider a dual-mode com-
mitment scheme where the CRS can be sampled in one of two (computationally indistinguishable) modes: (1) an
extractable mode which we use to argue binding; and (2) a statistically hiding mode where the commitments now
statistically hide the input. Dual-mode commitments can be constructed from a lossy public-key encryption scheme,
which is implied by most number-theoretic intractability assumptions [PW08, HLOV11, AFMP20].
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The idea in the hiding proof then is to first switch the dual-mode commitment from binding mode into hiding
mode. Observe that this step only changes the public parameters in the scheme. Once the CRS is in hiding mode, the
commitments to the PRG seed s statistically hide s, regardless of the size of the adversary. In this case, we can appeal
to the Gentry-Wichs leakage lemma to argue that the joint distribution (Commit(s), PRG(s), aux) is computationally
indistinguishable from (Commit(0), t, aux∗) assuming only sub-exponential hardness of the PRG. This means the
unopened bits in the hidden-bits string are uniformly random and hiding holds. We provide the full details in Section 3
(Theorem 3.4).

Upgrading BARGs to zkBARGs. For completeness, we conclude with a few remarks on using a NIZK for NP to
generically upgrade a batch argument to a zero-knowledge batch argument (zkBARG). First, we note that the naïve
approach of giving a NIZK proof of knowledge of a BARG proof does not work out of the box. The issue is that the
verification algorithm for the BARG needs to read the statements (G1, . . . , G) ), and thus, the size of the verification
circuit scales linear with ) . Since the size of a NIZK proof can scale polynomially with the size of the verification
circuit, the size of the NIZK proof of knowledge of a valid BARG proof for (G1, . . . , G) ) can scale polynomially with ) .
Nonetheless, we can still apply this general approach in the following settings:

• Index BARGs: An index BARG for an NP language is one where the statements are always fixed to be the
integers 1, . . . ,) [CJJ21b]. In an index BARG, the verification algorithm only takes the upper bound ) as input
and is required to run in time that is polylogarithmic in ) . We can generically compose an index BARG with a
NIZK to obtain a zero-knowledge index BARG. We can then apply the index-BARG-to-BARG transformation
from [CJJ21b] to the zero-knowledge index BARG forNP to obtain a zkBARG forNP; note here that the [CJJ21b]
transformation preserves zero-knowledge.

• BARGs with split verification: A BARG satisfies “split verification” [CJJ21b, WW22, CGJ+22] if the verifica-
tion algorithm decomposes into a (non-succinct) statement-dependent preprocessing step that outputs a short
verification key vk and a (succinct) online verification step that takes the preprocessed key vk and the proof c
and decides whether to accept or reject the proof. Importantly, the online verification step can be implemented
by a circuit whose size is polylogarithmic in the number of instances ) . Given a BARG with a split verification
property, it suffices to use a NIZK to prove knowledge of a BARG proof that satisfies the online verification
check. This yields a zkBARG with split verification.

2 Preliminaries

We write _ to denote the security parameter. For a positive integer = ∈ N, we write [=] to denote the set {1, . . . , =}.
We use boldface letters (e.g., x) to denote vectors. We write poly(_) to denote a fixed function that is $ (_2 ) for some
2 ∈ N and negl(_) to denote a function that is > (_−2 ) for all 2 ∈ N. We say an event occurs with overwhelming
probability if its complement occurs with negligible probability. We say an algorithm on _-bit inputs is efficient if it
can be computed by a Boolean circuit of size poly(_), or equivalently, if it can be computed by a Turing machine in
poly(_) time with poly(_) bits of advice.

Let D1 =
{
D1,_

}
_∈N

and D2 =
{
D2,_

}
_∈N

be two ensembles of distributions. For functions B = B (_) and Y = Y (_),
we say that D1 and D2 are (B, Y)-indistinguishable if for all non-negative polynomials poly(·) and all adversaries A,
modeled as Boolean circuits of size at most B (_) · poly(_), and all sufficiently large _ ≥ _A ,

��Pr[A(G) = 1 : G ← D1,_] − Pr[A(G) = 1 : G ← D2,_]
�� ≤ Y (_).

We say thatD1 andD2 are computationally indistinguishable if there exists a negligible function Y (_) = negl(_) such
that D1 and D2 are (1, Y)-indistinguishable. We say that D1 and D2 are statistically indistinguishable if the statistical
distance Δ(D1,D2) is bounded by a negligible function negl(_).

Min-entropy. We recall some basic definitions on min-entropy. Our definitions are adapted from those in [DRS04].
For a (discrete) random variable - , we write H∞ (- ) = − log(maxG Pr[- = G]) to denote its min-entropy. For two
(possibly correlated) discrete random variables - and . , we define the average min-entropy of - given . to be
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H∞ (- | . ) = − log(E~←. maxG Pr[- = G | . = ~]). The optimal probability of an unbounded adversary guessing -
given the correlated value . is 2−H∞ (- |. ) .

Lemma 2.1 (Conditional Min-Entropy [DRS04, Lemma 2.2]). Let �, � be random variables and suppose there are at

most 2_ elements in the support of �. Then H∞ (� | �) ≥ H∞ (�, �) − _ ≥ H∞ (�) − _.

Gentry-Wichs leakage lemma. Our analysis will rely on the following “leakage lemma” from [GW11]:

Lemma 2.2 (Indistinguishability with Auxiliary Information [GW11, Lemma 3.1]). Let _ be a security parameter. There

exists a polynomial poly(·) such that the following property holds. Let X = {X_}_∈N and Y = {Y_}_∈N be arbitrary

distributions that are (B, Y)-indistinguishable for some B = B (_) and Y = Y (_). Let X∗
_
=

{
X∗
_

}
_∈N

be an augmented

distribution where X∗
_
is a distribution on pairs (G_, c_) where G_ ← X_ and c ∈ {0, 1}

ℓ (_) can be arbitrarily correlated

with G_ . Then, there exists a distribution Y
∗
=
{
Y∗
_

}
_∈N

with the following properties:

• Each Y∗
_
is a distribution on tuples (~_, ĉ_), where ~_ ← Y_ and c_ ∈ {0, 1}

ℓ (_) .

• The distributionsX∗ andY∗ are (B ′, Y ′)-indistinguishable, where B ′(_) = B (_) ·poly(Y (_)/2ℓ (_) ) and Y ′(_) = 2Y (_).

Leftover hash lemma. Our constructionwill also rely on the generalized leftover hash lemma (LHL) from [BDK+11]:

Theorem 2.3 (LHL with Conditional Min-Entropy [BDK+11, Theorem 3.2, adapted]). Let (-,/ ) be random variables

sampled from some joint distribution D over X ×Z. LetH = {ℎ : X → {0, 1}E} be a family of universal hash functions,

and let ! = H∞ (- | / ) − E be the entropy loss. Let A(A, ℎ, I) be a (possibly probabilistic) distinguisher where

Pr[A(A, ℎ, I) = 1 : A r
← {0, 1}E, ℎ r

←H , (G, I) ← D] ≤ Y.

Then, the statistical distance between the following distributions is at most
√
Y/2! :

{
(ℎ(G), ℎ, I) :

(G, I) ← D

ℎ
r
←H

}
and

{
(A, ℎ, I) :

(G, I) ← D

A
r
← {0, 1}E, ℎ r

←H

}

Corollary 2.4 (LHL with Conditional Min-Entropy). Let (-,/ ) be random variables sampled from some joint distribu-

tion D over X ×Z. LetH = {ℎ : X → {0, 1}E} be a family of universal hash functions. Let ! = H∞ (- | / ) − E be the

entropy loss. Then the statistical distance between the following distributions is at most 2−!/2:

{
(ℎ(G), ℎ, I) :

(G, I) ← D

ℎ
r
←H

}
and

{
(A, ℎ, I) :

(G, I) ← D

A
r
← {0, 1}E, ℎ r

←H

}

Proof. Follows by setting Y = 1 in Theorem 2.3 (which captures all distinguishers). �

Pseudorandom generators. We recall the definition of a pseudorandom generator.

Definition 2.5 (Pseudorandom Generator). Let _ be a security parameter. A pseudorandom generator with output
length< =<(_) is an efficiently-computable function family PRG = {PRG_}_∈N where PRG_ : {0, 1}

_ → {0, 1}< (_) .
For functions B = B (_) and Y = Y (_), we say that PRG is (B, Y)-secure if the following two distributions are (B, Y)-
indistinguishable: {

PRG_ (G) : G
r
← {0, 1}_

}
and

{
~

r
← {0, 1}< (_)

}
.

