
FASER: Balancing Effectiveness and Flakiness of
Non-Deterministic Machine Learning Tests

Chunqiu Steven Xia
University of Illinois

Urbana-Champaign

chunqiu2@illinois.edu

Saikat Dutta
University of Illinois

Urbana-Champaign

saikatd2@illinois.edu

Sasa Misailovic
University of Illinois

Urbana-Champaign

misailo@illinois.edu

Darko Marinov
University of Illinois

Urbana-Champaign

marinov@illinois.edu

Lingming Zhang
University of Illinois

Urbana-Champaign

lingming@illinois.edu

AbstractÐ Testing Machine Learning (ML) projects is chal-
lenging due to inherent non-determinism of various ML al-
gorithms and the lack of reliable ways to compute reference
results. Developers typically rely on their intuition when writing
tests to check whether ML algorithms produce accurate results.
However, this approach leads to conservative choices in selecting
assertion bounds for comparing actual and expected results in test
assertions. Because developers want to avoid false positive failures
in tests, they often set the bounds to be too loose, potentially
leading to missing critical bugs.

We present FASER ± the first systematic approach for bal-
ancing the trade-off between the fault-detection effectiveness
and flakiness of non-deterministic tests by computing optimal
assertion bounds. FASER frames this trade-off as an optimization
problem between these competing objectives by varying the
assertion bound. FASER leverages 1) statistical methods to
estimate the flakiness rate, and 2) mutation testing to estimate
the fault-detection effectiveness. We evaluate FASER on 87
non-deterministic tests collected from 22 popular ML projects.
FASER finds that 23 out of 87 studied tests have conservative
bounds and proposes tighter assertion bounds that maximizes the
fault-detection effectiveness of the tests while limiting flakiness.
We have sent 19 pull requests to developers, each fixing one test,
out of which 14 pull requests have already been accepted.

I. INTRODUCTION

Machine Learning (ML) and Artificial Intelligence (AI) are

revolutionizing critical fields like autonomous driving [1] and

healthcare [2]. A key challenge in such fields is to avoid

inaccurate computations that may lead to faulty predictions

and consequently pose a risk to society [3], [4]. ML libraries

form an integral component of the ML infrastructure that

developers use to build ML applications. Subtle accuracy bugs

(i.e., non-crashing bugs that may produce incorrect results)

in such libraries can remain unnoticed but lead to wrong

results in user-facing applications. Hence, developers must

take appropriate measures to eliminate such bugs.

ML libraries primarily implement various algorithms such

as Deep Learning [5], Probabilistic Programming [6], and

Reinforcement Learning [7]. A common trait of such ML algo-

rithms is that they are non-deterministic ± separate executions

can produce different results. As such, it is difficult to obtain

reference solutions to compare against the algorithms’ results.

Hence, developers often make conservative estimates when

selecting thresholds comparing the actual and expected results

(typically measured by metrics such as model accuracy). This

1 def test_MLAlgorithm():

2 train_data, val_data = generate_data()

3 model = MLAlgorithm(train_data)

4 model.train()

5 val_error = model.evaluate(val_data)

6 assert val_error < exp_max_error

Listing 1: A Common Pattern for Tests in ML Projects

choice diminishes the fault-detection effectiveness of tests

checking for accuracy of such ML algorithms.
Listing 1 shows a common pattern for many tests used

for checking the accuracy of ML algorithms. The test (i)

generates random training and validation data on Line 2, (ii)

trains a model using an ML algorithm on the training data on

Lines 3-4, (iii) evaluates the trained model on validation data

and computes a metric (validation error) on Line 5, and (iv)

asserts that the metric is below an acceptable constant value,

exp_max_error, on Line 6. Such test assertions that compare

the result against a pre-determined fixed threshold are known

as approximate assertions [8], [9], [10], [11] while the thresh-

old itself (exp_max_error) is known as the assertion bound.
Recent studies [10], [12] have found a significant number

of non-deterministic tests in ML projects, which account for a

major portion of the total test-suite running time (>31%) [9].

However, improving such tests requires careful analysis and

deep understanding of the code/algorithm under test. On one

hand, if the developers select a bound that is too tight (or

liberal) it may make the test flaky ± pass and fail non-

deterministically ± due to the randomness of the underlying

ML algorithm. Test flakiness [13] hurts developer productivity

and reduces the reliability of test results. On the other hand, if

the bound is too loose (or conservative), the test may miss

detecting accuracy bugs, thereby reducing its effectiveness.

Developers typically set these bounds based on their intuition

and are inclined to choose conservative bounds to avoid flaki-

ness, but can compromise on its fault-detection effectiveness.
Due to their importance in avoiding accuracy bugs, im-

proving the fault-detection effectiveness of such tests is very

important. Hence, the key question becomes: how can we

systematically determine assertion bounds that maximize the

fault-detection effectiveness of the test without making it

unacceptably flaky?

