Authenticated private information retrieval

Kirill Nikitin
Cornell Tech

Simone Colombo
EPFL

Abstract. This paper introduces protocols for authenticated
private information retrieval. These schemes enable a client to
fetch a record from a remote database server such that (a) the
server does not learn which record the client reads, and (b) the
client either obtains the “authentic” record or detects server
misbehavior and safely aborts. Both properties are crucial
for many applications. Standard private-information-retrieval
schemes either do not ensure this form of output authenticity,
or they require multiple database replicas with an honest ma-
jority. In contrast, we offer multi-server schemes that protect
security as long as at least one server is honest. Moreover,
if the client can obtain a short digest of the database out of
band, then our schemes require only a single server. Perform-
ing an authenticated private PGP-public-key lookup on an
OpenPGP key server’s database of 3.5 million keys (3 GiB),
using two non-colluding servers, takes under 1.2 core-seconds
of computation, essentially matching the time taken by unau-
thenticated private information retrieval. Our authenticated
single-server schemes are 30-100x more costly than state-
of-the-art unauthenticated single-server schemes, though they
achieve incomparably stronger integrity properties.

1 Introduction

Private information retrieval (PIR) [31] enables a client to
fetch a record from a database while hiding from the database
server(s) which specific record(s) the client retrieves. PIR
has numerous privacy-protection uses, such as in metadata-
private messaging [5, 6], certificate transparency [63, 83],
video streaming [51], password-breach alerting [4, 60, 87],
retrieval of security updates [24], public-key directories [64],
and private SQL-like queries on public data [74, 92].

Most PIR protocols, however, do not ensure data authentic-
ity in the presence of malicious servers. In many multi-server
PIR schemes [18, 31], a single adversarial server can flip any
subset of bits in the client’s recovered output. In all single-
server PIR schemes we know of (c.f,, [1, 4, 5, 19, 22, 32, 37,
46, 52, 57, 62, 66, 71, 76, 78] for a non-exhaustive list), a
malicious server can choose the exact output that the client
will receive by substituting all the database records with a
chosen record before processing the client’s request. In appli-
cations where data integrity matters, such as a PGP public-key
directory, unauthenticated PIR is inadequate.

This is the full version of a paper with the same title appearing at USENIX
Security 2023.

Henry Corrigan-Gibbs

David J. Wu
UT Austin

Bryan Ford

Mmir EPFL

This paper introduces authenticated private information
retrieval, which augments the standard privacy properties of
classic PIR with strong authenticity guarantees. In the multi-
server setting, we propose authenticated-PIR schemes for:

* Point queries, in which a client wants to fetch a particular
database record. For example, “What is the public key for
user@usenix.org?”’

* Predicate queries, where a client wants to apply an aggre-
gation operator — such as COUNT, SUM, or AVG — to all records
matching a predicate. For example, “How many keys are
registered for email addresses ending in @usenix.org?”’

Our corresponding authenticated-PIR schemes guarantee
integrity in the anytrust model [94]: as long as at least one of
the PIR servers is honest. In contrast, prior work that deals
with malicious or faulty PIR servers in the multi-server set-
ting either requires a majority or supermajority of servers
to be honest [11, 12, 39, 49] or requires expensive public-
key cryptography operations [98]. Our schemes use only fast
symmetric-key cryptography in the multi-server setting.

In the single-server setting, we offer authenticated-PIR
schemes for point queries which provide authentication as
long as the client can obtain a short digest of the database via
out-of-band means (Fig. 1). Prior work for the single-server
setting [57, 93, 99] ensures only that the server truthfully
answers the query with respect to some database—not nec-
essarily the database the client queried. Table 2 summarizes
prior work and Section 8 gives the complete discussion.

New definitions. Our first contribution is a new definition of
integrity for private information retrieval. In our multi-server
PIR schemes, a client communicates with several database
servers, and client privacy holds as long as at least one server
is honest. In this multi-server setting, we say that a PIR
scheme satisfies integrity if, whenever the client accepts the
servers’ answers, the client’s output is consistent with an hon-
est server’s view of the database.

Defining integrity in the single-server setting is more tricky:
If the single database server is malicious, who is to say what
the “right” database is? Our approach assumes that the client
can obtain a short digest of the database via some out-of-band
means. A single-server PIR protocol satisfies integrity if the
client accepts the protocol’s output only if the output is consis-
tent with the database that the digest represents. In some appli-
cations of PIR, the client could obtain this database digest via
a gossip mechanism, as in CONIKS [65], or from a collective

Multi-server

Single-server

f Honest execution Malicious execution \6ig65t distribution Honest execution Malicious executi(h
server 1 server 2 server 1 server 2 data owner server server
i i i
1| exA56F 1| exAs6F 1| exAs6F
2|exB73C 2|6xB73C 2|@xB73C
3| 0x35A2 3| 0x35A2 3| 0x35A2
< S 05
2 o) s $%
> & 'y @, O A | wron
%@\\\%& S A//;30 %;\\\é(& §§ //@é digest ! query T l answer queryT l answgr
oY S \2
o3 S o3 X
S0 R i PN s ORI s IO
K client client JK client client client j

Figure 1: In multi-server authenticated PIR, k > 2 servers hold an exact replica of the database and the client’s output is consistent with the
honest server’s view of the database. If at least one server is honest, the client detects any malicious behaviour from the other servers that reply
with respect to an altered database, and rejects the answers. In the single-server setting, a potentially-malicious PIR server holds the database
outsourced by the data owner. The client’s output is consistent with a database digest that the client obtained from the honest data owner.

authority [85], or from a signature-producing blockchain [73].
In other applications of PIR such as video streaming [51], a
database owner—distinct from the PIR servers—might pro-
duce, sign, and distribute this digest.

A subtle and important point is that our security definitions
require protection against selective-failure attacks by mali-
cious servers [53, 55, 57]. In this class of attacks, a malicious
server answers the client’s query with respect to a database
that differs from the true database in a few rows. By observing
whether the client accepts or rejects the resulting answer, the
server can learn information about which rows the client had
queried. To defend against these attacks, our security defini-
tions require that any misbehavior on the part of a malicious
server causes a client to reject the servers’ response.

New constructions. We construct new authenticated-PIR
schemes in the multi- and single-server settings.

Multiple servers, point queries. Our first multi-server PIR
scheme allows the client to make only point queries—to fetch
single records from the database. The scheme is simple to
implement and has minimal performance overhead. In this
scheme, the servers compute a Merkle tree over the database
rows and send the client the Merkle root. The client aborts
if the servers send different roots. The client then uses unau-
thenticated PIR to fetch its desired row and a Merkle inclu-
sion proof with respect to the root. The scheme provides
authentication when composed with certain—though not all—
standard PIR schemes. (Kushilevitz and Ostrovsky suggested
using Merkle trees in this setting [57], though we are the
first to formalize the approach and identify the class of PIR
schemes for which it is secure.) On a database containing N
records of £ bits, and on security parameter A, our two-server
authenticated-PIR scheme for point queries has communica-
tion cost O(AlogN + ¢), which matches the cost of the best
unauthenticated schemes. Experimentally, this form of au-

thentication imposes less than 2.7 x computational and 1.8x
bandwidth overhead, compared with unauthenticated PIR.

Multiple servers, predicate queries. Our multi-server scheme
for predicate queries starts with an existing unauthenticated
scheme based on function secret sharing [17, 18, 92]. We
cannot use Merkle trees for authentication: the space of pos-
sible queries is exponentially large, so the servers cannot
precompute and authenticate each potential answer as before.
The client instead uses an information-theoretic message-
authentication code—common in malicious secure multi-
party protocols [33, 35]—to detect whether a server has tam-
pered with its answer. Asymptotically, the communication and
computation of our authenticated-PIR scheme for predicate
queries matches the costs of the corresponding unauthenti-
cated scheme. Empirically, the authenticated scheme incurs a
median overhead of less than 1.02x for both user time and
bandwidth. Our multi-server scheme for predicate queries is
concretely more computationally expensive (at least 350x)
than our scheme for point queries because the cost of evaluat-
ing the function secret shares is non-trivial. Thus, this scheme
does not scale as well to a large number of servers compared
to our specialized multi-server scheme for point queries.

Single server, point queries. Finally, we give two single-
server authenticated-PIR protocols: one from the learning-
with-errors assumption, and one from the decisional-Diffie-
Hellman assumption. Like many recent single-server PIR pro-
tocols [1, 4, 5, 52], our schemes extend the classic Kushilevitz-
Ostrovsky scheme based on additively homomorphic encryp-
tion [57, 75]. Our schemes incorporate additional random-
ness that the client uses to authenticate the server’s response.
The client verifies the server’s reply using a short database
digest that the client obtains via out-of-band means. Our
schemes operate with single-bit records. We propose exten-
sions for handling larger records, but they require increased

client computation: more efficient single-server, multi-bit au-
thenticated PIR remains a promising area for future work.
Over a database of size N and with security parameter A, our
single-server authenticated-PIR schemes have communica-
tion cost v/N - poly(A). In contrast, unauthenticated schemes
have communication cost as low as log N - poly(A). Our fastest
single-server scheme is 30-100x more computationally ex-
pensive than the fastest unauthenticated scheme.

An example application. To evaluate authenticated PIR in the
context of a practical application, we design and build Keyd,
a privacy-preserving PGP public-key directory deployed in
the two-server setting. A Keyd client can query the servers
for the PGP public key corresponding to a particular email ad-
dress without leaking the queried email address to the servers.
Moreover, a Keyd client can also query the servers for private
analysis of the PGP public keys dataset by issuing conjunctive
COUNT, SUM and AVG queries without leaking the parameter of
the keys over which the predicate is computed. For exam-
ple, a client can issue a query of the form SELECT COUNT (x)
FROM keys WHERE keyAlgorithm = p, where p represents
the hidden parameter of the predicate, e.g., RSA or ElGa-
mal. Our new authenticated-PIR schemes provide the client
with a strong integrity guarantee about the output of the pro-
tocols. When run on a recent dump of the SKS PGP key
directory, including over 3.5 million keys, querying for a par-
ticular key takes the client 1.11 seconds, compared with 1.10
seconds with unauthenticated PIR. Issuing predicate queries
with Keyd on the same database imposes an overhead of
1.01x on user time and of 1.05x on bandwidth compared
with unauthenticated PIR.

2 Background and motivation

This section reviews classic PIR schemes, and why naively
introducing integrity protection into them is unsafe.

2.1 Private information retrieval (PIR)

A PIR protocol [31] takes place between a client and one or
more servers. Each server holds a copy of a database consist-
ing of a set of equal-length records. The client wants to query
the database without revealing the details of its query to the
servers. Modern PIR protocols support two types of queries:
(1) the client can fetch a single record from the database, with-
out revealing which record it retrieved, or more generally, (2)
the client can evaluate a function on all the database records,
without revealing which function it evaluated. Non-trivial PIR
schemes must also be communication efficient, requiring the
client and servers to exchange a number of bits sublinear in the
database size. Otherwise, the client could simply download
the entire database and perform the query locally.

There are two main types of PIR protocols: multi-server
and single-server. In multi-server PIR [31], the client com-

j5)
~
My~ RSN
Q = O
&3 I 5
Se 2 6 S5 &
s, Sz 3% &
s 85
S5 8 5L 38 S
se SB5o8 8
PIR scheme 248 S w5 x
Multi-server schemes
Robust PIR [11, 12] 1 X X
Byzantine PIR [11, 12, 39, 49, 56] >2k/3
Fault-tolerant PIR [96] >k/2
Verifiable PIR [98] 1 X | X
Authenticated PIR (§4, §5) 1 X
Single-server schemes
KO97 [57] 0 X X | X
Verifiable PIR [93, 99] 0 X X | X
Authenticated PIR (§5) 0 X | X

Table 2: Summary of PIR schemes that tolerate dishonest servers.
The multi-server schemes assume k servers in total. Malicious indi-
cates schemes that resist malicious adversaries, as opposed to merely
faulty servers. Selective-failure secure indicates schemes designed
to resist selective-failure attacks [55]. No public-key cryptography
indicates schemes that require only fast symmetric primitives; single-
server schemes always require public-key operations [34]. Recovery
indicates whether, in case of a server’s misbehaviour, the client is
able to recover the correct output or just aborts.

municates with k > 1 database replicas; correctness holds
if all k servers are honest and privacy holds if at least one
server is honest. Multi-server PIR schemes traditionally offer
information-theoretic privacy. In single-server PIR schemes
(k= 1) [57], correctness holds if the single server is honest
and privacy holds against a dishonest server. Single-server
PIR schemes require a computationally-bounded server and
public-key cryptographic operations [34].

In many applications, the database is a list of
(keyword, value) pairs; the PIR client holds a keyword
and wants the associated value. In this paper, we construct
authenticated PIR schemes for integer-indexed arrays, and we
use off-the-shelf methods [29, 48] to convert these schemes
into authenticated keyword-based PIR schemes.

2.2 Why integrity matters in PIR

Standard PIR schemes give the client no integrity guarantees.
If any one of the servers in a single- or multi-server scheme
deviates from the protocol, the malicious server can—in many
PIR protocols—completely control the output that the client
receives. In other words, classic PIR protocols do not ensure
correctness against even just one malicious server.

This lack of integrity protection is extremely problematic

in many applications of PIR:

* Public-key server: If a client uses PIR to query a PGP or
Signal key server for a contact’s public keys, a malicious
server could cause the client to fetch a false public key
for which the adversary controls the secret key.

* Domain name system: If a client uses PIR to query a
DNS resolver, a malicious PIR server could cause the
client to recover the wrong IP address for a hostname
and thus poison the client’s DNS cache.

* Online certificate status protocol (OCSP): If a client
uses PIR to query the revocation status of a public key, a
malicious PIR server could trick the client into trusting a
certificate that was revoked by the CA after compromise.

* Content library: If a client uses PIR to fetch a movie [51]
or a software update, a malicious PIR server could cause
the client to recover a malware-infected file instead.

Non-private variants of these applications can already offer
integrity. For example, CONIKS [65] provides integrity of key
bindings for public-key directory servers and DNSSEC [7]
ensures integrity of DNS data. The challenge is thus to ensure
integrity in the private variants of these applications.

2.3 Selective failure and other attacks on PIR

We can always compose standard authentication mechanisms
with PIR. For example, a database owner — the party respon-
sible for its creation — can append to each database row a
digital signature on the record under the database owner’s key
or a Merkle inclusion proof with respect to a known root. The
database owner can then outsource the authenticated database
to an untrusted PIR server. After performing a query, the client
simply checks the authentication tag on the row it retrieved.

This attempt at authenticated PIR is insecure and vulner-
able to selective-failure attacks [55]. In such attacks, a ma-
licious PIR server selectively corrupts the database so that
only targeted queries fail the integrity check. Suppose a mali-
cious PIR server “guesses” that the client is likely to access a
particular record, and corrupts only that record. The client’s
integrity check then fails only if the attacker’s guess was cor-
rect. If the attacker can determine whether the client accepted
or rejected the PIR protocol’s output—e.g., via the client’s
subsequent behavior—the attacker can violate client privacy.

Naive composition can yield other security and privacy haz-
ards. For example, if authentication tags attached to database
rows do not uniquely identify the database version and row
number, then a malicious PIR server might undetectably swap
or duplicate rows or replay old database versions.

Even in a multi-server setting where one malicious server
cannot unilaterally corrupt database rows independently, but
is limited to blindly flipping bits in its answer without know-
ing which row these bit-flips will affect, more subtle attacks
on naive compositions may be readily feasible. If rows are
protected by malleable digital signatures [40], for example,
then a malicious server might flip signature bits in the result
so that the signature of a particular “guessed” database row
becomes a different still-valid signature the client will accept,
while the signatures on all other rows become invalid.

3 Defining authenticated PIR

We now define authenticated PIR in the multi- and single-
server settings. In both models, we wish to ensure that the
client either obtains “correct” (authentic) output, or else safely
rejects the answer without leaking any private information.
Privacy must hold even if the PIR servers learn whether the
client has accepted or rejected the answer. Therefore, our pro-
tocols protect against selective-failure attacks (Section 2.3).

Notation. We use N to denote the set of natural numbers. For
NeN,[N|={1,...,N}. We use negl(-) to denote a negligible
function and poly(-) to denote a fixed polynomial. Through-
out, we use I to denote a finite field. We will typically take F
to be the set of integers modulo a prime p with addition and
multiplication modulo p. For a finite set S, we write x <& S
to indicate that x is sampled independently and uniformly at
random from S. The symbol L is an output that indicates
rejections. For a group G, we use 1g to denote the identity
element. For finite sets S and 7', we use Funs[S, T] to denote
the set of all functions from S to 7. By “efficient algorithm’
we refer to a probabilistic polynomial time algorithm. In some
settings, we will also consider hardness against non-uniform
adversaries (i.e., polynomial-time algorithms that can addi-
tionally take polynomial-size advice as input, see Remark 37).

5

3.1 Multi-server definition

We now define k-server authenticated PIR schemes, for k > 2.
See Appendix B for the full formalism.

Our definition generalizes private information retrieval to
weighted functions of the database rows: the client has a secret
function f in mind, which must come from a particular class
of functions ¥ . The servers hold a database (xi,...,Xy) and
public “weights” (wy,...,wy), one per database row. The
client’s goal is to get the weighted sum of its private function
f applied to each of the rows: Yeywif(i,x;). When the
function class ¥ is expressive enough, this general syntax
subsumes not only the usual definition of multi-server PIR,
but also more expressive PIR schemes for predicate queries.

Definition 1 (k-server authenticated PIR for predicate
queries). A k-server authenticated PIR scheme for function
class F C Funs[[N] x {0,1}¢,F], database size N € N, and
weights w € TN, consists of three efficient algorithms:

* Query(1*, f) = (st,q1,....qx). Given a security param-
eter A, expressed in unary, and a function f € F, return
secret client state st and queries qy,...,qx, one per server.

» Answer(X,w,q) — a. Apply query q to database X =
(x1,...,xy) € ({0,13Y together with weights w =

(wi,...,wy) € FN and return answer a.
* Reconstruct(st,ay,...,a;) — {Zie[N] wif (i,%;), L }. Take
as input client state st and answers ay, ... ,a; and return

the weighted output of the function f applied to the rows
of database X, or an error L.

A k-server authenticated-PIR protocol must satisfy the fol-
lowing properties. We state the properties here informally and
give formal cryptographic definitions in Appendix B.

Correctness. Informally, an authenticated-PIR scheme is cor-
rect if, when an honest client interacts with honest servers,
the client always recovers the weighted output of its chosen
function applied to the database, i.e., ¥iciy wif (i, X;).