We say that PRG is sub-exponentially secure if there exists a constant U > 0 and a negligible function Y = negl(_)

such that PRG is
(
2_

U
, Y
)
-secure.

Definition 2.6 (Locality of a PRG). We say a PRG : {0, 1}_ → {0, 1}< has locality : = : (_) if each output bit of
PRG(G) is a function of at most : bits of the seed G . We say that PRG is computable in NC0 if PRG has constant
locality : = $ (1).
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Local PRGs constructions. Goldreich [Gol00, MST03] gave the first candidate local PRG construction (with
constant locality) based on constraint-satisfiability problems over expander graphs. A long line of subsequent works
have studied variants of Goldreich’s construction [CM01, MST03, CEMT09, App12, ABR12, OW14, AL16, AK19]; we
refer to [App15] for an excellent survey of the state of the art. Notably, PRGs with constant locality and super-linear
stretch have featured prominently in constructions of indistinguishability obfuscation [Lin17, LT17, JLS21, JLS22].

There has also been an extensive line of works studying attacks and ruling out certain instantiations of local
PRGs [MST03, CEMT09, BQ09, OW14, App15, AL16, CDM+18, Üna23]. For local PRGs with super-linear stretch _1+X ,

the most recent attacks [BQ09, Üna23] run in time roughly _$ (_
1−X/: ) where : is the locality.

Dual-mode commitments. Next, we recall the notion of a “dual-mode” commitment (also called a “mixed com-
mitment”) [DN02]. At a high-level, these are non-interactive commitment schemes in the common reference string
(CRS) model where the CRS can be sampled from one of two computationally indistinguishable distributions. In one
distribution (or mode), the commitment scheme is extractable (i.e., given trapdoor information, one can efficiently
extract the committed value from a commitment), and in the other distribution (or mode), the commitment scheme is
statistically hiding.4 We give the formal definition below:

Definition 2.7 (Dual-Mode Bit Commitment [DN02]). A dual-mode bit commitment scheme is a tuple of efficient
algorithms ΠBC = (Setup,Commit,Verify) with the following syntax:

• Setup(1_,mode) → (crs, td): On input the security parameter _ and mode ∈ {bind, hide}, the setup algorithm
outputs a common reference string crs and a trapdoor td (possibly empty).

• Commit(crs, 1) → (2, f): On input the common reference string crs and a bit 1 ∈ {0, 1}, the commit algorithm
outputs a commitment 2 and an opening f .

• Verify(crs, 2, 1, f) → {0, 1}: On input the common reference string crs, a commitment 2 , a bit 1 ∈ {0, 1}, and an
opening f , the verification algorithm outputs a bit 1 ′ ∈ {0, 1}.

Moreover, ΠBC should satisfy the following properties:

• Correctness: For all security parameters _ ∈ N, all bits 1 ∈ {0, 1}, all modes mode ∈ {bind, hide},

Pr

[
Verify(crs, 2, 1, f) = 1 :

(crs, td) ← Setup(1_,mode);
(2, f) ← Commit(crs, 1)

]
= 1.

• Mode indistinguishability: For all efficient adversaries A, and sampling (crsbind, td) ← Setup(1_, bind),
(crshide, td

′) ← Setup(1_, hide), we have that

�� Pr
[
A(1_, crsbind) = 1

]
− Pr

[
A(1_, crshide) = 1

] �� = negl(_).

• Extractable in binding mode: There exists an efficient algorithm Extract that takes as input a trapdoor td
and a string 2 ∈ {0, 1}∗, and outputs a bit 1 ∈ {0, 1}. Then, for all adversaries A,

Pr


Verify(crs, 2, 1, f) = 1 ∧ 1 ≠ 1 ′ :

(crs, td) ← Setup(1_, bind);
(2, f, 1) ← A(crs);
1 ′← Extract(td, 2)


= negl(_).

• Statistically hiding in hiding mode: For a security parameter _ and a bit V ∈ {0, 1}, we define the hiding
game between an adversary A and a challenger as follows:

1. The challenger starts by sampling (crs, td) ← Setup(1_, hide) and gives crs to A.

4In some settings, we can require a stronger “equivocation” property in hiding mode where given trapdoor information, one can sample a
commitment 2 and openings for 2 to any value. Our constructions do not require equivocation.
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2. Algorithm A outputs two messages 10, 11 ∈ {0, 1}.

3. The challenger computes (2, f) ← Commit(crs, 1V ) and replies to A with 2 .

4. Algorithm A outputs a bit 1 ′ ∈ {0, 1}, which is the output of the experiment.

Then ΠBC is statistically hiding in hiding mode if there exists a negligible function negl(·) such that for all
adversaries A in the above hiding experiment,

|Pr[1 ′ = 1 | V = 0] − Pr[1 ′ = 1 | V = 1] | = negl(_).

Constructions of dual-mode commitments. Dual-mode commitments (with extraction) can be built from any
lossy public-key encryption scheme [BHY09], which can in turn be constructed from most standard algebraic
assumptions [PW08, HLOV11, AFMP20]. In particular, a commitment to an input G is just a public-key encryption of
G and the opening is the corresponding encryption randomness. In extracting mode, the extraction trapdoor is the
decryption key.

2.1 Non-Interactive Zero-Knowledge Arguments for NP

We recall the notion of a non-interactive zero-knowledge argument for NP [GMR85, BFM88]. We specifically consider
the NP-complete language of Boolean circuit satisfiability. Namely, for a Boolean circuit� : {0, 1}= × {0, 1}ℎ → {0, 1},
we say that a statement x ∈ {0, 1}= is a yes instance if there exists a witness w ∈ {0, 1}ℎ such that � (x,w) = 1.

Definition 2.8 (NIZKArgument forNP). Anon-interactive zero-knowledge argument for Boolean circuit satisfiability
is a tuple of efficient algorithms ΠNIZK = (Setup, Prove,Verify) with the following syntax:

• Setup(1_) → crs: On input the security parameter _ ∈ N, the setup algorithm outputs a common reference
string crs.

• Prove(crs,�, x,w) → c : On input the common reference string crs, a Boolean circuit � : {0, 1}= × {0, 1}ℎ →
{0, 1}, a statement x ∈ {0, 1}= , and a witness w ∈ {0, 1}ℎ , the prove algorithm outputs a proof c .

• Verify(crs,�, x, c) → 1: On input the common reference string crs, the Boolean circuit � : {0, 1}= × {0, 1}ℎ →
{0, 1}, a statement x ∈ {0, 1}= , and a proof c , the verification algorithm outputs a bit 1 ∈ {0, 1}.

Moreover, ΠNIZK should satisfy the following properties:

• Completeness: For all _ ∈ N, all Boolean circuits � : {0, 1}= × {0, 1}ℎ → {0, 1}, all statements x ∈ {0, 1}= , and
all witnesses w ∈ {0, 1}ℎ where � (x,w) = 1,

Pr

[
Verify(crs,�, x, c) = 1 :

crs← Setup(1_);
c ← Prove(crs,�, x,w)

]
= 1.

• Computational soundness: For all efficient adversaries A,

Pr

[
x ∉ L� ∧ Verify(crs,�, x, c) = 1 :

crs← Setup(1_)
(�, x, c) ← A(1_, crs)

]
= negl(_),

where for a circuit� : {0, 1}= ×{0, 1}ℎ → {0, 1}, we define L� to be the language of Boolean circuit satisfiability:
L� ≔

{
x ∈ {0, 1}= : ∃w ∈ {0, 1}ℎ,� (x,w) = 1

}
.

• Computational zero-knowledge: For every efficient adversary A, there exists an efficient simulator S =

(S1,S2) such that for crs← Setup(1_) and (c̃rs, stS) ← S1 (1
_), we have that

���Pr
[
AO0 (crs, ·, ·, ·) (1_, crs) = 1

]
− Pr

[
AO1 (stS , ·, ·, ·) (1_, c̃rs) = 1

] ��� = negl(_),

where the oracles O0 and O1 are defined as follows:
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– O0 (crs,�, x,w): On input crs, a circuit� : {0, 1}= × {0, 1}ℎ → {0, 1}, a statement x ∈ {0, 1}= , and a witness
w ∈ {0, 1}ℎ , the oracle outputs ⊥ if � (x,w) = 0. If � (x,w) = 1, it outputs Prove(crs,�, x,w).

– O1 (stS,�, x,w): On input the simulator state stS , a circuit � : {0, 1}= × {0, 1}ℎ → {0, 1}, a statement
x ∈ {0, 1}= , and a witness w ∈ {0, 1}ℎ , the oracle outputs ⊥ if � (x,w) = 0. If � (x,w) = 1, it outputs
S2 (stS,�, x).