Our Work. To address this question, we propose FASER

± the first approach that systematically balances the trade-

off between the fault-detection effectiveness and flakiness of

non-deterministic regression tests for ML algorithms with the

goal of determining optimal assertion bounds. FASER frames

this trade-off as an optimization problem of two competing

objectives of 1) maximizing fault-detection effectiveness and 2)

minimizing flakiness, by varying the assertion bound. Since it

is practically not possible to exactly solve these two objectives,

the main challenge is to obtain a reliable estimate of the

objectives, in the presence of non-determinism.

FASER employs two key techniques:

• To estimate the passing probability (or conversely flaki-

ness) of the test, we leverage concentration inequalities

from probability theory [14], [15], [16], [17]. Concentration

Inequalities provide conservative probabilistic bounds on

how much a random variable deviates from a given value

(e.g., its mean). We use them to estimate the probability

that the variable (in the example val_error, sampled

over multiple runs) does not exceed a specific assertion

bound (exp_max_error). They key advantages of using

concentration inequalities are that they are non-parametric,

hold under very mild assumptions, and can be effectively

used to reason about a wide class of distributions.

• To determine the fault-detection effectiveness of the test, we

apply Mutating Testing [18] ± a classic testing methodology

originally proposed for evaluating test effectiveness by gen-

erating artificial bugs (to simulate real bugs). In addition

to standard mutation operators, to simulate developer mis-

takes, we design domain-specific mutations that substitute

commonly used APIs with other APIs that share the same

input/output specifications and perform similar functions.

For FASER, we require mutants that simulate accuracy

bugs in code, i.e., mutants that 1) do not crash and 2)

produce a distribution of the assertion variable, X , that is

sufficiently different than the original distribution. We define

such mutants as effective mutants.

For a given test, FASER constructs an objective function as

the weighted sum of its passing probability (estimated using

concentration inequalities) and its fault-detection effectiveness

(mutation score ± the average probability of killing a mutant).

FASER allows the developer to choose a test’s minimum pass-

ing probability, γ ∈ [0, 1]. FASER then solves the optimization

problem and computes the optimal bound, such that the fault-

detection effectiveness of the test is maximized while ensuring

the test passing probability is at least γ.

Results. We evaluate FASER on 87 non-deterministic tests

collected from the latest versions of 22 ML projects, chosen

from dependent projects of popular probabilistic program-

ming systems and machine learning frameworks such as

PyTorch [19], TensorFlow [20], Pyro [21], and PyMC [22].

These projects are popular, have a wide user base, and provide

various ML functionalities. For each project, we only select

tests that are non-deterministic due to randomness of the ML

algorithm under test and contain an approximate assertion.

FASER is able to improve the fault-detection effectiveness

for 26.4% (i.e., 23/87) of the studied tests by tightening the

assertion bounds while maintaining a high passing probability

(γ) of over 99%. Overall, FASER increases the mutation score

of such tests by 15.76 percentage points on average. To date,

we have sent 19 pull requests, each improving one test, to

the developers. Developers have accepted 14 pull requests,

while the rest are pending response (no rejected pull requests).

The feedback from developers has been largely positive: they

appreciated the extensive analysis done in determining the

proposed bound, demonstrating the practical value of FASER.

Contributions. This paper makes the following contributions:

⋆ Concept. This paper opens up a new dimension for balanc-

ing test flakiness and effectiveness of ML projects, and can

inspire more future works in this important direction.

⋆ Implementation. We implement FASER, a technique

for improving the fault-detection effectiveness of non-

deterministic tests in ML projects by effectively combining

statistical techniques and mutation testing. FASER is avail-

able at: https://github.com/ise-uiuc/FASER

⋆ Evaluation. We evaluate FASER on 22 popular ML

projects, and demonstrate that FASER can tighten the asser-

tion bounds in 12 studied projects and 23 out of 87 studied

non-deterministic tests for improving their test effectiveness

without incurring new flakiness issues.

⋆ Practical Impacts. To date, we have sent 19 pull requests

fixing the tests with loose bounds, of which 14 have already

been accepted. We have received overwhelming positive

feedback from the developers, and the first two authors have

even been invited to a developer meeting for one of the

studied popular ML projects.

