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Abstract. This paper introduces protocols for authenticated

private information retrieval. These schemes enable a client to

fetch a record from a remote database server such that (a) the

server does not learn which record the client reads, and (b) the

client either obtains the “authentic” record or detects server

misbehavior and safely aborts. Both properties are crucial

for many applications. Standard private-information-retrieval

schemes either do not ensure this form of output authenticity,

or they require multiple database replicas with an honest ma-

jority. In contrast, we offer multi-server schemes that protect

security as long as at least one server is honest. Moreover,

if the client can obtain a short digest of the database out of

band, then our schemes require only a single server. Perform-

ing an authenticated private PGP-public-key lookup on an

OpenPGP key server’s database of 3.5 million keys (3 GiB),

using two non-colluding servers, takes under 1.2 core-seconds

of computation, essentially matching the time taken by unau-

thenticated private information retrieval. Our authenticated

single-server schemes are 30-100× more costly than state-

of-the-art unauthenticated single-server schemes, though they

achieve incomparably stronger integrity properties.

1 Introduction

Private information retrieval (PIR) [31] enables a client to

fetch a record from a database while hiding from the database

server(s) which specific record(s) the client retrieves. PIR

has numerous privacy-protection uses, such as in metadata-

private messaging [5, 6], certificate transparency [63, 83],

video streaming [51], password-breach alerting [4, 60, 87],

retrieval of security updates [24], public-key directories [64],

and private SQL-like queries on public data [74, 92].

Most PIR protocols, however, do not ensure data authentic-

ity in the presence of malicious servers. In many multi-server

PIR schemes [18, 31], a single adversarial server can flip any

subset of bits in the client’s recovered output. In all single-

server PIR schemes we know of (c.f., [1, 4, 5, 19, 22, 32, 37,

46, 52, 57, 62, 66, 71, 76, 78] for a non-exhaustive list), a

malicious server can choose the exact output that the client

will receive by substituting all the database records with a

chosen record before processing the client’s request. In appli-

cations where data integrity matters, such as a PGP public-key

directory, unauthenticated PIR is inadequate.

This is the full version of a paper with the same title appearing at USENIX

Security 2023.

This paper introduces authenticated private information

retrieval, which augments the standard privacy properties of

classic PIR with strong authenticity guarantees. In the multi-

server setting, we propose authenticated-PIR schemes for:

• Point queries, in which a client wants to fetch a particular

database record. For example, “What is the public key for

user@usenix.org?”

• Predicate queries, where a client wants to apply an aggre-

gation operator – such as COUNT, SUM, or AVG – to all records

matching a predicate. For example, “How many keys are

registered for email addresses ending in @usenix.org?”

Our corresponding authenticated-PIR schemes guarantee

integrity in the anytrust model [94]: as long as at least one of

the PIR servers is honest. In contrast, prior work that deals

with malicious or faulty PIR servers in the multi-server set-

ting either requires a majority or supermajority of servers

to be honest [11, 12, 39, 49] or requires expensive public-

key cryptography operations [98]. Our schemes use only fast

symmetric-key cryptography in the multi-server setting.

In the single-server setting, we offer authenticated-PIR

schemes for point queries which provide authentication as

long as the client can obtain a short digest of the database via

out-of-band means (Fig. 1). Prior work for the single-server

setting [57, 93, 99] ensures only that the server truthfully

answers the query with respect to some database—not nec-

essarily the database the client queried. Table 2 summarizes

prior work and Section 8 gives the complete discussion.

New definitions. Our first contribution is a new definition of

integrity for private information retrieval. In our multi-server

PIR schemes, a client communicates with several database

servers, and client privacy holds as long as at least one server

is honest. In this multi-server setting, we say that a PIR

scheme satisfies integrity if, whenever the client accepts the

servers’ answers, the client’s output is consistent with an hon-

est server’s view of the database.

Defining integrity in the single-server setting is more tricky:

If the single database server is malicious, who is to say what

the “right” database is? Our approach assumes that the client

can obtain a short digest of the database via some out-of-band

means. A single-server PIR protocol satisfies integrity if the

client accepts the protocol’s output only if the output is consis-

tent with the database that the digest represents. In some appli-

cations of PIR, the client could obtain this database digest via

a gossip mechanism, as in CONIKS [65], or from a collective
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client computation: more efficient single-server, multi-bit au-

thenticated PIR remains a promising area for future work.

Over a database of size N and with security parameter λ, our

single-server authenticated-PIR schemes have communica-

tion cost
√

N ·poly(λ). In contrast, unauthenticated schemes

have communication cost as low as logN ·poly(λ). Our fastest

single-server scheme is 30-100× more computationally ex-

pensive than the fastest unauthenticated scheme.

An example application. To evaluate authenticated PIR in the

context of a practical application, we design and build Keyd,

a privacy-preserving PGP public-key directory deployed in

the two-server setting. A Keyd client can query the servers

for the PGP public key corresponding to a particular email ad-

dress without leaking the queried email address to the servers.

Moreover, a Keyd client can also query the servers for private

analysis of the PGP public keys dataset by issuing conjunctive

COUNT, SUM and AVG queries without leaking the parameter of

the keys over which the predicate is computed. For exam-

ple, a client can issue a query of the form SELECT COUNT(*)

FROM keys WHERE keyAlgorithm = p, where p represents

the hidden parameter of the predicate, e.g., RSA or ElGa-

mal. Our new authenticated-PIR schemes provide the client

with a strong integrity guarantee about the output of the pro-

tocols. When run on a recent dump of the SKS PGP key

directory, including over 3.5 million keys, querying for a par-

ticular key takes the client 1.11 seconds, compared with 1.10

seconds with unauthenticated PIR. Issuing predicate queries

with Keyd on the same database imposes an overhead of

1.01× on user time and of 1.05× on bandwidth compared

with unauthenticated PIR.

2 Background and motivation

This section reviews classic PIR schemes, and why naïvely

introducing integrity protection into them is unsafe.

2.1 Private information retrieval (PIR)

A PIR protocol [31] takes place between a client and one or

more servers. Each server holds a copy of a database consist-

ing of a set of equal-length records. The client wants to query

the database without revealing the details of its query to the

servers. Modern PIR protocols support two types of queries:

(1) the client can fetch a single record from the database, with-

out revealing which record it retrieved, or more generally, (2)

the client can evaluate a function on all the database records,

without revealing which function it evaluated. Non-trivial PIR

schemes must also be communication efficient, requiring the

client and servers to exchange a number of bits sublinear in the

database size. Otherwise, the client could simply download

the entire database and perform the query locally.

There are two main types of PIR protocols: multi-server

and single-server. In multi-server PIR [31], the client com-
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Multi-server schemes

Robust PIR [11, 12] 1 ✗ ✗ ✓ ✓

Byzantine PIR [11, 12, 39, 49, 56] >2k/3 ✓ ✓ ✓ ✓

Fault-tolerant PIR [96] >k/2 ✓ ✓ ✓ ✓

Verifiable PIR [98] 1 ✓ ✓ ✗ ✗

Authenticated PIR (§4, §5) 1 ✓ ✓ ✓ ✗

Single-server schemes

KO97 [57] 0 ✓ ✗ ✗ ✗

Verifiable PIR [93, 99] 0 ✓ ✗ ✗ ✗

Authenticated PIR (§5) 0 ✓ ✓ ✗ ✗

Table 2: Summary of PIR schemes that tolerate dishonest servers.

The multi-server schemes assume k servers in total. Malicious indi-

cates schemes that resist malicious adversaries, as opposed to merely

faulty servers. Selective-failure secure indicates schemes designed

to resist selective-failure attacks [55]. No public-key cryptography

indicates schemes that require only fast symmetric primitives; single-

server schemes always require public-key operations [34]. Recovery

indicates whether, in case of a server’s misbehaviour, the client is

able to recover the correct output or just aborts.

municates with k > 1 database replicas; correctness holds

if all k servers are honest and privacy holds if at least one

server is honest. Multi-server PIR schemes traditionally offer

information-theoretic privacy. In single-server PIR schemes

(k = 1) [57], correctness holds if the single server is honest

and privacy holds against a dishonest server. Single-server

PIR schemes require a computationally-bounded server and

public-key cryptographic operations [34].

In many applications, the database is a list of

(keyword,value) pairs; the PIR client holds a keyword

and wants the associated value. In this paper, we construct

authenticated PIR schemes for integer-indexed arrays, and we

use off-the-shelf methods [29, 48] to convert these schemes

into authenticated keyword-based PIR schemes.

2.2 Why integrity matters in PIR

Standard PIR schemes give the client no integrity guarantees.

If any one of the servers in a single- or multi-server scheme

deviates from the protocol, the malicious server can—in many

PIR protocols—completely control the output that the client

receives. In other words, classic PIR protocols do not ensure

correctness against even just one malicious server.

This lack of integrity protection is extremely problematic

in many applications of PIR:

• Public-key server: If a client uses PIR to query a PGP or

Signal key server for a contact’s public keys, a malicious

server could cause the client to fetch a false public key

for which the adversary controls the secret key.
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• Domain name system: If a client uses PIR to query a

DNS resolver, a malicious PIR server could cause the

client to recover the wrong IP address for a hostname

and thus poison the client’s DNS cache.

• Online certificate status protocol (OCSP): If a client

uses PIR to query the revocation status of a public key, a

malicious PIR server could trick the client into trusting a

certificate that was revoked by the CA after compromise.

• Content library: If a client uses PIR to fetch a movie [51]

or a software update, a malicious PIR server could cause

the client to recover a malware-infected file instead.

Non-private variants of these applications can already offer

integrity. For example, CONIKS [65] provides integrity of key

bindings for public-key directory servers and DNSSEC [7]

ensures integrity of DNS data. The challenge is thus to ensure

integrity in the private variants of these applications.

2.3 Selective failure and other attacks on PIR

We can always compose standard authentication mechanisms

with PIR. For example, a database owner – the party respon-

sible for its creation – can append to each database row a

digital signature on the record under the database owner’s key

or a Merkle inclusion proof with respect to a known root. The

database owner can then outsource the authenticated database

to an untrusted PIR server. After performing a query, the client

simply checks the authentication tag on the row it retrieved.

This attempt at authenticated PIR is insecure and vulner-

able to selective-failure attacks [55]. In such attacks, a ma-

licious PIR server selectively corrupts the database so that

only targeted queries fail the integrity check. Suppose a mali-

cious PIR server “guesses” that the client is likely to access a

particular record, and corrupts only that record. The client’s

integrity check then fails only if the attacker’s guess was cor-

rect. If the attacker can determine whether the client accepted

or rejected the PIR protocol’s output—e.g., via the client’s

subsequent behavior—the attacker can violate client privacy.

Naïve composition can yield other security and privacy haz-

ards. For example, if authentication tags attached to database

rows do not uniquely identify the database version and row

number, then a malicious PIR server might undetectably swap

or duplicate rows or replay old database versions.

Even in a multi-server setting where one malicious server

cannot unilaterally corrupt database rows independently, but

is limited to blindly flipping bits in its answer without know-

ing which row these bit-flips will affect, more subtle attacks

on naïve compositions may be readily feasible. If rows are

protected by malleable digital signatures [40], for example,

then a malicious server might flip signature bits in the result

so that the signature of a particular “guessed” database row

becomes a different still-valid signature the client will accept,

while the signatures on all other rows become invalid.

3 Defining authenticated PIR

We now define authenticated PIR in the multi- and single-

server settings. In both models, we wish to ensure that the

client either obtains “correct” (authentic) output, or else safely

rejects the answer without leaking any private information.

Privacy must hold even if the PIR servers learn whether the

client has accepted or rejected the answer. Therefore, our pro-

tocols protect against selective-failure attacks (Section 2.3).

Notation. We use N to denote the set of natural numbers. For

N ∈N, [N] = {1, . . . ,N}. We use negl(·) to denote a negligible

function and poly(·) to denote a fixed polynomial. Through-

out, we use F to denote a finite field. We will typically take F

to be the set of integers modulo a prime p with addition and

multiplication modulo p. For a finite set S, we write x←R S

to indicate that x is sampled independently and uniformly at

random from S. The symbol ⊥ is an output that indicates

rejections. For a group G, we use 1G to denote the identity

element. For finite sets S and T , we use Funs[S,T ] to denote

the set of all functions from S to T . By “efficient algorithm”

we refer to a probabilistic polynomial time algorithm. In some

settings, we will also consider hardness against non-uniform

adversaries (i.e., polynomial-time algorithms that can addi-

tionally take polynomial-size advice as input, see Remark 37).

3.1 Multi-server definition

We now define k-server authenticated PIR schemes, for k ≥ 2.

See Appendix B for the full formalism.

Our definition generalizes private information retrieval to

weighted functions of the database rows: the client has a secret

function f in mind, which must come from a particular class

of functions F . The servers hold a database (x1, . . . ,xN) and

public “weights” (w1, . . . ,wN), one per database row. The

client’s goal is to get the weighted sum of its private function

f applied to each of the rows: ∑i∈[N] wi f (i,xi). When the

function class F is expressive enough, this general syntax

subsumes not only the usual definition of multi-server PIR,

but also more expressive PIR schemes for predicate queries.

Definition 1 (k-server authenticated PIR for predicate

queries). A k-server authenticated PIR scheme for function

class F ⊆ Funs[[N]×{0,1}ℓ,F], database size N ∈ N, and

weights w ∈ F
N , consists of three efficient algorithms:

• Query(1λ, f )→ (st,q1, . . . ,qk). Given a security param-

eter λ, expressed in unary, and a function f ∈ F , return

secret client state st and queries q1, . . . ,qk, one per server.

• Answer(X,w,q) → a. Apply query q to database X =
(x1, . . . ,xN) ∈ ({0,1}ℓ)N together with weights w =
(w1, . . . ,wN) ∈ F

N and return answer a.

• Reconstruct(st,a1, . . . ,ak)→
{

∑i∈[N] wi f (i,xi),⊥
}

. Take

as input client state st and answers a1, . . . ,ak and return
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the weighted output of the function f applied to the rows

of database X, or an error ⊥.

A k-server authenticated-PIR protocol must satisfy the fol-

lowing properties. We state the properties here informally and

give formal cryptographic definitions in Appendix B.

Correctness. Informally, an authenticated-PIR scheme is cor-

rect if, when an honest client interacts with honest servers,

the client always recovers the weighted output of its chosen

function applied to the database, i.e., ∑i∈[N] wi f (i,xi).
Integrity. An authenticated-PIR scheme preserves integrity

with error ε if, when an honest client interacts with a set of k

servers, where at most k−1 can be malicious and might arbi-

trarily deviate from the protocol, the client either: outputs the

sum of products of its desired function and weights applied

to the database, or outputs the error symbol ⊥, except with

probability ε. If the scheme has negligible integrity error, we

just say that it “preserves integrity.” Classic PIR schemes do

not ensure this integrity property.

Privacy (against malicious servers). An authenticated-PIR

scheme satisfies privacy if any coalition of up to k−1 ma-

licious servers “learns nothing”—in a strong cryptographic

sense—about which function in the function class F the

client wants to evaluate on the database, even if the servers

learn whether the client’s output was the error symbol ⊥
during reconstruction. Standard PIR schemes do not neces-

sarily satisfy our strong notion of privacy, since such schemes

may be vulnerable to selective-failure attacks (Section 2.3);

authenticated-PIR schemes that provide privacy are not.

We say that an authenticated-PIR scheme is secure if it

satisfies both integrity and privacy. We define integrity and

privacy separately because, as Section 3.3 shows, we can re-

duce the integrity error of a PIR scheme that provides privacy.

Example 2 (PIR for point queries—Standard PIR). In

authenticated-PIR schemes for point queries, as in a standard

PIR scheme, a client privately fetches a single database row.

We can recover this functionality from Definition 1, where

we take the row length ℓ= 1 for simplicity. The class of func-

tions F is the class of point functions F = { f (1), . . . , f (N)} ⊆
Funs[[N]×{0,1},F], where f (i)(i, ·) = 1 and f (i)(i′, ·) = 0

for all i′ 6= i. The weights are the database entries themselves,

i.e., wi = xi ∈ {0,1} ⊆ F, for i ∈ [N].

Example 3 (COUNT query). A COUNT predicate query

counts the database entries satisfying a predicate. A client

can count the occurrences of a string σ ∈ {0,1}ℓ in a

database x1, . . . ,xN ∈ {0,1}ℓ using the class of functions

F ⊆ Funs[[N]×{0,1}ℓ,F], where f (·,xi) = 1 if xi = σ and

f (·,xi) = 0 otherwise, with constant weights wi = 1F, i ∈ [N].

Remark 4 (Security against k− 1 malicious servers). The

form of authenticated PIR we define above requires security

to hold even against coalitions of up to k−1 malicious servers.

This defines the minimal requirement for multi-server PIR

schemes, which do not support complete collusion, and is

a model frequently used in anonymous communication sys-

tems [6, 58, 94]. In particular, the colluding servers can share

their queries with each other and agree on the answers. The

protocols that we construct satisfy this strong notion of se-

curity. A weaker definition requires security to hold against

only adversaries that control a lower threshold t < k− 1 of

the servers. Prior work [11, 12, 49] takes t < k/2 or t < k/3.