2.2 Non-Interactive Batch Arguments for NP

The main cryptographic primitive we consider in this work is a non-interactive batch argument for NP. As before, we
consider the NP-complete language of Boolean circuit satisfiability. We now recall the definition of a non-interactive
batch argument for NP from [KPY19, CJJ21a]. Our construction relies on the notion of semi-adaptive soundness used
in [CJJ21b, WW22, DGKV22, KLVW23, CGJ+22].

Definition 2.9 (Batch Argument for NP [CJJ21b, adapted]). A non-interactive batch argument (BARG) for Boolean
circuit satisfiability is a tuple of three efficient algorithms ΠBARG = (Setup, Prove,Verify) with the following syntax:

• Setup(1_, 1) , 1B ) → crs: On input the security parameter _ ∈ N, the number of instances ) ∈ N, and a bound
on the circuit size B ∈ N, the setup algorithm outputs a common reference string crs.

• Prove(crs,�, (x1, . . . , x) ), (w1, . . . ,w) )) → c : On input the common reference string crs, a Boolean circuit
� : {0, 1}= × {0, 1}ℎ → {0, 1}, statements x1, . . . , x) ∈ {0, 1}

= , and witnesses w1, . . . ,w) ∈ {0, 1}
ℎ , the prove

algorithm outputs a proof c .

• Verify(crs,�, (x1, . . . , x) ), c) → 1: On input the common reference string crs, the Boolean circuit � : {0, 1}= ×
{0, 1}ℎ → {0, 1}, statements x1, . . . , x) ∈ {0, 1}

= and a proof c , the verification algorithm outputs a bit 1 ∈ {0, 1}.

Moreover, ΠBARG should satisfy the following properties:

• Completeness: For all _,) , B ∈ N, all circuits � : {0, 1}= × {0, 1}ℎ → {0, 1} of size at most B , all statements
x1, . . . , x) ∈ {0, 1}

= , and all witnesses w1, . . . ,w) ∈ {0, 1}
ℎ where � (x8 ,w8 ) = 1 for all 8 ∈ [) ],

Pr

[
Verify(crs,�, x, c) = 1 :

crs← Setup(1_, 1) , 1B );
c ← Prove(crs,�, x,w)

]
= 1,

where x = (x1, . . . , x) ) and w = (w1, . . . ,w) ).

• Succinct proof size:5 There exists a polynomial poly(·, ·, ·) such that for all _,) , B ∈ N, all crs in the support
of Setup(1_, 1) , 1B ), and all Boolean circuits � : {0, 1}= × {0, 1}ℎ → {0, 1} of size at most B , the size of the proof
c output by Prove(crs,�, ·, ·) satisfies |c | ≤ poly(_, log), B).

• Semi-adaptive soundness: For a security parameter _, we define the semi-adaptive soundness game between
an adversary A and a challenger as follows:

1. Algorithm A starts by outputting the number of instances 1) , the bound on the circuit size 1B , and an
index 8 ∈ [) ].

2. The challenger samples a common reference string crs← Setup(1_, 1) , 1B ) and gives crs to A.

3. Algorithm A outputs a Boolean circuit � : {0, 1}= × {0, 1}ℎ → {0, 1} of size at most B , statements
(x1, . . . , x) ) where each x8 ∈ {0, 1}

= , and a proof c .

4. The output of the experiment is 1 = 1 if Verify(crs,�, (x1, . . . , x) ), c) = 1 and for all w8 ∈ {0, 1}
ℎ ,

� (x8 ,w8 ) = 0. Otherwise, the output is 1 = 0.

Then ΠBARG satisfies semi-adaptive soundness if for all efficient adversaries A, Pr[1 = 1] = negl(_) in the
semi-adaptive soundness game.

5Previous works [KPY19, CJJ21a, CJJ21b, WW22, DGKV22, CGJ+22] also impose requirements on the size of the CRS and the running time of the
verifier. These additional properties are not needed in our work.
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Constructions of batch arguments for NP. Batch arguments for NP have recently been realized from a broad
range of standard assumptions including lattice-based assumptions [CJJ21b, DGKV22] as well as assumptions over
pairing groups [KVZ21, WW22] and pairing-free groups [CGJ+22].

2.3 Hidden-Bits Generator

We recall the notion of a hidden-bits generator with subset-dependent proofs from [KMY20]. For a bitstring r ∈ {0, 1}=

and a set of indices � ⊆ [=], we write r� ∈ {0, 1}
|� | to denote the substring corresponding to the bits of r indexed by � .

Definition 2.10 (Hidden-Bits Generator [KMY20, Definition 11]). A hidden-bits generator with subset-dependent
proofs is a tuple of efficient algorithms ΠHBG = (Setup,GenBits, Prove,Verify) with the following syntax:

• Setup(1_, 1<) → crs: On input the security parameter _, and the output length<, the setup algorithm outputs
a common reference string crs.

• GenBits(crs) → (r, st): On input the the common reference string crs, the generator algorithm outputs a string
r ∈ {0, 1}< and a state st.

• Prove(st, � ) → c : On input the state st and a subset � ⊆ [<], the prove algorithm outputs a proof c .

• Verify(crs, � , r� , c) → 1: On input a common reference string crs, a subset � ⊆ [<], a string r� ∈ {0, 1}
|� | , and a

proof c , the verification algorithm outputs a bit 1 ∈ {0, 1}.

We require ΠHBG to satisfy the following properties:

• Correctness: For all<, _ ∈ N and all subsets � ⊆ [<], we have

Pr


Verify(crs, � , r� , c) = 1 :

crs← Setup(1_, 1<);
(r, st) ← GenBits(crs);

c ← Prove(st, � )


= 1.

• Somewhat computational binding: For every crs in the support of the algorithm Setup(1_, 1<), there exists
a setVcrs with the following properties:

(i) Output sparsity. There exists a universal constant W < 1 and a fixed polynomial ? (·) such that for every
polynomial< =<(_), and every crs in the support of Setup(1_, 1<), |Vcrs | ≤ 2<

W ·? (_)

(ii) Computational binding. For every efficient and stateful adversary A,

Pr


r� ∉ V

crs
� ∧ Verify(crs, � , r� , c) = 1 :

1< ← A(1_);
crs← Setup(1_, 1<);
(� , r� , c) ← A(crs)


= negl(_),

whereVcrs
�
≔ {r� : r ∈ V

crs}.

• Computationally hiding: For every polynomial< =<(_), every subset � ⊆ [<], and all efficient adversaries
A, we have ��Pr[A(crs, � , r� , c, r�̄ ) = 1] − Pr[A(crs, � , r� , c, r

′
�̄
) = 1]

�� = negl(_),

where crs← Setup(1_, 1<), (r, st) ← GenBits(crs), c ← Prove(st, � ), r′ r
← {0, 1}< , and �̄ = [<] \ � .

Theorem 2.11 (NIZK from Hidden-Bits Generator [KMY20, Theorem 5]). If there exists a hidden-bits generator with
subset-dependent proofs, then there exists a computational NIZK argument for NP.
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3 Hidden-Bits Generator from Batch Arguments

In this section, we show how to construct a hidden-bits generator with subset-dependent proofs using a batch argument
for NP together with a dual-mode commitment and a low-complexity PRG. Then combined with Theorem 2.11, we
obtain a NIZK for NP from the same underlying set of assumptions.

Construction 3.1 (Hidden-Bits Generator from Batch Arguments). Let _ ∈ N be a security parameter and< be
an output length parameter. Let = = =(_,<) be a PRG seed length parameter and let � = �(_,<) be a block length
parameter. These parameters will be determined in the security analysis. Our construction relies on the following
primitives:

• Let�_ : {0, 1}
_ → {0, 1}ℓ (_) be a family of PRGs. Let : = : (_) be the locality of the PRG (i.e., each output bit of

�_ depends on at most : input bits). In the following description, we require that ℓ (=) ≥ <�.

• Let ΠBC = (BC.Setup,BC.Commit,BC.Verify) be a dual-mode bit commitment scheme.

• Let ΠBARG = (BARG.Setup,BARG.Prove,BARG.Verify) be a batch argument for NP with proof length ℓBARG =

ℓBARG (_,) , B), where B denotes the size of the underlying NP relation and ) denotes the number of instances.