II. EXAMPLE

1 def test_adv_example_success_rate_linf(self,

model, **kwargs):

2 x=torch.randn(100, 2)

3 x_adv=self.attack(model_fn=model,x=x,**kwargs)

4 _, ori_label=model(x).max(1)

5 _, adv_label=model(x_adv).max(1)

6 adv_acc=adv_label.eq(ori_label).sum().to(torch.

float)/x.size(0)

7 self.assertLess(adv_acc, 0.5)

Listing 2: Test in cleverhans

Listing 2 presents an example non-deterministic

test, test_adv_example_success_rate_linf, from

cleverhans-lab/cleverhans project [23]. Cleverhans provides

implementations of various adversarial attacks for machine

learning models and algorithms. The test contains an assertion

with a very conservative bound (Line 7), which allows many

potential faults to remain undetected. In this work, we aim to

improve the fault-detection effectiveness of such tests without

making them flaky. We describe the test next.

The test generates random input data from a normal dis-

tribution (Line 2). It generates adversarial input using SPSA

adversarial attack algorithm [24] on the original input data

(Line 3). It obtains the model output for both the input data and

the adversarial input (Lines 4-5). It computes the adversarial

https://github.com/ise-uiuc/FASER

accuracy by comparing the adversarial output with the original

output of the model (Line 6). Finally, the test checks that the

adversarial accuracy is less than the assertion bound of 0.5

(Line 7). Here, lower adversarial accuracy is better since it

means the attack is successful in altering the model’s output.

Sources of randomness. There are several sources of random-

ness in this test. Listing 3 shows how the attack algorithm

randomizes the starting state. The initial perturbation of the

adversarial attack is sampled uniformly between -0.5 and 0.5

(Line 3, with eps = 0.5). Further, the input data is also

generated randomly in the test (Listing 2, Line 2). Due to the

randomness present, the adversarial accuracy (adv_acc) will

be different across runs. We present the samples of adv_acc

across 100 test executions in Figure 1 (blue bars). We observe

that the distribution of samples falls below the assertion bound

of 0.5 (red dotted line). This is a problem since a bug in the

code can potentially reduce the adversarial attack effectiveness

and produce an output that is higher than the maximum legal

value but lower than the initial bound (0.5), allowing the bug

to remain undetected.

1 def spsa(model_fn, x, eps, norm, ...):

2 ...

3 perturbation=(torch.rand_like(x)*2-1)*eps

4 _project_perturbation(perturbation,norm,eps,...)

Listing 3: Random initialization in cleverhans

Example bug. Listing 4 shows an example bug that can be

introduced in the source code. We modify - to a + operator,

1 perturbation=(torch.rand_like(x)*2 - 1)*eps

2 perturbation=(torch.rand_like(x)*2 + 1)*eps

Listing 4: Example bug in source code

which changes the initial perturbation generation to sample

between [0.5, 1.5] instead of [-0.5, 0.5]. We present the output

samples of the adversarial accuracy when run under the buggy

version in Figure 1 (blue bars). The distribution of the buggy

values is below the original developer bound. However, the

buggy distribution has a higher mean value compared to the

original distribution ± it means the bug is undesirably reducing

the attack effectiveness. However, due to the loose bound (red

line), the test cannot detect the bug. Bugs like these represent

subtle accuracy bugs that can remain undetected if the tests

are not properly designed. These tests cannot be fixed by the

tools that loosen the bound to reduce the flakiness [8] (they

move the red line to the right). Furthermore, making the test

deterministic by fixing the random seed may conceal faults

that can only be exposed from a different random input [12].

Instead, we want an assertion bound that is loose

enough to allow all valid executions to pass (and min-

imize flakiness) but tight enough to catch all such

buggy executions (i.e. move the red line to the left).

Our solution. To find an optimal assertion bound, we need to

carefully consider the trade-off between test passing probabil-

ity and its fault-detection effectiveness. To solve this problem,

FASER performs several steps. First, to estimate the fault-

detection effectiveness of the test, FASER uses mutation test-

ing to generate mutants on code lines covered by the test. Since

the test is non-deterministic, FASER runs both versions of the

test ± with and without mutations ± multiple times to obtain

the output samples of the assertion value. The mutants that

significantly change the output distribution are most relevant

since they represent bugs that the original assertion bound

may fail to detect. We refer to these mutants as effective

mutants. To identify effective mutants, FASER compares the

output distribution of each mutant with the original distribution

using Kolmogorov-Smirnov (KS) test and obtain a set of

effective mutants whose distribution is sufficiently different

from original. For a given assertion bound, FASER computes

the mutation score as the average probability of killing such

mutants. For this test, FASER generated 62 mutants and

identified 13 effective mutants.

Second, to estimate the passing probability of the test

FASER collects samples of the assertion variable (adv_acc)

by executing the test multiple times. FASER then applies

concentration inequalities to compute the probability that the

assertion variable does not exceed the given bound, which

approximates the passing probability of the test.