We discuss these and other related approaches in Section 8.

3.2 Single-server definition

This section defines single-server authenticated PIR. One

challenge to providing integrity in the single-server setting is

that the client has no source of information about the database

content other than the server itself. (In the multi-server setting,

the honest server acts as a source of “ground truth.”) A mali-

cious server can answer the client’s query with respect to a

database of the server’s choosing, and completely control the

client’s output. We address this problem by introducing a pub-

lic database digest that cryptographically binds the server to

a given database and serves as the ground truth in the scheme.

In applications, the client must obtain this digest via out-of-

band means, e.g., via gossip, as in CONIKS [65], or from the

database owner if the latter is distinct from the PIR server.

We now give the formal definition of a single-server

authenticated-PIR scheme, which differs from the multi-

server definition in its use of a digest and in the absence of

complex queries. We assume for simplicity that each database

record consists of a single bit. The definition generalizes nat-

urally to databases with longer rows.

Definition 5 (Single-server authenticated PIR for point

queries). A single-server authenticated PIR scheme, for a

database of size N ∈ N, consists of the following algorithms:

• Digest(1λ,x)→ d. Take a security parameter λ (in unary)

and a database x ∈ {0,1}N and return a digest d.

• Query(d, i)→ (st,q). Take as input a digest d and an index

i ∈ [N] and return a client state st and a query q.

• Answer(d,x,q) → a. Apply query q to database x ∈
{0,1}N with digest d and return answer a.

• Reconstruct(st,a)→{0,1,⊥}. Take as input state st and

answer a and return a database bit or an error ⊥.

A single-server authenticated-PIR scheme must satisfy

analogous properties to those in the multi-server setting: cor-

rectness, integrity and privacy. If a scheme satisfies both in-

tegrity and privacy, we say that the scheme is secure. We

present the formal definitions in Appendix E.

Malformed digest. Our schemes guarantee integrity for

single-server authenticated PIR only when the client uses an

honestly-generated digest. In all applications of single-server

PIR that we envision, this security guarantee is sufficient—

the client’s goal is to check that a (possibly malicious) PIR
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server’s answer is consistent with the (correct) digest that the

client has obtained out-of-band from the data owner. Stronger

notions of security are possible, however. We could require

that even if the digest is generated adversarially, the client

is guaranteed to recover output that is consistent with some

n-bit database. This stronger notion is related to that of simu-

latable adaptive oblivious transfer [23] and extends to other

cryptographic primitives [45, 54].

3.3 Integrity amplification

The lattice-based single-server authenticated-PIR schemes

that we construct in Section 5 have noticeable integrity er-

ror ε = 1/poly(λ) for some parameter settings. We show, in

Appendix E.2, that if the authenticated-PIR schemes provide

privacy, then it is possible to reduce the integrity error to a neg-

ligible quantity, in both the multi- and single-server settings.

In particular, we prove:

Theorem 6 (Integrity amplification, informal). If Π is an

authenticated-PIR scheme with privacy and with integrity

error ε then, for every t ∈ N, there is an authenticated-PIR

scheme Π′ with privacy and with integrity error εt+1, where

Π′ invokes Π at most 2t +1 times.

The integrity-amplification construction first encodes the

database using an error-correcting code that can correct t

errors. For instance, using the simple repetition code, we ex-

pand each database bit into 2t +1 codeword bits. (When the

database records are long, we can use better error-correcting

codes.) Then, the client uses the base authenticated PIR

scheme Π 2t + 1 times to fetch each of the 2t + 1 bits of

the codeword corresponding to its desired database record.

If any of these 2t +1 runs output ⊥, the client outputs ⊥.

If none of the 2t +1 runs output ⊥, then either: (a) the client

recovers at least t +1 correct bits of the codeword, in which

case the client correctly recovers its desired output bit, or

(b) the client recovers an incorrect bit on more than t of the

protocol runs, which happens with probability at most εt+1,

by the ε-integrity of the underlying PIR scheme.

4 Multi-server authenticated PIR

We give two constructions of multi-server authenticated PIR.

4.1 Point queries via Merkle trees

We first present a multi-server authenticated-PIR scheme for

point queries. This scheme enables a client with a secret index

i ∈ [N] to retrieve the ith record from a database of N records.

A natural way to construct an authenticated-PIR scheme

is to combine a standard (unauthenticated) multi-server PIR

scheme with a standard integrity-protection mechanism, such

as Merkle trees [67]. While this composition is in general

insecure under our definition, we show that it can be secure

with a careful choice of the underlying primitives.

We sketch the construction here and formally present it

in Appendix C (Construction 4). This construction uses a

standard multi-server PIR scheme in which (a) the client

sends a single message to each server and receives a single

message in return and (b) client reconstructs its output by

summing up (or XORing) the answers from the servers. Many

standard PIR schemes have this form [18, 31, 32, 48] (see

Definition 15).

In these schemes, if any of the servers deviate from the pre-

scribed protocol, the worst they can do is to cause the client

to recover the correct output shifted by a constant of the ad-

versarial servers’ choosing. Therefore, instead of recovering

the message m ∈ {0,1}ℓ, the client recovers m⊕∆, for some

non-zero value ∆ ∈ {0,1}ℓ.
Our approach then is to have the servers compute a Merkle

tree over the N database entries along with their indices:

{(1,x1), . . . ,(N,xN)}. Call the root of the tree R. Then for

each entry, each server constructs a Merkle proof πi of inclu-

sion in the tree rooted at R and attaches this proof to each

database record. The asymptotic complexity of this prepro-

cessing phase is O(N); we discuss concrete costs in Section 7

and Appendix C.2. Finally, the client and servers run the PIR

protocol over the database {(1,x1,π1), . . . ,(N,xN ,πN)}. Each

of the servers also sends the Merkle root R to the client.

The client first checks that it received the same Merkle root

R from all of the servers. Since at least one of the servers is

honest, this ensures the client receives the honestly-generated

root. If all the roots match, the client reconstructs the record

and verifies the Merkle inclusion proof with respect to R.

If a server misbehaves, the client will recover (i′,x′i,π
′
i) =

(i,xi,πi)⊕∆ for some non-zero offset ∆. Whenever ∆ 6= 0,

security of the Merkle proof ensures that π′i will be an invalid

proof of (i,xi) with respect to R.

4.2 Predicate queries via function sharing

Recent work on function secret sharing [17, 18] in the multi-

server PIR setting enables a client to compute a non-trivial

function f over the database contents, without revealing this

function f to the servers. For example, a client can count the

number of database records that match a certain predicate,

without revealing this predicate to the servers.

We design an authenticated-PIR protocol for predicate

queries by extending classic PIR schemes based on func-

tion secret sharing [17, 18]. At a high level, the client makes

two correlated PIR queries. The reconstructed answer to the

first query should contain the value v that the client wants.

The reconstructed answer to the second query should contain

v′ = αv, where α is a random scalar known only to the client.

To authenticate the servers’ answers, the client checks that

αv = v′ and rejects if not. As we will show, if any server mis-

behaves, the client will be checking that α(v+∆) = v′+∆′,
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for some non-zero ∆ and ∆′. Sampling α from a sufficiently

large space of values ensures that the client catches a cheating

server almost certainly.

This idea of using secret-shared random values for data

authentication follows a long line of work on information-

theoretic message authentication codes and malicious-secure

multiparty computation [16, 33, 35, 38].

We now describe our construction in detail.

Preliminaries: Function secret sharing. We recall the defi-

nition of function secret sharing [17, 18]: A k-party function

secret-sharing scheme is defined with respect to a function

class F . Each function f ∈ F maps elements in some input

space to a finite group or field F. Then a function secret-

sharing scheme consists of two efficient algorithms:

• Gen(1λ, f )→ ( f1, . . . , fk). Given a function f ∈ F , output

k function-secret-shares f1, . . . , fk.

• Eval( fi,x)→ fi(x) ∈ F. Given a secret-share fi and a func-

tion input x, output the evaluation of fi on x.

A function secret-sharing scheme must satisfy the following

informal properties, defined formally in Appendix A.3:

• Correctness. Given shares ( f1, . . . , fk) of a function f ∈F ,

for all x in the domain of f , it holds that ∑i∈[k]Eval( fi,x) =
f (x) ∈ F.

• Security. Given shares ( f1, . . . , fk) of a function f ∈ F , a

computationally-bounded adversary that learns k−1 of the

shares learns nothing about the shared function f , beyond

the fact that f ∈ F .

For the construction, we need the following definition:

Definition 7 (Function class closed under scalar multiplica-

tion). Let F be a class of functions whose codomain is a

finite field F. Then we say that the function class F is closed

under scalar multiplication if, for all functions f ∈ F and for

all scalars α ∈ F, it holds that the function α · f ∈ F.

Construction. Our scheme, presented in Construction 1, is

defined with respect to a finite field F, a record length ℓ ∈ N,

a database size N ∈ N, a function class F ⊆ Funs[[N]×
{0,1}ℓ,F] closed under scalar multiplication, and weights

w ∈ F
N . The k ≥ 2 servers each hold a copy of a database

of N ℓ-bit records. We write the n database records as

x1, . . . ,xN ∈ {0,1}ℓ. Given a predicate function f ∈ F , the

client samples a random non-zero field element α ∈ F and

secret-shares f together with a new function g defined as

g(i,xi) = α · f (i,xi) ∈ F into k shares, i.e., f j and g j for j ∈
[k]. (Alternatively, if the underlying function-secret-sharing

scheme supports it, the client can also secret share the single

function ( f (i,xi),g(i,xi)) whose image is in F
2.)

Upon receiving the shares, each server j ∈ [k]
sets each element of its answer tuple to the sum of

the function shares’ evaluations on all the database

Construction 1 (k-server authenticated PIR for predi-

cate queries tolerating k− 1 malicious servers). The

construction is parametrized by a number of servers

k ∈ N, a number of database rows N ∈ N, a row length

ℓ ∈ N, a finite field F, a security parameter λ, a func-

tion class F ⊆ Funs[[N]×{0,1}ℓ,F] that is closed un-

der scalar multiplication, and a function-secret-sharing

scheme (FSS.Gen,FSS.Eval) for the function class F ,

parametrized by λ. We represent the database as N binary

strings, each of length ℓ: x1, . . . ,xN ∈ {0,1}ℓ.
Query

(

1λ, f
)

→ (st,q1, . . . ,qk)

1. Sample a random field element α←R F\{0}.
2. Set the state st← α.

3. Let g← α · f . Such a g must exist since the function

class F is closed under scalar multiplication, as in

Definition 7.

4. Compute q1, . . . ,qk← FSS.Gen(1λ, f ) together with

q′1, . . . ,q
′
k← FSS.Gen(1λ,g).

5. Output
(

st,(q1,q
′
1), . . . ,(qk,q

′
k)
)

.

Answer
(

x1, . . . ,xN ∈ {0,1}ℓ,w ∈ F
N ,q
)

→ a ∈ F
2

1. Parse q as (q f ,qg).

2. Compute answer as a f ←∑ j∈[N] w j ·FSS.Eval(q f ,x j)
and ag← ∑ j∈[N] w j ·FSS.Eval(qg,x j).

3. Return a← (a f ,ag) ∈ F
2.

Reconstruct
(

st,a1, . . . ,ak ∈ F
2
)

→ F∪{⊥}
1. Parse the state st as α ∈ F.

2. Compute a← a1 + · · ·+ak ∈ F
2.

3. Parse a as (m,τ) ∈ F
2.

4. Compute τ′← m ·α ∈ F.

5. If τ = τ′, output m ∈ F. Otherwise, output ⊥.

records multiplied by the corresponding weights: i.e.,

a j←
(

∑i∈[N] wi · f (i,xi),∑i∈[N] wi ·g(i,xi)
)

∈ F
2. The

servers directly evaluate the function shares on the database

records. The client adds the answer vectors and reconstructs

an intermediate value a← ∑ j∈[k] a j ∈ F
2.

If all the servers are honest, the client-

reconstructed value a equals a = (a1,a2) =
(

∑i∈[N] wi · f (i,xi),α ·∑i∈[N] wi · f (i,xi)
)

. The client then

verifies that α · a1 = a2. As α is randomly generated and

secret-shared among the servers, only the client knows its

value. If α · a1 6= a2, then the client rejects. Otherwise, the

client accepts and outputs a1.

Proof sketch. To explain how this approach protects in-

tegrity, we argue by contradiction. Say that server j ∈ [k]
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should have returned an answer a j ∈ F
2 to the client. Sup-

pose server j is malicious and returns an answer â j =
a j + ∆ ∈ F

2 for some non-zero value ∆ = (∆m,∆τ) ∈
F

2. The client will reconstruct the answer as a + ∆ =
(

∑i∈[N] wi · f (i,xi)+∆m,α ·∑i∈[N] wi · f (i,xi)+∆τ

)

∈ F
2. As

server j has no information about α—due to the privacy guar-

antees of the function-secret-sharing scheme—the malicious

server’s choice of ∆ is (computationally) independent of α.

For the verification to pass, it must be that α ·∆m = ∆τ. If

∆ 6= 0 and α is sampled independent of ∆, this happens with

probability at most 1/(|F| − 1) over the randomness of α.

Next, the privacy of the client’s queries is ensured by the un-

derlying function secret-sharing scheme. In Appendix D.1,

we formally prove that this construction is secure.

Theorem 8. Suppose there exists a k-party function-secret-

sharing scheme for a function class F ⊆ Funs[[N] ×
{0,1}ℓ,F] that is closed under scalar multiplication (Defini-

tion 7), for database size N ∈N, which, on security parameter

λ ∈ N, outputs secret shares of length L(λ). Then, there is a

k-server authenticated-PIR scheme for function class F with

query complexity 2L(λ)k bits and answer complexity 2kλ bits.

By applying the two-party function-secret-sharing scheme

of Boyle, Gilboa, and Ishai [18], we get:

Corollary 9. Given a length-doubling pseudorandom genera-

tor with seed length λ, there is a two-server authenticated PIR

scheme for point functions and interval functions with com-

munication complexity O(λ logN), on security parameter λ
and database size N.

Handling functions with larger output. In some PIR ap-

plications, a client might want to evaluate a function whose

output is larger than a single field element, e.g., geographi-

cal coordinates for route planners [92]. We hence extend our

scheme to support multi-element authenticated output.

Here, we authenticate each output element of a function

f with a separate function g j, for j ∈ [b], where b is the

output length of f using an algebraic manipulation detec-

tion code [33]. In the query algorithm, the client gener-

ates a secret random scalar α as before but then computes

(g1(i,xi),g2(i,xi), . . . ,gb(i,xi)) = (α,α2, . . . ,αb) ⊙ f (i,xi),
where ⊙ represents the element-wise product, and sends

secret-shared f and g1, . . . ,gb to the servers. The servers then

compute their answer as a← (a f ,ag1
, . . . ,agb

) ∈ F
2b.

This already enables the client to validate integrity of

the full output after the reconstruction by comparing it with

ag1
, . . . ,agb

. We further reduce the protocol’s communication

cost by setting the servers’ answer to (a f ,ag = ∑i∈[b] agi
) ∈

F
b+1. The client re-computes this linear combination from

the answer and compares it with the received value.

We show the full construction in Appendix D.2.

5 Single-server authenticated PIR

We now present a single-server authenticated-PIR scheme.

As depicted in Fig. 1, in this setting a data owner outsources

the data to a single PIR server (e.g., an Amazon EC2 instance)

and produces a database digest. This public digest serves as a

commitment to the database contents. The client can fetch the

digest from a distributed authority, or using a CONIKS-like

gossip protocol [65], or out-of-band from the data owner.

It is possible in principle to construct single-server

authenticated-PIR schemes by augmenting a standard single-

server PIR scheme [5, 37, 52, 66, 71] with a succinct proof

of correct server execution [77], but this would be orders of

magnitude more costly in computation than our schemes are.

Preliminary: Rebalancing to get
√

N communication.

Our single-server authenticated-PIR schemes natively have

a digest of size poly(λ) bits, upload N · poly(λ) bits, and

download poly(λ) bits. To reduce total communication to√
N ·poly(λ) bits, we use a standard rebalancing trick [31].

The server first splits the database into
√

N chunks, each

of size
√

N. The digest then consists of the hash (with any

collision-resistant hash function, e.g., SHA-256) of the
√

N

database digests. To query the database for the ith row of

the jth chunk, the client issues a single query for row i. The

server responds with the
√

N chunk digests, and the answer

computed against each chunk. The client checks that (1) the

hash of the
√

N chunk digests match the database digest and

(2) all
√

N chunk queries accept. If these checks pass, the

client outputs the value of the jth response as its answer.

5.1 From learning with errors

Our first single-server authenticated-PIR scheme builds on

lattices and relies on the learning-with-errors assumption

(LWE) [82] (see Definition 43 for a formal statement). The

LWE assumption with parameters n,q,m,s∈N, states that the

two distributions (A,sTA+ eT) and (A,uT) are computation-

ally indistinguishable, where A←R Z
n×m
q , s←R Z

n
q, e←Dm

Z,s ∈
Z

m
q , and u←R Z

n
q, and where DZ,s is the discrete-Gaussian

distribution with width parameter s (cf. Appendix F.1).