• For an index 8 ∈ [ℓ] where ℓ = ℓ (=), let 81, . . . , 8: ∈ [=] be the indices of the : seed bits on which the 8th output

bit of �= (·) depends. Let s ∈ {0, 1}
= be a seed for the PRG, and let �

(8)
= : {0, 1}: → {0, 1} be the circuit that

takes as input the seed bits B81 , . . . , B8: ∈ {0, 1} and outputs the 8th bit of �= (s). Then, for a common reference
string crsBC for the bit commitment scheme, define the NP relation R[=, crsBC] as follows:

Hard-wired: PRG seed length =, common reference string crsBC

Statement: circuit �
(8)
= : {0, 1}: → {0, 1}, commitments 21, . . . , 2: , output C ∈ {0, 1}

Witness: bits B1, . . . , B: ∈ {0, 1}, openings f1, . . . , f:

Output 1 if all of the following conditions hold:

– For each 8 ∈ [:], BC.Verify(crsBC, 28 , B8 , f8 ) = 1;

– C = �
(8)
= (B1, . . . , B: ).

Otherwise, output 0.

Figure 1: Relation R[=, crsBC]
(
(�
(8)
= , 21, . . . , 2: , C), (B1, . . . , B: , f1, . . . , f: )

)
.

We now construct our hidden-bits generator ΠHBG = (Setup,GenBits, Prove,Verify) as follows:

• Setup(1_, 1<): On input the security parameter _ and the output length<, the setup algorithm proceeds as
follows:

1. Sample a CRS for the dual-mode commitment scheme: (crsBC, td) ← BC.Setup(1_, bind).

2. Let = = =(_,<) be the PRG seed length. Let � be the circuit that computes the NP relation R[=, crsBC].
Sample a common reference string crsBARG ← BARG.Setup(1_, 1<�, 1 |� |).

3. Let � = �(_,<) be the block size and sample v1, . . . , v<
r
← {0, 1}� .

Output the common reference string crs = (=, crsBARG, crsBC, v1, . . . , v<).

• GenBits(crs): On input the common reference string crs = (=, crsBARG, crsBC, v1, . . . , v<), the generator algo-
rithm proceeds as follows:

1. Sample a PRG seed s
r
← {0, 1}= , and compute t = {0, 1}<� ← �= (s).

6 Then, for each 8 ∈ [=], compute a
commitment (28 , f8 ) ← BC.Commit(crsBC, B8 ) to the bits of the seed.

6As noted above, we require that ℓ (=) ≥<�. If ℓ (=) ><�, we truncate the output of�= to output a string of length exactly<�.
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2. Split t = t1‖t2‖ · · · ‖t< into blocks where each t8 ∈ {0, 1}
� for each 8 ∈ [<]. Next, for each 8 ∈ [<],

compute A8 ← v
T

8 t8 (where the vectors v8 and t8 are interpreted as vectors in Z�2 ).

The algorithm outputs the hidden-bits string r = A1‖A2‖ · · · ‖A< ∈ {0, 1}
< together with the generator state

st = (=, crsBARG, crsBC, s, 21, . . . , 2=, f1, . . . , f=).

• Prove(st, � ): On input the state st = (=, crsBARG, crsBC, s, 21, . . . , 2=, f1, . . . , f=) and a set of indices � ⊆ [<], the
prove algorithm proceeds as follows:

1. Let t = �= (s) and parse t = t1‖t2‖ · · · ‖t< where each t8 ∈ {0, 1}
� . We will also use the notation t[8] ≔ t8

to refer to the 8th block of t and �= [8] ≔ �
(8)
= to refer to the circuit computing the 8th bit of �= (s). In the

analysis, we will often associate an index 8 ∈ [<�] with a pair ( 9, V) ∈ [<] × [�] and vice versa (where
8 = ( 9 − 1)� + V).

2. Let � =
{
8 (1) , . . . , 8 (!)

}
, where the indices 8 (1) , . . . , 8 (!) ∈ [<] are in sorted order. For each 9 ∈ [!], V ∈ [�],

let t[8 ( 9) , V] ∈ {0, 1} denote the V th bit of t[8 ( 9) ].

3. By construction, the value of t[8 ( 9) , V] depends on at most : bits of s. We define �= [8
( 9) , V] to denote the

circuit that reads up to : bits of s and outputs t[8 ( 9) , V]. Next, we define the function idx : [!] × [�] × [:] →
[=] where idx(8 ( 9) , V, W) outputs theW th input bit of s onwhich the output bit t[8 ( 9) , V] depends. In particular,
the inputs to the circuit �= [8

( 9) , V] consist of bits idx(8 ( 9) , V, 1), . . . , idx(8 ( 9) , V, :) of s.

4. For each 9 ∈ [!] and V ∈ [�], define the statement G 9,V and associated witnessF 9,V as follows:

G 9,V =

(
�= [8

( 9) , V], 2idx(8 ( 9 ) ,V,1) , . . . , 2idx(8 ( 9 ) ,V,:) , t[8
( 9) , V]

)
(3.1)

F 9,V =

(
Bidx(8 ( 9 ) ,V,1) , . . . , Bidx(8 ( 9 ) ,V,:) , fidx(8 ( 9 ) ,V,1) , . . . , fidx(8 ( 9 ) ,V,:)

)
. (3.2)

Let � be the circuit that computes the NP relation in Fig. 1. Then, compute the proof

cBARG ← BARG.Prove(crsBARG,�, (G1,1, . . . , G1,�, . . . , G!,1, . . . , G!,�), (F1,1, . . . ,F1,�, . . . ,F!,1, . . . ,F!,�)) .

5. Output c =
(
cBARG, (21, . . . , 2=), (t8 (1) , . . . , t8 (!) )

)
.

• Verify(crs, � , r� , c): On input crs = (=, crsBARG, crsBC, v1, . . . , v<), a set of indices � =
{
8 (1) , . . . , 8 (!)

}
⊆ [<]

(in sorted order), a string r� ∈ {0, 1}
! , and a proof c =

(
cBARG, (21, . . . , 2=), (t8 (1) , . . . , t8 (!) )

)
, the verification

algorithm proceeds as follows:

1. For each 9 ∈ [!], let A8 ( 9 ) ∈ {0, 1} be the bit of r� associated with index 8 ( 9) . Then, for each 9 ∈ [!], check
that A8 ( 9 ) = v

T

8 ( 9 )
t8 ( 9 ) . Output 0 if any check fails.

2. Using the commitments 21, . . . , 2= and the bits of t8 (1) , . . . , t8 (!) , construct the statements G 9,V for each
9 ∈ [!] and V ∈ [�] according to Eq. (3.1). Let � be the circuit that computes the NP relation R[=, crsBC]
in Fig. 1.

3. Output BARG.Verify(crsBARG,�, (G1,1, . . . , G1,�, . . . , G!,1, . . . , G!,�), cBARG).

Theorem 3.2 (Correctness). If ΠBARG is complete and ΠBC is correct, then Construction 3.1 is correct.

Proof. Take any security parameter _, output length <, and set of indices � ⊆ [<]. Let crs ← Setup(1_, 1<)
where crs = (=, crsBARG, crsBC, v1, . . . , v<). Let (r, st) ← GenBits(crs) and c ← Prove(st, � ). Consider the output of
Verify(crs, � , r� , c).

• By construction of GenBits, A8 = v
T

8 t8 for all 8 ∈ [!]. Thus, the first set of checks in Verify pass.

• Next, for each 9 ∈ [!] and V ∈ [�], let G 9,V and F 9,V be the statement and witness defined as in Eqs. (3.1)
and (3.2). By correctness of ΠBC, it follows that (G 9,V ,F 9,V ) ∈ R[=, crsBC].
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• Let c =
(
cBARG, (21, . . . , 2=), (t8 (1) , . . . , t8 (!) )

)
. Since (G 9,V ,F 9,V ) ∈ R[=, crsBC] for all 9 ∈ [!] and V ∈ [�],

completeness of ΠBARG implies that

BARG.Verify(crsBARG,�, (G1,1, . . . , G1,�, . . . , G!,1, . . . , G!,�), cBARG) = 1.

Correspondingly, Verify(crs, � , r� , c) = 1, as required. �

Theorem 3.3 (Somewhat Computational Binding). Let _ be a security parameter. Suppose there exists a universal

constant X < 1 and a fixed polynomial ? (·) such that for every polynomial< = <(_), it follows that = = =(_,<) ≤

<X · ? (_). Suppose also that ΠBARG satisfies semi-adaptive soundness, ΠBC is extractable in binding mode, and that

� = �(_,<) is polynomially bounded. Then, Construction 3.1 satisfies somewhat computational binding.

Proof. Let crs = (=, crsBARG, crsBC, v1, . . . , v<) be a common reference string in the support of Setup(1_, 1<). We
define the setVcrs ⊂ {0, 1}< as follows:

Vcrs
≔

{
(vT

1t1, . . . , v
T

<t<) | ∃s ∈ {0, 1}
= : t1‖ · · · ‖t< = �= (s)

}
.