Finally, FASER determines the optimal bound that maxi-

mizes both the passing probability and mutation score of the

test. In this case, FASER estimates that the optimal bound is

0.29. FASER estimates that the passing probability of the test

using this bound is greater than 99% and it also increases the

mutation score of the test by 11%.

III. PROBLEM FORMULATION

We describe the problem FASER solves. Consider a test

T and an approximate assertion A of the form: assert

X < θ. We will refer to such θ as the assertion bound.

The assertion bound set by a developer may be loose, i.e.,

the bound, θ, may be much higher than the possible legal

values of X. The problem with such a loose bound is that it

may miss detecting faults that produce erroneous values in

the region between the original maximum of X and bound

θ. Our goal is to determine an optimal bound, θ∗, that

maximizes both the fault-detection effectiveness and passing

probability of the test while keeping passing probability

above a developer-selected threshold γ. Formally,

max [Effectiveness(T, θ),PassingProb(T, θ)]

s.t. PassingProb(T, θ) > γ
(1)

Fig. 1: Original and mutant samples of test in cleverhans

We need to tackle multiple challenges to solve this task. First,

since the nature of the underlying distribution of X is not

known, it is difficult to predict how likely is the test to pass

for a given bound: PassingProb(T, θ). We address this chal-

lenge using several concentration inequalities from probability

theory (Section III-A) to estimate the probability of the given

variable (X) exceeding a given bound (θ). We describe our

solution approach using the inequalities in Section III-B.

Second, estimating the fault-detection effectiveness of the

test, Effectiveness(T, θ), is challenging because we need to

reason about how the distribution of values (for the assertion

variable X) shifts in presence of a fault in the code under test.

To solve this challenge, we extend traditional mutation testing

techniques to generate mutants that produce such distribution

shifts. We also propose a new metric for computing mutation

score for such non-deterministic tests (Section III-C).

Finally, since these two objectives are competing, we use

a multi-objective optimization technique to solve the prob-

lem. We show how we can easily solve this constrained

multi-objective problem (Eq. 1) by transforming it into an

unconstrained single-objective version whilst satisfying the

developer-selected minimum passing probability threshold, γ.

The threshold, γ, allows us to prune the search space and

choose an optimal solution from the Pareto frontier. We

provide more details in Section III-D.

A. Concentration Inequalities

Chebyshev’s inequality [15] is a well-known result in prob-

ability theory that guarantees that, for a broad class of distri-

butions, no more than a certain proportion of its values will

exceed a certain distance from the mean. More formally, let X

be a scalar random variable with a finite mean µ and variance

σ2. Then for any real number k > 0: Pr(|X−µ| ≥ kσ) ≤ 1
k2 .

Chebyshev’s Inequality can be applied to any arbitrary

distribution, assuming known mean and variance. However,

it often provides a conservative estimate.

Dasgupta’s Inequality. Dasgupta [16] proposed a tighter

bound if the distribution is known to be Gaussian:

Pr(|X − µ| ≥ kσ) ≤
1

3k2
(2)

Dasgupta’s Inequality can also be used with estimated mean

(X) and variance (S2) [16], i.e., computed from available

samples. This provides a conservative estimate but is typically

tighter than Chebyshev. Since the distribution is Gaussian, it is

symmetric about mean. Hence, we can also use the one-sided

variant of this inequality (using estimated mean and variance):

Pr(X −X ≥ kS) ≤
1

2
·

1

3k2
(3)

Cantelli’s inequality with estimated mean and variance.

Often the mean and variance of a distribution are unknown.

Tolhurst [25] proposed a variant of Cantelli’s equation [17],

which is the one-sided version of Chebyshev’s Inequality. It

uses mean and variance estimated from available samples:

Pr(X −X ≥ kQN) ≤
1

N + 1

⌊

N + 1

g2 + 1

⌋

(4)

where N is number of samples, g2 = Nk
2

N−1+k2 , Q2
N

=
[

N+1
N

]

S2, and ⌊.⌋ is the floor function. Here, X and S2 are the

sample mean and variance respectively. This inequality holds

for k > 1 and N ≥ 2. This bound converges to Cantelli’s

inequality as N → ∞.

Sub-Gaussian Distributions. A Sub-Gaussian distribu-

tion [26] has a tail that decays (or converges) at least as fast as

a Gaussian distribution. Intuitively, the tail of a Sub-Gaussian

distribution is dominated by a Gaussian distribution. This is

a useful property since the tail properties of Gaussians can

be extended to such distributions directly. For instance, if we

know that the underlying distribution of a random variable

X is sub-gaussian, then we can directly use the Dasgupta

inequality (Eq. 3) to estimate the tail probabilities.