Construction 2 describes our scheme, which is a twist

on Regev’s LWE-based encryption scheme [82] and is an

authenticated analogue of the SimplePIR LWE-based PIR

scheme [52]. (We compare against SimplePIR in Section 7.)

Regev’s scheme encrypts a vector v ∈ {0,1}N ⊆ Z
N
q by the

pair (A,sTA+ eT+ t ·vT), where A ∈ Z
n×N
q is the LWE ma-

trix, s←R Z
n
q is the LWE secret, e← DN

Z,s is the error vector,

and t ∈ Zq is some scaling factor (commonly set to q/2).

Regev’s scheme is linearly homomorphic: for any vector

x ∈ {0,1}N ⊆ Z
N
q , the ciphertext (Ax,(sTA+ eT+ t ·vT) ·x)

decrypts to vTx (provided the accumulated error eTx is small

compared to t).

In our scheme, the first portion of this ciphertext (A ·x, on
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database x ∈ {0,1}N ⊆ Z
N
q ) becomes the digest. Finding two

distinct databases that map to the same digest is as hard as

solving the short integer solutions problem [2].

To query for database record i ∈ [N], the client prepares the

Regev encryption qT of the ith basis vector ηi ∈ Z
N
q (i.e., ηi is

the vector that is 0 everywhere and 1 at index i). The scaling

factor t ∈Zq is sampled randomly (from an appropriate range),

which is critical for the security analysis. To answer the query,

the server homomorphically computes the encryption of the

inner product of the client’s query with the database: qTx ∈
Zq. The client checks that the decrypted value is either 0

(indicating a database bit of zero) or close to t (indicating a

database bit of one). Otherwise, the client outputs ⊥.

Finally, by rebalancing Construction 2, we have:

Theorem 10. Under the LWE assumption, Construction 2

is a secure single-server authenticated-PIR scheme when

instantiated with database size N, lattice parameters (n,q,s),
random matrix A←R Z

n×N
q , and bound B = O(

√
λNs). The

digest size consists of n
√

N elements of Zq and the per-query

communication cost is 2
√

N elements of Zq. The scheme has

integrity error ε < 2B/(q−4B).

The most important difference between SimplePIR [52]

and Construction 2 is in the choice of LWE parameters. Since

the integrity error is roughly
√

N/q, on database size N and

modulus q, we must take the modulus q to be at least 128 bits

to achieve negligible integrity error. (Alternatively, we can

use a smaller modulus and run the protocol many times to

amplify integrity as per Section 3.3.) In contrast, SimplePIR

uses a 32-bit modulus with no repetition.

5.2 From decisional Diffie-Hellman

This second construction uses the decisional Diffie-Hellman

assumption (DDH). DDH holds in a group G of prime order p

generated by g ∈G, if for x,y,z←R Zp, the two distributions

(g,gx,gy,gxy) and (g,gx,gy,gz) are computationally indistin-

guishable (see Appendix G.1 for a formal definition).

Construction 3 details our scheme, which uses a group

G of large prime order p. The database is a vector of N

bits x = (x1, . . . ,xN) ∈ {0,1}N . The public parameters of the

scheme include group elements h1, . . . ,hN ∈G. The digest is

the product d←∏N
j=1 h

x j

j ∈G. Finding two distinct databases

that map to the same digest is as hard as solving the discrete-

log problem in G [79].

The protocol operates as follows. The client samples two

random values r, t ←R Zp. The client then prepares a vector

of N group elements. Say the client wants to fetch the ith

database bit. For j ∈ [N], the jth component of this vector is

q j← hr+t
j if j = i and is q j← hr

j otherwise. Under DDH, the

server cannot differentiate between qi and q j for j 6= i.

The client queries the server with the resulting blinded vec-

tor (q1, . . . ,qN). The server exponentiates each vector element

Construction 2 (Single-server authenticated PIR from

LWE). The construction is parametrized by a database

length N ∈N, a lattice dimension n∈N, a modulus q∈N,

a Gaussian width parameter s ∈N, a bound B ∈N, and a

matrix A ∈ Z
n×N
q . The database is a vector x ∈ {0,1}N .

Digest(x ∈ {0,1}N)→ d ∈ Z
n
q

1. Output d← Ax ∈ Z
n
q.

Query
(

d ∈ Z
N
q , i ∈ [N]

)

→ (st,q)

1. Sample s←R Z
n
q, e←DN

Z,s ∈Zm
q , and t←R

[

2B,q−2B
]

.

(Here DZ,s denotes the discrete Gaussian distribution

over Z with parameter s, as in Appendix F.1.)

2. Compute qT← sTA+eT+t ·ηT
i ∈Zm

q , where ηi ∈ZN
q

denotes the ith standard basis vector (i.e., the vector

that is 0 everywhere except 1 in index i).

3. Set st← (d,s, t) and output (st,q).

Answer
(

d ∈ Z
n
q,x ∈ {0,1}N ⊆ Z

N
q ,q ∈ Z

N
q

)

→ a ∈ Zq

1. Output a← qTx ∈ Zq

Reconstruct(st,a)→{0,1,⊥}
1. Parse the state st as (d,s, t).

2. If there exists k ∈ {0,1} such that |a− sTd− kt|< B,

then output k. Otherwise, output ⊥.

to the corresponding database bit and computes the product

a = ∏ j∈[N] q
x j

j . If the server honestly executes the protocol,

the client receives back the product of the blinded digest dr

and (a) either the group identity (when the retrieved bit is

zero) or (b) the blinding factor ht associated with the element

of interest (when the retrieved bit is one). If the server returns

any answer apart from the one prescribed by the protocol, the

client detects this and rejects with overwhelming probability.

We then have, by rebalancing Construction 3:

Theorem 11. If the DDH assumption holds in group G, then

Construction 3 is a secure single-server authenticated-PIR

scheme when instantiated with database size N and group

G. The digest size consists in
√

N elements of G and the per-

query communication cost is 2
√

N elements of G. The scheme

has negligible integrity error.

The scheme could be extended to retrieve multi-bit database

entries in two readily-apparent ways. The first and simplest

approach is to run Construction 3 in parallel for each bit of

the entry. The second approach requires the client to solve

tractable discrete logarithms, as we describe in Appendix G.5.

Incremental digest maintenance. We envision that the data

owner would generate the database digest and publish it on

a client-accessible website or a tamper-resistant log. If a
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Construction 3 (Single-server authenticated PIR from

DDH). The construction is parametrized by a database

length N ∈ N, a group G of prime order p, and group

elements h1, . . . ,hN ∈ G. The database is a vector x ∈
{0,1}ℓ ⊆ Z

N
p .

Digest(x ∈ {0,1}N)→ d ∈G

1. Output d←∏ j∈[N] h
x j

j ∈G.

Query (d ∈G, i ∈ [N])→ (st,q)

1. Sample two random values r, t←R Zp.

2. For j ∈ [N]\{i}, compute q j← hr
j ∈G.

3. Compute qi← hr+t
i ∈G.

4. Set st← (i,d,r, t).

5. Set q← (q1, . . . ,qN) ∈G
N .

6. Output (st,q).

Answer
(

d ∈G,x ∈ {0,1}N ⊆ Z
N
p ,q
)

→ a ∈G

1. Parse the query q as (q1, . . . ,qN) ∈G
N .

2. Output a←∏ j∈[N] q
x j

j ∈G.

Reconstruct(st,a)→{0,1,⊥}
1. Parse the state st as (i,d,r, t).

2. Set m← d−r ·a ∈G.

3. If m = 1G, output “0.” If m = ht
i , output “1.”

Otherwise, output ⊥.

database record changes, the data owner can update the digest

in either construction incrementally. For example, in the lat-

tice based construction given an old digest d = Ax and a new

database x′, the new digest is d′= d+A(x′−x). Given the old

digest, the server can compute the new digest in time propor-

tional to the cost of computing A(x′−x). This matrix-vector

product, in turn, takes time linear in the number of updates

to the database, i.e., the Hamming weight of the difference

x′−x. If the database itself is public, any third party can ver-

ify that the new digest correctly incorporates these updates.

The DDH-based construction supports a similar style of in-

cremental updates. A frequently changing database, however,

requires a client to obtain a fresh and correct digest before

making each PIR query. One possible solution to this is to use

a public log and a timestamping service [85, 88].

6 Implementation

We implemented all of our authenticated-PIR schemes in

roughly 4k lines of Go and 45 lines of C. Our function-secret-

sharing implementations are based on the Function Secret

Sharing (FSS) Library [91]. Our Merkle-tree implementation

is based on the go-merkletree library [86]. We implemented

group operations in our single-server scheme from the DDH

assumption with the CIRCL library [44]. The single-server

scheme built on the LWE assumption uses a plaintext modulus

of 2128 and relies on the uint128 library [26].

We also implemented multi-server unauthenticated-PIR

schemes as baselines for comparison. The multi-server

unauthenticated-PIR scheme, also used in the authenticated-

PIR scheme for point queries, is over the binary field and

uses fastxor [25]. We use the original implementation of

SimplePIR [52] as our single-server PIR baseline.

Our implementation is available under open-source license

at https://github.com/dedis/apir-code.

6.1 Privacy-preserving key directory

To evaluate the practicality of authenticated PIR, we built

Keyd, a PGP public-key directory service that offers (1) clas-

sic key look-ups and (2) computation of statistics over keys.

A key-directory service maps human-memorable identifiers,

such as email addresses, to cryptographic identities (public

keys). Examples of such directories are the MIT PGP Public

Key Server [69], along with the public-key directories that

secure-messaging solutions, such as Signal, implicitly offer.

We implement Keyd in the two-server model, where the

security properties hold as long as at least one server is honest.

The Keyd key service provides the following properties:

• Privacy: The client reveals no information to the servers

about the content of its query.

• Integrity: The client is guaranteed to recover the correct

result for the issued query, i.e., the output of the protocol

is consistent with the honest server’s view.

Prior key-server designs ensure only one of these two prop-

erties. It is possible to add privacy to a key server using

conventional PIR and issue private complex queries using

Splinter [92], or to add integrity as in CONIKS [65]. Prior to

authenticated PIR, we are unaware of any approach that simul-

taneously solves both problems in the presence of malicious

servers, without resorting to trusted hardware [64].

Keyd lays out public keys in the database using a hash table

that maps public keys into fixed-size buckets. To retrieve a

PGP public key, a client hashes the requested email to deter-

mine the corresponding bucket number, queries the servers

for the contents of the bucket, reconstructs and validates the

answers, and finally selects and outputs the key of interest.

To evaluate a predicate query, the client sends the query to

the servers, which apply it to the appropriate PGP key meta-

data. For example, to evaluate a COUNT query on the email

addresses, the client sends SELECT COUNT(*) FROM email

WHERE email = p, where p represents the query parameter

hidden through secret sharing. The AVG query is implemented

using a SUM and COUNT query. We use TLS to protect the

communication between client and servers.

Our Keyd serves a snapshot of SKS PGP key directory [89]

from 24 January 2021. We removed all public keys larger than
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8 KiB, a limit that we found excluded only keys with large

attachments, such as JPEG images. We also removed all keys

that had been revoked, keys in an invalid format, and keys

with no email address in their metadata. We kept only the

primary key of each public key. If multiple keys were linked

to the same email address, we kept only the most recent key.

If a key included multiple emails, we indexed this key using

the primary email. As a result, our Keyd serves a total of

3,557,164 unique PGP keys (≈3 GiB in total), which is more

than half of the keys in the original dump.

7 Experimental evaluation

We experimentally evaluate all of our authenticated-PIR

schemes and the Keyd public-key directory service.

Parameters. We instantiate our multi-server authenticated-

PIR scheme for predicate queries using F
4
p with p = 232−1,

yielding a security parameter of approximately 124 bits. This

approach is faster than using a full 128-bit field element, be-

cause of better-optimized libraries and CPU instructions for

operating on 32-bit values. The Merkle-based scheme for

point queries uses BLAKE3 as the hash function. The DDH-

based single-server scheme (§5.2) uses the P256 elliptic curve

as the group. We select the parameters for the LWE-based

schemes (§5.1) to ensure 128-bit of privacy according to cur-

rent estimate of concrete security against known attacks [3].

We present one scheme with integrity error 2−128, and an-

other one that uses integrity amplification (Section 3.3 and

Construction 6), with integrity error 2−64. The scheme with

integrity error 2−128 uses modulus q = 2128 and lattice dimen-

sion n = 4800; the scheme with integrity error 2−64 works

with q = 232 and n = 1100. For both implementations, the er-

ror distribution is the discrete Gaussian distribution with stan-

dard deviation σ= 6.4. Integrity amplification uses the simple

repetition code. We further discuss parameter selection for

the scheme based on integrity amplification in Appendix H.

Experimental methodology. We perform all the experiments

on machines equipped with two Intel Xeon E5-2680 v3

(Haswell) CPUs, each with 12 cores, 24 threads, and oper-

ating at 2.5 GHz. Each machine has 256 GB of RAM, and

runs Ubuntu 20.04 and Go 1.17.5. Machines are connected

with 10 Gigabit Ethernet. In the experiments for the multi-

server schemes and Keyd (Sections 7.1, 7.2 and 7.4), the client

and the servers run on separate machines. For single-server

schemes we use a single machine that runs both client and

server, as the single-server schemes are inherently sequential.

We always report the time elapsed from query computation to

record reconstruction as user time and the cumulative band-

width from and to the server(s) as bandwidth. We execute

all experiments 30 times and report the median result across

executions. We run all the experiments using a single core for

each physical machine. For consistency across experiments,

we always download the same public-key when evaluating
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Figure 3: The cost of retrieving a 1 KiB record using classic ("Unau-

thenticated") and authenticated PIR for point queries (§4.1) from

two servers. The Merkle proof attached to each record imposes the

bandwidth and user time overheads.
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Figure 4: The cost of retrieving a 1 KiB record using unauthenti-

cated and authenticated PIR for point queries (§4.1) from a variable

number of servers holding a database of 1 GiB.

Keyd. We have published our experimental code and results

in our source-code repository (see Section 6).

7.1 Multi-server point queries

Fig. 3 presents user time and bandwidth overhead for our

authenticated-PIR scheme for point queries, in comparison

with classic unauthenticated PIR. Both the user time and the

bandwidth overheads increase as the database size increases:

each database record must additionally include a O(λ logN)-
sized Merkle proof. We measure a maximum overhead of

2.9× for user time and of 1.8× for bandwidth.

Fig. 4 shows the impact of the number of servers on user

time and bandwidth. Since all the servers answer in parallel,

the user time increase is almost negligible. For authenticated

PIR, the increase is due to Merkle proof verification. Band-

width increases linearly for both schemes, since each server
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Figure 5: The user time and bandwidth ratios between unauthenti-

cated and authenticated PIR (§4.2) for complex queries when query-

ing two serves for the query SELECT COUNT(*) FROM keys WHERE

email LIKE "%s" from a database composed of 100,000 random

records. The median authentication overhead is less than 1.1× for

both user time and bandwidth; the grey area shows the variance.

receives a query and sends an answer.

7.2 Multi-server complex queries

When comparing our multi-server authenticated-PIR scheme

for complex queries with classic PIR (Fig. 5), we find that both

the user time and bandwidth overheads of the authenticated

scheme are less than 1.1×. The former comes from the longer

output of the function-secret-sharing evaluation function—

one F231−1 element versus five elements—and from the veri-

fication of the servers’ answers, absent in the unauthenticated

scheme. For bandwidth, the only difference is the so-called

correction word in the function-secret-sharing key [17, 18],

which is composed of a single field element in classic PIR and

of five elements in authenticated PIR: one for the predicate

evaluation’s result and four for authentication. The servers’

answers have the same ratio: a single field element in the

unauthenticated scheme and five elements in the authenticated

scheme. The bandwidth overhead is thus of a constant factor.

Evaluation with k≥ 3 servers is infeasible as the length of the

keys is O(λ2k/22ℓ/2), where ℓ is the input size in bits [17].

7.3 Single-server point queries

To evaluate our single-server authenticated-PIR schemes, we

compare their performance against SimplePIR [52], the fastest

classic single-server PIR scheme for small records to-date. We

measure the costs of retrieving one data bit from the database.1

We evaluate SimplePIR with its default configuration of 2048-

bit database records. The client downloads a corresponding

1Other recent PIR schemes (e.g., [66, 71]) are competitive only in the large-

record setting (where records are tens of kilobytes long).
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Figure 6: The cost of retrieving one data bit using our single-server

authenticated PIR schemes and state-of-the-art classic single-server

PIR scheme SimplePIR [52]. DDH indicates Construction 3 with

2−128-integrity; LWE indicates Construction 2 (q = 2128) with

2−128-integrity; LWE+ indicates Construction 6 (the base scheme is

Construction 2 with q = 232) with 2−64-integrity (see Section 3.3).