Integrity. An authenticated-PIR scheme preserves integrity
with error € if, when an honest client interacts with a set of k
servers, where at most k — 1 can be malicious and might arbi-
trarily deviate from the protocol, the client either: outputs the
sum of products of its desired function and weights applied
to the database, or outputs the error symbol L, except with
probability €. If the scheme has negligible integrity error, we
just say that it “preserves integrity.” Classic PIR schemes do
not ensure this integrity property.

Privacy (against malicious servers). An authenticated-PIR
scheme satisfies privacy if any coalition of up to k — 1 ma-
licious servers “learns nothing”—in a strong cryptographic
sense—about which function in the function class ¥ the
client wants to evaluate on the database, even if the servers
learn whether the client’s output was the error symbol L
during reconstruction. Standard PIR schemes do not neces-
sarily satisfy our strong notion of privacy, since such schemes
may be vulnerable to selective-failure attacks (Section 2.3);
authenticated-PIR schemes that provide privacy are not.

We say that an authenticated-PIR scheme is secure if it
satisfies both integrity and privacy. We define integrity and
privacy separately because, as Section 3.3 shows, we can re-
duce the integrity error of a PIR scheme that provides privacy.

Example 2 (PIR for point queries—Standard PIR). In
authenticated-PIR schemes for point queries, as in a standard
PIR scheme, a client privately fetches a single database row.
We can recover this functionality from Definition 1, where
we take the row length ¢ = 1 for simplicity. The class of func-
tions ¥ is the class of point functions ¥ = {f(1),..., fNM} C
Funs[[N] x {0,1},F], where f)(i,-) =1 and f@(i/,-) =0
for all i’ # i. The weights are the database entries themselves,
ie,w;=x;€{0,1} CF,forie [N].

Example 3 (COUNT query). A COUNT predicate query
counts the database entries satisfying a predicate. A client
can count the occurrences of a string 6 € {0,1}' in a
database xi,...,xy € {0,1}¢ using the class of functions
F C Funs[[N] x {0,1},F], where f(-,x;) = 1 if x; = c and
f(-,x;) = 0 otherwise, with constant weights w; = 1p, i € [N].

Remark 4 (Security against kK — 1 malicious servers). The
form of authenticated PIR we define above requires security
to hold even against coalitions of up to k — 1 malicious servers.
This defines the minimal requirement for multi-server PIR

schemes, which do not support complete collusion, and is
a model frequently used in anonymous communication sys-
tems [6, 58, 94]. In particular, the colluding servers can share
their queries with each other and agree on the answers. The
protocols that we construct satisfy this strong notion of se-
curity. A weaker definition requires security to hold against
only adversaries that control a lower threshold r < k— 1 of
the servers. Prior work [11, 12, 49] takes t < k/2 ort < k/3.
We discuss these and other related approaches in Section 8.

3.2 Single-server definition

This section defines single-server authenticated PIR. One
challenge to providing integrity in the single-server setting is
that the client has no source of information about the database
content other than the server itself. (In the multi-server setting,
the honest server acts as a source of “ground truth.”) A mali-
cious server can answer the client’s query with respect to a
database of the server’s choosing, and completely control the
client’s output. We address this problem by introducing a pub-
lic database digest that cryptographically binds the server to
a given database and serves as the ground truth in the scheme.
In applications, the client must obtain this digest via out-of-
band means, e.g., via gossip, as in CONIKS [65], or from the
database owner if the latter is distinct from the PIR server.

We now give the formal definition of a single-server
authenticated-PIR scheme, which differs from the multi-
server definition in its use of a digest and in the absence of
complex queries. We assume for simplicity that each database
record consists of a single bit. The definition generalizes nat-
urally to databases with longer rows.

Definition 5 (Single-server authenticated PIR for point
queries). A single-server authenticated PIR scheme, for a
database of size N € N, consists of the following algorithms:

* Digest(1*,x) — d. Take a security parameter \ (in unary)
and a database x € {0,1}" and return a digest d.

* Query(d,i) — (st,q). Take as input a digest d and an index
i € [N] and return a client state st and a query q.

» Answer(d,x,q) — a. Apply query q to database x €
{0, 1}V with digest d and return answer a.

* Reconstruct(st,a) — {0, 1, L}. Take as input state st and
answer a and return a database bit or an error L.

A single-server authenticated-PIR scheme must satisfy
analogous properties to those in the multi-server setting: cor-
rectness, integrity and privacy. If a scheme satisfies both in-
tegrity and privacy, we say that the scheme is secure. We
present the formal definitions in Appendix E.

Malformed digest. Our schemes guarantee integrity for
single-server authenticated PIR only when the client uses an
honestly-generated digest. In all applications of single-server
PIR that we envision, this security guarantee is sufficient—
the client’s goal is to check that a (possibly malicious) PIR

server’s answer is consistent with the (correct) digest that the
client has obtained out-of-band from the data owner. Stronger
notions of security are possible, however. We could require
that even if the digest is generated adversarially, the client
is guaranteed to recover output that is consistent with some
n-bit database. This stronger notion is related to that of simu-
latable adaptive oblivious transfer [23] and extends to other
cryptographic primitives [45, 54].

3.3 Integrity amplification

The lattice-based single-server authenticated-PIR schemes
that we construct in Section 5 have noticeable integrity er-
ror € = 1 /poly(A) for some parameter settings. We show, in
Appendix E.2, that if the authenticated-PIR schemes provide
privacy, then it is possible to reduce the integrity error to a neg-
ligible quantity, in both the multi- and single-server settings.
In particular, we prove:

Theorem 6 (Integrity amplification, informal). If I1 is an
authenticated-PIR scheme with privacy and with integrity
error € then, for every t € N, there is an authenticated-PIR
scheme TT' with privacy and with integrity error €', where
I invokes I1 at most 2t + 1 times.

The integrity-amplification construction first encodes the
database using an error-correcting code that can correct ¢
errors. For instance, using the simple repetition code, we ex-
pand each database bit into 2¢ + 1 codeword bits. (When the
database records are long, we can use better error-correcting
codes.) Then, the client uses the base authenticated PIR
scheme IT 27 + 1 times to fetch each of the 2t 4 1 bits of
the codeword corresponding to its desired database record.

If any of these 2¢ + 1 runs output L, the client outputs L.
If none of the 2¢ + 1 runs output L, then either: (a) the client
recovers at least t 4+ 1 correct bits of the codeword, in which
case the client correctly recovers its desired output bit, or
(b) the client recovers an incorrect bit on more than ¢ of the
protocol runs, which happens with probability at most &' *!,
by the e-integrity of the underlying PIR scheme.

4 Multi-server authenticated PIR

We give two constructions of multi-server authenticated PIR.

4.1 Point queries via Merkle trees

We first present a multi-server authenticated-PIR scheme for
point queries. This scheme enables a client with a secret index
i € [N] to retrieve the i record from a database of N records.

A natural way to construct an authenticated-PIR scheme
is to combine a standard (unauthenticated) multi-server PIR
scheme with a standard integrity-protection mechanism, such
as Merkle trees [67]. While this composition is in general

insecure under our definition, we show that it can be secure
with a careful choice of the underlying primitives.

We sketch the construction here and formally present it
in Appendix C (Construction 4). This construction uses a
standard multi-server PIR scheme in which (a) the client
sends a single message to each server and receives a single
message in return and (b) client reconstructs its output by
summing up (or XORing) the answers from the servers. Many
standard PIR schemes have this form [18, 31, 32, 48] (see
Definition 15).

In these schemes, if any of the servers deviate from the pre-
scribed protocol, the worst they can do is to cause the client
to recover the correct output shifted by a constant of the ad-
versarial servers’ choosing. Therefore, instead of recovering
the message m € {0, 1}, the client recovers m @ A, for some
non-zero value A € {0, 1},

Our approach then is to have the servers compute a Merkle
tree over the N database entries along with their indices:
{(1,x1),...,(N,xy)}. Call the root of the tree R. Then for
each entry, each server constructs a Merkle proof w; of inclu-
sion in the tree rooted at R and attaches this proof to each
database record. The asymptotic complexity of this prepro-
cessing phase is O(N); we discuss concrete costs in Section 7
and Appendix C.2. Finally, the client and servers run the PIR
protocol over the database {(1,x;,7),...,(N,Xy,7y)}. Each
of the servers also sends the Merkle root R to the client.

The client first checks that it received the same Merkle root
R from all of the servers. Since at least one of the servers is
honest, this ensures the client receives the honestly-generated
root. If all the roots match, the client reconstructs the record
and verifies the Merkle inclusion proof with respect to R.
If a server misbehaves, the client will recover (7, x},m}) =
(i,x;,T;) ® A for some non-zero offset A. Whenever A # 0,
security of the Merkle proof ensures that «; will be an invalid
proof of (i,x;) with respect to R.

4.2 Predicate queries via function sharing

Recent work on function secret sharing [17, 18] in the multi-
server PIR setting enables a client to compute a non-trivial
function f over the database contents, without revealing this
function f to the servers. For example, a client can count the
number of database records that match a certain predicate,
without revealing this predicate to the servers.

We design an authenticated-PIR protocol for predicate
queries by extending classic PIR schemes based on func-
tion secret sharing [17, 18]. At a high level, the client makes
two correlated PIR queries. The reconstructed answer to the
first query should contain the value v that the client wants.
The reconstructed answer to the second query should contain
v/ = aw, where o is a random scalar known only to the client.
To authenticate the servers’ answers, the client checks that
ov =V and rejects if not. As we will show, if any server mis-
behaves, the client will be checking that a(v+A) =V + A/,

for some non-zero A and A’. Sampling o from a sufficiently
large space of values ensures that the client catches a cheating
server almost certainly.

This idea of using secret-shared random values for data
authentication follows a long line of work on information-
theoretic message authentication codes and malicious-secure
multiparty computation [16, 33, 35, 38].

We now describe our construction in detail.

Preliminaries: Function secret sharing. We recall the defi-
nition of function secret sharing [17, 18]: A k-party function
secret-sharing scheme is defined with respect to a function
class F. Each function f € F maps elements in some input
space to a finite group or field F. Then a function secret-
sharing scheme consists of two efficient algorithms:

« Gen(1*,) = (f1,..., f¢). Given a function f € ¥, output
k function-secret-shares fi, ..., f.

* Eval(fi,x) = fi(x) € F. Given a secret-share f; and a func-
tion input x, output the evaluation of f; on x.

A function secret-sharing scheme must satisfy the following
informal properties, defined formally in Appendix A.3:

* Correctness. Given shares (f1, ..., fx) of a function f € 7,
for all x in the domain of £, it holds that Yy Eval(fi,x) =

flx) eF.

* Security. Given shares (f,..., fi) of a function f € F, a
computationally-bounded adversary that learns k — 1 of the
shares learns nothing about the shared function f, beyond
the fact that f € .

For the construction, we need the following definition:

Definition 7 (Function class closed under scalar multiplica-
tion). Let F be a class of functions whose codomain is a
finite field F. Then we say that the function class F is closed
under scalar multiplication if, for all functions f € F and for
all scalars o € F, it holds that the function o.- f € F.

Construction. Our scheme, presented in Construction 1, is
defined with respect to a finite field I, a record length £ € N,
a database size N € N, a function class # C Funs[[N] x
{0,1}¢,F] closed under scalar multiplication, and weights
w € FN. The k > 2 servers each hold a copy of a database
of N ¢-bit records. We write the n database records as
X1,...,Xy € {0,1}. Given a predicate function f € ¥, the
client samples a random non-zero field element o0 € F and
secret-shares f together with a new function g defined as
g(i,x;) = a- f(i,x;) € F into k shares, i.e., f; and g; for j €
[k]. (Alternatively, if the underlying function-secret-sharing
scheme supports it, the client can also secret share the single
function (f(i,x;),g(i,x;)) whose image is in F2.)

Upon receiving the shares, each server j € [k]
sets each element of its answer tuple to the sum of
the function shares’ evaluations on all the database

Construction 1 (k-server authenticated PIR for predi-
cate queries tolerating k — 1 malicious servers). The
construction is parametrized by a number of servers
k € N, a number of database rows N € N, a row length
¢ €N, a finite field IF, a security parameter A, a func-
tion class F C Funs[[N] x {0,1}¢,TF] that is closed un-
der scalar multiplication, and a function-secret-sharing
scheme (FSS.Gen, FSS.Eval) for the function class ¥,
parametrized by A. We represent the database as N binary
strings, each of length ¢: xp,...,xy € {0, l}é.

Quel’y (17»7]0) — (St»(h, (X 7qk)
1. Sample a random field element o0 <* F \ {0}.

2. Set the state st < .

3. Let g < a- f. Such a g must exist since the function
class F is closed under scalar multiplication, as in
Definition 7.

4. Compute q1,...,qx < FSS.Gen(1%, f) together with
¢is-- - q, < FSS.Gen(1,g).

5. Output (st, (1,4}),---, (qk,q))-

Answer (xi,...,xy € {0,1},w e F¥ q) - a € F?

1. Parse q as (g7, qg)-
2. Compute answer as ay < Y. jc(y) w; - FSS.Eval(gy,X;)
and ag < Y jev W) - FSS.Eval(gg, ;).

3. Return a < (ay,a,) € F2.

Reconstruct (st,ay, ..., a, € F*) > FU{Ll}

Parse the state st as a0 € IF.
Compute a < aj +--- +a; € F2.
Parse a as (m, 1) € F2.

Compute T < m-a € F.

A

If T =7/, output m € F. Otherwise, output L.

records multiplied by the corresponding weights: i.e.,
a;j ¢ (Liep wi- £(i,%i), Liew wi - 8(i,xi)) € F. The
servers directly evaluate the function shares on the database
records. The client adds the answer vectors and reconstructs
an intermediate value a <— Y. ;cja; € 2.

If all the servers are honest, the client-
reconstructed value a equals a = (a,a42) =
(Xiepvywi- f(i,%),0- Yienywi - £(i,%;)). The client then
verifies that o-a; = ap. As o is randomly generated and
secret-shared among the servers, only the client knows its
value. If o.- a; # ap, then the client rejects. Otherwise, the
client accepts and outputs a;.

Proof sketch. To explain how this approach protects in-
tegrity, we argue by contradiction. Say that server j € [k]

should have returned an answer a; € F? to the client. Sup-
pose server j is malicious and returns an answer 4; =
a; + A € F? for some non-zero value A = (Ay,A;) €
2. The client will reconstruct the answer as a + A =
(i wi - F(0,X0) + A, 0 Ly wi - F(i,Xi) +Ag) € F2. As
server j has no information about c—due to the privacy guar-
antees of the function-secret-sharing scheme—the malicious
server’s choice of A is (computationally) independent of a.
For the verification to pass, it must be that o - A, = Aq. If
A # 0 and o is sampled independent of A, this happens with
probability at most 1/(|F| — 1) over the randomness of o.
Next, the privacy of the client’s queries is ensured by the un-
derlying function secret-sharing scheme. In Appendix D.1,
we formally prove that this construction is secure.

Theorem 8. Suppose there exists a k-party function-secret-
sharing scheme for a function class F C Funs[[N] x
{0,1}¢,F] that is closed under scalar multiplication (Defini-
tion 7), for database size N € N, which, on security parameter
A €N, outputs secret shares of length L(\). Then, there is a
k-server authenticated-PIR scheme for function class F with
query complexity 2L(A)k bits and answer complexity 2k bits.

By applying the two-party function-secret-sharing scheme
of Boyle, Gilboa, and Ishai [18], we get:

Corollary 9. Given a length-doubling pseudorandom genera-
tor with seed length A, there is a two-server authenticated PIR
scheme for point functions and interval functions with com-
munication complexity O(AlogN), on security parameter A
and database size N.

Handling functions with larger output. In some PIR ap-
plications, a client might want to evaluate a function whose
output is larger than a single field element, e.g., geographi-
cal coordinates for route planners [92]. We hence extend our
scheme to support multi-element authenticated output.

Here, we authenticate each output element of a function
f with a separate function g;, for j € [b], where b is the
output length of f using an algebraic manipulation detec-
tion code [33]. In the query algorithm, the client gener-
ates a secret random scalar o as before but then computes
(gl (ivxi)agZ(iaxi)v s agb(iaxi)) = ((X, OL27 s 7(X‘b) © f(ivxi)’
where © represents the element-wise product, and sends
secret-shared f and g1,...,gp to the servers. The servers then
compute their answer as a < (ay,ag,,...,a,,) € F?2.

This already enables the client to validate integrity of
the full output after the reconstruction by comparing it with
ag,,...,a, . We further reduce the protocol’s communication
cost by setting the servers’ answer to (ay,a, = Y.icp ;) €
F>+1. The client re-computes this linear combination from
the answer and compares it with the received value.

We show the full construction in Appendix D.2.

5 Single-server authenticated PIR

We now present a single-server authenticated-PIR scheme.

As depicted in Fig. 1, in this setting a data owner outsources
the data to a single PIR server (e.g., an Amazon EC2 instance)
and produces a database digest. This public digest serves as a
commitment to the database contents. The client can fetch the
digest from a distributed authority, or using a CONIKS-like
gossip protocol [65], or out-of-band from the data owner.

It is possible in principle to construct single-server
authenticated-PIR schemes by augmenting a standard single-
server PIR scheme [5, 37, 52, 66, 71] with a succinct proof
of correct server execution [77], but this would be orders of
magnitude more costly in computation than our schemes are.

Preliminary: Rebalancing to get /N communication.
Our single-server authenticated-PIR schemes natively have
a digest of size poly(A) bits, upload N - poly(A) bits, and
download poly(A) bits. To reduce total communication to
VN - poly () bits, we use a standard rebalancing trick [31].
The server first splits the database into /N chunks, each
of size v/N. The digest then consists of the hash (with any
collision-resistant hash function, e.g., SHA-256) of the VN
database digests. To query the database for the i row of
the j" chunk, the client issues a single query for row i. The
server responds with the /N chunk digests, and the answer
computed against each chunk. The client checks that (1) the
hash of the v/N chunk digests match the database digest and
(2) all /N chunk queries accept. If these checks pass, the
client outputs the value of the j™ response as its answer.

5.1 From learning with errors

Our first single-server authenticated-PIR scheme builds on
lattices and relies on the learning-with-errors assumption
(LWE) [82] (see Definition 43 for a formal statement). The
LWE assumption with parameters n,q,m, s € N, states that the
two distributions (A,s"A +e") and (A,u") are computation-
ally indistinguishable, where A <& ng’”, s & Ly, €<+ D%‘Y €
Z;”, and u & Zg, and where Dy is the discrete-Gaussian
distribution with width parameter s (cf. Appendix F.1).