Kurtosis Test [27] is a statistical test that is used to check

whether the distribution is heavy-tailed or light-tailed (sub-

gaussian) relative to a Gaussian distribution. We use the

Kurtosis test to verify if the samples are drawn from a

Sub-Gaussian distribution and apply the Dasgupta Inequality

(Eq. 3) to obtain the one-sided tail probability. This provides

a tighter tail bound than the more general estimate (Eq. 4).

B. Computing Passing Probability of Test

To compute the passing probability of test T , we first

execute the test several times and obtain the samples of the

variable, say X , in the assertion. Let N be the number of sam-

ples. Now, we want to compute the probability: Pr(X < θ),
where θ is a given assertion bound. One potential solution is to

compute the empirical probability, i.e., the proportion of sam-

ples that fall below the assertion bound. However, this may not

be a reliable estimate when N is small and when the nature of

distribution is not known. Further, collecting a large number of

samples is expensive and hence may not always be feasible.

To overcome these challenges, we apply the inequalities

described in Section III-A. Algorithm 1 describes the steps for

computing passing probability. First, we check if the underly-

ing distribution of X is Gaussian (Line 5) using Shapiro-Wilk

Test [28]. If the distribution is Gaussian, we use the one-sided

Dasgupta inequality (Eq. 3) to estimate the passing probability

of the test for the given bound (Line 6). Given a bound θ, we

compute Pr(X < θ) = 1− Pr(X −X ≥ kS) as the passing

probability of the test, where k = (θ −X)/S (Line 4). Here,

X is the estimated mean and S is the estimated variance of

the samples.

Second, if the distribution is not Gaussian, we check if it is

Sub-Gaussian (Line 5) using the Kurtosis Test (Section III-A).

If the test passes, we apply the one-sided Dasgupta inequality

(Eq. 3) in the same manner as the previous case (Line 6). This

provides a more conservative bound than the actual underlying

distribution but it is tighter than the general estimate.

Third, if the distribution is neither Gaussian nor Sub-

Gaussian, we apply Cantelli’s inequality using estimated mean

and variance (Eq. 4) to compute the passing probability of the

test (Line 8). This inequality gives us a conservative estimate

of the actual passing probability ± i.e., in the limit, the actual

passing probability is guaranteed to be equal or greater than

the estimated passing probability. This property is desirable in

our case because it forces us to choose a slightly higher bound

than what may be required and avoid flaky failures.

Algorithm 1 Passing Probability Algorithm

Input: Samples D, Bound θ
Output: Passing probability Pθ

1: procedure PASSINGPROB(D, θ)
2: X = mean(D)
3: S = std(D)

4: k = θ−X

S

5: if ISGAUSSIAN(D) or ISSUBGAUSSIAN(D) then
6: Pθ = 1− DASGUPTAINEQ(D, k) ▷ Using Eq. 3
7: else
8: Pθ = 1− CANTELLIINEQEST(D, X, S, k) ▷ Using Eq. 4

9: return Pθ

10: end procedure

C. Estimating Fault-Detection Ability of Test

We use mutation testing to determine the fault-detection

effectiveness of the test. We generate mutants and select the

subset of mutants that produce distributions of the assertion

variable that are sufficiently different from the original distri-

bution. These mutants represent accuracy bugs in code, i.e.,

bugs that lead to wrong results (e.g., lower model accuracy).

We define such mutants as effective mutants.

Let m1, . . . ,mK be the generated set of effective mutants.

For a given bound, θ, we define the probability that a mutant,

mi is killed as:

Pr
θ
(mi is killed) = Pr(Xmi

> θ) =
1

|Dmi
|

∑

x∈Dmi

✶[x>θ] (5)

where Dmi
is the set of samples obtained and Xmi

is the

assertion variable when T is executed with mutation mi.

We define the mutation score (MS) of the test, T , for a

given θ, as the average mutant kill rate:

MS(T, θ) =
1

K

∑

i=1...K

Pr
θ
(mi is killed) (6)

Our definition of mutation score is different than that used in

traditional mutation testing where each mutant is deterministi-

cally either killed (1) or the mutant survives (0). In contrast, for

non-deterministic tests, we define whether a mutant is killed

as a probability, Prθ ∈ [0, 1], and the mutation score as the

average probability of killing a mutant. For deterministic tests,

it reduces to standard mutation score metric, i.e., Prθ ∈ {0, 1}.

D. Finding Optimal Assertion Bound

Our goal is to find an assertion bound that has a high

fault-detection effectiveness and is not flaky. However, in

practical scenarios, there is a trade-off between these two

properties of a test. To select an optimal assertion bound θ∗, we

transform the constrained optimization problem (Eq. 1) into an

unconstrained version by using the weighted sum method [29]:

θ∗ = argmax
θ

α · p(T, θ) + (1− α) · f(T, θ) (7)

where p(T, θ) represents the probability that the test T passes

for a given bound θ and f(T, θ) represents the fault-detection

effectiveness of the test for the given bound θ. Here, we

approximate the probability of passing by estimating the prob-

ability of the assertion variable X not exceeding θ using Algo-

rithm 1 while incorporating developer-specified threshold, i.e.,

p(T, θ) = Pr(X < θ) if (Pr(X < θ) > γ) else − ∞.