DDH takes over an hour to retrieve a data bit from a 1 GiB database

and we omit it from the figure.

record and selects a desired bit from it. The offline bandwidth

indicates the digest for authenticated schemes, and the hint

for SimplePIR, as this scheme is a PIR-with-preprocessing

scheme [10]. We show the results in Fig. 6.

The authenticated-PIR schemes from the decisional Diffie-

Hellman assumption (DDH) and from the learning-with-

errors assumption (LWE) have integrity error 2−128. The

DDH construction has a smaller digest, hence lower offline

bandwidth, but has twice the online bandwidth of the LWE

construction: both have the same asymptotic complexity, but

LWE uses elements from Z2128 and DDH from the elliptic

curve P256, which encodes elements in 256 bits. The LWE

construction is also faster (3-79×): arithmetic computations

in Z2128 are faster than elliptic-curve operations in P256.

The scheme with integrity amplification (LWE+) has in-

tegrity error 2−64 and the same classic-PIR privacy as Sim-

plePIR, except that SimplePIR does not provide privacy under

selective-failure attacks. LWE+ is faster than LWE for the

1 KiB and 1 MiB databases, but slower (1.4×) for the 1 GiB

database: the repetition code requires repeating the protocol

15 times (t = 7). An error correcting code with higher rate,

or parallel execution of the repetition code, could improve

LWE+. SimplePIR is 30-100× faster than LWE+ due to its

preprocessing for reducing online computation and exploit-

ing a faster database representation through packing [52].

The asymptotic online and offline bandwidth overhead of

SimplePIR and authenticated-PIR schemes from the LWE

assumption are the same, but integrity amplification increases
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Query description User time [s] Bandwidth [KiB]

Unauth. Auth. Unauth. Auth.

COUNT(*) WHERE

email LIKE ’%.edu’ 25.77 25.97 1.01× 1.8 1.9 1.06×
type = ’ElGamal’ 7.52 7.66 1.02× 0.9 1.0 1.11×
YEAR(created) = 2019

AND email LIKE ’%.edu’ 48.28 48.32 1.00× 3.0 3.1 1.03×
AVG(lifetime) WHERE

email LIKE ’%.edu’ 25.74 26.59 1.03× 1.8 1.9 1.05×

Table 7: Performance of different predicate queries on Keyd for

unauthenticated and authenticated PIR (the two-server schemes for

predicate queries). The median authentication overhead is 1.01× for

user time and 1.05× for bandwidth.

online bandwidth by 2t+1× (Section 3.3), whereas the client

must download the digest only once. Concrete offline band-

width is lower in SimplePIR due to database packing.

The current schemes are computationally costly, but we

expect that future optimizations, such as multi-bit queries, as

outlined in Appendix G.5, could reduce this cost.

7.4 Application: privacy-preserving key server

In this section, we evaluate our multi-server authenticated-PIR

schemes in the context of the Keyd public-key server.

For classic key look-ups, which are point queries, we mea-

sure the wall-clock time needed to retrieve a PGP public-key

with authenticated PIR (Section 4.1), classic PIR without au-

thentication, and by direct download without privacy protec-

tion. To measure the latency of direct download, we download

a PGP public-key from the OpenPGP key server using wget.

Both PIR measurements include a manually-added RTT of

0.4 ms (the ping time to the nearest PGP key server). We per-

form all the measurements over the entire processed dataset

of PGP keys (see Section 6). We measure 1.11 seconds for

authenticated PIR, 1.10 seconds for unauthenticated PIR and

0.22 seconds for non-private direct look-up.

The authenticated scheme for point queries shows perfor-

mance comparable to classic PIR without authentication. The

Merkle-proof overhead in this case is smaller than in Fig. 3

due to a larger block size and hence less authentication data

per data bit in Keyd. The OpenPGP key server maintainers

informed us that their service typically handles around 3–10

public-key lookups per second, or less than 1 million requests

per day [21]. A careful multithreaded implementation of our

multi-server authenticated-PIR schemes for point queries can

handle this load with 12 cores, just one more than the number

of cores estimated for classic unauthenticated PIR (11 cores).

To analyze the performance of Keyd in computing private

statistics over keys, we measure user-perceived time and band-

width of different predicate queries. Table 7 shows the results.

For all the predicates, the overhead of authenticated PIR—in

both user-perceived time and bandwidth—is upper bounded

by a factor of 1.05×. This result matches the benchmark pre-

sented in Fig. 5 and is due to the latency being dominated by

the function-secret-sharing evaluation, which is essentially

equal for authenticated and unauthenticated PIR. For band-

width overhead, the same reasoning as in Section 7.2 applies.

8 Related work

Authenticated PIR builds on diverse work on private in-

formation retrieval. Starting with the original proposal [31],

improvements have reduced the communication cost of multi-

server PIR with information-theoretic [8, 9, 42, 95, 97]

or computational security [18, 30]. Kushilevitz and Ostro-

vsky [57] presented the first single-server PIR construction,

and subsequent work reduced communication costs [22, 41,

47, 62, 75]. Recent advances introduced PIR for more com-

plex (e.g., SQL-like) queries [74, 81, 92].

Kushilevitz and Ostrovsky [57] first noted that, in the single-

server setting, the server could violate a client’s privacy by

manipulating database records and observing whether the

client accepted the response as valid. Such attacks have come

to be known as selective-failure attacks [53, 55, 61]. To our

knowledge, we are the first to address selective-failure attacks

in the multi-server setting.

In schemes that resist faulty servers (summarized in Ta-

ble 2), a client can either reconstruct the correct database

entry, or can detect and abort, when servers misbehave. Mul-

tiparty computation literature refers to the former approach

as “full security” and the latter as “security with abort” [50].

Beimel and Stahl [11, 12] first consider malicious or crash-

ing servers in the multi-server setting. Their approach fo-

cuses on ensuring data reconstruction, not detection of server

misbehaviour, and it is further developed by concurrent and

follow-up work [39, 43, 49, 56, 96]. Unlike authenticated PIR,

these approaches require an honest majority in the presence of

malicious servers, with specific thresholds shown in Table 2.

Verifiable PIR in the multi-server setting [98] offers se-

curity properties similar to authenticated PIR, but requires

expensive public-key cryptography. In the single-server set-

ting [93, 99], verifiable PIR is not resistant to selective-failure

attacks and offers a weaker property: it ensures that the server

answer a query with respect to some database, but not nec-

essarily the one intended. Our approach ensures that queries

are answered with respect to a specific database, as deter-

mined by the honest server in the multi-server setting, or by

the database digest in the single-server case. In concurrent

work, Ben-David et al. [14] introduce another notion of veri-

fiable PIR in the single-server setting, whose goal is to verify

arbitrary properties on databases, but they do not consider

selective-failure attacks.

Our multi-server scheme for point queries (Section 4.1)

extends a Merkle-tree approach by Kushilevitz and Ostro-

vsky [57]. Our multi-server scheme for predicate queries
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builds on function secret-sharing [16, 17, 18, 38], information-

theoretic message authentication codes [33], and malicious-

secure multiparty computation protocols [15, 35].

Prior systems address integrity in private information re-

trieval [36, 70], but do not protect against selective manip-

ulation in the single-server setting, and require additional

assumptions in the multi-server setting.

Prior work has also considered privacy-preserving and

integrity-assuring key directories [27, 28, 65, 68, 90]. In

particular, CONIKS [65] and its improved version SEEM-

less [27], ensure consistency for the bindings thanks to ideas

adapted from transparency log systems [59, 83], but do not

address privacy of the client’s queries.

9 Conclusion

Authenticated PIR enhances the strong privacy properties

of classic PIR with strong data-authentication guarantees.

We have presented formal definitions both in the dishonest-

majority setting—where the security properties hold as long

as at least one of the server is honest—and in the single-server

setting. We suggest some avenues for further improvement:

• Can we construct single-server authenticated-PIR

schemes for a malicious digest (i.e., the client’s output

is consistent with some n-bit database)?

• Can we construct single-server authenticated-PIR

schemes whose performance matches that of the best

unauthenticated schemes?
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A Building blocks for authenticated PIR

In this section, we formally introduce the primitive used by

the different authenticated-PIR schemes: classic multi-server

PIR, Merkle-tree and function secret sharing.

Additional notation. We use SD(·, ·) to denote the statisti-

cal distance between two distributions. The empty string is

denoted with ε. We write D0 ≈c D1 to denote that the distri-

butions D0 and D1 are computational indistinguishable.

A.1 Classic multi-server PIR for point queries

In this section we define standard k-server unauthenticated-

PIR schemes, for k ≥ 2.

Definition 12 (k-server PIR for point queries). A k-server

unauthenticated-PIR scheme for point queries parametrized

by a database length N ∈ N, consists of three efficient, and

possibly randomized, algorithms:

• Query(1λ, i)→ (st,q1, . . . ,qk). Given a security parame-

ter λ, expressed in unary, and an index i∈ [N], return client

state st and queries q1, . . . ,qk.

• Answer(x,q)→ a. Apply query q to database x ∈ {0,1}N

and return answer a.

• Reconstruct(st,a1, . . . ,ak)→ xi. Take as input client state

st and answers a1, . . . ,ak and return the ith record of the

database xi.

A k-server unauthenticated-PIR scheme is required to sat-

isfy the following properties.

Definition 13 (PIR correctness). An unauthenticated-PIR

scheme PIR = (PIR.Query,PIR.Answer,PIR.Reconstruct),
parametrized by a number of servers k ∈ N and a database

size N ∈ N satisfies correctness if for every x ∈ {0,1}N , the

following holds:

Pr






x′i = xi :

(st,{qi}i∈[k]← PIR.Query(i)

a j ← PIR.Answer(x,q j) ∀ j ∈ [k]

x′i← PIR.Reconstruct(st,a1, . . . ,ak)






= 1,

where the probability is computed over all the random coins

used by the algorithms of the scheme.

Definition 14 (PIR security). Let PIR =
(PIR.Query,PIR.Answer,PIR.Reconstruct) be an
unauthenticated-PIR scheme for point queries parametrized
by a number of servers k ∈ N and a database size N ∈ N. Let
S be any subset of k−1 elements from [k]. For i ∈ [N] let the
distribution

REALi =







⋃

j∈S

q j : (st,q1, . . . ,qk)← PIR.Query(i)







.

Similarly, for a simulator S , let the distribution

IDEALS =
{

{

q j

}

j∈S
← S

}

.

A classic unauthenticated-PIR scheme PIR =
(PIR.Query,PIR.Answer,PIR.Reconstruct) parametrized

by a database length N ∈N and a number of servers k ∈N is

secure for every i ∈ [N], the following holds:

REALi ≈c IDEALS .

In this work, we consider only linear classic PIR schemes.

Many standard PIR schemes are linear [18, 31, 32, 48].

Definition 15 (Linear PIR). Let PIR =
(PIR.Query,PIR.Answer,PIR.Reconstruct) be a clas-

sic PIR scheme for point queries parametrized by a number

of servers k ∈ N and a database size N ∈ N. We say that PIR

is a linear PIR scheme if the Reconstruct algorithm is simply

the sum of the individual severs’ answers.

A.2 Merkle tree

In this section we formally define a Merkle-tree scheme and

we introduce its security properties.

Definition 16. A Merkle-tree scheme M =
(Digest,ProveIncludes,VerifyIncludes), parametrized

by a digest length ℓdig ∈ N and a inclusion proof length

ℓπ ∈ N, for a database x ∈ {0,1}N , N ∈ N consists of two

possibly randomized algorithms and one deterministic

algorithm:
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• Digest(1λ,x) → d. Given a security parameter λ, ex-

pressed in unary, and a database x ∈ {0,1}N , returns a

database digest d ∈ {0,1}ℓdig .

• ProveIncludes(1λ,x, i,xi) → {πi,⊥}. This deterministic

algorithm, on input a security parameter λ expressed

in unary, a database x ∈ {0,1}N , a index i ∈ [N] and

a database record xi ∈ {0,1}, outputs a unique proof

πi ∈ {0,1}ℓπ if xi ∈ x and ⊥ otherwise.

• VerifyIncludes(d, i,xi,πi) → {0,1}. Given a digest d ∈
{0,1}ℓdig , a index i ∈ [N], a database entry xi ∈ {0,1}
and a proof πi ∈ {0,1}ℓπ , outputs 1 if πi proves that the

database represented by the digest d contains the record

xi at position i and 0 otherwise.

A Merkle-tree scheme defined in Definition 16 is required

to satisfy the following properties.

Definition 17 (Correctness). Let M =
(Digest,ProveIncludes,VerifyIncludes) be a Merkle-

tree scheme as defined in Definition 16, parametrized by a

digest length ℓdig ∈ N and a inclusion proof length ℓπ ∈ N,

for a database x ∈ {0,1}N , N ∈ N. We say that M satisfies

correctness if, for all i ∈ [N], the following holds:

Pr






b = 1 :

d← Digest(x)

π← ProveIncludes(x, i,xi)

b← VerifyIncludes(d, i,xi,π)






= 1

Definition 18 (Uniqueness). Let M =
(Digest,ProveIncludes,VerifyIncludes) be a Merkle-

tree scheme as defined in Definition 16, parametrized by a

digest length ℓdig ∈ N and a inclusion proof length ℓπ ∈ N,

for a database x ∈ {0,1}N , N ∈ N. Let A be an efficient

adversary. M ensures uniqueness if, the following holds:

Pr

















b = b′ = 1 :

(x, i,xi,πi,π
′
i)← A(1λ,N)

if πi = π′i then abort

d← Digest(x)

b← VerifyIncludes(d, i,xi,πi)

b′← VerifyIncludes(d, i,xi,π
′
i)

















≤ negl(λ)

Definition 19 (Soundness). Let M =
(Digest,ProveIncludes,VerifyIncludes) be a Merkle-

tree scheme as defined in Definition 16, parametrized by a

digest length ℓdig ∈ N and a inclusion proof length ℓπ ∈ N,

for a database x ∈ {0,1}N , N ∈N. Let A be an adversary. M

satisfies soundness if, the following holds:

Pr











b = 1 :

(x, i,x∗i ,πi)← A(1λ,N)

if xi = x∗i , then abort

d← Digest(x)

b← VerifyIncludes(d, i,x∗i ,πi)











≤ negl(λ)

A.3 Function secret sharing

In this section we formally define the properties of function-

secret-sharing (FSS) schemes [17, 18]. We present the syntax

in Section 4.2.

Definition 20 (FSS correctness). A k-party function secret-
sharing scheme FSS = (Gen,Eval) for a function class F

defined over a field F satisfies correctness if for every x in the
domain of f , the following holds:

Pr

[

∑
i∈[k]

Eval( fi,x) = f (x) ∈ F : ( f1, . . . , fk)← Gen(1λ, f )

]

= 1.

Definition 21 (FSS security). Let FSS = (Gen,Eval) be a

k-party function secret-sharing scheme for a function class F .

Let S be any subset of k−1 elements from [k]. For a security

parameter λ ∈ N and a function f ∈ F let the distribution

REALλ, f =

{

⋃

i∈S

fi : ( f1, . . . , fk)← Gen(1λ, f )

}

Similarly, for a simulator S let the distribution

IDEALS ,λ,F =
{

{ fi}i∈S← S(1λ,F )
}

A k-party function secret-sharing scheme FSS= (Gen,Eval)
for a function class F is secure if there exists a simulator

S such that for every security parameter λ ∈ N and every

function f ∈ F , the following holds:

REALλ, f ≈c IDEALS ,λ,F .

B Multi-server authenticated PIR definitions

In this section, we present the formal definitions for multi-

server authenticated PIR.

Definition 22 (Authenticated PIR correct-
ness). A k-server authenticated-PIR scheme
Π = (Query,Answer,Reconstruct) for function class

F ⊆ Funs[[N]×{0,1}ℓ,F] and database size N ∈ N satisfies

correctness if for every x1, . . . ,xN ∈ {0,1}ℓ, ℓ ∈ N, w ∈ F
N ,

λ ∈ N, f ∈ F , the following holds:

Pr

















y = ∑
i∈[n]

wi f (i,xi) :

(st,q1, . . . ,qk)←Query(1λ, f )

a j← Answer(X,w,q j) ∀ j ∈ [k]

y← Reconstruct(st,a1, . . . ,ak)

















= 1,

where the probability is computed over all the random coins

used by the algorithms of the scheme.

Definition 23 (Authenticated PIR integrity).
A k-server authenticated-PIR scheme Π =

(Query,Answer,Reconstruct) for function class
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F ⊆ Funs[[N]×{0,1}ℓ,F] and database size N ∈ N

ensures integrity if for every efficient adversary A , and for

every x1, . . . ,xn ∈ {0,1}ℓ, ℓ ∈ N, w ∈ F
n, λ ∈ N, f ∈ F ,

jgood ∈ [k], the following probability is negligible in the

security parameter λ:

Pr



























y 6∈
{

∑
i∈[N]

wi f (i,xi),⊥
}

:

(st,q1, . . . ,qk)←Query(1λ, f )
{

a j

}

j 6= jgood
← A(X,w,{q j} j 6= jgood

)

a jgood ← Answer(X,w,q jgood )

y← Reconstruct(st,a1, . . . ,ak)



























,

where the probability is computed over all the random coins

used by the algorithms of the scheme.