Construction 2 describes our scheme, which is a twist
on Regev’s LWE-based encryption scheme [82] and is an
authenticated analogue of the SimplePIR LWE-based PIR
scheme [52]. (We compare against SimplePIR in Section 7.)
Regev’s scheme encrypts a vector v € {0,1}" C ijv by the
pair (A,sTA+e" +1-v"), where A € Z*V is the LWE ma-
trix, s <& Zg is the LWE secret, e < D%’_S is the error vector,
and t € Z, is some scaling factor (commonly set to ¢/2).
Regev’s scheme is linearly homomorphic: for any vector
x € {0,1}V C Z), the ciphertext (Ax, (s"A+e"+7-v")-x)
decrypts to v'x (provided the accumulated error e"x is small
compared to t).

In our scheme, the first portion of this ciphertext (A - x, on

database x € {0, 1} C Z{qv) becomes the digest. Finding two
distinct databases that map to the same digest is as hard as
solving the short integer solutions problem [2].

To query for database record i € [N], the client prepares the
Regev encryption q" of the i" basis vectorn; € Z]qv (i.e.,m; is
the vector that is 0 everywhere and 1 at index 7). The scaling
factort € Z, is sampled randomly (from an appropriate range),
which is critical for the security analysis. To answer the query,
the server homomorphically computes the encryption of the
inner product of the client’s query with the database: q"x €
Z4. The client checks that the decrypted value is either 0
(indicating a database bit of zero) or close to ¢ (indicating a
database bit of one). Otherwise, the client outputs L.

Finally, by rebalancing Construction 2, we have:

Theorem 10. Under the LWE assumption, Construction 2
is a secure single-server authenticated-PIR scheme when
instantiated with database size N, lattice parameters (n,q,s),
random matrix A & Z’q'XN, and bound B = O(v/ANs). The
digest size consists of n/N elements of Z4 and the per-query
communication cost is 2+/N elements of Zy. The scheme has
integrity error € < 2B/(q — 4B).

The most important difference between SimplePIR [52]
and Construction 2 is in the choice of LWE parameters. Since
the integrity error is roughly v/N /g, on database size N and
modulus ¢, we must take the modulus ¢ to be at least 128 bits
to achieve negligible integrity error. (Alternatively, we can
use a smaller modulus and run the protocol many times to
amplify integrity as per Section 3.3.) In contrast, SimplePIR
uses a 32-bit modulus with no repetition.

5.2 From decisional Diffie-Hellman

This second construction uses the decisional Diffie-Hellman
assumption (DDH). DDH holds in a group G of prime order p
generated by g € G, if for x,y,z <& Zj,, the two distributions
(g,8%,¢,¢") and (g,g", g, g%) are computationally indistin-
guishable (see Appendix G.1 for a formal definition).

Construction 3 details our scheme, which uses a group
G of large prime order p. The database is a vector of N
bits X = (x1,...,xy) € {0,1}". The public parameters of the
scheme include group elements Ay, ...,hy € G. The digest is
the product d < H?’:l h;j € G. Finding two distinct databases
that map to the same digest is as hard as solving the discrete-
log problem in G [79].

The protocol operates as follows. The client samples two
random values r,# <& Z,. The client then prepares a vector
of N group elements. Say the client wants to fetch the i
database bit. For j € [N], the j component of this vector is
qj < W™ if j=iand s g; h’; otherwise. Under DDH, the
server cannot differentiate between g; and g; for j # i.

The client queries the server with the resulting blinded vec-
tor (q1,...,qn)- The server exponentiates each vector element

Construction 2 (Single-server authenticated PIR from
LWE). The construction is parametrized by a database
length N € N, a lattice dimension n € N, amodulus g € N,
a Gaussian width parameter s € N, abound B € N, and a
matrix A € Z;XN. The database is a vector x € {0, 1}".

Digest(x € {0,1}") —»d € Z?
L. Outputd « Ax € Zj.

Query (d € Z i € [N]) — (st,q)

1. Samples & 77, e« D) € Zy,andt < [2B,q—2B].
(Here Dz, s denotes the discrete Gaussian distribution
over Z with parameter s, as in Appendix F.1.)

T T T T N

2. Compute q' <—s'A+e' +1-m; € Z7, wheren; € Z,

denotes the i standard basis vector (i.e., the vector
that is 0 everywhere except 1 in index).

3. Set st < (d,s,?) and output (st,q).

Answer (d € Z2,x € {0,1}N CZ) qe Z)) —a€ Z,

1. Outputa < q'x € Z,
Reconstruct (st,a) — {0,1, L}
1. Parse the state st as (d,s,?).

2. If there exists k € {0,1} such that |a —s'd — kt| < B,
then output k. Otherwise, output _L.

to the corresponding database bit and computes the product
a=1Iljemw q);j . If the server honestly executes the protocol,
the client receives back the product of the blinded digest d”
and (a) either the group identity (when the retrieved bit is
zero) or (b) the blinding factor /' associated with the element
of interest (when the retrieved bit is one). If the server returns
any answer apart from the one prescribed by the protocol, the
client detects this and rejects with overwhelming probability.
We then have, by rebalancing Construction 3:

Theorem 11. If the DDH assumption holds in group G, then
Construction 3 is a secure single-server authenticated-PIR
scheme when instantiated with database size N and group
G. The digest size consists in /N elements of G and the per-
query communication cost is 2/N elements of G. The scheme
has negligible integrity error.

The scheme could be extended to retrieve multi-bit database
entries in two readily-apparent ways. The first and simplest
approach is to run Construction 3 in parallel for each bit of
the entry. The second approach requires the client to solve
tractable discrete logarithms, as we describe in Appendix G.5.

Incremental digest maintenance. We envision that the data
owner would generate the database digest and publish it on
a client-accessible website or a tamper-resistant log. If a

Construction 3 (Single-server authenticated PIR from
DDH). The construction is parametrized by a database
length N € N, a group G of prime order p, and group
elements hp,...,hy € G. The database is a vector X €
{o,1}f czZl).

Digest(x € {0,1}Y) - d € G

1. Output d « [Tjep i} €G.
Query (d € G,i € [N]) — (st,q)

1. Sample two random values r,t <& Z,.
2. For j € [N]\{i}, compute g; - h’; € G.
3. Compute g; + h"' € G.

4. Setst <« (i,d,nt).

5. Setq < (qi,...,qn) € GV.

6. Output (st,q).

Answer (d € G,x € {0,1}N CZ),q) »acG

1. Parse the query q as (q1,...,qy) € GV.
2. Output a < [T e q);j eG.
Reconstruct (st,a) — {0,1, L}

1. Parse the state st as (i,d, r,1).

2. Setm<+—d"-aecG.

3. If m=1g, output “0.” If m = hf output “1.”
Otherwise, output L.

database record changes, the data owner can update the digest
in either construction incrementally. For example, in the lat-
tice based construction given an old digest d = Ax and a new
database X/, the new digest is d’ = d+ A(x' —x). Given the old
digest, the server can compute the new digest in time propor-
tional to the cost of computing A (x" —x). This matrix-vector
product, in turn, takes time linear in the number of updates
to the database, i.e., the Hamming weight of the difference
x’ —x. If the database itself is public, any third party can ver-
ify that the new digest correctly incorporates these updates.
The DDH-based construction supports a similar style of in-
cremental updates. A frequently changing database, however,
requires a client to obtain a fresh and correct digest before
making each PIR query. One possible solution to this is to use
a public log and a timestamping service [85, 88].

6 Implementation

We implemented all of our authenticated-PIR schemes in
roughly 4k lines of Go and 45 lines of C. Our function-secret-
sharing implementations are based on the Function Secret
Sharing (FSS) Library [91]. Our Merkle-tree implementation
is based on the go-merkletree library [86]. We implemented

10

group operations in our single-server scheme from the DDH
assumption with the CIRCL library [44]. The single-server
scheme built on the LWE assumption uses a plaintext modulus
of 2128 and relies on the uint128 library [26].

We also implemented multi-server unauthenticated-PIR
schemes as baselines for comparison. The multi-server
unauthenticated-PIR scheme, also used in the authenticated-
PIR scheme for point queries, is over the binary field and
uses fastxor [25]. We use the original implementation of
SimplePIR [52] as our single-server PIR baseline.

Our implementation is available under open-source license
at https://github.com/dedis/apir- code.

6.1 Privacy-preserving key directory

To evaluate the practicality of authenticated PIR, we built
Keyd, a PGP public-key directory service that offers (1) clas-
sic key look-ups and (2) computation of statistics over keys.
A key-directory service maps human-memorable identifiers,
such as email addresses, to cryptographic identities (public
keys). Examples of such directories are the MIT PGP Public
Key Server [69], along with the public-key directories that
secure-messaging solutions, such as Signal, implicitly offer.

We implement Keyd in the two-server model, where the
security properties hold as long as at least one server is honest.
The Keyd key service provides the following properties:

¢ Privacy: The client reveals no information to the servers
about the content of its query.

* Integrity: The client is guaranteed to recover the correct
result for the issued query, i.e., the output of the protocol
is consistent with the honest server’s view.

Prior key-server designs ensure only one of these two prop-
erties. It is possible to add privacy to a key server using
conventional PIR and issue private complex queries using
Splinter [92], or to add integrity as in CONIKS [65]. Prior to
authenticated PIR, we are unaware of any approach that simul-
taneously solves both problems in the presence of malicious
servers, without resorting to trusted hardware [64].

Keyd lays out public keys in the database using a hash table
that maps public keys into fixed-size buckets. To retrieve a
PGP public key, a client hashes the requested email to deter-
mine the corresponding bucket number, queries the servers
for the contents of the bucket, reconstructs and validates the
answers, and finally selects and outputs the key of interest.

To evaluate a predicate query, the client sends the query to
the servers, which apply it to the appropriate PGP key meta-
data. For example, to evaluate a COUNT query on the email
addresses, the client sends SELECT COUNT(*) FROM email
WHERE email = p, where p represents the query parameter
hidden through secret sharing. The AVG query is implemented
using a SUM and COUNT query. We use TLS to protect the
communication between client and servers.

Our Keyd serves a snapshot of SKS PGP key directory [89]
from 24 January 2021. We removed all public keys larger than

8 KiB, a limit that we found excluded only keys with large
attachments, such as JPEG images. We also removed all keys
that had been revoked, keys in an invalid format, and keys
with no email address in their metadata. We kept only the
primary key of each public key. If multiple keys were linked
to the same email address, we kept only the most recent key.
If a key included multiple emails, we indexed this key using
the primary email. As a result, our Keyd serves a total of
3,557,164 unique PGP keys (/3 GiB in total), which is more
than half of the keys in the original dump.

7 Experimental evaluation

We experimentally evaluate all of our authenticated-PIR
schemes and the Keyd public-key directory service.

Parameters. We instantiate our multi-server authenticated-
PIR scheme for predicate queries using ') with p =232 —1,
yielding a security parameter of approximately 124 bits. This
approach is faster than using a full 128-bit field element, be-
cause of better-optimized libraries and CPU instructions for
operating on 32-bit values. The Merkle-based scheme for
point queries uses BLAKE3 as the hash function. The DDH-
based single-server scheme (§5.2) uses the P256 elliptic curve
as the group. We select the parameters for the LWE-based
schemes (§5.1) to ensure 128-bit of privacy according to cur-
rent estimate of concrete security against known attacks [3].
We present one scheme with integrity error 27128, and an-
other one that uses integrity amplification (Section 3.3 and
Construction 6), with integrity error 2%, The scheme with
integrity error 27128 uses modulus ¢ = 2!?® and lattice dimen-
sion n = 4800; the scheme with integrity error 2% works
with g = 232 and n = 1100. For both implementations, the er-
ror distribution is the discrete Gaussian distribution with stan-
dard deviation ¢ = 6.4. Integrity amplification uses the simple
repetition code. We further discuss parameter selection for
the scheme based on integrity amplification in Appendix H.

Experimental methodology. We perform all the experiments
on machines equipped with two Intel Xeon E5-2680 v3
(Haswell) CPUs, each with 12 cores, 24 threads, and oper-
ating at 2.5 GHz. Each machine has 256 GB of RAM, and
runs Ubuntu20.04 and Go 1.17.5. Machines are connected
with 10 Gigabit Ethernet. In the experiments for the multi-
server schemes and Keyd (Sections 7.1, 7.2 and 7.4), the client
and the servers run on separate machines. For single-server
schemes we use a single machine that runs both client and
server, as the single-server schemes are inherently sequential.
We always report the time elapsed from query computation to
record reconstruction as user time and the cumulative band-
width from and to the server(s) as bandwidth. We execute
all experiments 30 times and report the median result across
executions. We run all the experiments using a single core for
each physical machine. For consistency across experiments,
we always download the same public-key when evaluating

11

--%-- Authenticated

—o— Unauthenticated

User time [s]

Bandwidth [MiB]

Database size [GiB]

Figure 3: The cost of retrieving a 1 KiB record using classic ("Unau-
thenticated") and authenticated PIR for point queries (§4.1) from
two servers. The Merkle proof attached to each record imposes the
bandwidth and user time overheads.

—o— Unauthenticated

0.3

0.2

-»

2 3 4 5
Number of servers

Bandwidth [MiB] User time [s]

Figure 4: The cost of retrieving a 1 KiB record using unauthenti-
cated and authenticated PIR for point queries (§4.1) from a variable
number of servers holding a database of 1 GiB.

Keyd. We have published our experimental code and results
in our source-code repository (see Section 6).

7.1 Multi-server point queries

Fig. 3 presents user time and bandwidth overhead for our
authenticated-PIR scheme for point queries, in comparison
with classic unauthenticated PIR. Both the user time and the
bandwidth overheads increase as the database size increases:
each database record must additionally include a O(AlogN)-
sized Merkle proof. We measure a maximum overhead of
2.9x for user time and of 1.8 for bandwidth.

Fig. 4 shows the impact of the number of servers on user
time and bandwidth. Since all the servers answer in parallel,
the user time increase is almost negligible. For authenticated
PIR, the increase is due to Merkle proof verification. Band-
width increases linearly for both schemes, since each server

1.2 1

1.0 -

User-time ratio

1.0

Bandwidth ratio

1 4 8 12 16 20 24 28 32
Length of the parameter’s hidden predicate s [B]

Figure 5: The user time and bandwidth ratios between unauthenti-
cated and authenticated PIR (§4.2) for complex queries when query-
ing two serves for the query SELECT COUNT(x) FROM keys WHERE
email LIKE "%s" from a database composed of 100,000 random
records. The median authentication overhead is less than 1.1x for
both user time and bandwidth; the grey area shows the variance.

receives a query and sends an answer.

7.2 Multi-server complex queries

When comparing our multi-server authenticated-PIR scheme
for complex queries with classic PIR (Fig. 5), we find that both
the user time and bandwidth overheads of the authenticated
scheme are less than 1.1 x. The former comes from the longer
output of the function-secret-sharing evaluation function—
one [F,31_; element versus five elements—and from the veri-
fication of the servers’ answers, absent in the unauthenticated
scheme. For bandwidth, the only difference is the so-called
correction word in the function-secret-sharing key [17, 18],
which is composed of a single field element in classic PIR and
of five elements in authenticated PIR: one for the predicate
evaluation’s result and four for authentication. The servers’
answers have the same ratio: a single field element in the
unauthenticated scheme and five elements in the authenticated
scheme. The bandwidth overhead is thus of a constant factor.
Evaluation with k > 3 servers is infeasible as the length of the
keys is O(A2%/221/2), where ¢ is the input size in bits [17].

7.3 Single-server point queries

To evaluate our single-server authenticated-PIR schemes, we
compare their performance against SimplePIR [52], the fastest
classic single-server PIR scheme for small records to-date. We
measure the costs of retrieving one data bit from the database.'
We evaluate SimplePIR with its default configuration of 2048-
bit database records. The client downloads a corresponding

!Other recent PIR schemes (e.g., [66, 71]) are competitive only in the large-
record setting (where records are tens of kilobytes long).

12

DDH BN LWE B L WE* HEl SimplePIR
10°4 7]
10 1044
6]
10*4 10 ,
10° 4
;E 10° 4 =)
= 10%4 =) =)
g < = 10%
- g 1044 2
z 3
g 102 4 -g E
— s g 10'
5 S 10%4 £
s £ 2
= =
10" 4 5 102 4 5 1004
14
100‘ 10 10—]<

IKiB IMiB 1GiB
Database size

IKiB IMiB 1GiB
Database size

IKiB IMiB 1GiB
Database size

Figure 6: The cost of retrieving one data bit using our single-server
authenticated PIR schemes and state-of-the-art classic single-server
PIR scheme SimplePIR [52]. DDH indicates Construction 3 with
27128 integrity; LWE indicates Construction 2 (g = 2128) with
27128 integrity; LWE" indicates Construction 6 (the base scheme is
Construction 2 with ¢ = 232) with 2*64—integrity (see Section 3.3).
DDH takes over an hour to retrieve a data bit from a 1 GiB database
and we omit it from the figure.

record and selects a desired bit from it. The offline bandwidth
indicates the digest for authenticated schemes, and the hint
for SimplePIR, as this scheme is a PIR-with-preprocessing
scheme [10]. We show the results in Fig. 6.

The authenticated-PIR schemes from the decisional Diffie-
Hellman assumption (DDH) and from the learning-with-
errors assumption (LWE) have integrity error 2728, The
DDH construction has a smaller digest, hence lower offline
bandwidth, but has twice the online bandwidth of the LWE
construction: both have the same asymptotic complexity, but
LWE uses elements from Z,12s and DDH from the elliptic
curve P256, which encodes elements in 256 bits. The LWE
construction is also faster (3-79x): arithmetic computations
in Z,12s are faster than elliptic-curve operations in P256.

The scheme with integrity amplification (LWE™) has in-
tegrity error 27% and the same classic-PIR privacy as Sim-
plePIR, except that SimplePIR does not provide privacy under
selective-failure attacks. LWE™ is faster than LWE for the
1KiB and 1 MiB databases, but slower (1.4 x) for the 1 GiB
database: the repetition code requires repeating the protocol
15 times (t = 7). An error correcting code with higher rate,
or parallel execution of the repetition code, could improve
LWE?. SimplePIR is 30-100x faster than LWE" due to its
preprocessing for reducing online computation and exploit-
ing a faster database representation through packing [52].
The asymptotic online and offline bandwidth overhead of
SimplePIR and authenticated-PIR schemes from the LWE
assumption are the same, but integrity amplification increases

Query description User time [s] Bandwidth [KiB]

Unauth. Auth. Unauth. Auth.