We now show that each of the requirements in Definition 2.10 is satisfied:

Output sparsity. This is immediate from the construction: |Vcrs | ≤ 2= ≤ 2<
X ·? (_) .

Computational binding. To argue computational binding, we appeal to the fact that ΠBC is extractable in binding
mode and to semi-adaptive soundness of ΠBARG. Formally, suppose there is an efficient adversary A that breaks
computational binding of Construction 3.1 with non-negligible advantage Y. We construct an adversary B that breaks
semi-adaptive soundness of the BARG as follows:

1. Algorithm B starts running A on input the security parameter 1_ . Algorithm A chooses the output length 1< .

2. Algorithm B then samples (crsBC, td) ← BC.Setup(1_, bind) as well as an index 8∗ r
← [<�]. It outputs 1<� as

the number of instances, 1B as the size of the circuit (for computing the relation R[=, crsBC] in Fig. 1), and the
chosen index 8∗.

3. Algorithm B receives crsBARG from its challenger. Then, it samples the strings v1, . . . , v<
r
← {0, 1}� . It gives

crs = (=, crsBARG, crsBC, v1, . . . , v<) to A.

4. Algorithm A outputs an opening (� , r� , c).

5. Algorithm B parses � =
{
8 (1) , . . . , 8 (!)

}
and c = (cBARG, (21, . . . , 2=), (t8 (1) , . . . , t8 (!) )). It constructs the statement

x = (G1,1, . . . , G1,�, . . . , G!,1, . . . , G!,�) from 21, . . . , 2< and t8 (1) , . . . , t8 (!) according to Eq. (3.1) and defines � to be
the circuit that computes the NP relation R[=, crsBC] from Fig. 1.

6. Now, for each 8 ∈ [=], algorithm B runs B8 ← BC.Extract(td, 28 ). Let s = B1‖ · · · ‖B= ∈ {0, 1}
= be the extracted

seed. Algorithm B now outputs (�, x, cBARG) if the index 8∗ satisfies 8∗ ∈ � and C8∗ ≠ C ′8∗ , where t
′
= �= (s).

Otherwise algorithm B outputs ⊥.

First, we argue that algorithm B is admissible.

• Suppose that C8∗ ≠ C ′8∗ where t
′
= �= (s). Write 8∗ = (8 ( 9) , V) ∈ [<] × [�]. Then,

t[8 ( 9) , V] = C8∗ ≠ �
(8∗)
= (s) = �= [8

( 9) , V]
(
Bidx(8 ( 9 ) ,V,1) , . . . , Bidx(8 ( 9 ) ,V,:)

)
.

• Consider the instance

G8 ( 9 ) ,V =
(
�= [8

( 9) , V], 2idx(8 ( 9 ) ,V,1) , . . . , 2idx(8 ( 9 ) ,V,:) , t[8
( 9) , V]

)
,

and any candidate witness

F8 ( 9 ) ,V =
(
B ′
idx(8 ( 9 ) ,V,1)

, . . . , B ′
idx(8 ( 9 ) ,V,:)

, fidx(8 ( 9 ) ,V,1) , . . . , fidx(8 ( 9 ) ,V,:)
)
.

We consider two possibilities:

14



– Suppose there exists W ∈ [:] where B ′
idx(8 ( 9 ) ,V,W )

≠ Bidx(8 ( 9 ) ,V,W ) . By extractability of ΠBC, with overwhelming

probability over the choice of crsBC,

BC.Verify
(
crsBC, 2idx(8 ( 9 ) ,V,W ) , B

′
idx(8 ( 9 ) ,V,W )

, fidx(8 ( 9 ) ,V,W )
)
= 0.

Correspondingly, R[crsBC] (G8 ( 9 ) ,V ,F8 ( 9 ) ,V ) = 0.

– Suppose that for all W ∈ [:], B ′
idx(8 ( 9 ) ,V,W )

= Bidx(8 ( 9 ) ,V,W ) . In this case,

�= [8
( 9) , V]

(
B ′
idx(8 ( 9 ) ,V,1)

, . . . , B ′
idx(8 ( 9 ) ,V,:)

)
= �= [8

( 9) , V]
(
Bidx(8 ( 9 ) ,V,1) , . . . , Bidx(8 ( 9 ) ,V,:)

)
≠ t[8 ( 9) , V] .

Once again, R[crsBC] (G8 ( 9 ) ,V ,F8 ( 9 ) ,V ) = 0.

Thus, we conclude that if C8∗ ≠ C ′8∗ , then instance G8 ( 9 ) ,V = G8∗ is false with all but negligible probability over the choice of
crsBC. Algorithm B only produces an output when C8∗ ≠ C ′8∗ (i.e., when G8∗ is false), so algorithm B is admissible for the
semi-adaptive soundness game. To conclude the proof, we compute the advantage ofB. In the semi-adaptive soundness
game, the challenger constructs crsBARG using BARG.Setup(1_, 1<�, 1 |� |), which is identical to the distribution in
computational binding game. Thus, algorithm B perfectly simulates an execution of the binding game for A. This
means that with probability Y, algorithm A outputs (� , A� , c) where c = (cBARG, (21, . . . , 2=), (t8 (1) , . . . , t8 (!) )) with the
following two properties:

• Let x = (G1,1, . . . , G1,�, . . . , G!,1, . . . , G!,�) be the statement constructed from 21, . . . , 2= and t8 (1) , . . . , t8 (!) according
to Eq. (3.1). Then, we have BARG.Verify(crsBARG,�, x, cBARG) = 1, where � is the circuit computing the NP
relation R[crsBC] from Fig. 1.

• The bits r� satisfy r� ∉ V
crs
�

. This means that for every seed s ∈ {0, 1}= , there must exist some output index

8 ∈ [<�] such that C8 ≠ �
(8)
= (s).

Thus, with probability Y, both of the above conditions hold. In particular, this means thatA outputs (� , r� , c) such that

there exists some index 8̂ ∈ [<�] where C8̂ ≠ C ′
8̂
= �

(8̂)
= (s). Now, algorithm B samples 8∗ r

← [<�] and moreover 8∗ is

independent ofA’s view. Thus, 8̂ = 8∗ with probability at least 1/<�, in which case, algorithm B outputs the instance
(�, x) with the proof cBARG. Again from the above conditions, BARG.Verify(crsBARG,�, x, cBARG) = 1, and algorithm
B succeeds in breaking semi-adaptive soundness of ΠBARG. We conclude that algorithm B breaks semi-adaptive
soundness of ΠBARG with advantage Y/<� − negl(_), and the claim follows. �

Theorem 3.4 (Computational Hiding). Suppose the following conditions hold:

• The PRG�_ is sub-exponentially secure (i.e., there exists a constant U > 0 and a negligible function YPRG = negl(_)

such that �_ is
(
2_

U
, YPRG

)
-secure).

• The bit commitment scheme ΠBC satisfies mode indistinguishability and is statistically hiding in hiding mode.

• The length of the BARG proof ℓBARG = poly(_,<) is polynomially-bounded.

• The length of the PRG seed satisfies = = =(_,<) ≥ max(_, ℓ2
BARG
) for some constant 2 > 1/U , and the block size

satisfies � = �(_,<) ≥ l (log _) + ℓBARG.

Then, for all polynomially-bounded< =<(_), Construction 3.1 is computationally hiding.

Proof. Let � ⊆ [<] be an arbitrary subset. We start by defining two distributions Dreal and Dideal that will be helpful
for our analysis:

• Dreal (1
_): On input the security parameter _ ∈ N, the real distribution constructs the output as follows:

– Sample (crsBC, td) ← BC.Setup(1_, hide).

– Sample crsBARG ← BARG.Setup(1_, 1<�, 1 |� |).
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– Let = = =(_,<) and sample s r
← {0, 1}= and compute (28 , f8 ) ← BC.Commit(crsBC, B8 ) for each 8 ∈ [=].

– Compute t← �= (s) and output (� , crsBARG, crsBC, 21, . . . , 2=, t).

• Dideal (1
_): Same asDreal (1

_) except we replace each 28 with a commitment to 0 and t with a uniformly random
string: (28 , f8 ) ← BC.Commit(crsBC, 0) for each 8 ∈ [=] and t

r
← {0, 1}<� .

We now show that if �= is sub-exponentially secure (and the commitment scheme is statistically hiding), then Dreal

and Dideal are also indistinguishable to a sub-exponential time algorithm.