Definition 24 (Authenticated PIR privacy). Let Π =
(Query,Answer,Reconstruct) be a k-server authenticated-

PIR scheme for function class F ⊆ Funs[[N]×{0,1}ℓ,F] and

database size N ∈N. For X = x1, . . . ,xn ∈ {0,1}ℓ, ℓ∈N, w∈
F

n, λ∈N, f ∈F , jgood ∈ [k], and an adversary A = (A0,A1),
define the distribution

REALA , jgood , f ,λ,X,w =















































β̂ :

(st,q1, . . . ,qk)←Query(1λ, f )

a jgood ← Answer(X,w,q jgood )
(

stA ,
{

a j

}

j 6= jgood

)

← A0(X,w,{q j} j 6= jgood
)

y← Reconstruct(st,a1, . . . ,ak)

b← 1{y 6=⊥}
β̂← A1(stA ,b)















































.

Similarly, for n∈N, X = x1, . . . ,xn ∈ {0,1}ℓ, and a simulator
S = (S0,S1), define the distribution

IDEALA ,S ,F ,λ,X,w =























β :

(stS ,Q)← S0(1
λ,F ,X,w)

(stA ,A)← A0(X,w,Q)

b← S1(stS ,A)

β← A1(stA ,b)























.

We say Π is private if for every efficient adversary A =
(A0,A1), and for every X = (x1, . . . ,xn) ∈ ({0,1}ℓ)n, w ∈ F

n,

there exists a simulator S = (S0,S1) such that for all λ ∈ N,

f ∈ F , jgood ∈ [k], the following holds:

REALA , jgood, f ,λ,X,w ≈c IDEALA ,S ,F ,λ,X,w

Remark 25 (Selective-failure attacks). The inclusion of the

acceptance bit in the adversary’s view ensures protection

against selective failure attacks where whether a client accepts

or not leaks information about the client’s query. For example,

in an actual execution of an authenticated-PIR scheme, a ma-

licious server could replace a single record i in the database

with garbage. Now, if the client’s query does not depend on

the value of record i, then everything proceeds normally. How-

ever, if the query does depend on the value of record i, then

it receives a garbage value. Depending on the application,

receiving a garbage value could cause the client to abort the

protocol prematurely, or retry the protocol; in both of these

cases, if the client engages in some kind of recovery mech-

anism, the server immediately learns information about the

client’s chosen index i. Definition 24 captures security against

selective failure attacks by requiring that the probability of

whether the client’s response is valid or not (i.e., whether

y 6= ⊥) is not correlated with the client’s query (since the

same simulator works for all functions f and moreover, the

simulator is not provided f as input). In this way, a malicious

server that learns whether the protocol completed successfully

or not still cannot learn anything about the client’s query.

C Multi-server authenticated PIR for point

queries

In this section we present the formal definition of the multi-

server authenticated-PIR scheme for point queries based on

a classic multi-server linear PIR scheme and a Merkle-tree

scheme. In Construction 4, we give the scheme. In the re-

mainder of this section, we prove that it satisfies integrity and

privacy.

C.1 Security proofs

We prove security for the case of k = 2 servers. All the argu-

ments generalize naturally to the k-server setting with k > 2.

Correctness of the scheme introduced in Construction 4

can be verified by inspection. To prove both integrity and

security, we find it useful to first prove Lemma 26, which

informally states that if a malicious server deviates from the

prescribed protocol, the Reconstruct algorithm rejects with

high probability.

Lemma 26. Consider the authenticated-PIR scheme in Con-
struction 4, on record size ℓ ∈ N and with k = 2 servers for
the sake of the proof. Then, for every λ ∈ N, every non-zero
∆ ∈ {0,1}ℓdig+ℓ+ℓπ , where ℓdig is the length of the digest and
ℓπ is the length of a Merkle inclusion proof as per Defini-
tion 16, every database X = x1, . . . ,xN ∈ {0,1}ℓ, and every
index i ∈ [N], the following holds:

Pr













y 6=⊥ :

(st,q1,q2)←Query(1λ, i)

a1← Answer(X,q1)

a2← Answer(X,q2)

y← Reconstruct(st,a1⊕∆,a2)













≤ negl(λ),

where the probability is computed over all the random coins

used by the algorithms of the scheme. The statement holds also

when the roles of honest and malicious server are inverted.

Proof. We parse ∆ as (∆root,∆x,∆π) where ∆root ∈ {0,1}ℓdig ,

∆x ∈ {0,1}ℓ, and ∆π ∈ {0,1}ℓπ . If ∆root 6= 0ℓdig then parsing

a1+∆ and a2 yields two different roots and the client immedi-

ately rejects (line 3 of Reconstruct in Construction 4). Hence,
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Construction 4 (k-server authenticated PIR for point

queries tolerating k− 1 malicious servers). The con-

struction is parametrized by a number of servers k ∈ N,

a number of database rows N ∈ N, a row length ℓ ∈ N,

a security parameter λ ∈ N, a Merkle-tree scheme M

(Definition 16), and a classic PIR scheme PIR (Def-

inition 12). Weights are ignored in this scheme. We

represent the database as N binary strings of length ℓ
each: x1, . . . ,xN ∈ {0,1}ℓ. We use i ∈ [N] to denote

f (i,xi) = xi, where f ∈ F . The servers execute the

first three steps of the Answer procedure only when the

database changes; we show the entire procedure for com-

pleteness.

Query(1λ, i ∈ [N])→ (st,q1, . . . ,qk)

1. Set the state st← i

2. Output st,PIR.Query(i).

Answer(X = x1, . . . ,xN ∈ {0,1}ℓ,q)→ a

1. Compute the digest root←M.Digest(X).

2. For j ∈ [n], compute πi←M.ProveIncludes(X, j,x j).

3. Enlarge the database with the proofs for all the records

as X′← ((x1,π1), . . . ,(xN ,πN)).

4. Output (root,PIR.Answer(X′,q)).

Reconstruct(st,a1, . . . ,ak)→
{

{0,1}ℓ,⊥
}

1. Parse the state st as i.

2. For j ∈ [k], parse ak as (rootk,a
′
k).

3. If the k roots {root j} j∈[k] are not all equal, return ⊥.

4. Run the classic PIR reconstruction procedure and

parse ri← PIR.Reconstruct(a′1, . . . ,a
′
k) as (xi,πi).

5. If M.VerifyIncludes(root1, i,xi,πi) = ⊥, then output

⊥. Otherwise output xi.

assume the client gets identical roots from the servers, i.e.,

∆root = 0ℓdig . The client therefore receives two honest digests

of the database X = x1, . . . ,xN .
Assume by contradiction that there is a i ∈ [N], a

∆ = (∆root,∆x,∆π) where ∆root = 0ℓdig , ∆x ∈ {0,1}ℓ, ∆π ∈
{0,1}ℓπ , and a database X = x1, . . . ,xN ∈ {0,1}ℓ such that

Pr













y 6=⊥ :

(st,q1,q2)←Query(1λ, i)

a1← Answer(X,q1)

a2← Answer(X,q2)

y← Reconstruct(st,a1⊕∆,a2)













≥ ν,

where ν is non-negligible in the security parameter λ. We

now show that if ∆x 6= 0ℓ, then the malicious servers breaks

soundness of the Merkle-tree scheme (Definition 19). Alter-

natively, if ∆x = 0ℓ, but ∆π 6= 0ℓπ , then the malicious server

breaks uniqueness of the Merkle-tree scheme (Definition 18).

We analyze the first case, that is, we assume that ∆x 6= 0ℓ.

Let A be an adversary in the definition of soundness for a

Merkle-tree scheme (Definition 19). We show how A can use

∆ = (∆root,∆x,∆π) with ∆root = 0ℓdig , ∆x 6= 0ℓ, ∆π ∈ {0,1}ℓπ

to break the soundness property of the Merkle-tree scheme

with a non-negligible probability. Given i, ∆, X, the adversary

A uses the Query and Answer algorithms to compute a1 and

a2. Then the adversary reproduces part of the Reconstruct

procedure as follows:

1. parses both answers into (rootk,a
′
k)← ak, k ∈ [2],

2. computes ri← PIR.Reconstruct(a′1,a
′
2) and

3. parses the reconstructed value into (xi,πi)← ri.

Algorithm A outputs (X, i,xi⊕∆x,πi⊕∆π) in the soundness

game of Definition 19. By assumption, the digest is correct

and computed over X. Since ∆x 6= 0ℓ, we know that

(xi⊕∆x)‖(πi⊕∆π) 6= xi‖πi.

Moreover, the probability stated in Definition 19 is equal

to the probability stated in this lemma, i.e., to ν. Since by

assumption ν is non-negligible in the security parameter λ,

algorithm A successfully breaks the soundness property of

the Merkle-tree scheme.

We analyze now the second case, that is, we assume that

∆x = 0ℓ and ∆π 6= 0ℓπ . Let A ′ be an adversary in the definition

of uniqueness for a Merkle-tree scheme (Definition 18). We

show how A ′ can use ∆ = (∆root,∆x,∆π) with ∆root = 0ℓdig ,

∆x = 0ℓ, ∆π 6= 0ℓπ to break the uniqueness property of the

Merkle-tree scheme with a non-negligible probability. Given i,

∆, X, the adversary A ′ uses the Query and Answer algorithms

to compute a1 and a2. Then the adversary reproduces part of

the Reconstruct procedure as follows:

1. parses both answers into (rootk,a
′
k)← ak, k ∈ [2],

2. computes ri← PIR.Reconstruct(a′1,a
′
2) and

3. parses the reconstructed value into (xi,πi)← ri.

A ′ outputs (X, i,xi,πi,πi⊕∆π) in the uniqueness game of

Definition 18. Since ∆π 6= 0ℓπ , we know that πi 6= πi⊕∆π.

Moreover, the probability stated in Definition 18 is equal

to the probability stated in this lemma, i.e., to ν. Since by

assumption ν is non-negligible in the security parameter λ,

A ′ successfully breaks the uniqueness property of the Merkle-

tree scheme.

We now use Lemma 26 to show that the scheme presented

in Construction 4 ensures integrity and security, and is hence

secure.

Theorem 27 (Integrity of Construction 4). The authenticated

PIR scheme of Construction 4 provides integrity.

Proof. This follows directly from Lemma 26.
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Theorem 28 (Privacy of Construction 4). The authenticated

PIR scheme of Construction 4 provides privacy.

Proof. Recall that we use i ∈ [N] to denote f (i,xi) = xi. Let
A = (A0,A1) be the adversary of Definition 24. Without loss
of generality, by linearity of the underlying unauthenticated
PIR scheme (Definition 15), we change A0 to just output

∆ ∈ {0,1}ℓdig+ℓ+ℓπ rather than the answer to the query, where
ℓdig and ℓπ are parameters of the Merkle-tree scheme (Defini-
tion 16) that Construction 4 uses. The distribution modeling
the real world is redefined as follows:

REAL’A ,i,λ,X =























































β̂ :

(st,q1,q2)←Query(1λ, i)

(stA ,∆)← A0(X,q1)

a1← Answer(X,q1)

a2← Answer(X,q2)

y← Reconstruct(st,a1⊕∆,a2)

b← ✶{y 6=⊥}
β̂← A1(stA,b)























































.

Similarly, and still without loss of generality, we adapt the
distribution modeling the ideal world:

IDEAL’A ,S ,F ,λ,X =























β :

(stS ,q1)← S0(1
λ,F ,X)

(stA ,∆)← A0(X,q1)

b← S1(stS ,∆)

β← A1(stA,b)























.

For any adversary A = (A0,A1) let a simulator S = (S0,S1)
such that for every λ ∈ N, X = xi, . . . ,xN ∈ {0,1}ℓ the simu-

lator proceeds as follows:

Simulator S0

(

1λ,F ,X
)

1 : α←R F

2 : q1← SPIR

3 : stS ← ε

4 : return (stS,q1)

Simulator S1(stS,∆)

1 : b← ✶{∆ = 0}
2 : return b

where SPIR is the simulator induced by the classic PIR scheme

used by Construction 4 (see Definition 14). We now prove that

the real and ideal distribution are computationally indistin-

guishable and hence the scheme presented in Construction 4

ensures security. To this end, we define three hybrid distribu-

tions H0, H1, H2:

• H0: This is the real distribution REAL’A ,i,λ,X, where the

bit b← ✶{y 6=⊥} given as input to the adversary A0 is

determined using the output from the Reconstruct algo-

rithm.

• H1: Same as H0 except the adversary gets a query pro-

duced by the simulator SPIR induced by the unauthenti-

cated PIR scheme. The difference between H0 and H1 is

boxed in the definition below:

H1 =



































































β̂ :

(st,_,q2)← Query(1λ, i)

q1← SPIR

(stA ,∆)← A0(X,q1)

a1← Answer(X,q1)

a2← Answer(X,q2)

y← Reconstruct(st,a1⊕∆,a2)

b← ✶{y 6=⊥}
β̂← A1(stA,b)



































































.

• H2: This is the ideal distribution IDEAL’A ,S ,F ,λ,X.

We now argue that each pair of adjacent hybrids are indistin-

guishable:

• The only difference between hybrids H0 and H1 is how the

query q1 is sampled. By security of the unauthenticated

PIR scheme, we have H0 ≈c H1.

• Let W1 the event that A = (A0,A1) outputs 1 in hybrid Hb.

Define W2 accordingly. By construction, the value ∆ that

the adversary outputs in H1 is independent of the client’s

query. If ∆ = 0ℓdig+ℓ+ℓπ (i.e, a binary string of ℓdig+ℓ+ℓπ

zeros) the simulator S1 sets b = 1; if ∆ 6= 0ℓdig+ℓ+ℓπ , then

S1 sets b = 0. Since ∆ is independent of everything else,

by Lemma 26

|Pr[b← ✶{y 6=⊥}]−Pr[b← ✶{∆ = 0}]| ≤ negl(λ),

where the first probability refers to the assignment of bit b

in H1, while the second refers to the first operation of S1,

i.e., the assignment of bit b in H2. We can therefore rewrite

the above probability as |Pr[W1]−Pr[W2]| ≤ negl(λ).

By a standard hybrid argument we conclude that

REAL’A ,i,λ,X ≈c IDEAL’A ,S ,F ,λ,X and therefore

REALA ,i,λ,X ≈c IDEALA ,S ,F ,λ,X.

C.2 Preprocessing costs

In our multi-server authenticated-PIR scheme for point

queries, the servers must compute a Merkle tree over the

N database entries along with their indexes. The computa-

tional complexity of the preprocessing phase is dominated

by the number N of database records. Fig. 8 shows the CPU

time that a single server takes to compute a Merkle tree for

different database sizes. The current implementation is not

parallelized, but in practice, the Merkle-tree computation can

be efficiently divided into multiple cores.
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Figure 8: The CPU time that a single server takes to process the

database for the authenticated PIR scheme for point queries (§4.1).

The Merkle-tree computation is not parallelized.

D Multi-server authenticated PIR

for predicate queries

In this section we analyze our multi-server authenticated-PIR

scheme for predicate queries.

D.1 Security proofs for multi-server

authenticated PIR for predicate queries

We prove security only for the case of k = 2 servers. All the ar-

guments generalize naturally to the k-server setting with k > 2.

Correctness of the multi-server authenticated PIR scheme for

predicate queries introduced in Construction 1 can be veri-

fied by inspection. To prove integrity and security, we find it

useful to first prove Lemma 29, which states that if an adver-

sary deviates from the prescribed protocol, the Reconstruct

algorithm rejects with high probability.

Lemma 29. Let the authenticated PIR scheme introduced
in Construction 1, where k = 2 for this lemma. Then, for every
database size N ∈N, for every non-zero offset ∆ = (∆m,∆τ)∈
F

2, every database X = x1, . . . ,xN ∈ {0,1}ℓ, every vector of
weights w ∈ F

N , and function f ∈ F , we have

Pr













y 6=⊥ :

(st,q1,q2)←Query(1λ, f )

a1← Answer(X,w,q1)

a2← Answer(X,w,q2)

y← Reconstruct(st,a1 +∆,a2)













≤ 1

|F|−1
,

where the probability is computed over all the random coins

used by the algorithms of the experiment. The statement holds

also when the Reconstruct algorithm instead takes as input

(st,a1,a2 +∆).

Proof. Let α←R F\{0}. By construction, we can rewrite the

probability stated in the lemma as

ν = Pr

[

α ·
(

∑
i∈[N]

wi · f (i,xi)+∆m

)

= α · ∑
i∈[N]

wi · f (i,xi)+∆τ

]

= Pr [−∆τ +α ·∆m = 0]

The last quantity is the evaluation of a non-zero degree-1

polynomial with coefficients ∆τ and ∆m at a random point

α ←R F \ {0}. Since a non-zero linear polynomial has at

most one root over F\{0}, we conclude that ν ≤ 1
|F|−1

. By

interchanging the roles of a1 and a2, the statement holds

also when the Reconstruct algorithm instead takes as input

(st,a1,a2 +∆).