COUNT (*) WHERE

email LIKE ’%.edu’ 25.77 2597 1.01x 1.8 1.9 1.06x
type = 'ElGamal’ 7.52 7.66 1.02x 0.9 1.0 1.11x
YEAR(created) = 2019

AND email LIKE '%.edu’ 48.28 48.32 1.00x 3.0 3.1 1.03x
AVG(lifetime) WHERE

email LIKE ’%.edu’ 25.74 26.59 1.03x 1.8 1.9 1.05x

Table 7: Performance of different predicate queries on Keyd for
unauthenticated and authenticated PIR (the two-server schemes for
predicate queries). The median authentication overhead is 1.01x for
user time and 1.05 x for bandwidth.

online bandwidth by 27 4- 1 x (Section 3.3), whereas the client
must download the digest only once. Concrete offline band-
width is lower in SimplePIR due to database packing.

The current schemes are computationally costly, but we
expect that future optimizations, such as multi-bit queries, as
outlined in Appendix G.5, could reduce this cost.

7.4 Application: privacy-preserving key server

In this section, we evaluate our multi-server authenticated-PIR
schemes in the context of the Keyd public-key server.

For classic key look-ups, which are point queries, we mea-
sure the wall-clock time needed to retrieve a PGP public-key
with authenticated PIR (Section 4.1), classic PIR without au-
thentication, and by direct download without privacy protec-
tion. To measure the latency of direct download, we download
a PGP public-key from the OpenPGP key server using wget.
Both PIR measurements include a manually-added RTT of
0.4 ms (the ping time to the nearest PGP key server). We per-
form all the measurements over the entire processed dataset
of PGP keys (see Section 6). We measure 1.11 seconds for
authenticated PIR, 1.10 seconds for unauthenticated PIR and
0.22 seconds for non-private direct look-up.

The authenticated scheme for point queries shows perfor-
mance comparable to classic PIR without authentication. The
Merkle-proof overhead in this case is smaller than in Fig. 3
due to a larger block size and hence less authentication data
per data bit in Keyd. The OpenPGP key server maintainers
informed us that their service typically handles around 3-10
public-key lookups per second, or less than 1 million requests
per day [21]. A careful multithreaded implementation of our
multi-server authenticated-PIR schemes for point queries can
handle this load with 12 cores, just one more than the number
of cores estimated for classic unauthenticated PIR (11 cores).

To analyze the performance of Keyd in computing private
statistics over keys, we measure user-perceived time and band-
width of different predicate queries. Table 7 shows the results.
For all the predicates, the overhead of authenticated PIR—in

13

both user-perceived time and bandwidth—is upper bounded
by a factor of 1.05x. This result matches the benchmark pre-
sented in Fig. 5 and is due to the latency being dominated by
the function-secret-sharing evaluation, which is essentially
equal for authenticated and unauthenticated PIR. For band-
width overhead, the same reasoning as in Section 7.2 applies.

8 Related work

Authenticated PIR builds on diverse work on private in-
formation retrieval. Starting with the original proposal [31],
improvements have reduced the communication cost of multi-
server PIR with information-theoretic [8, 9, 42, 95, 97]
or computational security [18, 30]. Kushilevitz and Ostro-
vsky [57] presented the first single-server PIR construction,
and subsequent work reduced communication costs [22, 41,
47, 62, 75]. Recent advances introduced PIR for more com-
plex (e.g., SQL-like) queries [74, 81, 92].

Kushilevitz and Ostrovsky [57] first noted that, in the single-
server setting, the server could violate a client’s privacy by
manipulating database records and observing whether the
client accepted the response as valid. Such attacks have come
to be known as selective-failure attacks [53, 55, 61]. To our
knowledge, we are the first to address selective-failure attacks
in the multi-server setting.

In schemes that resist faulty servers (summarized in Ta-
ble 2), a client can either reconstruct the correct database
entry, or can detect and abort, when servers misbehave. Mul-
tiparty computation literature refers to the former approach
as “full security” and the latter as “security with abort” [50].

Beimel and Stahl [11, 12] first consider malicious or crash-
ing servers in the multi-server setting. Their approach fo-
cuses on ensuring data reconstruction, not detection of server
misbehaviour, and it is further developed by concurrent and
follow-up work [39, 43, 49, 56, 96]. Unlike authenticated PIR,
these approaches require an honest majority in the presence of
malicious servers, with specific thresholds shown in Table 2.

Verifiable PIR in the multi-server setting [98] offers se-
curity properties similar to authenticated PIR, but requires
expensive public-key cryptography. In the single-server set-
ting [93, 99], verifiable PIR is not resistant to selective-failure
attacks and offers a weaker property: it ensures that the server
answer a query with respect to some database, but not nec-
essarily the one intended. Our approach ensures that queries
are answered with respect to a specific database, as deter-
mined by the honest server in the multi-server setting, or by
the database digest in the single-server case. In concurrent
work, Ben-David et al. [14] introduce another notion of veri-
fiable PIR in the single-server setting, whose goal is to verify
arbitrary properties on databases, but they do not consider
selective-failure attacks.

Our multi-server scheme for point queries (Section 4.1)
extends a Merkle-tree approach by Kushilevitz and Ostro-
vsky [57]. Our multi-server scheme for predicate queries

builds on function secret-sharing [16, 17, 18, 38], information-
theoretic message authentication codes [33], and malicious-
secure multiparty computation protocols [15, 35].

Prior systems address integrity in private information re-
trieval [36, 70], but do not protect against selective manip-
ulation in the single-server setting, and require additional
assumptions in the multi-server setting.

Prior work has also considered privacy-preserving and
integrity-assuring key directories [27, 28, 65, 68, 90]. In
particular, CONIKS [65] and its improved version SEEM-
less [27], ensure consistency for the bindings thanks to ideas
adapted from transparency log systems [59, 83], but do not
address privacy of the client’s queries.

9 Conclusion

Authenticated PIR enhances the strong privacy properties
of classic PIR with strong data-authentication guarantees.
We have presented formal definitions both in the dishonest-
majority setting—where the security properties hold as long
as at least one of the server is honest—and in the single-server
setting. We suggest some avenues for further improvement:

e Can we construct single-server authenticated-PIR
schemes for a malicious digest (i.e., the client’s output
is consistent with some n-bit database)?

e Can we construct single-server authenticated-PIR
schemes whose performance matches that of the best
unauthenticated schemes?

Acknowledgements. We thank David Lazar for the initial
discussions on selective-failure attacks against PIR proto-
cols. We thank the anonymous reviewers of IEEE S&P
and USENIX Security for their thoughtful comments and
suggestions on how to improve this work. We thank Vin-
cent Breitmoser for sharing with us the statistics of the
keys.openpgp.org key server. We are grateful to Serge Vau-
denay, Dima Kogan, Sylvain Chatel, Khashayar Barooti and
Christian Mouchet for helpful conversations and feedback.
We thank Pierluca Borso-Tan and Noémien Kocher for help
with the experiments and with the implementation of Keyd’s
clients. We thank Jean Viaene for help with the artifact evalu-
ation. This work was supported in part by the AXA Research
Fund, Handshake, ETH4D Humanitarian Action Challenges
project PAIDIT, US Office of Naval Research (ONR) grant
N000141912361, EU grant 825377, Swiss Reinsurance Cor-
poration, DARPA Contract FA8750-19-C-0079, gifts from
Google and Mozilla, a Facebook Research Award, MIT’s Fin-
tech@CSAIL Initiative, NSF CNS-2054869, CNS-2151131,
CNS-2140975, a Microsoft Research Faculty Fellowship, and
a Google Research Scholar award.

14

References

[1] Carlos Aguilar-Melchor, Joris Barrier, Laurent Fousse,
and Marc-Olivier Killijian. XPIR: Private information
retrieval for everyone. PoPETs, 2016.

Miklés Ajtai. Generating hard instances of lattice prob-

lems (extended abstract). In STOC, 1996.

Martin R. Albrecht, Rachel Player, and Sam Scott. On

the concrete hardness of learning with errors. J. Math.

Cryptol., 2015.

Asra Ali, Tancrede Lepoint, Sarvar Patel, Mariana

Raykova, Phillipp Schoppmann, Karn Seth, and Kevin

Yeo. Communication—computation trade-offs in PIR. In

USENIX Security, 2021.

Sebastian Angel, Hao Chen, Kim Laine, and Srinath

T. V. Setty. PIR with compressed queries and amortized

query processing. In S&P, 2018.

Sebastian Angel and Srinath T. V. Setty. Unobservable

Communication over Fully Untrusted Infrastructure. In

0SDI, 2016.

Roy Arends, Rob Austein, Matt Larson, Dan Massey,

and Scott Rose. DNS Security Introduction and Require-

ments. RFC 4003, 2005.

[8] Amos Beimel and Yuval Ishai. Information-Theoretic
Private Information Retrieval: A Unified Construction.
In ICALP, 2001.

[9] Amos Beimel, Yuval Ishai, Eyal Kushilevitz, and Jean-
Francois Raymond. Breaking the O(n'/(%*~1)) Barrier
for Information-Theoretic Private Information Retrieval.
In FOCS, 2002.

[10] Amos Beimel, Yuval Ishai, and Tal Malkin. Reducing
the Servers’ Computation in Private Information Re-
trieval: PIR with Preprocessing. J. Cryptol., 2004.

[11] Amos Beimel and Yoav Stahl. Robust Information-
Theoretic Private Information Retrieval. In SCN, 2002.

[12] Amos Beimel and Yoav Stahl. Robust Information-
Theoretic Private Information Retrieval. J. Cryptol.,
2007.

[13] Mihir Bellare and Phillip Rogaway. Random oracles are
practical: A paradigm for designing efficient protocols.
In CCS, 1993.

[14] Shany Ben-David, Yael Tauman Kalai, and Omer Paneth.
Verifiable Private Information Retrieval. In TCC, 2022.

[15] Rikke Bendlin, Ivan Damgard, Claudio Orlandi, and
Sarah Zakarias. Semi-homomorphic Encryption and
Multiparty Computation. In EUROCRYPT, 2011.

[16] Elette Boyle, Nishanth Chandran, Niv Gilboa, Divya
Gupta, Yuval Ishai, Nishant Kumar, and Mayank Rathee.
Function secret sharing for mixed-mode and fixed-point
secure computation. In EUROCRYPT, 2021.

[17] Elette Boyle, Niv Gilboa, and Yuval Ishai. Function
secret sharing. In EUROCRYPT, 2015.

[18] Elette Boyle, Niv Gilboa, and Yuval Ishai. Function

(2]

(3]

(4]

(6]

(7]

secret sharing: Improvements and extensions. In CCS,
2016.

[19] Elette Boyle, Yuval Ishai, Rafael Pass, and Mary Woot-
ters. Can we access a database both locally and pri-
vately? In TCC, 2017.

[20] Zvika Brakerski, Adeline Langlois, Chris Peikert, Oded
Regev, and Damien Stehlé. Classical hardness of learn-
ing with errors. In STOC, 2013.

[21] Vincent Breitmoser. Private communication, 2021.

[22] Christian Cachin, Silvio Micali, and Markus Stadler.
Computationally Private Information Retrieval with
Polylogarithmic Communication. In EUROCRYPT,
1999.

[23] Jan Camenisch, Gregory Neven, and Abhi Shelat. Sim-
ulatable adaptive oblivious transfer. In EUROCRYPT,
2007.

[24] Justin Cappos. Avoiding theoretical optimality to effi-
ciently and privately retrieve security updates. In FC,
2013.

[25] Luke Champine. fastxor.

lukechampine/fastxor, 2018.

Luke Champine. uint128 for Go.

com/lukechampine/uint128, 2022.

[27] Melissa Chase, Apoorvaa Deshpande, Esha Ghosh, and

Harjasleen Malvai. SEEMless: Secure End-to-End En-

crypted Messaging with less Trust. In CCS, 2019.

Brian Chen, Yevgeniy Dodis, Esha Ghosh, Eli Goldin,

Balachandar Kesavan, Antonio Marcedone, and

Merry Ember Mou. Rotatable Zero Knowledge Sets:

Post Compromise Secure Auditable Dictionaries with

application to Key Transparency. In ASIACRYPT, 2022.

Benny Chor, Nic Gilboa, and Mori Naor. Private In-

formation Retrieval by Keywords. Cryptology ePrint

Archive, Paper 1998/003, 1998.

[30] Benny Chor and Niv Gilboa. Computationally Private

Information Retrieval (Extended Abstract). In STOC,

1997.

Benny Chor, Oded Goldreich, Eyal Kushilevitz, and

Madhu Sudan. Private Information Retrieval. In FOCS,

1995.

Henry Corrigan-Gibbs and Dmitry Kogan. Private In-

formation Retrieval with Sublinear Online Time. In

EUROCRYPT, 2020.

Ronald Cramer, Yevgeniy Dodis, Serge Fehr, Carles

Padré, and Daniel Wichs. Detection of Algebraic Ma-

nipulation with Applications to Robust Secret Sharing

and Fuzzy Extractors. In EUROCRYPT, 2008.

Giovanni Di Crescenzo, Tal Malkin, and Rafail Ostro-

vsky. Single Database Private Information Retrieval

Implies Oblivious Transfer. In EUROCRYPT, 2000.

Ivan Damgard, Valerio Pastro, Nigel P. Smart, and Sarah

Zakarias. Multiparty Computation from Somewhat Ho-

momorphic Encryption. In CRYPTO, 2012.

https://github.com/

[26] https://github.

[28]

[29]

[31]

[32]

[33]

[34]

[35]

15

[36] Emma Dauterman, Eric Feng, Ellen Luo, Raluca Ada
Popa, and Ion Stoica. DORY: An Encrypted Search
System with Distributed Trust. In OSDI, 2020.

[37] Alex Davidson, Gongalo Pestana, and Sofia Celi.
FrodoPIR: Simple, Scalable, Single-Server Private In-
formation Retrieval. In PoPETs, 2023.

[38] Leo de Castro and Antigoni Polychroniadou.
Lightweight, Maliciously Secure Verifiable Func-
tion Secret Sharing. In EUROCRYPT, 2022.

[39] Casey Devet, Ian Goldberg, and Nadia Heninger. Opti-
mally Robust Private Information Retrieval. In USENIX
Security, 2012.

[40] Danny Dolev, Cynthia Dwork, and Moni Naor. Non-
Malleable Cryptography (Extended Abstract). In STOC,
1991.

[41] Nico Déttling, Sanjam Garg, Yuval Ishai, Giulio Mala-
volta, Tamer Mour, and Rafail Ostrovsky. Trapdoor Hash
Functions and Their Applications. In CRYPTO, 2019.

[42] Zeev Dvir and Sivakanth Gopi. 2-Server PIR with sub-
polynomial communication. J. ACM, 2016.

[43] Reo Eriguchi, Kaoru Kurosawa, and Koji Nuida. Multi-
Server PIR with Full Error Detection and Limited Error
Correction. In ITC, 2022.

[44] Armando Faz-Hernandez and Kris Kwiatkowski. In-
troducing CIRCL: An advanced cryptographic library.
https://github.com/cloudflare/circl, 2019.

[45] Marc Fischlin and Dominique Schroder. Security of
blind signatures under aborts. In PKC, 2009.

[46] Craig Gentry and Shai Halevi. Compressible FHE with
applications to PIR. In TCC, 2019.

[47] Craig Gentry and Zulfikar Ramzan. Single-database pri-
vate information retrieval with constant communication
rate. In ICALP, 2005.

[48] Niv Gilboa and Yuval Ishai. Distributed Point Functions
and Their Applications. In EUROCRYPT, 2014.

[49] Ian Goldberg. Improving the Robustness of Private
Information Retrieval. In S&P, 2007.

[50] Oded Goldreich, Silvio Micali, and Avi Wigderson. How

to Play any Mental Game or A Completeness Theorem

for Protocols with Honest Majority. In STOC, 1987.

Trinabh Gupta, Natacha Crooks, Whitney Mulhern, Sri-

nath T. V. Setty, Lorenzo Alvisi, and Michael Walfish.

Scalable and Private Media Consumption with Popcorn.

In NSDI, 2016.

Alexandra Henzinger, Matthew M. Hong, Henry

Corrigan-Gibbs, Sarah Meiklejohn, and Vinod Vaikun-

tanathan. One server for the price of two: Simple and fast

single-server private information retrieval. In USENIX

Security, 2023.

Yan Huang, Jonathan Katz, and David Evans. Efficient

secure two-party computation using symmetric cut-and-

choose. In CRYPTO, 2013.

[54] Stanislaw Jarecki and Xiaomin Liu. Efficient oblivious

[51]

[52]

(53]

pseudorandom function with applications to adaptive
OT and secure computation of set intersection. In TCC,
20009.

[55] Mehmet S. Kiraz and Berry Schoenmakers. A Protocol
Issue for the Malicious Case of Yao’s Garbled Circuit
Construction. In SITB, 2006.

[56] Kaoru Kurosawa. How to Correct Errors in Multi-server
PIR. In ASIACRYPT, 2019.

[57] Eyal Kushilevitz and Rafail Ostrovsky. Replication
is NOT Needed: SINGLE Database, Computationally-
Private Information Retrieval. In FOCS, 1997.

[58] Albert Kwon, David Lazar, Srinivas Devadas, and Bryan
Ford. Riffle: An efficient communication system with
strong anonymity. PoPETs, 2016.

[59] Ben Laurie. Certificate transparency. Commun. ACM,
2014.

[60] Lucy Li, Bijeeta Pal, Junade Ali, Nick Sullivan, Rahul
Chatterjee, and Thomas Ristenpart. Protocols for check-
ing compromised credentials. In CCS, 2019.

[61] Yehuda Lindell and Benny Pinkas. Secure Two-Party
Computation via Cut-and-Choose Oblivious Transfer.
In TCC, 2011.

[62] Helger Lipmaa. An Oblivious Transfer Protocol with
Log-Squared Communication. In ISC, 2005.

[63] Wouter Lueks and Ian Goldberg. Sublinear Scaling for
Multi-Client Private Information Retrieval. In F'C, 2015.

[64] Moxie Marlinspike. Private contact discovery. https:
//signal.org/blog/private-contact-discovery/,
September 26, 2017. Accessed 11 April 2021.

[65] Marcela S. Melara, Aaron Blankstein, Joseph Bonneau,
Edward W. Felten, and Michael J. Freedman. CONIKS:
Bringing Key Transparency to End Users. In USENIX
Security, 2015.

[66] Samir Jordan Menon and David J. Wu. SPIRAL.: fast,
high-rate single-server PIR via FHE composition. In
S&P, 2022.

[67] Ralph C. Merkle. A Digital Signature Based on a Con-
ventional Encryption Function. In CRYPTO, 1987.

[68] Pratyush Mishra, Rishabh Poddar, Jerry Chen, Alessan-
dro Chiesa, and Raluca Ada Popa. Oblix: An efficient
oblivious search index. In S&P, 2018.