We approximate the fault-detection effectiveness of the test

using mutation score (Eq. 6). Hence, f(T, θ) = MS(T, θ).
Here, α ∈ [0, 1] is a co-efficient that determines relative

importance of the two factors during optimization. For in-

stance, an α > 0.5 lays greater emphasis on the passing

probability of the test while α < 0.5 prioritizes the fault-

detection effectiveness of the test over test flakiness. Finally,

we solve this problem using the standard optimization algo-

rithm (basinhopping [30]) and obtain the new bound θ∗.

IV. FASER

We propose FASER, an approach for improving the fault-

detection effectiveness of non-deterministic tests in Machine

Learning projects. Figure 2 presents the architecture of

FASER. At a high level, FASER takes a non-deterministic

test T with an assertion A of the form assert (X < θ),

and minimum passing probability γ as inputs. FASER then

determines a new assertion bound θ∗ such that the mutation

score of the test is maximized while also ensuring that the test

passes with at least γ passing probability.

Test
Runner

Generate
Mutants

KS
Test

Optimizer

Program

Test
Mutants

Reject
Null?

yes

no

original
samples

mutants
samples

effective
mutant samples

Remove
Seed

Program
w/o Seed

Test w/o
Seed

Updated
Test

M1
M3

M2

assert
X < Θ

M1 M3

M2

assert
X < Θ

assert
X < Θ*

Ɣ

Fig. 2: Overview of the FASER tool

A. FASER Algorithm

Algorithm 2 describes the main algorithm of FASER. First,

FASER removes all seed setting code from common library

APIs (Python’s Random, NumPy, TensorFlow and PyTorch)

used in tests from the source project P (Line 2) and creates

a new version P ∗. Setting seeds makes the test execution

deterministic but prevents FASER from collecting the legal

range of values that X can take. Without knowing the legal

range of values for X , FASER may not be able to identify

erroneous values produced by a mutation.

FASER executes the test T using P ∗ multiple times to

collect samples of the actual assertion values: DO (Line 3).

Then FASER computes code coverage of the test (Line 4) and

generates a set of mutants, M , by mutating covered lines of

code (Line 5). FASER generates each mutant using several

mutation operators (Section IV-B) that change a part of the

line. FASER initializes an empty set DM that we use to

Algorithm 2 FASER Algorithm

Input: Test T , Project P , Assertion A, Minimum Passing Probability γ
Output: Updated test T ∗, Original Mutation Score MSθ , New Mutation

Score MSθ∗

1: procedure FASER(T , P , A)
2: P ∗ ← RemoveSeed(P)
3: DO ← TestRunner(T, P ∗, A, ORIGINAL_SAMPLES)

4: coverage← RunTestCoverage(T, P ∗)

5: M ← GenerateMutants(P ∗, coverage)

6: DM ← ∅

7: for m in M do
8: if !TestCrash(T,m,A) then
9: dm ← TestRunner(T,m,A,MUTANT_SAMPLES)

10: p← KSTest(dm, DO)
11: if p < ρ then ▷ rejects null hypothesis
12: DM ← DM ∪ dm

13: MSθ,MSθ∗ , θ
∗ ← Optimizer(T,A,DO, DM , γ)

14: return Patcher(T, θ∗),MSθ,MSθ∗

15: end procedure

aggregate samples from the mutants that generate distributions

of X that are sufficiently different than the samples produced

by the original version of the test, DO (Line 6).

For each mutant, FASER first checks if the mutation does

not crash the test (Line 8). Then FASER collects samples from

assertion value over several test executions, dm (Line 9). Using

Kolmogorov-Smirnov (KS) test [31], [32], FASER compares

the mutant samples with the original samples (Line 10) to

see if their distributions are sufficiently different. This allows

us to select mutants that represent accuracy bugs. KS test

returns a p-value for testing the null hypothesis: the underlying

mutant distribution is identical to the original distribution. If

the p-value is less than the threshold ρ, we can reject the null

hypothesis, in which case FASER adds the mutant samples to

DM (Line 12). We refer to the mutants that produce a different

distribution of samples than the original as effective mutants.

Finally, FASER solves the optimization Equation 1 using

the original and effective mutant samples (Line 13) to obtain

the optimal bound with at least γ passing probability. FASER

returns the mutation score of the original bound and the

optimal bound along with the updated test (Line 14).