We now use Lemma 29 to show that the scheme presented

in Construction 1 ensures integrity and security, and hence it

is secure.

Theorem 30 (Integrity of Construction 1). The authenticated

PIR scheme of Construction 1 provides integrity.

Proof. This theorem follows directly from Lemma 29.

Theorem 31 (Privacy of Construction 1). The authenticated

PIR scheme of Construction 1 provides privacy.

Proof. The proofs proceeds exactly as the proof for Theo-

rem 28, with the difference that we use the simulator induced

by the secure function-secret-sharing scheme instead of the

simulator induced by the classic PIR scheme, and we appeal

to Lemma 29 instead of Lemma 26 to conclude the proof.

D.2 Handling functions with larger output

In this section we discuss how to handle functions with larger

output in authenticated PIR for predicate queries.

D.2.1 Scheme

The scheme is described in Construction 5.

D.2.2 Security analysis

Lemma 32. Let the authenticated PIR scheme introduced
in Construction 5, where k = 2 for this lemma. Then, for every
database size N ∈N, for every non-zero vector (∆0, . . . ,∆b)∈
F

b+1, every database X = x1, . . . ,xN ∈ {0,1}ℓ, every vector
of weights w ∈ F

N , and every function f ∈ F , the following
holds:

Pr











y 6=⊥ :

(st,q1,q2)←Query(λ, f )

a1← Answer(X,w,q1)

a2← Answer(X,w,q2)

y← Reconstruct(st,a1 +∆,a2)











≤ b

|F|−1
,
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Construction 5 (k-server authenticated PIR for predicate

queries for functions whose output is larger than a single

field element tolerating k− 1 malicious servers). The

construction is parametrized by a number of servers k ∈
N, a number of database rows N ∈N, a row length ℓ ∈N,

a finite field F, a security parameter λ, a output length

b∈N, a function class F ⊆Funs[[N]×{0,1}ℓ,Fb] that is

closed under scalar multiplication, and a function-secret-

sharing scheme (FSS.Gen,FSS.Eval) for the function

class F , parametrized bx the security parameter λ. We

represent the database as N binary strings of length ℓ
each: X = x1, . . . ,xN ∈ {0,1}ℓ.
Query

(

1λ, f
)

→ (st,q1, . . . ,qk)

1. Sample a random field element α←R F\{0}.
2. Set the state st← α.

3. For j ∈ [b], let g j ← α j · f . These functions g j must

exist since the function class F is closed under scalar

multiplication, as in Definition 7.

4. Compute q1, . . . ,qk← FSS.Gen(1λ, f ) together with

q
(i)
1 , . . . ,q

(i)
k ← FSS.Gen(1λ,gi), for i ∈ [b].

5. Output
(

st,(q1,q
(1)
1 , . . . ,q

(b)
1 ), . . . ,(qk,q

(1)
k , . . . ,q

(b)
k )
)

.

Answer
(

x1, . . . ,xN ∈ {0,1}ℓ,w ∈ F
N ,q
)

→ a ∈ F
b+1

1. Parse q as (q f ,q
(1)
g , . . . ,q

(b)
g ).

2. Compute answer as a f ← ∑i∈[N] wi ·FSS.Eval(q f ,xi)

and ag← ∑ j∈[b]
(

∑i∈[N] wi ·FSS.Eval
(

q
( j)
g ,xi

))

.

3. Return a← (a f ,ag).

Reconstruct
(

st,a1, . . . ,ak ∈ F
b+1
)

→ F
b∪{⊥}

1. Parse the state st as α ∈ F.

2. Compute a← a1 + · · ·+ak ∈ F
b+1.

3. Parse a as (m1, . . . ,mb,τ) ∈ F
b+1.

4. Compute τ′← m1α+m2α2 + · · ·+mbαb ∈ F.

5. If τ = τ′, output (m1, . . . ,mb) ∈ Fb. Otherwise, output

⊥.

where the probability is computed over all the random coins

used by the algorithms of the scheme. Without loss of gener-

ality, the statement holds also when the roles of honest and

malicious server are inverted.

Proof. Let α←R F\{0}. Let

y = (m1, . . . ,mb)← ∑
i∈[N]

wi · f (i,xi) ∈ F
b.

Then the probability stated in the lemma is

ν = Pr

[

∑
j∈[b]

(m j +∆ j)α
j = ∆0 + ∑

j∈[b]
m jα

j

]

= Pr

[

−∆0 + ∑
j∈[b]

∆ jα
j = 0

]

.

This last quantity is the evaluation of a non-zero polynomial

(whose coefficients are the ∆ values) at a random point α←R
F\{0}. Since such a non-zero polynomial of degree at most

b can have at most b roots over F, we have that ν ≤ b
|F|−1

.

By interchanging the roles of a0 and a1, the statement holds

also when the Reconstruct algorithm instead takes as input

(st,a1,a2 +∆).

Theorem 33 (Integrity of Construction 5). The authenticated

PIR scheme of Construction 5 provides integrity.

Proof. The theorem follows directly from Lemma 32.

Theorem 34 (Security of Construction 5). The authenticated

PIR scheme of Construction 5 provides privacy.

Proof. The strategy is as in the proof of Theorem 31, except

that we appeal to Lemma 32 to complete the argument.

E Definition of single-server authenticated PIR

In this section we present the formal definitions of single-

server authenticated PIR.

E.1 Definitions

Definition 35 (Single-server authenticated PIR correct-
ness). A single-server authenticated-PIR scheme (Digest,
Query,Answer,Reconstruct) satisfies correctness if for every
database x ∈ {0,1}N , i ∈ [N], and λ ∈N, the following holds:

Pr













x′i = xi :

d←Digest(1λ,x)

(st,q)←Query(d, i)

a← Answer(d,x,q)

x′i← Reconstruct(st,a)













≥ 1−negl(λ),

Definition 36 (Single-server authenticated PIR integrity).
A single-server authenticated-PIR scheme (Digest,Query,
Answer,Reconstruct) has integrity error ε if for every effi-
cient (non-uniform) adversary A , every database x ∈ {0,1}N ,
and index i ∈ [N],

Pr













x′i 6∈ {xi,⊥} :

d←Digest(1λ,x)

(st,q)←Query(d, i)

a∗← A(d,x,q)

x′i← Reconstruct(st,a∗)













≤ ε(λ)+negl(λ),
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where the probability is only taken over the choice of query

randomness2. We say the scheme provides integrity if it has

integrity error 0.

Remark 37 (On non-uniform hardness). As written, Defi-

nition 36 requires integrity to hold against non-uniform ad-

versaries. This version of the assumption explicitly captures

the fact that the probability of an integrity failure is only

taken over the randomness of query generation (and not the

adversary). Thus, a malicious server cannot induce correlated

integrity failures across multiple independently-generated

queries. This property is very useful for our integrity ampli-

fication transformation (Appendix E.2). We could also con-

sider a more complex (multi-query) variant of this assump-

tion that applies to both uniform and non-uniform adversaries

(and which suffices for the transformation in Appendix E.2).

For simplicity of exposition, we opt to give the stronger, but

simpler-to-describe non-uniform notion here.

Definition 38 (Single-server authenticated PIR privacy).
Let (Digest,Query,Answer,Reconstruct) be a single-server
authenticated-PIR scheme. For a security parameter λ ∈ N,
a database x ∈ {0,1}N , an index i ∈ [N], and an adversary
A = (A0,A1), define the distribution

REALA ,x,i,λ :=











































β̂ :

d←Digest(1λ,x)

(st,q)←Query(d, i)

(stA ,a
∗)← A0(d,x,q)

x′i← Reconstruct(st,a∗)

b← ✶{x′i 6=⊥}
β̂← A1(stA,b)











































.

Similarly, for a simulator S = (S0,S1), define the distribution

IDEALA ,S ,x,λ :=































β :

d←Digest(1λ,x)

(stS ,q)← S0(d,x)

(stA ,a
∗)← A0(d,x,q)

b← S1(stS ,a
∗)

β← A1(stA ,b)































.

An authenticated PIR scheme (Digest,Query,Answer,
Reconstruct) has privacy if for every adversary A = (A0,A1)
there exists a simulator S = (S0,S1) such that for every

database length N = N(λ), database x ∈ {0,1}N , index i ∈
[N], the following holds:

|Pr[REALA ,x,i,λ = 1]−Pr[IDEALA ,S ,x,λ = 1]| ≤ negl(λ).

Remark 39 (Adaptive notions of privacy). We could also con-

sider stronger versions of privacy (Definition 38) where the

adversary chooses the query adaptively after seeing the digest.

In both of our single-server authenticated-PIR constructions

2Note that since the adversary is allowed to take non-uniform advice, we can

assume without loss of generality that the adversary is deterministic (and

incur at most a constant loss in advantage).

(Constructions 2 and 3), the digest is a deterministic function

of the database, and hence, choosing the query adaptively

does not help the adversary. For this reason, we opt to give

the (simpler) privacy definition.

E.2 Amplifying integrity

Later on, we will construct lattice-based authenticated-PIR

schemes (Construction 2) that has privacy but that have notice-

able integrity error ε = 1/poly(λ). Here, we show to combine

a secure authenticated-PIR scheme with integrity error ε with

any error-correcting code to obtain a private scheme with

negligible integrity error:

• The server first encodes each database record with an error-

correcting code. Suppose each encoded record is n bits.

The server constructs n databases where the jth database

contains the jth bit of the codeword for each record.

• To retrieve a record i, the client makes n authenticated

PIR queries to obtain the n bits of the codeword encoding

record i. Let y1, . . . ,yn be the responses. If y j =⊥ for any

j ∈ [n], the client rejects with output ⊥. Otherwise, the

client decodes y = y1 · · ·yn to obtain the record.

If the error-correcting code supports decoding codewords

with up to t errors and the authenticated-PIR scheme has

integrity error ε, then the integrity error of this construction is

at most εt+1. Specifically, to compromise integrity, the server

must corrupt at least t +1 bits y j. Integrity of the underlying

scheme ensures that the probability the adversary succeeds in

corrupting y j is at most ε. Each query is independent, so the

server’s success probability is now εt+1.

A basic instantiation of this paradigm is to instantiate us-

ing a repetition code where the encoding of a bit b ∈ {0,1}
simply consists of 2t + 1 copies of b. This basic repetition

code supports correcting up to t errors so the integrity er-

ror is now εt+1. Setting t = λ/ε then yields a construction

with negligible integrity error. When the database records are

longer (e.g., field elements instead of bits), we can use better

error-correcting codes with higher rate compared to the basic

repetition code. This allows amplifying integrity with fewer

repetitions. In the following, we describe the construction

more formally that supports multi-bit records over any field:

Definition 40 (Error-correcting code). A (k,n)-error-

correcting code over a finite field F that can correct up to t

errors consists of two efficient and deterministic algorithms:

• Encode(x)→ y: The encoding algorithm takes a message

x ∈ F
k and outputs a codeword y ∈ F

n.

• Decode(y)→ x: The decoding algorithm takes a code-

word F
n and outputs a message x ∈ F

n.

Moreover, for all x∈ Fk, y← Encode(x), and all y′ ∈ Fn such

that yi = y′i for all but at most t indices i∈ [n],Decode(y′) = x.

Construction 6 shows how to use an error-correcting code
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to amplify the security of a single-server PIR scheme. Cor-

rectness of Construction 6 follows by construction. Thus, we

focus on analyzing integrity and security.

Construction 6 (Amplifying integrity of single-server

authenticated PIR). Let ECC= (Encode,Decode) be

a (k,n)-error-correcting code over a finite field F that

can correct up to t errors. Let PIR0 = (Digest0,Query0,
Answer0,Reconstruct0) be a secure single-server authen-

ticated PIR scheme for records in F and which provides

ε-integrity. We construct a new single-server authenti-

cated PIR scheme from PIR0 with records in F
k.

Digest(1λ,x ∈ (Fk)
N
)→ d

1. Parse x = (x1, . . . ,xN) where x1, . . . ,xN ∈ F
k.

2. For each i ∈ [N], let yi ← Encode(xi) ∈ F
n. Write

yi = (yi,1, . . . ,yi,n).

3. For each j ∈ [n], let z j = (y1, j, . . . ,yn, j) ∈ F
N .

4. For each j ∈ [n], compute d j ← Digest0(1
λ,z j) and

output d = (d1, . . . ,dn).

Query (d, i ∈ [N])→ (st,q)

1. For each j ∈ [n], sample (st j,q j)← Query0(d j, i).

2. Output st= (st1, . . . ,stn),q = (q1, . . . ,qn).

Answer
(

d,x ∈ (Fk)
N
,q
)

→ a

1. Parse d = (d1, . . . ,dn) and q = (q1, . . . ,qn).

2. For each j ∈ [n], compute z j ∈ F
N from x using the

same procedure as Digest.

3. For each j ∈ [n], compute a j ← Answer0(d j,z j,q j)
and output a = (a1, . . . ,an).

Reconstruct(st,a)→ F
k ∪{⊥}

1. Parse the state st = (st1, . . . ,stn) and the responses

a = (a1, . . . ,an).

2. For each j ∈ [n], compute y j← Reconstruct0(st j,a j).

3. If there exists j ∈ [n] such that y j =⊥, output ⊥.

4. Otherwise, let y = (y1, . . . ,yn) and output Decode(y).

E.2.1 Integrity of Construction 6

Theorem 41 (Integrity of Construction 6). If PIR0 is secure

and provides ε-integrity and ECC is an error-correcting code

that can correct up to t errors, then Construction 6 (instanti-

ated with PIR0 and ECC) provides εt+1-integrity.

Proof. Take any database x ∈ (Fk)
N

, an index i ∈ [N], and

any efficient adversary A . Write x = (x1, . . . ,xN) and let

yi ← Encode(xi) for each i ∈ [n]. Let z j ← (y1, j, . . . ,yn, j)

and let d ← Digest(1λ,x). Then d = (d1, . . . ,dn) where

d j ← Digest0(1
λ,z j). Let (st,q)← Query(d, i) where st =

(st1, . . . ,stn), q = (q1, . . . ,qn), and (st j,q j)← Query0(d j, i).
Let a∗ = (a∗1, . . . ,a

∗
n) be the adversary’s response in the in-

tegrity experiment. Let y′j← Reconstruct0(st j,a
∗
j). Consider

now the output of x′← Reconstruct(st,a∗):

• Suppose there exists j ∈ [t] such that y′j =⊥. Then x′ =⊥.

• Suppose y′j = yi, j for all but at most t indices j ∈
[n]. Since ECC can correct up to t errors, x′ =
Decode((y′1, . . . ,y

′
j)) = xi.

• Suppose there are at least t +1 indices j ∈ [n] where y′j /∈
{

yi, j,⊥
}

. By integrity of PIR0, for each j ∈ [n],

Pr
[

y′j /∈
{

yi, j,⊥
}]

≤ ε(λ)+negl(λ).

Moreover, this probability is taken only over the choice of

the query randomness q j. Since the queries q1, . . . ,qn are

sampled independently, the probability that there exists t +
1 indices j where y′j /∈

{

yi, j,⊥
}

is at most εt+1 +negl(λ).

By the above analysis, we conclude that

Pr[x′ /∈ {xi,⊥}]≤ εt+1 +negl(λ),

and the claim holds.

E.2.2 Privacy of Construction 6

Theorem 42 (Privacy of Construction 6). If PIR0 provides

privacy, then Construction 6 (instantiated with PIR0) provides

privacy.

Proof. Take any database x ∈ (Fk)
N

, an index i ∈ [N], and

any efficient adversary A = (A0,A1). Let S ′ = (S ′0,S
′
1) be the

simulator for PIR0. We use (S ′0,S
′
1) to construct a simulator

S = (S0,S1) for the transformed scheme:

Simulator S0

(

1λ,d,x
)

1 : parse d as (d1, . . . ,dn)

2 : parse x as (x1, . . . ,xn)

3 : yi← Encode(xi) ∀i ∈ [N]

4 : for all j ∈ [n]:

5 : z j← (y1, j, . . . ,yn, j)

6 : (st j,q j)← S
′
0(1

λ,d j,z j)

7 : stS ← (st1, . . . ,stn)

8 : q← (q1, . . . ,qn)

9 : return (stS ,q)

Simulator S1(stS ,a
∗)

1 : parse stS as (q1, . . . ,qn)

2 : parse a∗ as (a∗1, . . . ,a
∗
n)

3 : b j← S
′
1(st j,a

∗
j) ∀ j ∈ [n]

4 : b← ✶
{

∀ j ∈ [n] : b j = 1
}

5 : return b

We show that the real distribution REALA ,x,i,λ and ideal dis-

tribution IDEALA ,S ,x,λ are computationally indistinguishable.

We define a sequence of hybrid experiments:

• H0: This is the real distribution REALA ,x,i,λ:
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– The challenger starts by parsing x = (x1, . . . ,xn) and

computes yi ← Encode(xi) for each i ∈ [N]. Then it

forms z j = (y1, j, . . . ,yn, j) for each j ∈ [n]. It computes

d j← Digest0(1
λ,z j) and sets d j = (d1, . . . ,dn).