[69] MIT PGP public key server. https://pgp.mit.edu/.
Accessed 9 April 2021.

[70] Prateek Mittal, Femi G Olumofin, Carmela Troncoso,
Nikita Borisov, and Ian Goldberg. PIR-Tor: Scalable
anonymous communication using private information
retrieval. In USENIX Security, 2011.

[71] Muhammad Haris Mughees, Hao Chen, and Ling Ren.
OnionPIR: Response efficient single-server PIR. In
CCS, 2021.

[72] Moni Naor and Omer Reingold. Number-theoretic con-
structions of efficient pseudo-random functions. In
FOCS, 1997.

16

[73] Kirill Nikitin, Eleftherios Kokoris-Kogias, Philipp Jo-
vanovic, Nicolas Gailly, Linus Gasser, Ismail Khoffi,
Justin Cappos, and Bryan Ford. CHAINIAC: Proactive
Software-Update Transparency via Collectively Signed
Skipchains and Verified Builds. In USENIX Security,
2017.

[74] Femi G. Olumofin and Ian Goldberg. Privacy-preserving
queries over relational databases. In PoPETs, 2010.

[75] Rafail Ostrovsky and William E Skeith. A survey
of single-database private information retrieval: Tech-
niques and applications. In PKC, 2007.

[76] Jeongeun Park and Mehdi Tibouchi. SHECS-PIR: some-

what homomorphic encryption-based compact and scal-

able private information retrieval. In ESORICS, 2020.

Bryan Parno, Jon Howell, Craig Gentry, and Mariana

Raykova. Pinocchio: Nearly practical verifiable compu-

tation. In S&P, 2013.

Sarvar Patel, Giuseppe Persiano, and Kevin Yeo. Private

stateful information retrieval. In CCS, 2018.

Torben Pryds Pedersen. Non-interactive and

information-theoretic secure verifiable secret sharing.

In CRYPTO, 1991.

[80] John M. Pollard. Kangaroos, monopoly and discrete
logarithms. J. Cryptol., 2000.

[81] Joel Reardon, Jeffrey Pound, and Ian Goldberg.
Relational-complete private information retrieval. Tech-
nical Report CACR, 2007.

[82] Oded Regev. On lattices, learning with errors, random
linear codes, and cryptography. In STOC, 2005.

[83] Mark Dermot Ryan. Enhanced Certificate Transparency
and End-to-End Encrypted Mail. In NDSS, 2014.

[84] Markus Stadler. Publicly Verifiable Secret Sharing. In
EUROCRYPT, 1996.

[85] Ewa Syta, Iulia Tamas, Dylan Visher, David Isaac Wolin-

sky, Philipp Jovanovic, Linus Gasser, Nicolas Gailly,

Ismail Khoffi, and Bryan Ford. Keeping Authorities

“Honest or Bust” with Decentralized Witness Cosigning.

In S&P, 2016.

Weald Technology. go-merkletree. https://github.

com/wealdtech/go-merkletree, 2019.

Kurt Thomas, Jennifer Pullman, Kevin Yeo, Ananth

Raghunathan, Patrick Gage Kelley, Luca Invernizzi, Bor-

bala Benko, Tadek Pietraszek, Sarvar Patel, Dan Boneh,

et al. Protecting accounts from credential stuffing with

password breach alerting. In USENIX Security, 2019.

Alin Tomescu and Srinivas Devadas. Catena: Efficient

non-equivocation via Bitcoin. In S&P, 2017.

Carles Tubio. SKS dump. https://pgp.key-server.

io/sks-dump, 2021. Accessed 7 April 2021.

Nirvan Tyagi, Ben Fisch, Joseph Bonneau, and Stefano

Tessaro. Client-auditable verifiable registries. Cryptol-

ogy ePrint Archive, 2021.

[91] Frank Wang. Function Secret Sharing (FSS) Library.

[77]

(78]

[79]

[86]

[87]

[88]
[89]

(90]

https://github.com/frankw2/libfss, 2017.

[92] Frank Wang, Catherine Yun, Shafi Goldwasser, Vinod
Vaikuntanathan, and Matei Zaharia. Splinter: Practical
private queries on public data. In NSDI, 2017.

[93] Xingfeng Wang and Liang Zhao. Verifiable Single-
Server Private Information Retrieval. In ICICS, 2018.

[94] David Isaac Wolinsky, Henry Corrigan-Gibbs, Bryan
Ford, and Aaron Johnson. Scalable anonymous group
communication in the anytrust model. In EuroSec, 2012.

[95] David Woodruff and Sergey Yekhanin. A geometric
approach to information-theoretic private information
retrieval. In CCC, 2005.

[96] Erica Y. Yang, Jie Xu, and Keith H. Bennett. Private
Information Retrieval in the Presence of Malicious Fail-
ures. In COMPSAC, 2002.

[97] Sergey Yekhanin. Towards 3-query locally decodable
codes of subexponential length. In STOC, 2007.

[98] Liang Feng Zhang and Reihaneh Safavi-Naini. Veri-
fiable Multi-server Private Information Retrieval. In
ACNS, 2014.

[99] Liang Zhao, Xingfeng Wang, and Xinyi Huang. Veri-
fiable single-server private information retrieval from
LWE with binary errors. Inf. Sci., 2021.

A Building blocks for authenticated PIR

In this section, we formally introduce the primitive used by
the different authenticated-PIR schemes: classic multi-server
PIR, Merkle-tree and function secret sharing.

Additional notation. We use SD(+,-) to denote the statisti-
cal distance between two distributions. The empty string is
denoted with €. We write Dy ~. D; to denote that the distri-
butions Dy and D; are computational indistinguishable.

A.1 Classic multi-server PIR for point queries

In this section we define standard k-server unauthenticated-
PIR schemes, for k > 2.

Definition 12 (k-server PIR for point queries). A k-server
unauthenticated-PIR scheme for point queries parametrized
by a database length N € N, consists of three efficient, and
possibly randomized, algorithms:

 Query(1*,i) — (st,q1,...,qx). Given a security parame-
ter A, expressed in unary, and an index i € [N), return client
state st and queries q1, ..., qy.

o Answer(x,q) — a. Apply query q to database x € {0, 1}V
and return answer a.

* Reconstruct(st,ay,...,ar) — x;. Take as input client state
st and answers aj ,...,a; and return the i'* record of the
database x;.

17

A k-server unauthenticated-PIR scheme is required to sat-
isfy the following properties.

Definition 13 (PIR correctness). An unauthenticated-PIR
scheme PIR = (PIR.Query, PIR.Answer, PIR.Reconstruct),
parametrized by a number of servers k € N and a database
size N € N satisfies correctness if for every x € {0, 1}V, the
following holds:

(st, {gi}ticpy + PIR.Query(i)

Pr|xi=x: aj < PIR.Answer(x,q;) V€ [K] =1,

X + PIR.Reconstruct(st,ay, ..., ax)

where the probability is computed over all the random coins
used by the algorithms of the scheme.

Definition 14 (PIR security). Let PIR =
(PIR.Query, PIR.Answer, PIR.Reconstruct) be an
unauthenticated-PIR scheme for point queries parametrized
by a number of servers k € N and a database size N € N. Let
S be any subset of k — 1 elements from [k|. For i € [N| let the
distribution

REAL,; = { U qj: (st,q1,...,qx) < PIR.Query(i)} .
jes

Similarly, for a simulator S, let the distribution

IDEALs = {{g;} .5 < 5}

A classic unauthenticated-PIR scheme PIR
(PIR.Query, PIR.Answer, PIR.Reconstruct) parametrized
by a database length N € N and a number of servers k € N is
secure for every i € [N], the following holds:

REAL; ~, IDEAL;.

In this work, we consider only linear classic PIR schemes.
Many standard PIR schemes are linear [18, 31, 32, 48].

Definition 15 (Linear PIR). Let PIR
(PIR.Query, PIR.Answer, PIR.Reconstruct) be a clas-
sic PIR scheme for point queries parametrized by a number
of servers k € N and a database size N € N. We say that PIR
is a linear PIR scheme if the Reconstruct algorithm is simply
the sum of the individual severs’ answers.

A.2 Merkle tree

In this section we formally define a Merkle-tree scheme and
we introduce its security properties.

Definition 16. A Merkle-tree scheme M
(Digest, Provelncludes, Verifylncludes), parametrized
by a digest length {4ig € N and a inclusion proof length
lx €N, for a database x € {0,1}", N € N consists of two
possibly randomized algorithms and one deterministic
algorithm:

* Digest(1*,x) — d. Given a security parameter)\, ex-
pressed in unary, and a database x € {0, 1V, returns a
database digest d € {0,1}'die.

* Provelncludes(1*,x,i,x;) — {m;, L}. This deterministic
algorithm, on input a security parameter A\ expressed
in unary, a database x € {0,1}", a index i € [N] and
a database record x; € {0,1}, outputs a unique proof
7 € {0,1}% ifx; € x and L otherwise.

* Verifylncludes(d,i,x;,m;) — {0,1}. Given a digest d €
{0,1}'ie, a index i € [N], a database entry x; € {0,1}
and a proof m; € {0,1}%, outputs 1 if n; proves that the
database represented by the digest d contains the record
X; at position i and 0 otherwise.

A Merkle-tree scheme defined in Definition 16 is required
to satisfy the following properties.

Definition 17 (Correctness). Let M
(Digest, Provelncludes, Verifylncludes) be a Merkle-
tree scheme as defined in Definition 16, parametrized by a
digest length {4ig € N and a inclusion proof length {y € N,
for a database x € {0,1}", N € N. We say that M satisfies
correctness if, for all i € [N), the following holds:

d < Digest(x)

Pr [b=1: n + Provelncludes(x, i,x;) =1
b < Verifylncludes(d, i,x;,T)
Definition 18 (Uniqueness). Let M =
(Digest, Provelncludes, Verifylncludes) be a Merkle-

tree scheme as defined in Definition 16, parametrized by a
digest length {4ig € N and a inclusion proof length {y € N,
for a database x € {0,1}N, N € N. Let 4 be an efficient
adversary. M ensures uniqueness if, the following holds:

(X,i,%, T,) — A(1* N)
if 7t; = 7. then abort

Pr|b=b"=1: d <+ Digest(x) < negl(A)
b + Verifylncludes(d, i, x;, ;)
b’ «+ VerifyIncludes(d, i,x;,T)
Definition 19 (Soundness). Let M =
(Digest, Provelncludes, Verifylncludes) be a Merkle-

tree scheme as defined in Definition 16, parametrized by a
digest length lyiz € N and a inclusion proof length ly € N,
for a database x € {0,1}", N € N. Let 4 be an adversary. M
satisfies soundness if, the following holds:

(x,i,x5,m;) < A(1*,N)

if x; = x7, then abort

d < Digest(x)

b « Verifylncludes(d, i, x}, ;)

Pr|b=1: < negl(A)

18

A.3 Function secret sharing

In this section we formally define the properties of function-
secret-sharing (FSS) schemes [17, 18]. We present the syntax
in Section 4.2.

Definition 20 (FSS correctness). A k-party function secret-
sharing scheme FSS = (Gen, Eval) for a function class F
defined over a field F satisfies correctness if for every x in the
domain of f, the following holds:

Pr [Z Eval(f;,x) = f(x) €F: (f1,-.., f) <—Gen(17‘,f)} =1.
ic[k]

Definition 21 (FSS security). Let FSS = (Gen, Eval) be a
k-party function secret-sharing scheme for a function class F .
Let S be any subset of k — 1 elements from [k]. For a security
parameter A € N and a function f € F let the distribution

REAL; ;= {Uﬁ (fryee fi) 4 Gen(lk,f)}

ieS

Similarly, for a simulator S let the distribution

IDEAL 5 = {{fi}ies = S1%9)

A k-party function secret-sharing scheme FSS = (Gen, Eval)
for a function class F is secure if there exists a simulator
S such that for every security parameter A € N and every
function f € F, the following holds:

REAL; ; ~, IDEALg 7.

B Multi-server authenticated PIR definitions

In this section, we present the formal definitions for multi-
server authenticated PIR.

Definition 22 (Authenticated PIR correct-
ness). A k-server authenticated-PIR scheme
IT = (Query,Answer, Reconstruct) for function class
F C Funs[[N] x {0,1},F] and database size N € N satisfies
correctness if for every X1,...,xy € {0,1}/, £ € N, w ¢ FV,
AEN, f e F, the following holds:
y=Y wif(i,x;):
i€[n]
Pr (st,q1,---»qi) < Query(1*, f) =1,
aj < Answer(X,w,q;) Vj€ [k]
y < Reconstruct(st,ay,...,a;)

where the probability is computed over all the random coins
used by the algorithms of the scheme.

Definition 23 (Authenticated PIR integrity).
A k-server authenticated-PIR scheme 11 =
(Query, Answer, Reconstruct) for function class

F C Funs[[N] x {0,1}*,F] and database size N € N
ensures integrity if for every efficient adversary A, and for
every Xi,...,X, € {0,1}[', teNwelF, AeN, feF,
Jgood € [k], the following probability is negligible in the
security parameter \:

y%{ Yy Wif(i:xi)vl} :
i€[N]

b (st,q1,....qk) < Query(1*, f)
r b

{07} 127000 AW AL} 000)

a_fgood — AnSWer(Xvqu_/good)

y < Reconstruct(st,ay,...,a;)

where the probability is computed over all the random coins
used by the algorithms of the scheme.

Definition 24 (Authenticated PIR privacy). Let Il =
(Query, Answer, Reconstruct) be a k-server authenticated-
PIR scheme for function class F C Funs[[N] x {0, 1}, F] and
database size N € N. For X =x,...,x, € {0, 1}Z, feN we
F", AeN, f € F, jgood € [k], and an adversary A= (Ay, A1),
define the distribution

(st,q1,-.-,qk) < Query(1*, f)

Qjgooq < Answer(X,w.q;,..)

o Gtadad) e X WA} 4j0)
REAL A jjp0q.r0Xw = | B
y < Reconstruct(st,ay,...,a;)

be1{y# 1}
B« 4 (sta,b)

Similarly, forn €N, X =x1,...,x, € {0,1}!, and a simulator
S = (S0,51), define the distribution

(sts. Q) = So(1*, . X, w)
(St,q,A) <— ﬂQ(X,waQ)
IDEAL 4 ¢ =43P
A.8.F A X.w P b+ Sy (stg,A)
B« Ay (sta,b)

We say Il is private if for every efficient adversary A4 =
(Ao, A1), and for every X = (x1,...,%,) € ({0,1}°)", w € F",
there exists a simulator S = (S0, S1) such that for all A € N,
fE€F, Jjgood € [k, the following holds:

REALg ;o raXw~c IDEAL7 s 7 x w

Remark 25 (Selective-failure attacks). The inclusion of the
acceptance bit in the adversary’s view ensures protection
against selective failure attacks where whether a client accepts
or not leaks information about the client’s query. For example,
in an actual execution of an authenticated-PIR scheme, a ma-
licious server could replace a single record i in the database
with garbage. Now, if the client’s query does not depend on
the value of record 7, then everything proceeds normally. How-
ever, if the query does depend on the value of record i, then
it receives a garbage value. Depending on the application,
receiving a garbage value could cause the client to abort the

19

protocol prematurely, or retry the protocol; in both of these
cases, if the client engages in some kind of recovery mech-
anism, the server immediately learns information about the
client’s chosen index i. Definition 24 captures security against
selective failure attacks by requiring that the probability of
whether the client’s response is valid or not (i.e., whether
y # 1) is not correlated with the client’s query (since the
same simulator works for all functions f and moreover, the
simulator is not provided f as input). In this way, a malicious
server that learns whether the protocol completed successfully
or not still cannot learn anything about the client’s query.

C Multi-server authenticated PIR for point
queries

In this section we present the formal definition of the multi-
server authenticated-PIR scheme for point queries based on
a classic multi-server linear PIR scheme and a Merkle-tree
scheme. In Construction 4, we give the scheme. In the re-
mainder of this section, we prove that it satisfies integrity and
privacy.

C.1 Security proofs

We prove security for the case of k = 2 servers. All the argu-
ments generalize naturally to the k-server setting with k > 2.

Correctness of the scheme introduced in Construction 4
can be verified by inspection. To prove both integrity and
security, we find it useful to first prove Lemma 26, which
informally states that if a malicious server deviates from the
prescribed protocol, the Reconstruct algorithm rejects with
high probability.

Lemma 26. Consider the authenticated-PIR scheme in Con-
struction 4, on record size { € N and with k = 2 servers for
the sake of the /)roof. Then, for every A € N, every non-zero
A€o0, l}kdig+ +x ywhere Lyig is the length of the digest and
Uy is the length of a Merkle inclusion proof as per Defini-
tion 16, every database X = x1,...,xy € {0, 1}[, and every
index i € [N, the following holds:

(StJIlJIZ) — QUGFY(l}h7 l)

ay < Answer(X,q1)

Pr|y#Ll: < negl(A),

ap < Answer(X, q2)
y < Reconstruct(st,a; ® A, a»)

where the probability is computed over all the random coins
used by the algorithms of the scheme. The statement holds also
when the roles of honest and malicious server are inverted.

Proof. We parse A as (Aroot, Ax, Ax) Where Ayoor € {0, l}gdig,
Ax € {0,1}¢, and Ag € {0, 1}/, If Aoor # 0die then parsing
aj + A and a; yields two different roots and the client immedi-
ately rejects (line 3 of Reconstruct in Construction 4). Hence,

Construction 4 (k-server authenticated PIR for point
queries tolerating k — 1 malicious servers). The con-
struction is parametrized by a number of servers k € N,
a number of database rows N € N, a row length / € N,
a security parameter A € N, a Merkle-tree scheme M
(Definition 16), and a classic PIR scheme PIR (Def-
inition 12). Weights are ignored in this scheme. We
represent the database as N binary strings of length ¢
each: xq,...,xy € {0,1}’. We use i € [N] to denote
f(i,x;) = x;, where f € F. The servers execute the
first three steps of the Answer procedure only when the
database changes; we show the entire procedure for com-
pleteness.

Query(lx,i € [N]) = (st,q1,---,qx)
1. Set the state st < i
2. Output st, PIR.Query(i).

Answer(X =x,...,xy € {0,1},q) = a

1. Compute the digest root < M.Digest (X).
2. For j € [n], compute 7; - M.Provelncludes(X, j,x;).

3. Enlarge the database with the proofs for all the records
as X'« ((x1,m1),- .., (Xn,TN))-

4. Output (root, PIR.Answer(X’,q)).

Reconstruct (st,ay, ..., ax) — {{0,1}*, L}

1. Parse the state st as i.

2. For j € [k], parse ai as (rooty,ay).

3. If the k roots {root;} jc[y are not all equal, return L.
4

. Run the classic PIR reconstruction procedure and
parse r; <— PIR.Reconstruct(d}, ... ,a;) as (x;,;).
5. If M.VerifyIncludes(rooty, i, x;, ;)
L. Otherwise output X;.