Lemma 3.5. Suppose �_ is
(
2_

U
, YPRG

)
-secure for some constant U > 0 and negligible function YPRG = negl(_) and

that ΠBC is statistically hiding in hiding mode. Suppose also that ℓBARG = poly(_,<), and � ≥ l (log _) + ℓBARG,
= ≥ max(_, ℓ2

BARG
) for some constant 2 > 1/U . Then, there exists a negligible function Yideal = negl(_) such that for all

subsets � ⊆ [<], Dreal and Dideal are
(
2=

U
, Yideal

)
-indistinguishable

Proof. We start by defining a sequence of hybrid experiments:

• Hyb0: This is the real distribution Dreal.

• Hyb8 : Same as Hyb0 except for all 9 ≤ 8 , we now sample commitments (2 9 , f 9 ) ← BC.Commit(crsBC, 0). The
commitments for 9 > 8 are sampled as in Hyb0.

• Hyb=+1: Same as Hyb= except t r
← {0, 1}<� . This is the ideal distribution Dideal.

We now show that each adjacent pair of experiments are indistinguishable.

Claim 3.6. Suppose ΠBC is statistically hiding in hiding mode. Then, there exists a negligible function Y0 = negl(_)

such that for all (possibly super-polynomial) functions B0 = B0 (_) and all 8 ∈ [=], the distributions Hyb8−1 and Hyb8 are

(B0, Y0)-indistinguishable.

Proof. Suppose there exists an adversary A of size B0 that can distinguish Hyb8−1 and Hyb8 with non-negligible
advantage X . We use A to construct an adversary B that breaks hiding of ΠBC as follows:

1. Algorithm B receives crsBC from its challenger. It samples crsBARG ← BARG.Setup(1_, 1<�, 1 |� |), s r
← {0, 1}= ,

and computes t← �= (s).

2. Then, for 9 < 8 , algorithm B computes (2 9 , f 9 ) ← BC.Commit(crsBC, 0) and for 9 > 8 , it computes (2 9 , f 9 ) ←

BC.Commit(crsBC, B 9 ). Algorithm B submits (B8 , 0) as its challenge and sets 28 to be the challenger’s response.

3. Algorithm B gives (� , crsBARG, crsBC, 21, . . . , 2=, t) to A and outputs whatever A outputs.

If 28 is a commitment to B8 , then algorithm B perfectly simulates distribution Hyb8−1 and if 28 is a commitment to 0,
then algorithm B perfectly simulates distribution Hyb8 . Thus, algorithm B also succeeds with advantage X , and the
claim follows. �

Claim 3.7. Suppose�_ is
(
2_

U
, YPRG

)
-secure for some constant U > 0 and negligible function YPRG = YPRG (_) = negl(_).

Then, Hyb= and Hyb=+1 are
(
2=

U
, Y ′PRG

)
-indistinguishable, where Y ′PRG = YPRG (=).

Proof. Suppose there exists an adversary A of size BA ≤ 2=
U
that can distinguish Hyb= (1

_) and Hyb=+1 (1
_) with

advantage X > Y ′PRG. We use A to construct an adversary B that breaks PRG security with seed length =:

1. At the beginning of the experiment, algorithm B receives a challenge t ∈ {0, 1}<� .

2. B samples crsBC ← BC.Setup(1_, hide), crsBARG ← BARG.Setup(1_, 1<�, 1 |� |). For each 8 ∈ [=], it computes
(28 , f8 ) ← BC.Commit(crsBC, 0).

3. Algorithm B gives (� , crsBARG, crsBC, 21, . . . , 2=, t) to A and outputs whatever A outputs.
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By construction, the size of algorithm B is BA + poly(_,<, �, |� |) ≤ BA · poly(=), where the inequality holds since
<, �, |� | are all polynomially-bounded (in both _ and =). If t = �= (s) for some s r

← {0, 1}= , then B perfectly simulates
Hyb= (1

_) forA. Otherwise, if t r
← {0, 1}<� , then B perfectly simulates Hyb=+1 (1

_) forA. Thus, algorithm B breaks
security of �= with the same advantage X > Y ′PRG = YPRG (=). �

By Claims 3.6 and 3.7, we can set Yideal = = · Y0 + YPRG (=(_,<)) = negl(_). The latter equality follows since =(_,<) ≥ _.
The lemma now follows by a hybrid argument. �

To complete the proof, we start by appealing to the Gentry-Wichs leakage simulation lemma (Lemma 2.2). Take any
subset � ⊆ [<]. We start by defining the augmented distribution D∗

real
= D∗

real
(1_):

• Sample (� , crsBARG, crsBC, 21, . . . , 2=, t) ← Dreal (1
_) according to the real distribution. Each commitment 28 is

computed as (28 , f8 ) ← BC.Commit(crsBC, B8 ) where s
r
← {0, 1}= and t = �= (s).

• Let st = (=, crsBARG, crsBC, s, 21, . . . , 2=, f1, . . . , f=), and compute c = (cBARG, (21, . . . , 2=), (t8 (1) , . . . , t8 (!) )) ←

Prove(st, � ).

• Output (� , crsBARG, crsBC, 21, . . . , 2=, t) and the auxiliary information aux = cBARG. By definition, |aux| =
|cBARG | = ℓBARG.

By Lemma 3.5, the distributions Dreal and Dideal are (Bideal, Yideal)-indistinguishable for Bideal = 2=
U
and a negligible

function Yideal = negl(_). Without loss of generality, we can assume that Yideal ≥ 2−=
U/2

(e.g., we can set Yideal =

max
(
Y ′
ideal

, 2−=
U/2 )

, where Y ′
ideal

is the negligible function from Lemma 3.5). By Lemma 2.2, there exists an augmented

distributionD∗
ideal

= D∗
ideal
(1_) over tuples

(
(� , crsBARG, crsBC, 21, . . . , 2=, t), aux

′
)
where (� , crsBARG, crsBC, 21, . . . , 2=, t) ←

Dideal (1
_) and aux′ ∈ {0, 1}ℓBARG . Moreover, the distributions D∗

real
and D∗

ideal
are (Baug, Yaug)-indistinguishable where

Baug = Bideal · poly(Yideal/2
ℓBARG ) = 2=

U

· poly(Yideal/2
ℓBARG )

and Yaug = 2 · Yideal = negl(_). Since Yideal ≥ 2−=
U/2

and = ≥ ℓ2
BARG

for some constant 2 > 1/U , this means that

Baug = 2Ω (=
U ) . We summarize this in the following claim:

Claim 3.8. Under the same conditions as in the statement of Lemma 3.5, the distributionsD∗
real

andD∗
ideal

are (Baug, Yaug)-

indistinguishable where Baug = 2Ω (=
U ) and Yaug = negl(_).

To complete the proof, we proceed via a sequence of hybrid experiments:

• Hyb0: This is the real distribution where the challenger samples the bits r and the proof c as in the real scheme:

– The challenger first samples crs ← Setup(1_, 1<). In particular, crs = (=, crsBARG, crsBC, v1, . . . , v<),
where (crsBC, td) ← BC.Setup(1_, bind), crsBARG ← BARG.Setup(1_, 1<�, 1 |� |), � is the circuit that
computes the NP relation R[=, crsBC] from Fig. 1, and v1, . . . , v<

r
← {0, 1}� .

– Next, the challenger samples the bits r by running (r, st) ← GenBits(crs) and a proof by computing
c ← Prove(st, � ). In particular, the challenger first samples a seed s

r
← {0, 1}= and computes t← �= (s).

It splits t = t1‖t2‖ · · · ‖t< into blocks where each t8 ∈ {0, 1}
� for each 8 ∈ [<]. For each 8 ∈ [<], the

challenger computes A8 ← v
T

8 t8 and sets r = A1‖ · · · ‖A< ∈ {0, 1}
< .

– To construct the proof c , the challenger computes the commitments (28 , f8 ) ← BC.Commit(crsBC, B8 )

for each 8 ∈ [=]. It then parses � =
{
8 (1) , . . . , 8 (!)

}
, where the indices 8 (1) , . . . , 8 (!) ∈ [<] are in

sorted order. The challenger then constructs the statement (G1,1, . . . , G1,�, . . . , G!,1, . . . , G!,�) and witness
(F1,1, . . . ,F1,�, . . . ,F!,1, . . . ,F!,�) according to Eq. (3.1) and Eq. (3.2). It constructs the BARG proof as in
Prove:

cBARG ← BARG.Prove(crsBARG,�, (G1,1, . . . , G1,�, . . . , G!,1, . . . , G!,�), (F1,1, . . . ,F1,�, . . . ,F!,1, . . . ,F!,�)),

and sets c =
(
cBARG, (21, . . . , 2=), (t8 (1) , . . . , t8 (!) )

)
.
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– The challenger gives (crs, � , r� , c, r�̄ ) to A. Algorithm A then outputs a bit 1 ∈ {0, 1} which is the output
of the experiment.