– The challenger then samples (st j,q j)←Query0(d j,z j).
It define q = (q1, . . . ,qn) and gives (d,x,q) to A .

– The adversary responds with a∗ = (a∗1, . . . ,a
∗
n).

For each j ∈ [n], the challenger computes y j ←
Reconstruct0(st j,a

∗
j).

– Then it computes b← ✶
{

∀ j ∈ [n] : y j 6=⊥
}

and gives

b to A .

– The output of the experiment is A’s output.

• H1: Same as H0 except after the challenger com-

putes y1, . . . ,yn from a∗, the challenger computes b j ←
✶
{

y j 6=⊥
}

. Then, it sets b← ✶
{

∀ j ∈ [n] : b j = 1
}

.

• H1: Same as H0 except the challenger computes

(st j,q j)← S ′0(1
λ,d j,z j) for each j ∈ [N]. After the adver-

sary responds with a∗ = (a∗1, . . . ,a
∗
n), the challenger com-

putes b j as b j← S ′1(st j,a
∗
j). This is the ideal distribution

IDEALA ,S ,x,λ.

The difference between H0 and H1 is syntactic and their out-

puts are identically distributed. Hybrid H1 and H2 are com-

putationally indistinguishable by security of PIR0; formally,

this follows by a sequence of n hybrid experiments where

in experiment j, we switch to using the PIR0 simulator S ′ to

simulate the query q j and the response bit b j.

F Single-server authenticated PIR from LWE

In this section, we analyze Construction 2.

F.1 Lattice preliminaries

For a real value s > 0, we write ρs : R → R
+ to denote

the Gaussian function ρs(x) := exp(−πx2/σ2). The discrete

Gaussian distribution DZ,s with width parameter s is a discrete

distribution over the integers with probability mass function

Pr[X = x : X ← DZ,s] =
ρs(x)

∑y∈Z ρs(y)
.

We say that a distribution D (over R) is subgaussian with

parameter s if for every t ≥ 0,

Pr[|x|> t : x← D]≤ 2exp(−πt2/s2). (1)

The discrete Gaussian distribution DZ,s is subgaussian with

parameter s. In particular, this means that if we sample e←
DZ,s, then |e| ≤

√
λs with probability 1−negl(λ). Moreover,

if x1,x2 are independent subgaussian random variables with

parameters s1,s2, then x = αx1 + βx2 is subgaussian with

parameter

√

α2s2
1 +β2s2

2 for any α,β ∈ R.

In the following description, unless otherwise noted, all

operations are performed overZq. For a value x∈Zq, we write

|x| to denote the absolute value of its canonical representative

in the interval Z∩ [−q/2,q/2].

F.2 The learning-with-errors assumption

We now recall the learning with errors assumption [82]:

Definition 43 (Learning with Errors [82]). Let λ be a security

parameter. Let n = n(λ) be the lattice dimension, m = m(λ)
be the number of samples, q = q(λ) be a modulus, and s =
s(λ) be a Gaussian width parameter. Then, the learning with

errors (LWE) assumption LWEn,m,q,s states that the following

distributions are computationally indistinguishable:

(A,sTA+ eT)≈c (A,uT),

where A←R Z
n×m
q , s←R Z

n
q, e← Dm

Z,s, and u←R Z
n
q.

The security of our construction will rely on the “extended

LWE” assumption [20], which essentially says that LWE

holds even if the distinguisher learns a linear combination

of the LWE errors. We state the assumption below:

Definition 44 (Extended LWE [20]). Let λ be a security pa-

rameter and let n = n(λ), m = m(λ), q = q(λ), and s = s(λ)
be lattice parameters (as in Definition 43). Then, the extended

learning with errors (extLWE) assumption extLWEn,m,q,s

states that for every x ∈ {0,1}m, the following distributions

are computationally indistinguishable:

(A,sTA+ eT,eTx)≈c (A,uT,eTx),

where A←R Z
n×m
q , s←R Z

n
q, e← Dm

Z,s, and u←R Z
n
q. More pre-

cisely, for an adversary A , we write Adv
(n,m,q,s)
extLWE [A ] to denote

the distinguishing advantage of A for the aforementioned

distributions.

Previously, Brakerski et al. [20, Lemmas 4.3, 4.7] showed

that hardness of the extended LWE assumption extLWEn,m,q,s

can be based on the hardness of the vanilla LWE assumption

LWEn,m,q,s′ for s′ = O(s).

F.3 Correctness

Theorem 45 (Correctness of Construction 2). If B≥
√

λNs,

then Construction 2 is correct.

Proof. Take any database x ∈ {0,1}N and index i ∈ [N]. Let

d = Ax be the digest, qT = sTA+eT+ t ·ηT
i be the query, and

a← qTx be the response. Then, we have

a− sTd− xit = qTx− sTd− xit

= sTAx+ eTx+ t ·ηT
i x− sTAx− xit

= eTx. (2)
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Since the components of e are independent discrete Gaussian

random variables with parameter s, eTx is subgaussian with

parameter ‖x‖ · s≤
√

Ns since x ∈ {0,1}N . By Eq. (1),

Pr[|eTx|< B : e← DN
Z,s]≥ Pr[|eTx| ≤

√
λNs : e← DN

Z,s]

= 1−negl(λ). (3)

To complete the proof, we show that |a− sTd− (1−xi)t| ≥ B.

By Eq. (2),

|a− sTd− (1− xi)t|= |eTx+(1−2xi)t|.

By Eq. (1), |eTx|< B with overwhelming probability. Since

1− 2xi ∈ {−1,1} and t ∈ [2B,q− 2B], with overwhelming

probability over the choice of e, we have eTx+(1−2xi)t ∈
[B,q−B], or equivalently, |eTx+(1−2xi)t| ≥ B.

F.4 A key lemma

Lemma 46. Let λ be a security parameter, x ∈ {0,1}N be a

database, i ∈ [N] be an index, and A be an adversary. Con-

sider Construction 2 and define distributions D
(0)
A ,x,i,λ, D

(1)
A ,x,i,λ:

Distribution D
(0)
A ,x,i,λ

1 : d←Digest(1λ,x)

2 : (st,q)←Query(d, i)

3 : (stA ,a
∗)← A(d,x,q)

4 : x′i← Reconstruct(st,a∗)

5 : return x′i

Distribution D
(1)
A ,x,i,λ

1 : d←Digest(1λ,x)

2 : q←R Z
N
q ,e← DN

Z,s

3 : (stA ,a
∗)← A(d,x,q)

4 : t←R [2B,q−2B]

5 : uT← qT− t ·ηT

i

6 : â∗← a∗−uTx+ eTx

7 : if |â∗|< B then

8 : x′i← 0

9 : elseif |â∗− t|< B then

10 : x′i← 1

11 : else x′i←⊥
12 : return x′i

Suppose the extLWEn,N,q,s assumption holds and H is mod-

eled as a random oracle. Then, for every database length

N = N(λ), database x ∈ {0,1}N , index i ∈ [N], and every ad-

versary A running in time t = t(λ), there exists an adversary

B running in time poly(t) such that

|Pr[D
(0)
A ,x,i,λ = 1]−Pr[D

(1)
A ,x,i,λ = 1]| ≤ Adv

(n,N,q,s)
extLWE [B].

Proof. Fix a database x ∈ {0,1}N , an index i ∈ [N], and any

efficient adversary A . In the following analysis, we write

ai ∈ Z
n
q to denote H(i) and we model H as a random oracle

(which the reduction algorithm is allowed to program [13]).

We now define a sequence of hybrid experiments:

• H0: This is the distribution D
(0)
A ,x,i,λ. In this distribution, the

output x′i is computed via x′i← Reconstruct(st,a∗).

• H1: Same as H0 except the challenger changes how x′i is

computed. Instead of computing x′i← Reconstruct(st,a∗),
the challenger sets x′i as follows:

– If |a∗−(sTA+eT)x+eTx−kt|< B for k ∈ {0,1}, then

x′i← k.

– Otherwise, the challenger sets x′i←⊥.

• H2: Same as H1 except the challenger replaces sTA+ eT

with a uniform random vector uT←R Z
N
q . Specifically, the

challenger computes qT← uT+ t ·ηT
i and x′i as follows:

– If |a∗−uTx+ eTx− kt|< B for k ∈ {0,1}, then x′i← k.

– Otherwise, the challenger sets x′i←⊥.

• H3: Same as H2 except the challenger samples q←R Z
N
q .

Then, after the adversary outputs the response a∗, it sam-

ples t ←R [2B,q− 2B] and sets uT ← qT− t ·ηT
i . The re-

sponse a′i is computed exactly as in H2. This is the distri-

bution D
(1)
A ,x,i,λ.

To complete the proof, we now show that each adjacent pair

of distributions is indistinguishable.

• Hybrids H0 and H1 are identical distributions. In both ex-

periments, d = Ax, qT = sTA+eT+ t ·ηT
i and st= (d,s, t).

Let a∗ be the adversary’s response in H0 and consider the

value of x′i← Reconstruct(st,a∗). Let z = a∗− sTd. Then,

z = a∗− sTd = a∗− sTAx

= a∗− (sTA+ eT)x+ eTx

In H0, the challenger outputs k ∈ {0,1} if |a∗−sTd−kt|=
|z− kt| < B and ⊥ otherwise. By the above calculation,

this precisely coincides with the procedure in H1.

• Hybrids H1 and H2 are computationally indistinguishable

under the extLWEn,N,q,s assumption and modeling H as a

random oracle. To see this, suppose there exists an efficient

adversary A that is able to distinguish hybrids H1 and H2

with non-negligible advantage. We use A to construct an

adversary B that breaks the extended LWE assumption:

1. At the beginning of the game, algorithm B receives an

extended LWE challenge (A,zT,y) where A ∈ Z
n×N
q ,

z ∈ Z
N
q , and y ∈ Zq.

2. Let a1, . . . ,aN ∈ Z
n
q be the columns of A. Algorithm B

programs the random oracle H(i) 7→ ai for each i ∈ [N].
If A ever queries H on an input k /∈ N, algorithm B

samples a random rk ←R Z
n
q and defines the mapping

H(k) 7→ rk.

3. Algorithm B now constructs the digest d←Ax as in H1

and H2. To construct the query, algorithm B samples

t←R [2B,q−2B] and sets qT← zT+ t ·ηT
i . It gives the

27



digest d, the database x, and the query q to A .

4. Algorithm A outputs a response a∗. Algorithm B com-

putes x′i as follows:

– If |a∗−zTx+y−kt|< B for k ∈ {0,1}, then x′i← k.

– Otherwise, x′i←⊥.

5. Algorithm B replies to A with x′i and outputs whatever

A outputs.

Since A←R Z
n×N
q , the outputs of the random oracle are

correctly simulated. Corresponding, algorithm B perfectly

simulates the distribution of the digest d for A . We now

consider the two possible challenge distributions:

– Suppose zT = sTA+ eT and y = eTx. Then the query q

and the response x′i are distributed exactly as in H1.

– Suppose zT←R Z
N
q and y = eTx. Then, the query q and

the response x′i are distributed exactly as in H2.

We conclude that algorithm B breaks the extended LWE

assumption with the same distinguishing advantage as A

and the claim follows. More precisely, we can write Hi(A)
to denote the output of a distinguisher A on input a sample

from Hi. Then our reduction shows that for all adversaries

A running in time t, there exists an adversary B running

in time poly(t) such that

Adv
n,N,q,s
extLWE[B]≥ |Pr[H1[A ] = 1]−Pr[H2[A ] = 1]|.

• Hybrids H2 and H3 are identically distributed. In H2, q =
u+ t ·ηi where u←R Z

N
q and u is sampled independently

of all other quantities. Thus, the distribution of q in H2

is uniform over ZN
q , which matches the distribution in H3.

In both experiments, u = q− t · ηi, where t ←R [2B,q−
2B].

F.5 Integrity

Theorem 47 (Integrity of Construction 2). Suppose the

extLWEn,N,q,s assumption holds and H is modeled as a ran-

dom oracle. Then, Construction 2 (instantiated with param-

eters n,N,q,s,B and hash function H) has integrity error at

most ε = (2B−1)/(q−4B+1).

Proof. Fix a database x ∈ {0,1}N , an index i ∈ [N], and any

efficient adversary A . We now define a sequence of hybrid

experiments:

• H0: This is the real integrity game.

• H1: Same as H0 except the challenger samples q←R Z
N
q

and e← DN
Z,s. Then, after the adversary outputs the re-

sponse a∗, the challenger samples t ←R [2B,q− 2B] and

sets uT← qT−t ·ηT
i . If |a∗−uTx+ eTx− kt|<B for some

k ∈ {0,1}, then the challenger sets x′i← k. Otherwise, the

challenger sets x′i←⊥.

• H2: Same as H1 except the challenger changes how it

computes x′i:

– If |a∗−uTx+ eTx− xit|< B, then x′i← xi.

– Otherwise, the challenger sets x′i←⊥.

Specifically, in H2, it is guaranteed that x′i ∈ {xi,⊥}.
We now show that the outputs of each adjacent pair of hybrid

distributions are computationally indistinguishable:

• Hybrids H0 and H1 are computationally indistinguishable

by Lemma 46.

• The statistical distance between H1 and H2 is at most (2B+
1)/(q−4B+1). By construction, the two experiments are

identical unless

|a∗−uTx+ eTx− (1− xi)t|< B. (4)

Now, u = q− t ·ηi, so

a∗−uTx+ eTx− (1− xi)t = a∗−qTx+ eTx− (1−2xi)t.

Since 1− 2xi ∈ {−1,1}, there are at most 2B− 1 values

of t ∈ Zq for which Eq. (4) holds. Since t is sampled uni-

formly at random from a set of size q−4B+1 and inde-

pendently of a∗, u, x, and e, the probability that t lands in

the interval of size 2B−1 is at most (2B−1)/(q−4B+1).
Correspondingly, the statistical distance between H1 and

H2 is (2B−1)/(q−4B+1).

By construction, the output x′i in H2 is guaranteed to be either

xi or ⊥. By a hybrid argument, in the real integrity game H0,

it must be the case that

Pr[x′i ∈ {xi,⊥}]≤
2B−1

q−4B+1
+negl(λ),

which proves the claim.

F.6 Privacy

Theorem 48 (Privacy of Construction 2). Suppose the

extLWEn,N,q,s assumption holds and H is modeled as a ran-

dom oracle. Then, Construction 2 (instantiated with parame-

ters n,N,q,s,B and hash function H) provides privacy. More

precisely, for every adversary running in time t = t(λ), there

exists an adversary B running in time poly(t) such that

|Pr[REALA ,x,i,λ = 1]−Pr[IDEALA ,S ,x,λ = 1]| ≤Adv
n,N,q,s
extLWE[B],

where REALA ,x,i,λ and IDEALA ,S ,x,λ are the distributions de-

fined in Definition 38.

Proof. Fix a database x ∈ {0,1}N , an index i ∈ [N], and any

efficient adversary A = (A0,A1). We construct an efficient

simulator S = (S0,S1) as follows:
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Simulator S0

(

1λ,d,x
)

1 : q←R Z
N
q ,e← DN

Z,s

2 : stS ← qTx− eTx

3 : return (stS ,q)

Simulator S1(stS ,a
∗)

1 : if |a∗− stS |< B, b← 1

2 : else, sample t←R [2B,q−2B]

3 : and b← ✶{|a∗− stS − t|< B}
4 : return b

We show that the real distribution REALA ,x,i,λ and ideal dis-

tribution IDEALA ,S ,x,λ are computationally indistinguishable.

We define a sequence of hybrid experiments:

• H0: This is the real distribution REALA ,x,i,λ. In this

distribution, the response x′i is computed via x′i ←
Reconstruct(st,a∗).

• H1: Same as H0 except the challenger samples q←R Z
N
q

and e← DN
Z,s. Then, after the adversary outputs the re-

sponse a∗, the challenger samples t ←R [2B,q− 2B] and

sets uT← qT−t ·ηT
i . If |a∗−uTx+ eTx− kt|<B for some

k ∈ {0,1}, then the challenger sets x′i← k. Otherwise, the

challenger sets x′i←⊥.

• H2: Same as H1, except instead of computing x′i, the

challenger sets b = 1 if |a∗ − qTx + eTx| < B. Oth-

erwise, it samples t ←R [2B,q − 2B] and sets b ←
✶{|a∗−qTx+ eTx− t|< B} This is the ideal distribution

IDEALA ,S ,x,λ.

To complete the proof, we now show that each adjacent pair

of distributions is indistinguishable. First, hybrids H0 and

H1 are computationally indistinguishable by Lemma 46. To

complete the proof, we show that H1 and H2 are identically

distributed:

• Hybrids H1 and H2 are identically distributed. Let a∗ ∈
Zq be the adversary’s response in the two experiments.

Define the quantity z = a∗−qTx+ eTx. We consider two

possibilities:

– Suppose |z|<B. In H2, the challenger always sets b= 1.