L, then output

assume the client gets identical roots from the servers, i.e.,
Aroot = 0’die. The client therefore receives two honest digests
of the database X = x1,...,Xy.

Assume by contradiction that there is a i € [N], a
A = (Avoot, Ax, Ar) Where Aroor = 0'die, Ay € {0,1}, Ag €
{0,1}%=, and a database X =xi,...,xy € {0, 1}/ such that

(st.q1.42) < Query(1*,7)
Prly L ay < Answer(X,q1)
ap < Answer(X,¢q2)

y < Reconstruct(st,a; ® A, as)

where Vv is non-negligible in the security parameter A. We
now show that if Ay £ 0¢, then the malicious servers breaks
soundness of the Merkle-tree scheme (Definition 19). Alter-
natively, if Ay = 0’ , but Ay # Oe", then the malicious server

20

breaks uniqueness of the Merkle-tree scheme (Definition 18).

We analyze the first case, that is, we assume that Ay # 0¢.
Let A4 be an adversary in the definition of soundness for a
Merkle-tree scheme (Definition 19). We show how 4 can use
A = (Aroot, Ax, Ar) With Argor = 0%ie, Ay # 0, Ay € {0,1}x
to break the soundness property of the Merkle-tree scheme
with a non-negligible probability. Given i, A, X, the adversary
A uses the Query and Answer algorithms to compute a; and
a;. Then the adversary reproduces part of the Reconstruct
procedure as follows:

1. parses both answers into (rooty,a;) — ai, k € [2],
2. computes r; <— PIR.Reconstruct(a},d}) and
3. parses the reconstructed value into (x;,T;) < r;.

Algorithm 4 outputs (X, i,x; ® Ax, T; B Ay) in the soundness
game of Definition 19. By assumption, the digest is correct
and computed over X. Since Ay # 0, we know that

(X @ Ax)[| (70 ® Ar) 7 |-

Moreover, the probability stated in Definition 19 is equal
to the probability stated in this lemma, i.e., to v. Since by
assumption Vv is non-negligible in the security parameter A,
algorithm A4 successfully breaks the soundness property of
the Merkle-tree scheme.

We analyze now the second case, that is, we assume that
Ax = 0" and Ay # 0=, Let 4’ be an adversary in the definition
of uniqueness for a Merkle-tree scheme (Definition 18). We
show how 4’ can use A = (Aroot, Ax, Ag) With Arger = 0'die,
Ax = 0, Ag # 0 to break the uniqueness property of the
Merkle-tree scheme with a non-negligible probability. Given i,
A, X, the adversary A’ uses the Query and Answer algorithms
to compute a; and a,. Then the adversary reproduces part of
the Reconstruct procedure as follows:

1. parses both answers into (rooty,a;) < ay, k € [2],
2. computes r; < PIR.Reconstruct(a},a}) and
3. parses the reconstructed value into (x;,T;) < r;.

A4’ outputs (X,i,X;,T;,T; D Ag) in the uniqueness game of
Definition 18. Since Ay # 0%, we know that m; # m; ® Ay.
Moreover, the probability stated in Definition 18 is equal
to the probability stated in this lemma, i.e., to v. Since by
assumption Vv is non-negligible in the security parameter A,
A’ successfully breaks the uniqueness property of the Merkle-
tree scheme. O

We now use Lemma 26 to show that the scheme presented
in Construction 4 ensures integrity and security, and is hence
secure.

Theorem 27 (Integrity of Construction 4). The authenticated
PIR scheme of Construction 4 provides integrity.

Proof. This follows directly from Lemma 26. O

Theorem 28 (Privacy of Construction 4). The authenticated
PIR scheme of Construction 4 provides privacy.

Proof. Recall that we use i € [N] to denote f(i,x;) = x;. Let
A = (A, A) be the adversary of Definition 24. Without loss
of generality, by linearity of the underlying unauthenticated
PIR scheme (Definition 15), we change A, to just output
A € {0,1}die ™+ rather than the answer to the query, where
L4ig and £y are parameters of the Merkle-tree scheme (Defini-
tion 16) that Construction 4 uses. The distribution modeling
the real world is redefined as follows:

(st,q1,42) < Query(1*,i)
(sta,A) < A(X,q1)
ay < Answer(X,q1)

: ap < Answer(X, g2)

-

REAL’ﬂ,i,X,X =
y < Reconstruct(st,a; ® A, as)
b 1{y# L1}
B A (sta,b)

Similarly, and still without loss of generality, we adapt the
distribution modeling the ideal world:

(sts.q1) = So(1, 7, X)
(sta,A) < (X, q1)
IDEAL’ AL
4.5, F M X B b <+ Si(sts,A)
B« Ay (sta,b)

For any adversary 4 = (4y, 4;) let a simulator § = (5o, S1)

such that for every A € N, X = x;,...,xy € {0, 1}’ the simu-
lator proceeds as follows:

Simulator S (1*, 7,X) Simulator ; (sts,A)

1: a&F 1: b+ 1{A=0}
2: q1+ SPIR 2: return b
3: stg+¢€

4: return (sts,q;)

where Spr is the simulator induced by the classic PIR scheme
used by Construction 4 (see Definition 14). We now prove that
the real and ideal distribution are computationally indistin-
guishable and hence the scheme presented in Construction 4
ensures security. To this end, we define three hybrid distribu-
tions Hy, H;, Hj:

* Ho: This is the real distribution REAL’ 4 ;3 x, where the
bit b+ 1{y# L} given as input to the adversary Ay is
determined using the output from the Reconstruct algo-
rithm.

* Hj: Same as Hy except the adversary gets a query pro-
duced by the simulator Sp|r induced by the unauthenti-
cated PIR scheme. The difference between Hy and H; is

21

boxed in the definition below:

(St,_;612) — Query(llv l)

(StﬂvA) «— %(qul)
. ay < Answer(X,q1)

Il
-

ay < Answer (X, q2)

y < Reconstruct(st,a; ® A, ap)
b 1{y# L1}

B < Ay (sta,b)

* Hy: This is the ideal distribution IDEAL’ 4 5 5 3 x-

We now argue that each pair of adjacent hybrids are indistin-
guishable:

* The only difference between hybrids Hy and H; is how the
query q; is sampled. By security of the unauthenticated
PIR scheme, we have Hy ~. H;.

» Let W) the event that 4 = (A, 4) outputs 1 in hybrid H,.
Define W, accordingly. By construction, the value A that
the adversary outputs in H; is independent of the client’s
query. If A = 0%ig "= (., a binary string of £gig + £+ {x
zeros) the simulator S; sets b = 1; if A £ 0%diet(+4x | then
S1 sets b = 0. Since A is independent of everything else,
by Lemma 26

IPt[b < 1{y # L}] — Pr[b « 1{A = 0}]| < negl(A),

where the first probability refers to the assignment of bit b
in Hy, while the second refers to the first operation of §j,
i.e., the assignment of bit b in H,. We can therefore rewrite
the above probability as |Pr[W;] — Pr[W;]| < negl(}).

By a standard hybrid argument we conclude that
REAL’ 7,3 x ~¢ IDEAL’ 4 ¢ #) x and therefore
REAL/QL,L?\,,X ¢ IDEALQ,S,?—,X,X' O

C.2 Preprocessing costs

In our multi-server authenticated-PIR scheme for point
queries, the servers must compute a Merkle tree over the
N database entries along with their indexes. The computa-
tional complexity of the preprocessing phase is dominated
by the number N of database records. Fig. 8 shows the CPU
time that a single server takes to compute a Merkle tree for
different database sizes. The current implementation is not
parallelized, but in practice, the Merkle-tree computation can
be efficiently divided into multiple cores.

100

w ~
(=] W
1 1

CPU time [s]

N
W
1

(=]
1

0 1 2 4 6 8 10
Database size [GiB]

Figure 8: The CPU time that a single server takes to process the
database for the authenticated PIR scheme for point queries (§4.1).
The Merkle-tree computation is not parallelized.

D Multi-server authenticated PIR
for predicate queries

In this section we analyze our multi-server authenticated-PIR
scheme for predicate queries.

D.1 Security proofs for multi-server
authenticated PIR for predicate queries

We prove security only for the case of k = 2 servers. All the ar-
guments generalize naturally to the k-server setting with k > 2.
Correctness of the multi-server authenticated PIR scheme for
predicate queries introduced in Construction 1 can be veri-
fied by inspection. To prove integrity and security, we find it
useful to first prove Lemma 29, which states that if an adver-
sary deviates from the prescribed protocol, the Reconstruct
algorithm rejects with high probability.

Lemma 29. Let the authenticated PIR scheme introduced
in Construction 1, where k = 2 for this lemma. Then, for every
database size N € N, for every non-zero offset A= (A, Ar) €
F2, every database X =Xj,...,Xy € {0, 1}(’, every vector of
weights w € FN, and function f € F, we have

(st,q1,q2) « Query(1*, f)

Prly 41 : aj < Answer(X,w,q1) < 1 7
ay + Answer(X,w,q7) |F|—1

y < Reconstruct(st,a; + A, as)

where the probability is computed over all the random coins
used by the algorithms of the experiment. The statement holds
also when the Reconstruct algorithm instead takes as input
(st,ar,ar +A).

Proof. Let o. <% F\ {0}. By construction, we can rewrite the

22

probability stated in the lemma as

v:Pr[oc-(Zw, F,x)+An >—oc Zw,
i€[N] (V]

=Pr[~Ac+ - Ay, = 0]

(i,x;) + Az

The last quantity is the evaluation of a non-zero degree-1
polynomial with coefficients A; and A, at a random point
o < F\ {0}. Since a non-zero linear polynomial has at
most one root over F\ {0}, we conclude that v < “F‘ 7- By
interchanging the roles of a; and a,, the statement holds
also when the Reconstruct algorithm instead takes as input
(st,aj,ar +A). O

We now use Lemma 29 to show that the scheme presented
in Construction 1 ensures integrity and security, and hence it
is secure.

Theorem 30 (Integrity of Construction 1). The authenticated
PIR scheme of Construction 1 provides integrity.

Proof. This theorem follows directly from Lemma 29. [

Theorem 31 (Privacy of Construction 1). The authenticated
PIR scheme of Construction I provides privacy.

Proof. The proofs proceeds exactly as the proof for Theo-
rem 28, with the difference that we use the simulator induced
by the secure function-secret-sharing scheme instead of the
simulator induced by the classic PIR scheme, and we appeal
to Lemma 29 instead of Lemma 26 to conclude the proof. [J

D.2 Handling functions with larger output

In this section we discuss how to handle functions with larger
output in authenticated PIR for predicate queries.

D.2.1 Scheme

The scheme is described in Construction 5.

D.2.2 Security analysis

Lemma 32. Let the authenticated PIR scheme introduced
in Construction 5, where k = 2 for this lemma. Then, for every
database size N € N, for every non-zero vector (Ag, ..., Ap) €
Fo*1 every database X =xy,...,Xy € {0, 1}6, every vector
of weights w € BV, and every function f € F, the following
holds:

(StanﬂZ) — Query(}\’vf)

a; + Answer(X,w,q) b

Pr 1 <)
7 ay < Answer(X,w,q2) ~|F[-1

y < Reconstruct(st,a; + A, ap)

Construction 5 (k-server authenticated PIR for predicate
queries for functions whose output is larger than a single
field element tolerating k — 1 malicious servers). The
construction is parametrized by a number of servers k €
N, a number of database rows N € N, a row length / € N,
a finite field IF, a security parameter A, a output length
b € N, afunction class F C Funs[[N] x {0, 1}, F?] that is
closed under scalar multiplication, and a function-secret-
sharing scheme (FSS.Gen,FSS.Eval) for the function
class F, parametrized bx the security parameter A. We
represent the database as N binary strings of length ¢
each: X =xi,...,xy € {0,1}".

Query (1*,f) = (st.qi,-- -, qx)
1. Sample a random field element o <~ F\ {0}.

2. Set the state st < Q.

3. For j € [b], let g; + /- f. These functions g; must
exist since the function class ¥ is closed under scalar
multiplication, as in Definition 7.

4. Compute g1, ...,qx < FSS.Gen(1%, f) together with
qgl), . ,q,@ « FSS.Gen(1*,g;), fori € [b).
1 b 1 b
5. Output (st, (ql,q(1),...,qg)),...,(qk,q,(c),...,q,({ >)>
Answer (xi,...,xy € {0,1},w e FV q) — a € F**!
1 b
1. Parse q as (qf,qg,),...,qé)).
2. Compute answer as ay < Y;cy] Wi - FSS.Eval (g, x:)

and ag <} jc(p) (Zie[N] w; - FSS.Eval (qi,j),xl)).

3. Return a < (ay,ay).

Reconstruct (st,ay,...,ax € F*T) - FP U {1}

Parse the state st as a € FF.

Compute a < ajy + - +a; € FP*1,
Parse a as (my,...,mp,t) € FHL.

Compute T < myo+myo? 4 --- +myal € F.

ok wh =

If T =1, output (my,...,mp) € [F?. Otherwise, output
1.

where the probability is computed over all the random coins
used by the algorithms of the scheme. Without loss of gener-
ality, the statement holds also when the roles of honest and
malicious server are inverted.

Proof. Leto. <~ F\ {0}. Let

y=(m,...,mp) < Y wi-f(i,x;) €F’.
i€[N]

23

Then the probability stated in the lemma is

v=Pr [Z (mj—I-Aj)OCj =Ao+ Z mj(xf]
Jelb] Jelb]

=Pr

Ao+ Y Aol :0] :
Jelb]

This last quantity is the evaluation of a non-zero polynomial
(whose coefficients are the A values) at a random point o <~
F\ {0}. Since such a non-zero polynomial of degree at most
b can have at most b roots over F, we have that v < IIF\%I'
By interchanging the roles of ag and a1, the statement holds
also when the Reconstruct algorithm instead takes as input

(st,aj,ar +A). O

Theorem 33 (Integrity of Construction 5). The authenticated
PIR scheme of Construction 5 provides integrity.

Proof. The theorem follows directly from Lemma 32. O

Theorem 34 (Security of Construction 5). The authenticated
PIR scheme of Construction 5 provides privacy.

Proof. The strategy is as in the proof of Theorem 31, except
that we appeal to Lemma 32 to complete the argument. [

E Definition of single-server authenticated PIR

In this section we present the formal definitions of single-
server authenticated PIR.

E.1 Definitions

Definition 35 (Single-server authenticated PIR correct-
ness). A single-server authenticated-PIR scheme (Digest,
Query, Answer, Reconstruct) satisfies correctness if for every
database x € {0,1}", i € [N], and A € N, the following holds:

d + Digest(1*,x)
(st,q) «+ Query(d,i)

Pr|xi=x;:
a < Answer(d,x,q)

2 1- negl(x)v
x} « Reconstruct(st,a)

Definition 36 (Single-server authenticated PIR integrity).
A single-server authenticated-PIR scheme (Digest, Query,
Answer, Reconstruct) has integrity error € if for every effi-
cient (non-uniform) adversary A, every database x € {0,1}",
and index i € [N],

d «+ Digest(1*,x)
(st,q) «+ Query(d,i)
a* + A4(d,x,q)

x} ¢+ Reconstruct(st,a*)

Pr |x} & {x;, L}: <e(M)+negl(A),

where the probability is only taken over the choice of query
randomness?. We say the scheme provides integrity if it has
integrity error Q.

Remark 37 (On non-uniform hardness). As written, Defi-
nition 36 requires integrity to hold against non-uniform ad-
versaries. This version of the assumption explicitly captures
the fact that the probability of an integrity failure is only
taken over the randomness of query generation (and not the
adversary). Thus, a malicious server cannot induce correlated
integrity failures across multiple independently-generated
queries. This property is very useful for our integrity ampli-
fication transformation (Appendix E.2). We could also con-
sider a more complex (multi-query) variant of this assump-
tion that applies to both uniform and non-uniform adversaries
(and which suffices for the transformation in Appendix E.2).
For simplicity of exposition, we opt to give the stronger, but
simpler-to-describe non-uniform notion here.

Definition 38 (Single-server authenticated PIR privacy).
Let (Digest, Query, Answer, Reconstruct) be a single-server
authenticated-PIR scheme. For a security parameter \ € N,
a database x € {0,1}", an index i € [N], and an adversary
A = (Ay, A1), define the distribution

d + Digest(1*,x)

(st,q) « Query(d,i)
(sta,a") < A(d,x,q)
x; + Reconstruct(st,a*)
b+ 1{x; # 1}

B« A (sta,b)

REALﬂ,x,i,}\, = B :

Similarly, for a simulator § = (S0, 51), define the distribution

d « Digest(1*,x)
(sts,q) < So(d,x)
(sta,a") < A(d,x,q)
b+ 8\ (sts,a”)
B+« 4(stq,b)

IDEALﬂ,S,X,}\, = B .

An authenticated PIR scheme (Digest,Query, Answer,
Reconstruct) has privacy if for every adversary A = (Ay, 4)
there exists a simulator S = (S0,81) such that for every
database length N = N(\), database x € {0,1}", index i €
[N], the following holds:

|Pr[REAL g ;3 = 1] = Pr[IDEAL g 5, = 1]| < negl(}).

Remark 39 (Adaptive notions of privacy). We could also con-
sider stronger versions of privacy (Definition 38) where the
adversary chooses the query adaptively after seeing the digest.
In both of our single-server authenticated-PIR constructions

2Note that since the adversary is allowed to take non-uniform advice, we can
assume without loss of generality that the adversary is deterministic (and
incur at most a constant loss in advantage).

24

(Constructions 2 and 3), the digest is a deterministic function
of the database, and hence, choosing the query adaptively
does not help the adversary. For this reason, we opt to give
the (simpler) privacy definition.

E.2 Amplifying integrity

Later on, we will construct lattice-based authenticated-PIR
schemes (Construction 2) that has privacy but that have notice-
able integrity error € = 1/poly (). Here, we show to combine
a secure authenticated-PIR scheme with integrity error € with
any error-correcting code to obtain a private scheme with
negligible integrity error:

* The server first encodes each database record with an error-
correcting code. Suppose each encoded record is n bits.
The server constructs n databases where the jM database
contains the j™ bit of the codeword for each record.

e To retrieve a record i, the client makes n authenticated
PIR queries to obtain the n bits of the codeword encoding
record i. Let yy,...,y, be the responses. If y; = L for any
J € [n], the client rejects with output L. Otherwise, the
client decodes y = y; - - -y, to obtain the record.