B. Mutant Generation

For each test, FASER generates mutations on code the test

covers. It first runs the test using Python’s Coverage.py [33]

to obtain a list of Python files and lines covered by the test. It

filters out all test files and uses only source files. To generate

mutations, FASER uses traditional mutation operators from the

mutmut [34] library and also implements new domain-specific

mutation operators for Machine Learning projects.

Simple mutation operators. FASER uses all mutmut mutation

operators, such as the ones on numeric constants, keywords

(e.g., break → continue), arithmetic operators, and con-

ditional expressions (and → or). The only one we did not

use is the string mutator (e.g., p="test" → p="XXtestXX")

because it most often leads to code crashes. Details of each

operator can be found on project page [34].

Domain-specific mutation operators. Many Machine Learn-

ing projects utilize popular open-source libraries such as Ten-

sorFlow or PyTorch as they provide efficient implementations

a) Tensorflow
18
replaceable
functions

b) PyTorch
38
replaceable
functions

c) NumPy
52
replaceable
functions

Fig. 3: Code snippets of replaceable APIs

of many common functionalities (e.g., random data generation,

matrix multiplication, and array/tensor manipulation). Many

APIs in these libraries share similar input/output specifica-

tions, i.e., they have same types of inputs and outputs and

perform similar functions. Hence, we can interchange such

API calls without causing a program crash. For example, in

PyTorch, tensor initialization functions such as torch.zeros

and torch.ones have the same input parameters (including

tensor shape and data type) and outputs a tensor that has

the specified shape with either all zeros or ones respectively.

We can replace one of them with another without causing

the program to crash. Actually, developers often make such

mistakes of choosing syntactically correct but semantically

incorrect APIs for their use-case [35], [36], [37]. By leveraging

this insight, we design a mutation operator that swaps such

commonly used interchangeable APIs from the same library.

We next describe how we collect such APIs.
We consider three popular open-source libraries: NumPy,

TensorFlow, and PyTorch as majority of projects in our dataset

have at least one of them as a dependency. We first extract all

public APIs from each library. We use pydoc, a built-in python

documentation generator, to obtain developer documentation

of each API. Since Python is not a strongly typed language,

we cannot directly compare the method signature to determine

APIs that have same input and output types. Instead, we

use the developer documentation that includes example code

snippets listing the usages for each API.
For each API (say A), we test whether replacing it with

another API (say B) causes a crash. If it does not crash, we

add the API B to A’s list of replaceable APIs and vice-versa.

We perform this for all APIs and obtain sets of replaceable

APIs for each API in the library. It is possible that developer

written examples do not cover all use-cases, which means the

replaced APIs might fail in some special cases.
Figure 3 shows code snippets of various APIs and their po-

tential replacements (in green) for the 3 open-source libraries

we used. In total, we obtain 108 replaceable APIs with an

average of 1.87 replacements for each. FASER leverages these

API specifications to generate mutations where applicable.

C. Estimating Optimal Assertion Bound

FASER uses the original and effective mutant samples as

inputs to the optimization equation (Equation 7), and obtains

the optimal assertion bound. Recall that the optimization is

parameterized by α ± representing the relative importance

between passing rate and the mutation score. A high α means

we value the passing rate higher (i.e., low flakiness) compared

Fig. 4: Optimization graph of test in cleverhans

to the fault-detection effectiveness of the test. A low α means

we are willing to sacrifice the passing rate in favor of catching

more potential bugs in the source code.

To calculate the bound, FASER uses the optimization equa-

tion by varying α. We start with α = 0.5 (represents equal

emphasis on pass rate and fault-detection effectiveness). In

practice, developers favor tests that have a high pass rate to

minimize failures caused by flaky tests. FASER does a grid-

search over higher α values, solves the optimization problem,

and finally yields the bound that results the maximum fault

effectiveness and passing probability above γ.

Figure 4 presents the optimizing equation graph for the

example test described in Section II. The two solid lines

present the values of the optimization equation (y-axis) for

α of 0.9 and 0.1 as we vary the assertion bound (x-axis).

The vertical dotted lines denote the corresponding argmax

values of θ. We chose a minimum passing probability γ of

0.99. This passing probability is a conservative theoretical

estimate (Section III-A), and the empirical passing probability

would be higher ± which we demonstrate in our evaluation

(Section VI-C). The optimal value using an α of 0.1 is

θ = 0.18 ± while this gives us the best mutation score of 95%

(i.e., best fault-detection effectiveness), the test may become

very flaky (0.84 pass rate). An α of 0.9 gives an optimal bound:

θ = 0.29 ± this has a high probability of passing (0.9903 pass

rate) and also maintains a high mutation score of 88%. Hence,

FASER selects θ = 0.29 as the optimal bound.