We claim this is also the case in H1. By construction,

we can first write

uTx = qTx− t ·ηT
i x = qTx− xit. (5)

This means

|z|=
∣

∣a∗−qTx+ eTx
∣

∣=
∣

∣a∗−uTx+ eTx− xit
∣

∣. (6)

Since xi ∈ {0,1}, we have x′i = xi and b = 1 in H1.

– Suppose |z| ≥ B. In this case, the challenger in H2 sam-

ples t ←R [2B,q− 2B] and sets b = 1 if |z− t| < B and

b = 0 otherwise. Consider the challenger’s behavior in

H1. By Eq. (6), we have that b = 1 only if
∣

∣a∗−uTx+ eTx− (1− xi)t
∣

∣< B.

By Eq. (5), this is equivalent to |z− (1−2xi)t| < B.

Like in H2, the challenger in H1 samples t←R [2B,q−

2B] after the adversary outputs a∗. We consider two

possibilities:

* If xi = 0, then 1− 2xi = 1, and the challenger in

H1 sets b← ✶{|z− t|< B}. This is identical to the

behavior in H2.

* If xi = 1, then 1− 2xi = −1, and the challenger in

H1 sets b← ✶{|z+ t|< B}. Since t←R [2B,q−2B]
the distributions of t mod q and −t mod q are iden-

tical (the interval is symmetric about 0 over Zq).

Since t and z are independent, the distribution of

✶{|z+ t|< B} is identically distributed as that of

✶{|z− t|< B}. Once again, the distribution of b in

H1 is distributed identically to that in H2.

We conclude that the distribution of b is identical in H1

and H2 in this case.

G Single-server authenticated PIR from DDH

We now analyze our DDH-based single-server scheme (Con-

struction 3). Correctness follows by construction. Therefore,

this section focuses on security.

G.1 Decisional Diffie-Hellman assumption

We first recall the decisional Diffie-Hellman assumption:

Definition 49 (Decisional Diffie-Hellman). Let λ be a secu-

rity parameter and let G be a group of prime order p where

1/p = negl(λ). Let g be a generator of G. We say that the

decisional Diffie-Hellman assumption (DDH) holds in G if

the following distributions are computationally indistinguish-

able:

(g,h,gx,hx)≈c (g,h,g
x,z)

where h,z←R G and x←R Zp.

By a random self-reduction [72, 84], it is straightforward

to show that if the DDH assumption holds in G, then for all

polynomials N = N(λ), the following distributions are also

computationally indistinguishable:

(g,h1,h
r
1, . . . ,hN ,h

r
N)≈c (g,h1,z1, . . . ,hN ,zN), (7)

where h1, . . . ,hN ,z1, . . . ,zN ←R G and r←R Zp.

G.2 A key lemma

To analyze the security (and integrity) of Construction 3, we

start by proving the following lemma, which will feature in

both the security and the integrity analysis.

Lemma 50. Let λ be a security parameter, x ∈ {0,1}N be a

database, i ∈ [N] be an index, and A be an adversary. Con-

sider Construction 3 and define distributions D
(0)
A ,x,i,λ and

D
(1)
A ,x,i,λ:
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Distribution D
(0)
A ,x,i,λ

1 : d←Digest(1λ,x)

2 : (st,q)←Query(d, i)

3 : (stA ,a
∗)← A(d,x,q)

4 : x′i← Reconstruct(st,a∗)

5 : return x′i

Distribution D
(1)
A ,x,i,λ

1 : d←Digest(1λ,x)

2 : q←R G
N

3 : (stA ,a
∗)← A(d,x,q)

4 : if a∗ = ∏
j∈[N]

q
x j

j then x′i← xi

5 : else x′i←⊥
6 : return x′i

Suppose the DDH assumption holds in G and H is modeled as

a random oracle. Then, for every database length N = N(λ),
database x ∈ {0,1}N , index i ∈ [N], and efficient adversary

A ,

∣

∣

∣
Pr[D

(0)
A ,x,i,λ = 1]−Pr[D

(1)
A ,x,i,λ = 1]

∣

∣

∣
≤ negl(λ).

Proof. Take any database length N = N(λ), database x ∈
{0,1}N and an index i ∈ [N]. We show that the distributions

D
(0)
A ,x,i,λ and D

(1)
A ,x,i,λ are computationally indistinguishable. In

the following analysis, we write hi ∈G to denotes H(i), and

we model H as a random oracle (which the reduction algo-

rithm is allowed to program) [13]. We now define a sequence

of hybrid experiments:

• H0: This is the distribution D
(0)
A ,x,i,λ. In this distribu-

tion, the response x′i ∈ {0,1,⊥} is computed via x′i ←
Reconstruct(st,a∗).

• H1: Same as H0, except the challenger changes how x′i is

computed. Instead of computing x′i← Reconstruct(st,a∗),
the challenger sets x′i as follows:

– If a∗ = h
yt
i (h

r
i )

xi ∏ j 6=i(h
r
j)

x j for y ∈ {0,1}, then x′i← y.

– Otherwise, the challenger sets x′i←⊥.

• H2: Same as H1, except the challenger replaces the

tuple of group elements (g,h1,h
r
1, . . . ,hN ,h

r
N) with

(g,h1,z1, . . . ,hN ,zN) where z1, . . . ,zN ←R G and r ←R Zp.

Specifically, the challenger constructs the query q =
(q1, . . . ,qN) by setting q j ← z j for j 6= i and qi ← zih

t
i .

When computing x′i, the challenger proceeds as follows:

– If a∗ = h
yt
i z

xi
i ∏ j 6=i z

x j

j for y ∈ {0,1}, then x′i← y.

– Otherwise, the challenger sets x′i←⊥.

• H3: Same as H2 except the challenger samples q←R G
N .

Then, after the adversary outputs the response a∗, it sets

z j = q j for all j 6= i and zi ← qi/ht
i where t ←R Zp. The

response a′i is computed exactly as in H2.

• H4: Same as H2 except the challenger again changes how

it computes x′i:

– If a∗ = h
xit
i z

xi
i ∏ j 6=i z

x j

j , then x′i← xi.

– Otherwise, the challenger sets x′i←⊥.

• H5: Same as H4, except the the challenger sets x′i← xi if

a∗ = ∏ j∈[N] q
x j

j and x′i←⊥ otherwise. This is the distribu-

tion D
(1)
A ,x,i,λ.

To complete the proof, we now show that each adjacent pair

of distributions are indistinguishable:

• Hybrids H0 and H1 are identical distributions. In both

experiments, d = ∏ j∈[N] h
x j

j , q = (q1, . . . ,qN), and st =

(i,d,r, t), where q j = hr
j for j 6= i and qi = hr+t

i for some

r, t ∈ Zp. Let a∗ be the adversary’s response in H0, and

consider the value of x′i← Reconstruct(st,a∗) in H0:

– If a∗ = dr, then x′i = 0. If a∗ = drht
i , then x′i = 1. This

is equivalent to setting x′i = y ∈ {0,1} if a∗ = drh
yt
i .

Substituting in the above relations, this means that in

H0, x′i = y ∈ {0,1} if

a∗ = drh
yt
i =

(

∏
j∈[N]

h
x j

j

)r

h
yt
i = h

yt
i (h

r
i )

xi ∏
j 6=i

(hr
j)

xi .

– Otherwise x′i =⊥.

This is precisely the distribution of x′i in H1.

• Hybrids H1 and H2 are computationally indistinguishable

under the DDH assumption and modeling H as a random

oracle. To see this, suppose there exists an efficient ad-

versary A that is able to distinguish hybrids H1 and H2

with non-negligible probability. We use A to construct an

adversary B that distinguishes the distributions in Eq. (7):

1. At the beginning of the game, algorithm B receives a

challenge vector (g,h1,T1, . . . ,hN ,TN).

2. Algorithm B programs the random oracle H(i) 7→ hi

for each i∈ [N]. If A ever queries H on an input k /∈ [N],
algorithm B samples a random rk←R G and defines the

mapping H(k) 7→ rk.

3. Algorithm B now constructs the digest d←∏ j∈[N] h
x j

j

as in H1 and H2. To construct the query, algorithm B

sets q j ← Tj for j 6= i and qi← Tih
t
i where t ←R Zp. It

gives the digest d, the database x, and the query q to A .

4. Algorithm A outputs a response a∗. Algorithm B com-

putes x′i as follows:

– If a∗ = h
yt
i T

xi
i ∏ j 6=i T

x j

j , then x′i← xi.

– Otherwise, x′i←⊥.

5. Algorithm B replies to A with x′i and outputs whatever

A outputs.

Since h1, . . . ,hN ←R G, the outputs of the random oracle

are correctly simulated. Correspondingly, algorithm B per-

fectly simulates the distribution of the digest d for A . We
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now consider the two possible challenge distributions:

– Suppose Ti = hr
i for all i∈ [N] and where r←R Zp. In this

case, q j = hr
j for all j 6= i and q j = hr+t

i where t←R Zp.

Similarly, x′i = y ∈ {0,1} if a∗ = h
yt
i (h

r
i )

xi ∏ j 6=i(h
r
j)

x j ,

which exactly matches the distribution in H1.

– Suppose Ti = zi←R G for all i ∈ [N]. In this case, q j =
z j for all j 6= i and q j = zih

t
i where t ←R Zp. This is

the query distribution in H2. Similarly, to compute the

response x′i, algorithm B sets x′i = y ∈ {0,1} if a∗ =
h

yt
i z

xi
i ∏ j 6=i z

x j

j , which matches the distribution in H2.

We conclude that algorithm B distinguishes between the

distributions in Eq. (7) with the same distinguishing ad-

vantage as A , and the claim follows.

• Hybrids H2 and H3 are identically distributed. In H2, the

z j’s are sampled uniformly and independently from G (and

also independent of h1, . . . ,hN , t). Thus, the distribution of

q = (q1, . . . ,qN) in H2 is identical to that in H3. Finally, in

H2, qi = zih
t
i , where t←R Zp. This is the distribution in H3.

• The statistical distance between H3 and H4 is 1/p =
negl(λ). By construction, the two experiments are iden-

tical unless the adversary outputs a∗ where a∗ =

h
(1−xi)t
i z

xi
i ∏ j 6=i z

x j

j . Using the relation zi = qi/ht
i , this be-

comes

a∗ = h
(1−xi)t
i

q
xi
i

h
xit
i

∏
j 6=i

z
x j

j = (ht
i)

1−2xiq
xi
i ∏

j 6=i

z
x j

j ,

or equivalently, if

(ht
i)

1−2xi =
a∗

q
xi
i ∏ j 6=i z

x j

j

. (8)

Now, in H3 and H4, the challenger samples t←R Zp after

the adversary outputs a∗. Moreover, since xi ∈ {0,1}, it

follows that 1−2xi ∈ {−1,1}. Since t is sampled indepen-

dently of a∗, qi and z j for all j ∈ [N], and hi is a generator

of G (with overwhelming probability), Eq. (8) holds with

probability at most 1/p = negl(λ) over the randomness of

t.

• Hybrids H4 and H5 are identical experiments. In H4, the

challenger sets x′i = xi if and only if

a∗ = h
xit
i z

xi
i ∏

j 6=i

z
x j

j = (zih
t
i)

xi ∏
j 6=i

z
x j

j = ∏
j∈[N]

q
x j

j ,

since q j = z j for all j 6= i and qi = zih
t
i . This is the distri-

bution in H5.

G.3 Integrity

Theorem 51 (Integrity of Construction 3). Suppose the DDH

assumption holds in G and H is modeled as a random oracle.

Then, Construction 3 (instantiated with group G and hash

function H) provides integrity.

Proof. Fix a database x ∈ {0,1}N and an index i ∈ [N], and

take any efficient adversary A for the integrity game. We

define the following hybrid experiments:

• H0: This is the real integrity game.

• H1: Same as H0, except the challenger samples q←R G
N

and sets x′i← xi if a∗ = ∏ j∈[N] q
x j

j and x′i←⊥ otherwise.

The outputs of H0 and H1 are computationally indistinguish-

able by Lemma 50. Next, in H1, Pr[x′i /∈ {xi,⊥}] = 0 by con-

struction. The claim now follows by a hybrid argument.

G.4 Privacy

Theorem 52 (Privacy of Construction 3). Suppose the DDH

assumption holds in G and H is modeled as a random oracle.

Then, Construction 3 (instantiated with group G and hash

function H) provides privacy.

Proof. Fix a database x ∈ {0,1}N and an index i ∈ [N]. Take

any efficient adversary A = (A0,A1). We construct an effi-

cient simulator S = (S0,S1) as follows:

Simulator S0

(

1λ,d,x
)

1 : q = (q1, . . . ,qN)←R G
N

2 : stS ←∏ j∈[N]
q

x j

j

3 : return (stS ,q)

Simulator S1(stS ,a
∗)

1 : b← ✶{a∗ = stS}
2 : return b

We show that the real distribution REALA ,x,i,λ and ideal dis-

tribution IDEALA ,S ,x,λ are computationally indistinguishable.

We define a sequence of hybrid experiments:

• H0: This is the real distribution REALA ,x,i,λ.

• H1: Same as H0, except the challenger samples q←R G
N

and sets x′i← xi if a∗ = ∏ j∈[N] q
x j

j and x′i←⊥ otherwise.

• H2: This is the ideal distribution IDEALA ,S ,x,λ.

We now argue that adjacent pair of hybrid experiments are

indistinguishable:

• H0 and H1 are computationally indistinguishable by

Lemma 50.

• H1 and H2 are identical experiments. Namely, in H2, the

challenger sets b = 1 if and only if a∗ = ∏ j∈[N] q
x j

j , which

coincides with the behavior in H1.

G.5 Handling larger database rows

Our DDH-based construction (Construction 3) directly sup-

ports (small) multi-bit database records with no communi-

cation overhead. The cost is the client’s computational cost

increases by a factor of 2ℓ/2, where ℓ is the bit-length of the

record.

The idea is simple. Suppose the database consists of N ℓ-
bit records x1, . . . ,xℓ ∈ {0,1}ℓ. The digest, query, and answer
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algorithms are unchanged (the only difference is that instead

of each record xi ∈ {0,1} being a single bit, we now treat each

record xi ∈ {0,1}ℓ as an integer between 0 and 2ℓ−1). The

only difference is during reconstruction, the client now learns

the value h
xit
i . Since the client knows the blinding factor t, it

can exponentiate with t−1 mod p to obtain h
xi
i . Namely, the

client is able to obtain an encoding of the database record in

the exponent. Recovering the value of xi now requires com-

puting a discrete logarithm (base hi). This can be computed

in time O(
√

2ℓ) using Pollard’s kangaroo method [80], or al-

ternatively, if ℓ is very small, then the client can precompute

a lookup table of possible values for h
xi
i . Thus, this approach

is suitable for small values of ℓ (e.g., ℓ≤ 32).

While there are applications for a small-row single-server

authenticated PIR scheme, we still hope that it is possible

to construct a more bandwidth- and computation-efficient

scheme in the future. We unsuccessfully attempted to combine

an unauthenticated classic single-server PIR scheme with

some sort of algebraic integrity-protection mechanism, but

it seems non-trivial to provide our integrity properties while

making only black-box use of the underlying single-server

PIR scheme. Further investigation along these lines would be

an interesting task for future work.

Supporting multi-bit records in the lattice-based setting.

We note that a similar approach as above can be applied to the

lattice-based construction (Construction 2) to support multi-

bit records. While correctness holds, the security analysis

is more challenging. Namely, both integrity and privacy of

Construction 2 (Theorems 47 and 48) rely on the extended

LWE assumption where we require that LWE holds even if

the distinguisher is given a linear combination eTx of the

LWE error. When the database entries are binary-valued (i.e.,

x ∈ {0,1}N), we can appeal to [20, Lemma 4.3, Claim 4.6,

Lemma 4.7] to base hardness on standard LWE. It seems

plausible that a similar (possibly less tight) reduction applies

when the database x ∈ ({0,1}ℓ)N consists of ℓ-bit integers,

and this is an interesting question for further exploration.

H Parameter selection

In this section we discuss parameter selection for the scheme

that use integrity amplification (Construction 6). As the base

authenticated PIR scheme (denoted PIR0 in Construction 6)

we use the LWE-based scheme (Construction 2) with mod-

ulus q = 232 and lattice dimension n = 1100, which has in-

tegrity error ε = (2B− 1)/(q− 4B + 1) (cf. Theorem 47).

The correctness of Construction 2 (Theorem 45) states that

B≤
√

λNs. By Theorem 41 we know that if we use a simple

repetition code (which corrects up to t errors by expanding

each database bit into 2t + 1 codeword bits) and PIR0 has

integrity error ε, then Construction 6 has integrity error εt+1.

Table 9 shows the choice of t to achieve integrity error εΠ

in Construction 6 for different database sizes N, where N

Database size N [bits]: 213 223 233

Integrity error εΠ = 2−64 3 4 7

Integrity error εΠ = 2−128 6 9 15

Table 9: Selection of the error correcting code parameter t for differ-

ent database sizes and integrity errors.

indicates the number of single bit records in the database.
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