If the error-correcting code supports decoding codewords
with up to ¢ errors and the authenticated-PIR scheme has
integrity error €, then the integrity error of this construction is
at most €71, Specifically, to compromise integrity, the server
must corrupt at least # + 1 bits y;. Integrity of the underlying
scheme ensures that the probability the adversary succeeds in
corrupting y; is at most €. Each query is independent, so the
server’s success probability is now £+,

A basic instantiation of this paradigm is to instantiate us-
ing a repetition code where the encoding of a bit b € {0, 1}
simply consists of 2¢ + 1 copies of b. This basic repetition
code supports correcting up to ¢ errors so the integrity er-
ror is now €' !, Setting # = A /¢ then yields a construction
with negligible integrity error. When the database records are
longer (e.g., field elements instead of bits), we can use better
error-correcting codes with higher rate compared to the basic
repetition code. This allows amplifying integrity with fewer
repetitions. In the following, we describe the construction
more formally that supports multi-bit records over any field:

Definition 40 (Error-correcting code). A (k,n)-error-
correcting code over a finite field F that can correct up to t
errors consists of two efficient and deterministic algorithms:

* Encode(x) — y: The encoding algorithm takes a message
x € F* and outputs a codeword y € F".

* Decode(y) — x: The decoding algorithm takes a code-
word F" and outputs a message x € F".

Moreover, for all x € F¥, y < Encode(x), and all y' € F" such
thaty; =y for all but at most t indices i € [n], Decode(y’) =x.

Construction 6 shows how to use an error-correcting code

to amplify the security of a single-server PIR scheme. Cor-
rectness of Construction 6 follows by construction. Thus, we
focus on analyzing integrity and security.

Construction 6 (Amplifying integrity of single-server
authenticated PIR). Let ECC = (Encode, Decode) be
a (k,n)-error-correcting code over a finite field F that
can correct up to ¢ errors. Let PIRy = (Digest, Queryy,
Answerg, Reconstruct) be a secure single-server authen-
ticated PIR scheme for records in F and which provides
e-integrity. We construct a new single-server authenti-
cated PIR scheme from PIR with records in F.

Digest(1*,x € (IFk)N) —d

1. Parse X = (xp,...,Xy) where xq,...,xy € FX.
2. For each i € [N], let y; + Encode(x;) € F". Write
Yi= (Vis-- - Yin)-

3. Foreach j € [n],letz; = (y1j,...,yn;) € FV.

4. For each j € [n], compute d; < Digesty(1*,z;) and
output d = (dy,...,dy).

Query (d,i € [N]) — (st,q)

1. For each j € [n], sample (stj,q;) < Queryy(d;,i).

2. Output st = (sty,...,sty),qg =(q1,---,qn)-

Answer (d,x € (Fk)N,q> —a

1. Parsed = (dy,...,d,) and g = (q1,.-.,qn).

2. For each j € [n], compute z; € FV from x using the
same procedure as Digest.

3. For each j € [n], compute a; < Answery(d},z},q;)
and output a = (ay,...,ay,).

Reconstruct (st,a) — FXU{ L}

1. Parse the state st = (stj,...,st,) and the responses
a=(ai,...,an).

2. For each j € [n], compute y; < Reconstructy(st;,a;).

3. If there exists j € [n] such that y; = L, output L.

4. Otherwise, lety = (yy,...,y,) and output Decode(y).

E.2.1 Integrity of Construction 6

Theorem 41 (Integrity of Construction 6). If PIR is secure
and provides €-integrity and ECC is an error-correcting code
that can correct up to t errors, then Construction 6 (instanti-
ated with PIRy and ECC) provides €+ -integrity.

Proof. Take any database x € (F¥)", an index i € [N], and
any efficient adversary 4. Write x = (x1,...,Xy) and let
yi < Encode(x;) for each i € [n]. Let z; <— (y1,j,...,¥n,))

25

and let d < Digest(1*,x). Then d = (dy,...,d,) where
d; + Digesty(1*,z;). Let (st,q) + Query(d,i) where st =
(sti,...,stn), ¢ =(q1,-..,qn), and (stj,q;) < Queryy(d;,i).
Let a* = (a},...,a};) be the adversary’s response in the in-
tegrity experiment. Let y'j + Reconstructy(st;, a}f). Consider
now the output of X’ «— Reconstruct(st,a*):

* Suppose there exists j € [f] such that y; = L. Thenx' = L.

* Suppose y’j = y;; for all but at most ¢ indices j €
[n]. Since ECC can correct up to ¢ errors, X’
Decode((y},- --,Y})) = Xi.

* Suppose there are at least # + 1 indices j € [n] where y'; ¢
{yij,L}. By integrity of PIRq, for each j € [n],

Pr[y; ¢ {yij,L}] <&(X)+negl(d).

Moreover, this probability is taken only over the choice of
the query randomness g ;. Since the queries ¢y, ... ,q, are
sampled independently, the probability that there exists 7 +
1 indices j where Y ¢ {yij,L} is at most & ! + negl(A).

By the above analysis, we conclude that
Prix ¢ {x;, L}] < 't + negl(h),

and the claim holds.

E.2.2 Privacy of Construction 6

Theorem 42 (Privacy of Construction 6). If PIRy provides
privacy, then Construction 6 (instantiated with PIRy) provides
privacy.

Proof. Take any database x € (F)N, an index i € [N], and
any efficient adversary 4 = (A, 41). Let 5" = (5,5}) be the
simulator for PIRy. We use (5},.5]) to construct a simulator
S = (80,51) for the transformed scheme:

Simulator S (1*,d,x) Simulator S (stg,a*)

1: parsedas (dy,...,dy) 1: parsests as (q1,...,qn)
parse a* as (aj,...,a;)

b F.S{(Stj,a;) Vj € [n]

2: parsexas (Xq,...,X,) 2:
3: y; < Encode(x;) Vi€ [N] 3:

4: forall j€[n]: 41 b 1{Vjen]:bj=1}
5t Zj (Vjseeesdnj) 5: returnb

6: (Stj,Qj)(*Sé(lxvdj?Zj)

7: stg < (sty,...,sty)

q% (q17'-'7qn)
9: return (stg,q)

We show that the real distribution REAL 4 4 ; 3 and ideal dis-
tribution IDEAL 4 ¢ 4 3 are computationally indistinguishable.
We define a sequence of hybrid experiments:

* Ho: This is the real distribution REAL g4 ; 3

- The challenger starts by parsing x = (x1,...,X,) and
computes y; Encode(x;) for each i € [N]. Then it
forms z; = (y; j, ..,¥n,j) foreach j € [n]. It computes
d; < Digesty(1*,z;) and sets d; = (di,...,d,).

(
— The challenger then samples (st;j,q;) < Queryo(dj,zj).
It define ¢ = (g1, ..,4») and gives (d,x,q) to 4.

— The adversary responds with a* (aj,...,a}).
For each j € [n], the challenger computes y; <«
Reconstructo(st;,a7).

— Then it computes b <— 1{V, € [n] : y; # L} and gives
bto 4.

— The output of the experiment is A4’s output.

e Hi: Same as Hg except after the challenger com-
putes yi,...,y, from a*, the challenger computes b; <
1{y; # L}. Then,itsets b+ 1{Vj € [n] : b; = 1}.

e Hi: Same as Hp except the challenger computes
(stj,q;) < S)(1*,d;,z;) for each j € [N]. After the adver-
sary responds with a* = (aj, ...,a}), the challenger com-
putes b; as b; < Sj(st;,a}). This is the ideal distribution
IDEAL g g x 3

The difference between Hy and H; is syntactic and their out-
puts are identically distributed. Hybrid H; and H; are com-
putationally indistinguishable by security of PIRy; formally,
this follows by a sequence of n hybrid experiments where
in experiment j, we switch to using the PIRy simulator §’ to
simulate the query ¢; and the response bit b;. U

F Single-server authenticated PIR from LWE

In this section, we analyze Construction 2.

F.1 Lattice preliminaries

For a real value s > 0, we write p;: R — R™ to denote
the Gaussian function p(x) := exp(—mx?/c?). The discrete
Gaussian distribution Dz, ; with width parameter s is a discrete
distribution over the integers with probability mass function

ps(x)
ZyeZ Ps (y) .

We say that a distribution D (over R) is subgaussian with
parameter s if for every t > 0,

PrX=x:X Dz, | =

Pr(|x| > £ : x < D] < 2exp(—mnt?/s%). ()

The discrete Gaussian distribution Dz, is subgaussian with
parameter s. In particular, this means that if we sample e <
Dz, then |e| < v/As with probability 1 — negl()). Moreover,
if x1,x are independent subgaussian random variables with
parameters si,s2, then x = o + Px; is subgaussian with
\/ 0253 + B2s3

parameter for any o, B € R.

26

In the following description, unless otherwise noted, all
operations are performed over Z,,. For a value x € Z,, we write
|x| to denote the absolute value of its canonical representative
in the interval ZN[—q/2,q/2].

F.2 The learning-with-errors assumption
We now recall the learning with errors assumption [82]:

Definition 43 (Learning with Errors [82]). Let A be a security
parameter. Let n = n(A) be the lattice dimension, m = m(\)
be the number of samples, g = q(\) be a modulus, and s =
s(A\) be a Gaussian width parameter. Then, the learning with
errors (LWE) assumption \WE,, ,,, , s states that the following
distributions are computationally indistinguishable:

(A,s"TA+e") ~. (A,u’),

where A & ZZX’", s & ZZ, e< D7, andu < Zg.

The security of our construction will rely on the “extended
LWE” assumption [20], which essentially says that LWE
holds even if the distinguisher learns a linear combination
of the LWE errors. We state the assumption below:

Definition 44 (Extended LWE [20]). Let A be a security pa-
rameter and let n = n(\), m = m(A), ¢ = g(N), and s = s(\)
be lattice parameters (as in Definition 43). Then, the extended
learning with errors (extLWE) assumption extLWE, ,, 4
states that for every x € {0, 1}™, the following distributions
are computationally indistinguishable:

(A,STA + eTa eTX) e (Aa uTveTX)a

where A & Z"X’" Z" e D% o and u <&
(n,m.q,s)

cisely, for an adversary A, we write Adv; we (4] to denote
the distinguishing advantage of A for the aforementioned
distributions.

Zy. More pre-

Previously, Brakerski et al. [20, Lemmas 4.3, 4.7] showed
that hardness of the extended LWE assumption extLWE,, . 4 ¢
can be based on the hardness of the vanilla LWE assumption
LWE, . 4. for s = O(s).

F.3 Correctness

Theorem 45 (Correctness of Construction 2). If B > /AN,
then Construction 2 is correct.

Proof. Take any database x € {0, l}N and index i € [N]. Let
d = Ax be the digest, " =s"A+e" +7-1] be the query, and
a + q"x be the response. Then, we have

a—s'd—xt=q'x—s'd—x;t
=s'Ax+e'x+1-n/x—s"Ax —x;it

=e'x.

2

Since the components of e are independent discrete Gaussian
random variables with parameter s, e"x is subgaussian with
parameter ||x|| - s < +/Ns since x € {0, 1}". By Eq. (1),

Prle'x| < B:e+ D%S] > Pr[le"x| < VANs:e <+ D%S]
=1 —negl(A). 3)

To complete the proof, we show that |a —s'd — (1 —x;)z| > B.
By Eq. (2),

la—s"d— (1 —x)t| = e"x+ (1 —2x;)t].

By Eq. (1), |e"x| < B with overwhelming probability. Since
1 —2x; € {—1,1} and ¢ € [2B,q — 2B], with overwhelming
probability over the choice of e, we have e"x+ (1 — 2x;) €
[B,q — BJ, or equivalently, [e"x+ (1 — 2x;)¢| > B. O

F.4 A key lemma

Lemma 46. Let A be a security parameter, x € {0,1}" be a

database, i € [N] be an index, and A4 be an adversary. Con-

. . o (0) a .
sider Construction 2 and define distributions D Axin D il

Ez(l)‘)x i Distribution D(l)

Distribution D Aid

10 d+ Digest(]x,x) 10 d+ Digest(lx,x)
2: (st,q) < Query(d,i) 2: q& Zfiv,e « DY,
3t (sta,a’) = A(d,x.q) 31 (stg,a") « 4(d,x,q)
4: x; < Reconstruct(st,a*) ,. ;& [2B,q— 2B
5: return x} s: uTeq —ron]
6: @*+a" —u'x+e'x
7: if |a*| < B then
8: X; 0
9: elseif |a* —t| < B then
10: X1

11: elsex; <+ L

12: return x;

Suppose the extL\WE,, y 4 ¢ assumption holds and H is mod-
eled as a random oracle. Then, for every database length
N = N(\), database x € {0,1}", index i € [N], and every ad-
versary A running in time t = t(\), there exists an adversary
B running in time poly(t) such that

0 n,N,q,s
|Pr(DY) y=1 < Adva(extLVC\]/E) [B].

1
Al T 1] - Pr[D(ﬂ)

X,
Proof. Fix a database x € {0,1}", an index i € [N], and any
efficient adversary 4. In the following analysis, we write
a; € 7} to denote H (i) and we model H as a random oracle
(which the reduction algorithm is allowed to program [13]).
We now define a sequence of hybrid experiments:

27

e Hy: This is the distribution Dg‘)x

i In this distribution, the
output x; is computed via x; «— Reconstruct(st,a*).

* H;: Same as Hy except the challenger changes how x/ is
computed. Instead of computing x; «— Reconstruct(st,a*),
the challenger sets x; as follows:

— Ifja* — (s"TA+e")x+e"x—kt| < Bfork € {0,1}, then
X} < k.

— Otherwise, the challenger sets x§ — 1.

e Hj: Same as H; except the challenger replaces s"A +e'
with a uniform random vector u" < ZQ’ . Specifically, the
challenger computes q" <—u' +7-1, and x} as follows:

- If |[a* —u'x+e"x—kt| < B fork € {0, 1}, then x < k.

— Otherwise, the challenger sets x§ — 1.

» Hj: Same as Hj except the challenger samples q <* quv .
Then, after the adversary outputs the response a*, it sam-
ples 7 <~ [2B,q — 2B| and sets u' <— q" —¢-1/. The re-
sponse a; is computed exactly as in H,. This is the distri-
bution Dg)x.i.x'

To complete the proof, we now show that each adjacent pair
of distributions is indistinguishable.

* Hybrids Hyp and H; are identical distributions. In both ex-
periments,d = Ax,q" =s"A+e" +7-1] and st = (d,s, 7).
Let a* be the adversary’s response in Hy and consider the
value of x} «— Reconstruct(st,a*). Let z = a* —s"d. Then,

z=a" —s'd=da" —s"Ax

=a* —(s"A+e")x+e'x

In Hy, the challenger outputs k € {0, 1} if |[a* —s"d —kt| =
|z—kt| < B and L otherwise. By the above calculation,
this precisely coincides with the procedure in H;.

» Hybrids H; and H, are computationally indistinguishable
under the extLtWE,, v 4 ¢ assumption and modeling H as a
random oracle. To see this, suppose there exists an efficient
adversary A that is able to distinguish hybrids H; and H»
with non-negligible advantage. We use 4 to construct an
adversary B that breaks the extended LWE assumption:

1. At the beginning of the game, algorithm B receives an
extended LWE challenge (A,zT,y) where A € Z*V,
VAS Z]qv, and y € Z,,.

2. Letay,...,ay € Zg be the columns of A. Algorithm B
programs the random oracle H (i) — a; for each i € [N].
If 4 ever queries H on an input k ¢ N, algorithm B
samples a random 1y <~ Zj and defines the mapping
H(k) — I'k.

3. Algorithm B now constructs the digest d <— Ax asin H;
and Hj. To construct the query, algorithm B samples
1<~ [2B,q—2B] and sets q" < z' +7-1]. It gives the

digest d, the database x, and the query q to A4.

4. Algorithm A4 outputs a response a*. Algorithm B com-
putes x; as follows:

- If |a* —z"x+y—kt| < Bfor k € {0,1}, then x < k.

- Otherwise, X, < L.

5. Algorithm B replies to 4 with x; and outputs whatever
A outputs.

Since A & ZZXN , the outputs of the random oracle are
correctly simulated. Corresponding, algorithm B perfectly
simulates the distribution of the digest d for 4. We now
consider the two possible challenge distributions:

— Suppose z' =s"A +e" and y = e"x. Then the query q
and the response x; are distributed exactly as in H;.

— Suppose z" <~ Z! and y = e"x. Then, the query q and
the response x; are distributed exactly as in Hy.

We conclude that algorithm B breaks the extended LWE
assumption with the same distinguishing advantage as 4
and the claim follows. More precisely, we can write H;(4)
to denote the output of a distinguisher A4 on input a sample
from H;. Then our reduction shows that for all adversaries
A running in time ¢, there exists an adversary B running
in time poly(#) such that

AdVieitne 8] > [Pr{H, [4] = 1] = Pr[Ha[4] = 1]]

* Hybrids Hy and Hj are identically distributed. In H,, q =
u-+¢-1m; where u & Zf}’ and u is sampled independently
of all other quantities. Thus, the distribution of q in Hy
is uniform over Zf;’ , which matches the distribution in Hs.
In both experiments, u = q — 7 - 1);, where ¢ <~ [2B,q —
2B]. O

F.5 Integrity

Theorem 47 (Integrity of Construction 2). Suppose the
extlWE, n 4,s assumption holds and H is modeled as a ran-
dom oracle. Then, Construction 2 (instantiated with param-
eters n,N,q,s,B and hash function H) has integrity error at
most€= (2B—1)/(¢q—4B+1).

Proof. Fix a database x € {0,1}", an index i € [N], and any
efficient adversary 4. We now define a sequence of hybrid
experiments:

e Hy: This is the real integrity game.

e Hy: Same as Hy except the challenger samples q <* ZS’
and e < D%’_S. Then, after the adversary outputs the re-
sponse a*, the challenger samples 7 <% [2B,q — 2B] and
setsu' «<—q"—¢-n]. If|[a* —u"x+ e"x — kt| < B for some
k € {0, 1}, then the challenger sets x; < k. Otherwise, the
challenger sets x < L.

28

* H,: Same as H; except the challenger changes how it
computes x/:

- If [a* —u"x+e"x —x;t| < B, then x} <— x;.

— Otherwise, the challenger sets xg — 1.

Specifically, in Ho, it is guaranteed that x, € {x;, L }.

We now show that the outputs of each adjacent pair of hybrid
distributions are computationally indistinguishable:

» Hybrids Hp and H; are computationally indistinguishable
by Lemma 46.