• Hyb1: Same asHyb0 except the challenger now samples the commitment CRS (crsBC, td) ← BC.Setup(1_, hide).
In this experiment, the distribution of

(
(crsBARG, crsBC, 21, . . . , 2=, t), cBARG

)
is distributed according to D∗

real
.

• Hyb2: Same as Hyb1 except the challenger samples components
(
(crsBARG, crsBC, 21, . . . , 2=, t), cBARG

)
← D∗

ideal
.

Specifically, the experiment now proceeds as follows:

– The challenger samples
(
(crsBARG, crsBC, 21, . . . , 2=, t), cBARG

)
← D∗

ideal
, v1, . . . , v<

r
← {0, 1}� , and sets

crs = (=, crsBARG, crsBC, v1, . . . , v<).

– Next, the challenger splits t = t1‖t2‖ · · · ‖t< into blocks where each t8 ∈ {0, 1}
� for each 8 ∈ [<]. For each

8 ∈ [<], the challenger computes A8 ← v
T

8 t8 and sets r = A1‖ · · · ‖A< ∈ {0, 1}
< .

– The challenger sets the proof c =
(
cBARG, (21, . . . , 2=), (t8 (1) , . . . , t8 (!) )

)
and gives (crs, � , r� , c, r�̄ ) to A.

• Hyb3: Same as Hyb2 except the challenger samples r�̄
r
← {0, 1}|�̄ | .

• Hyb4: Same as Hyb3 except the challenger samples
(
(crsBARG, crsBC, 21, . . . , 2=, t), cBARG

)
← D∗

real
.

• Hyb5: Same as Hyb4 except the challenger samples crsBC ← BC.Setup(1_, bind). Note that this coincides with
the ideal distribution.

Lemma 3.9. Suppose ΠBC satisfies mode indistinguishability. Then, Hyb0 and Hyb1 are computationally indistinguish-

able.

Proof. Suppose there is an adversary A of size B0 = poly(_) that distinguishes the outputs of Hyb0 and Hyb1 with
non-negligible probability X . We use A to construct an adversary B that breaks mode indistinguishability:

1. At the beginning of the game, algorithm B receives the security parameter 1_ and a common reference string
crsBC from the challenger.

2. B samples crsBARG ← BARG.Setup(1_, 1<�, 1 |� |) and v1, . . . , v<
r
← {0, 1}� . It constructs the common reference

string crs = (=, crsBARG, crsBC, v1, . . . , v<).

3. Algorithm B computes (r, st) ← GenBits(crs) and c ← Prove(st, � ).

4. Algorithm B gives (crs, � , r� , c, r�̄ ) to A and outputs whatever A outputs.

By construction, algorithm B has size B0 + poly(_,<, �, |� |) ≤ B0 · poly(_) which holds due to <, �, |� | all being
poly(_). When crsBC is sampled in binding mode, then algorithm B perfectly simulates Hyb0 for A. Alternatively, if
crsBC is sampled in hiding mode, then algorithm B perfectly simulates Hyb1 for A. Critically, neither the GenBits
nor the Prove algorithms require knowledge of the trapdoor td for the bit commitment scheme. Thus, algorithm B
succeeds with the same advantage X . �

Lemma3.10. Under the same conditions as in the statement of Claim 3.8,Hyb1 andHyb2 are (Baug, Yaug)-indistinguishable

for Baug = 2Ω (=
U ) and Yaug = negl(_).

Proof. Suppose there is an adversaryA with size Baug that distinguishes Hyb1 and Hyb2 with advantage X > Yaug. We

construct algorithm B that distinguishes the distributions D∗
real
(1_) and D∗

ideal
(1_) as follows:

1. Algorithm B receives (� , crsBARG, crsBC, 21, . . . , 2=, t, cBARG) from the challenger. It parses t = t1‖ · · · ‖t< ∈

{0, 1}<� where each t8 ∈ {0, 1}
� . In addition, algorithm B samples v1, . . . , v<

r
← {0, 1}� .

2. Algorithm B computes = = =(_,<) and sets crs = (=, crsBARG, crsBC, v1, . . . , v<). For each 8 ∈ [<], it com-
putes A8 ← v

T

8 t8 and sets r = A1‖ · · · ‖A< . Finally, it sets c = (cBARG, (21, . . . , 2=), (t8 (1) , . . . , t8 (!) )), where
� =

{
8 (1) , . . . , 8 (!)

}
.
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3. Algorithm B gives (crs, � , r� , c, r�̄ ) to A and outputs whatever A outputs.

Since algorithm A has size Baug, the size of algorithm B is bounded by Baug + poly(_,<, �) ≤ Baug · poly(_) since<
and � are both polynomially-bounded. By construction, when the challenge is sampled from the real distribution
D∗

real
, algorithm B perfectly simulates the distribution in Hyb1. Alternatively, if the challenge is sampled from the

ideal distribution D∗
ideal

, algorithm B perfectly simulates the distribution in Hyb2. Correspondingly, algorithm B is

able to distinguish D∗
real
(1_) and D∗

ideal
(1_) with advantage X > Yaug which contradicts Claim 3.8. �

Lemma 3.11. Suppose � ≥ l (log _) + ℓBARG. Then, Hyb2 and Hyb3 are statistically indistinguishable.

Proof. Let �̄ = {8 (1) , 8 (2) , . . . , 8 (<−!) } ⊆ [<]. We define a sequence of intermediate experiments Hyb2, 9 for each
9 ∈ {0, . . . ,< − !} as follows:

• Hyb2,0: Same as Hyb2. In particular, the challenger samples
(
(� , crsBARG, crsBC, 21, . . . , 2=, t), cBARG

)
← D∗

ideal
,

v1, . . . , v<
r
← {0, 1}� and sets crs = (=, crsBARG, crsBC, v1, . . . , v<). It parses t = t1‖ · · · ‖t< where t8 ∈ {0, 1}

�

and computes r ← (vT

1t1‖ · · · ‖v
T
<t<). Finally, it sets c =

(
cBARG, (21, . . . , 2=), (t8 (1) , . . . , t8 (!) )

)
and gives

(crs, � , r� , c, r�̄ ) to the adversary.

• Hyb2, 9 : Same as Hyb2, 9−1 except A8 ( 9 )
r
← {0, 1} . Note that Hyb2,<−! is identical to Hyb3.

We now appeal to the leftover hash lemma to show that for all 9 ∈ [<−!], the statistical distance betweenHyb2, 9−1 (1
_)

and Hyb2, 9 (1
_) is negligible.

Claim 3.12. Suppose � ≥ l (log _) + ℓBARG. Then, for all 9 ∈ [< − !], the statistical distance between Hyb2, 9−1 (1
_) and

Hyb2, 9 (1
_) is negligible.

Proof. The only difference between the two distributions is that in Hyb2, 9−1, the challenger samples A8 ( 9 ) ← v
T

8 ( 9 )
t8 ( 9 ) ,

whereas in Hyb2, 9 , the challenger samples A8 ( 9 )
r
← {0, 1} . First, define the random variable / to be

/ =

(
=, crsBARG, crsBC, {v8 }8≠8 ( 9 ) , � , r� ,

(
cBARG, (21, . . . , 2=), {t8 }8∈�

)
, r�̄\{8 ( 9 ) }

)
.

Observe that the adversary’s view in the two experiments then consists of the tuple
(
A8 ( 9 ) , v8 ( 9 ) , /

)
. In both Hyb2, 9−1

and Hyb2, 9 , the challenger samples t r
← {0, 1}<� . By construction, t8 ( 9 ) is independent of all of the components in /

other than cBARG. In conjunction with Lemma 2.1, we can now write

H∞

(
t8 ( 9 ) | /

)
= H∞

(
t8 ( 9 ) | cBARG

)
≥ H∞ (t8 ( 9 ) ) − |cBARG | = � − ℓBARG ≥ l (log _),

since � ≥ l (log _) + ℓBARG. Then, by the (generalized) leftover hash lemma (Corollary 2.4), we can conclude that the
statistical distance between the distributions

(
v
T

8 ( 9 )
t8 ( 9 ) , v8 ( 9 ) , /

)
and

(
A8 ( 9 ) , v8 ( 9 ) , /

)
,

where v8 ( 9 )
r
← {0, 1}� and A8 ( 9 )

r
← {0, 1} is at most 2−(l (log_)−1)/2 = negl(_). Since the statistical distance between the

two experiments is negligible, the claim holds. �

The lemma now follows from Claim 3.12 and a standard hybrid argument (since< = poly(_)). �

Lemma3.13. Under the same conditions as in the statement of Claim 3.8,Hyb3 andHyb4 are (Baug, Yaug)-indistinguishable

for Baug = 2Ω (=
U ) and Yaug = negl(_).