* The statistical distance between Hy and H; is at most (2B +
1)/(g—4B+1). By construction, the two experiments are
identical unless

l|a* —u'x+e'x— (1 —x;)t| <B. 4)

Now,u=q—1-m;, so
a*—u'x+e'x—(1—x)t=a"—q"'x+e'x— (1 —2x)t.

Since 1 —2x; € {—1, 1}, there are at most 2B — 1 values
of t € Z, for which Eq. (4) holds. Since t is sampled uni-
formly at random from a set of size ¢ — 4B+ 1 and inde-
pendently of a*, u, X, and e, the probability that ¢ lands in
the interval of size 2B — 1 is at most (2B—1)/(q¢—4B+1).
Correspondingly, the statistical distance between H; and
Hyis (2B—1)/(g—4B+1).

By construction, the output x} in Hy is guaranteed to be either
x; or L. By a hybrid argument, in the real integrity game Ho,
it must be the case that

2B—1

Pr[x; € {Xi,J_}] S m

+negl(A),

which proves the claim.

F.6 Privacy

Theorem 48 (Privacy of Construction 2). Suppose the
extlWE, v 4,s assumption holds and H is modeled as a ran-
dom oracle. Then, Construction 2 (instantiated with parame-
ters n,N,q,s,B and hash function H) provides privacy. More
precisely, for every adversary running in time t = t (M), there
exists an adversary ‘B running in time poly(t) such that

|Pr[REAL 7,5 = 1] —Pr[IDEAL 7.5 5 = 1]| < AdV e [B],

where REAL g 1 ;3 and IDEAL g s .), are the distributions de-
fined in Definition 38.

Proof. Fix a database x € {0,1}", an index i € [N], and any
efficient adversary 4 = (4, 4;). We construct an efficient
simulator § = ($p,.51) as follows:

Simulator 5, (1*,d,x) Simulator $ (sts,a")

10 q&ZY, e Dy 1: if|a"—stg| <B, b1
else, sample 1 < [2B,q — 2B]
3: return (stg,q) 3: and b+« 1{|a" —sts—1| < B}

4: returnb

2: stg+q'x—e'x 2:

We show that the real distribution REAL g x ; 5 and ideal dis-
tribution IDEAL g ¢ x 5, are computationally indistinguishable.
We define a sequence of hybrid experiments:

* Ho: This is the real distribution REALgy ;9. In this
distribution, the response x; is computed via x| <
Reconstruct(st,a*).

e H;: Same as Hj except the challenger samples q < ZS’
and e D%’_ - Then, after the adversary outputs the re-
sponse a*, the challenger samples 7 <% [2B,q — 2B] and
setsu’ <—q"—¢-m]. If|[a* —u"x+ e"x — kt| < B for some
k € {0, 1}, then the challenger sets x; < k. Otherwise, the
challenger sets x < L.

* Hy: Same as Hj, except instead of computing x/, the
challenger sets b = 1 if |[a* — q"x + e'x| < B. Oth-
erwise, it samples ¢ < [2B,q — 2B] and sets b «+
1{|a* —q"x+e"x—t| < B} This is the ideal distribution
IDEALJq”gyX_’;L.

To complete the proof, we now show that each adjacent pair
of distributions is indistinguishable. First, hybrids Hy and

H, are computationally indistinguishable by Lemma 46. To

complete the proof, we show that H; and H» are identically
distributed:

* Hybrids H; and H; are identically distributed. Let a* €
Z4 be the adversary’s response in the two experiments.
Define the quantity z = a* — q"x + e"x. We consider two
possibilities:

— Suppose |z| < B. In Hp, the challenger always sets b = 1.
We claim this is also the case in Hj. By construction,
we can first write

u'x=q'x—1-1n/x=q"x—x;t. (&)
This means

2| =|a* —q'x+e"x| = [a" —u"x+e'x—xit|. (6)
Since x; € {0, 1}, we have x; = x; and b = 1 in H;.

— Suppose |z| > B. In this case, the challenger in H, sam-
ples 7 <~ [2B,q —2B] and sets b = 1 if |z —¢| < B and
b = 0 otherwise. Consider the challenger’s behavior in
H;. By Eq. (6), we have that » = 1 only if

la* —u'x+e"x— (1 —x)t| <B.

By Eq. (5), this is equivalent to |z— (1 —2x;)t| < B.
Like in Hj, the challenger in H; samples ¢ <* [2B, g —

29

2B] after the adversary outputs a*. We consider two
possibilities:

+ If x; = 0, then 1 —2x; = 1, and the challenger in
H; sets b < 1{|z—¢| < B}. This is identical to the
behavior in H,.

* If x; = 1, then 1 — 2x; = —1, and the challenger in
H, sets b < 1{|z+1t| < B}. Since ¢ <* [2B,q — 2B
the distributions of mod ¢ and —¢ mod ¢ are iden-
tical (the interval is symmetric about 0 over Z).
Since ¢ and z are independent, the distribution of
1{|z+1¢| < B} is identically distributed as that of
1{|z—t| < B}. Once again, the distribution of b in
H; is distributed identically to that in Hj.

We conclude that the distribution of b is identical in H;
and H» in this case. O

G Single-server authenticated PIR from DDH

We now analyze our DDH-based single-server scheme (Con-
struction 3). Correctness follows by construction. Therefore,
this section focuses on security.

G.1 Decisional Diffie-Hellman assumption

We first recall the decisional Diffie-Hellman assumption:

Definition 49 (Decisional Diffie-Hellman). Let A be a secu-
rity parameter and let G be a group of prime order p where
1/p = negl(X). Let g be a generator of G. We say that the
decisional Diffie-Hellman assumption (DDH) holds in G if
the following distributions are computationally indistinguish-
able:

(8,h,8"h") = (g,h,8",2)

where h,z & G and x & 7Z,,.

By a random self-reduction [72, 84], it is straightforward
to show that if the DDH assumption holds in G, then for all
polynomials N = N(L), the following distributions are also
computationally indistinguishable:

(gahlah€v"'7hNaher) ~e (g>h17Z1,~~~7hN;ZN)7 @)

where hi,...,hy,z21,...,2v < G and r & Z),.

G.2 A keylemma

To analyze the security (and integrity) of Construction 3, we
start by proving the following lemma, which will feature in
both the security and the integrity analysis.

Lemma 50. Let A be a security parameter; x € {0,1}" be a

database, i € [N] be an index, and A4 be an adversary. Con-
(0)

Aox,i and

sider Construction 3 and define distributions D

n .
Dﬂ,x,i,?u'

0)

Distribution D(Distribution D(l)

A x,i A A xi\
I: d < Digest(1* x) I+ d < Digest(1* x)
(Stvq) A Query(d,i) 2: q& GN

(stg.,a”) < A(d,x,q) 3: (stg,a*) <« A(d,x,q)

ifta* =[] q);./ then x} < x;
JEN]

x; < Reconstruct(st,a*) .

A N N CVEE)

return x;
50 elsexi+ L

6: return x}

Suppose the DDH assumption holds in G and H is modeled as
a random oracle. Then, for every database length N = N(L),
database x € {0,1}", index i € [N), and efficient adversary
ﬂ;

1
.= 1]—PrD})

(0)
Pr[D Axid T

i, 1]| < negl(A).
Proof. Take any database length N = N(A), database x €
{0,1}" and an index i € [N]. We show that the distributions

pY
Ax,i
the following analysis, we write i; € G to denotes H (i), and
we model H as a random oracle (which the reduction algo-
rithm is allowed to program) [13]. We now define a sequence

of hybrid experiments:

« Hy: This is the distribution D' . In this distribu-
tion, the response x; € {0,1, L} is computed via x;

Reconstruct(st,a*).

4 and Dg?x i, are computationally indistinguishable. In

* Hj: Same as Hy, except the challenger changes how x/ is
computed. Instead of computing x; <— Reconstruct(st,a*),
the challenger sets x} as follows:

- Ifa* =K' (h))% [1ji(15)" for y € {0, 1}, then x} < y.

— Otherwise, the challenger sets xf «— 1.

e Hy: Same as Hj, except the challenger replaces the
tuple of group elements (g,hi,h},... Ay, hy) with
(8,h1,21,...,hn,zv) where zi,...,zy < G and r & 7Z,,.
Specifically, the challenger constructs the query g =
(q1,.-.,gn) by setting g; < zj for j # i and ¢; < z;hi.
When computing x/, the challenger proceeds as follows:

- Ifa*=h'z H#izjj fory € {0, 1}, then x: < y.
— Otherwise, the challenger sets x; < L.

* Hj: Same as Hj except the challenger samples g < GV.
Then, after the adversary outputs the response a*, it sets

zj = q; for all j # i and z; < g;/h} where t < Z,. The
response a; is computed exactly as in H.

* Hy: Same as Hj except the challenger again changes how
it computes x}:

- x;
— Ifa* = hf‘tzf’ Hﬁéizj", then x; — X;.

30

— Otherwise, the challenger sets x§ — 1.

* Hs: Same as Hy, except the the challenger sets x§ — x; if
a* =Tljem q);'j and x} <— L otherwise. This is the distribu-

: (1)
tion Dﬂ,x,i,x'

To complete the proof, we now show that each adjacent pair
of distributions are indistinguishable:

* Hybrids Hyp and H; are identical distributions. In both
experiments, d = [] ;e h;j, q = (q1,.--,9n), and st =
(i,d,rt), where q; = W for j #iand g; = Rt for some
rt € Z,. Let a* be the adversary’s response in Ho, and
consider the value of x; «— Reconstruct(st,a*) in Ho:

- Ifa* =d’, thenx; = 0. If a* = d"h!, then x] = 1. This
is equivalent to setting x =y € {0,1} if a* = d"h".
Substituting in the above relations, this means that in
Hy, x; =y € {0,1}if

at=dn = ([T~) m =Ry)
J€lN] i#i

- Otherwise x; = L.

This is precisely the distribution of x} in Hj.

* Hybrids H; and H, are computationally indistinguishable
under the DDH assumption and modeling H as a random
oracle. To see this, suppose there exists an efficient ad-
versary A4 that is able to distinguish hybrids H; and H»
with non-negligible probability. We use 4 to construct an
adversary B that distinguishes the distributions in Eq. (7):

1. At the beginning of the game, algorithm B receives a
challenge vector (g,h1,T1,...,hy, Ty).

2. Algorithm B programs the random oracle H (i) — h;
for each i € [N]. If 4 ever queries H on an input k ¢ [N],
algorithm B samples a random ry < G and defines the
mapping H (k) — r.

3. Algorithm B now constructs the digest d <[] je[w] h);’
as in H; and H,. To construct the query, algorithm B
sets g < Tj for j # i and g; < T;h} where t <& Z,,. It

gives the digest d, the database x, and the query g to 4.
4. Algorithm A4 outputs a response a*. Algorithm B com-

putes x; as follows:

- Ifa* = hlytTixi [Tj4i T;Cj, then X/ < x;.

- Otherwise, x; + L.

5. Algorithm B replies to 4 with x. and outputs whatever
A outputs.

Since Ap,...,hy <& G, the outputs of the random oracle
are correctly simulated. Correspondingly, algorithm B per-
fectly simulates the distribution of the digest d for 4. We

now consider the two possible challenge distributions:

— Suppose T; = h/ for all i € [N] and where r < Z,,. In this
case, ¢; = I; for all j # i and g; = hi"" where 1 <* Z,,.
Similarly, x| = y € {0,1} if a* = &' ()% [T} 44(})Y,
which exactly matches the distribution in Hj.

— Suppose T; = z; <~ G for all i € [N]. In this case, ¢; =
zj for all j # i and g; = z;h} where t < Z,,. This is
the query distribution in H,. Similarly, to compute the
response x}, algorithm B sets x} =y € {0,1} if a* =
R'Z T i z);'/ , which matches the distribution in H,.

We conclude that algorithm ‘B distinguishes between the
distributions in Eq. (7) with the same distinguishing ad-
vantage as A4, and the claim follows.

* Hybrids H; and Hj3 are identically distributed. In Hj, the
z;’s are sampled uniformly and independently from G (and
also independent of Ap,...,hy,t). Thus, the distribution of
q=(q1,-..,q9n) in Hy is identical to that in H3. Finally, in
Hy, g; = z;h, where t <% Z,,. This is the distribution in H3.

 The statistical distance between Hz and Hy is 1/p =
negl(A). By construction, the two experiments are iden-
tical unless the adversary outputs a* where a*

h(1 it 21 J#i%; ’. Using the relation z; = g;/ht, this be-
comes
a :h,(l_xm;l],;t j _ ht 1— 2x, HZ
i j# J#i
or equivalently, if
a*
(H)' 7 = ——— ®)
6], Hﬁét

Now, in Hs and Hy, the challenger samples ¢ <*- Z, after
the adversary outputs a*. Moreover, since x; € {0, 1}, it
follows that 1 —2x; € {—1,1}. Since ¢ is sampled indepen-
dently of a*, g; and z; for all j € [N], and h; is a generator
of G (with overwhelming probability), Eq. (8) holds with
probability at most 1/p = negl(A) over the randomness of
t.

* Hybrids H4 and Hs are identical experiments. In Hy, the
challenger sets x. = x; if and only if

X
a*:hxlt xtHZ/ _ Zlh[)C,HZ

J# J#

Xj
I14/
Je[N)
since ¢; = z; for all j # i and ¢; = z;h'. This is the distri-
bution in Hs. O

G.3 Integrity

Theorem 51 (Integrity of Construction 3). Suppose the DDH
assumption holds in G and H is modeled as a random oracle.
Then, Construction 3 (instantiated with group G and hash
function H) provides integrity.

31

Proof. Fix a database x € {0,1}" and an index i € [N], and
take any efficient adversary A4 for the integrity game. We
define the following hybrid experiments:

* Hy: This is the real integrity game.
* Hj: Same as Hy, except the challenger samples g < GN
and sets x; < x; if @* = [Tepy) q};" and x; < L otherwise.
The outputs of Hp and H are computationally indistinguish-
able by Lemma 50. Next, in Hy, Pr[x; ¢ {x;, L}] = 0 by con-
struction. The claim now follows by a hybrid argument. [

G.4 Privacy

Theorem 52 (Privacy of Construction 3). Suppose the DDH
assumption holds in G and H is modeled as a random oracle.
Then, Construction 3 (instantiated with group G and hash
Sfunction H) provides privacy.

Proof. Fix a database x € {0,1}" and an index i € [N]. Take
any efficient adversary 4 = (A, 4;). We construct an effi-
cient simulator § = (5,.$1) as follows:

Simulator S, (1*,d,x) Simulator 5 (sts,a*)

b+]l{a* :StS}

return b

10 g=(q1,...,qn) &G 1

. Xj 2
2: stg <« H/E[N] q] :

3: return (stg,q)

We show that the real distribution REAL 4, ;» and ideal dis-
tribution IDEAL 4 g ,) are computationally indistinguishable.
We define a sequence of hybrid experiments:

* Ho: This is the real distribution REAL g, ; 3.

* H;: Same as Hy, except the challenger samples g < GV
and sets x; < x; if a* = =Iljem q] and x; + L otherwise.

* Hy: This is the ideal distribution IDEAL g ¢ , .

We now argue that adjacent pair of hybrid experiments are
indistinguishable:

* Hyp and H; are computationally indistinguishable by
Lemma 50.

e H; and H; are identical experlments Namely, i 1n H2, the
challenger sets b = 1 if and only if a* =[]y q; ;> which
coincides with the behavior in H;. O

G.5 Handling larger database rows

Our DDH-based construction (Construction 3) directly sup-
ports (small) multi-bit database records with no communi-
cation overhead. The cost is the client’s computational cost
increases by a factor of 20/ 2 where ¢ is the bit-length of the
record.

The idea is simple. Suppose the database consists of N /-
bit records xi, .. .,x; € {0, l}e. The digest, query, and answer

algorithms are unchanged (the only difference is that instead
of each record x; € {0, 1} being a single bit, we now treat each
record x; € {0,1}" as an integer between 0 and 2¢ — 1). The
only difference is during reconstruction, the client now learns
the value hf"t. Since the client knows the blinding factor ¢, it
can exponentiate with ! mod p to obtain h}'. Namely, the
client is able to obtain an encoding of the database record in
the exponent. Recovering the value of x; now requires com-
puting a discrete logarithm (base 4;). This can be computed
in time 0(\/27) using Pollard’s kangaroo method [80], or al-
ternatively, if £ is very small, then the client can precompute
a lookup table of possible values for /;'. Thus, this approach
is suitable for small values of ¢ (e.g., £ < 32).

While there are applications for a small-row single-server
authenticated PIR scheme, we still hope that it is possible
to construct a more bandwidth- and computation-efficient
scheme in the future. We unsuccessfully attempted to combine
an unauthenticated classic single-server PIR scheme with
some sort of algebraic integrity-protection mechanism, but
it seems non-trivial to provide our integrity properties while
making only black-box use of the underlying single-server
PIR scheme. Further investigation along these lines would be
an interesting task for future work.

Supporting multi-bit records in the lattice-based setting.
We note that a similar approach as above can be applied to the
lattice-based construction (Construction 2) to support multi-
bit records. While correctness holds, the security analysis
is more challenging. Namely, both integrity and privacy of
Construction 2 (Theorems 47 and 48) rely on the extended
LWE assumption where we require that LWE holds even if
the distinguisher is given a linear combination e"x of the
LWE error. When the database entries are binary-valued (i.e.,
x € {0,1}"), we can appeal to [20, Lemma 4.3, Claim 4.6,
Lemma 4.7] to base hardness on standard LWE. It seems
plausible that a similar (possibly less tight) reduction applies
when the database x € ({0,1}°)Y consists of £-bit integers,
and this is an interesting question for further exploration.

H Parameter selection

In this section we discuss parameter selection for the scheme
that use integrity amplification (Construction 6). As the base
authenticated PIR scheme (denoted PIR(in Construction 6)
we use the LWE-based scheme (Construction 2) with mod-
ulus ¢ = 2% and lattice dimension n = 1100, which has in-
tegrity error € = (2B—1)/(q¢ —4B + 1) (cf. Theorem 47).
The correctness of Construction 2 (Theorem 45) states that
B < v/ANs. By Theorem 41 we know that if we use a simple
repetition code (which corrects up to ¢ errors by expanding
each database bit into 2t + 1 codeword bits) and PIR(has
integrity error €, then Construction 6 has integrity error &/*!.
Table 9 shows the choice of ¢ to achieve integrity error €y
in Construction 6 for different database sizes N, where N

32

Database size N [bits]: 213 223 733

Integrity erroreq =2"% 3 4 7
Integrity erroreg =276 9 15

Table 9: Selection of the error correcting code parameter ¢ for differ-
ent database sizes and integrity errors.

indicates the number of single bit records in the database.