Proof. Follows by an analogous argument as the proof of Lemma 3.10. �

Lemma 3.14. Suppose ΠBC satisfies mode indistinguishability. Then, Hyb4 and Hyb5 are computationally indistin-

guishable.

Proof. Follows by an analogous argument as the proof of Lemma 3.9. �

Combining Lemmas 3.9 to 3.11, 3.13 and 3.14 yields the theorem. �
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Parameter selection. Wenow describe one candidate approach for instantiating the parameters in Construction 3.1:

Corollary 3.15 (Hidden-Bits Generator from Batch Arguments). Let : = : (_) be a locality parameter and suppose that

�_ : {0, 1}
_ → {0, 1}ℓ (_) is a :-local PRG. Suppose ΠBARG is a non-interactive batch argument satisfying semi-adaptive

soundness, ΠBC is a dual-mode commitment scheme, and that these underlying schemes satisfy the following conditions:

• PRG parameters: Suppose there exists a constant U ∈ (0, 1) and a negligible function YPRG = negl(_) such

that �_ is
(
2_

U
, YPRG

)
secure. Moreover, suppose there exists a constant X1 ∈ (0, 1) such that : ≤ X1 log _ and a

constant B > 1 such that ℓ (_) ≥ _B . In words, we assume that �_ has super-linear stretch, logarithmic locality, and

sub-exponential security.

• BARG succinctness: Suppose there exists constants 3 > 0, X2 ∈ (0, 1) and a polynomial @ = @(_) such that the

proof length ℓBARG = ℓBARG (_,) , B) for ΠBARG satisfies

ℓBARG (_,) , B) ≤ B3 ·) X2 · @(_),

where ) denotes the number of instances and B denotes a bound on the size of the circuit.

• Block size: Suppose � = _ + ℓBARG.

Let X ′1 = (3 · X1 + Y)/(1 − X2) for an arbitrarily small constant Y > 0, X ′2 = X2/(1 − X2), and @
′(_) = @(_)1/(1−X2) . Suppose

moreover that the parameters satisfy the following properties:

• Hardness parameter: U > X ′1 + X
′
2.

• Seed length: = = max(_, (<X′2 · @′(_) ·$ (_X
′
2 ))1/(U−X

′
1−Y
′) ) for an arbitrary constant 0 < Y ′ < U − X ′1 − X

′
2.

• Stretch: B ≥ (U − X ′1 − Y
′) (1 + X ′2)/X

′
2 + X

′
1.

Then Construction 3.1 is a hidden-bits generator with subset-dependent proofs.

Proof. Take any input length<. Let crs = (=, crsBARG, crsBC, v1, . . . , v<) ← Setup(1_, 1<). We first bound the size of
the circuit � that computes the relation R[=, crsBC]:

• By construction, |crsBC | = poly(_). Correspondingly, the size of the circuit computing BC.Verify is poly(_).

• Next,�
(8)
= is a function on :-bit inputs, so it can be computed by a circuit of size 2: · poly(:). Since : ≤ X1 log=,

we can bound
|� | ≤ =X1 · poly(log=) = $ (=X1+Y/3 ).

For this choice of parameters, the length ℓBARG of the BARG proof satisfies

ℓBARG = ℓBARG (_,<�, |� |) ≤ |� |3 · (<�)X2 · @(_) = =3X1+Y ·<X2 · ℓX2
BARG

· @(_) ·$ (_X2 ).

Equivalently, this means

ℓBARG ≤ (=
3X1+Y ·<X2 )1/(1−X2) · @(_)1/(1−X2) ·$ (_X2/(1−X2) ) = =X

′
1 ·<X′2 · @′(_) ·$ (_X

′
2 ),

We now consider the requirements of Theorem 3.3, Theorem 3.4 and the requirement on the PRG stretch:

• Theorem 3.4 requires that = ≥ max(_, ℓ2
BARG
) for some constant 2 > 1/U . Let 2 = 1/(U − Y ′) > 1/U . By

assumption, we now have
=U−X

′
1−Y
′

≥ <X′2 · @′(_) ·$ (_X
′
2 ).

In particular, this means that
=U−Y

′

≥ =X
′
1 ·<X′2 · @′(_) ·$ (_X

′
2 ) ≥ ℓBARG .

Correspondingly, we have (=U−Y
′
)2 = = ≥ ℓ2

BARG
, as required.
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• Theorem 3.3 requires that = ≤ <X · poly(_) for some (universal) constant X ∈ (0, 1). Since @ = poly(_) and
U, X ′1, Y

′ are all constants, we currently have that = ≤ <X′2/(U−X
′
1−Y
′) · poly(_). By construction, we have that

0 < U − X ′1 − X
′
2 − Y

′, so X ′2 < U − X ′1 − Y. Thus, setting X = X ′2/(U − X
′
1 − Y

′) < 1 satisfies the requirement.

• Finally, we require that ℓ (=) ≥ <�, or equivalently, =B ≥ <�. By construction,

=B = =X
′
1=B−X

′
1 ≥ =X

′
1 ·

(
<X′2 · @′(_) ·$ (_X

′
2 )
) (B−X′1)/(U−X′1−Y′)

≥ =X
′
1 ·

(
<X′2 · @′(_) ·$ (_X

′
2 )
) (1+X′2)/X′2

≥ =X
′
1 ·<1+X′2 · (@′(_)) (1+X

′
2)/X

′
2 ·$ (_1+X

′
2 ).

Finally, we have
<� =<_ +<ℓBARG ≤ <_ + =X

′
1 ·<1+X′2 · @′(_) ·$ (_X

′
2 ) ≤ =B ,

as required. �

Candidate instantiations. For illustrative purposes, we now describe some instantiations of Corollary 3.15.

• Suppose we instantiate Construction 3.1 and Corollary 3.15 with a batch argument where the proof size scales
polylogarithmically with the number of instances:

ℓBARG (_,) , B) ≤ B3 · polylog() ) · @(_)

for some constant 3 > 0. This is satisfied by most existing BARG constructions [CJJ21b, WW22, DGKV22,
KLVW23, CGJ+22]. In this case, the constant X2 in Corollary 3.15 can be made arbitrarily small. Then we
can instantiate Corollary 3.15 with any :-local PRG that is secure against 2_

U
-size adversaries with locality

: ≤ X1 log _ and stretch B > 1 + 3X1, provided that U/X1 > 3 . For example, we can rely on sub-exponential
hardness of Goldreich’s local PRG [Gol00] with logarithmic locality.

• We can also instantiate Construction 3.1 and Corollary 3.15 with a “mildly-succinct” batch argument where the
BARG proof size scales polynomially with the number of instances:7

ℓBARG (_,) , B) ≤ B3 ·) X2 · @(_)

for constants X2 ∈ (0, 1/2) and 3 > 0. In this case, we can instantiate Corollary 3.15 with a :-local PRG that is
secure against 2_

U
-size adversaries with locality : ≤ X1 log _ and stretch B > 1 + X ′1 + X

′
2, as long as X ′1 < U − X ′2

(for X ′1, X
′
2 as in Corollary 3.15). In particular, we can still rely on sub-exponential hardness of Goldreich’s PRG

with logarithmic locality, but the sub-exponential hardness parameter U increases as X2 increases.

NIZK from batch arguments. Combining Theorem 2.11 and Corollary 3.15, we now obtain a NIZK for NP from
a batch argument for NP:

Corollary 3.16 (NIZK from Batch Arguments). Suppose there exists a semi-adaptively-sound BARG, a dual-mode

commitment scheme, and a sub-exponentially secure PRG with super-linear stretch and locality at most : = 2 log= with

2 < 1 and =-bit inputs. Then there exists a computational NIZK argument for NP.

Remark 3.17 (Using Non-Local PRGs). We note that a local PRG is not strictly necessary for Construction 3.1. It is
sufficient to construct a PRG where each output bit of the PRG can be verified by a circuit of size =X where = is the seed
length and X < 1 is a constant. Any PRG with this local verification property suffices for our main transformation.

7We note here that additionally assuming a rate-1 string oblivious transfer protocol [DGI+19], such a BARG can be transformed into a BARG
where the proof size scales polylogarithmically with the number of instances [KLVW23]. In this case, we would be able to appeal to our previous
instantiation.
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