D. Applicability of Assertion Bounds

In Section IV-C, we described FASER’s strategy for es-

timating a bound in the general case. However, some tests

may already have a tight bound or a high fault-detection

effectiveness. Hence, FASER must decide on how and if the

calculated bound should be applied.

FASER starts by computing the optimal bound as described

in Section IV-C. FASER then compares the fault-detection

effectiveness (mutation score) of the optimal bound and devel-

oper bound and decides whether the bound should be updated.

There are two possible scenarios: 1) If the increase in mutation

score is significant (greater than 5 percentage points), FASER

labels this test as a loose bound test and uses the proposed

bound suggested by FASER to improve this test. 2) If the

increase in mutation score is not significant (less than 5

percentage points), this means the developer bound is already

tight enough. As a result, the new bound proposed by FASER

cannot significantly improve the fault-detection effectiveness.

FASER labels this test as a tight bound test and does not

change the developer bound.

V. METHODOLOGY

Project and Test selection. To select tests for evaluation, we

use Python projects and tests used in previous work on testing

in ML projects [9], [8], [12]. Previous work find such projects

by first searching for the dependent projects of popular ML

Frameworks (PyTorch and TensorFlow) and Probabilistic Pro-

gramming Systems (Pyro, NumPyro, TensorFlow-Probability)

using GitHub’s API. Out of these, they select projects that

can be installed as a Python library and have at least 10 stars

to eliminate projects that are not actively developed and toy

projects. Due to the potential time cost of running FASER, we

randomly select 25 out of these 123 projects for our evaluation.

We only consider projects that were reported to contain at least

one non-deterministic test in previous works.

We run each test and record their assertion values to verify

the results vary across executions. We discard any tests where

the value remains the same across executions. We also discard

tests that may require special resources to run (e.g., GPU). We

do not include any tests that are flaky (i.e., do not have 100%

empirical pass rate with original bound), since this implies

that the original bound may already be very tight (i.e., close to

maximum observable value). From the remaining list of tests,

we randomly sample a subset to include in our experiment.

Finally, we end up with 87 non-deterministic tests across 22

projects from 25 total projects considered. Table I presents for

each selected project a description of its utility (Description)

and the number of selected tests (T).

Reporting Fixes to Developers. We prepare and send pull

requests to developers for fixing tests FASER can tighten. We

first manually inspect the proposed bound and determine if we

need to adjust it. For instance, we may round the proposed

bound to the nearest integer (e.g., 4.99 → 5) if the original

bound was also an integer (e.g., 20). We then run the test

with the proposed bound 500 times to verify that the proposed

bound is not flaky (greater than 0.99 pass rate). For each

project, we start by only sending one pull request for fixing one

test. If the developers accept the initial pull request, we send

more pull requests for fixing remaining tests in the project.

In each pull request, we explain FASER’s methodology, show

the distribution of original and mutant samples, and explain

trade-offs for pass rate vs. mutation score for the test.

Experimental setup. For our evaluation, we use the latest

versions of each project. We develop a custom installation

script for each project that creates a virtual environment using

Anaconda [38] and installs any dependencies required by each

project specified in requirements.txt or setup.py files

in the project. We additionally install two python libraries:

pytest [39] for running the tests and Coverage.py [33] for

obtaining the line coverage information.

We implement FASER entirely in Python. We configure

FASER to obtain 100 samples for both the original source code

(ORIGINAL_SAMPLES) and each mutant (MUTANT_SAMPLES).

We use a minimum passing probability of 0.99 (γ). We use

a timeout of 300 seconds for each test execution. We use

two-sample KS Test from the scipy library [40] with p-value

TABLE I: Running FASER on Non-Deterministic Tests

Project Description T LB TB

allenai/allennlp [41] NLP 5 1 4
pytorch/captum [42] ML Model Interpretability 1 0 1
cleverhans-lab/cleverhans [23] Adversarial Attacks 5 2 3
coax-dev/coax [43] Reinforcement Learning 11 0 11
deepchem/deepchem [44] DL for Natural Science 6 2 4
RaRe-Technologies/gensim [45] Topic Modelling 1 1 0
GPflow/GPflow [46] Gaussian Process Modelling 2 0 2
cornellius-gp/gpytorch [47] Gaussian Process Modelling 7 5 2
kornia/kornia [48] Computer Vision 2 0 2
learnables/learn2learn [49] Meta Learning 6 0 6
Unity-Technologies/ml-agents [50] Training ML agents 3 1 2
pyro-ppl/numpyro [51] Probabilistic Programming 2 1 1
facebookresearch/ParlAI [52] Dialog AI modelling 1 1 0
pgmpy/pgmpy [53] Graph Model 4 0 4
pymc-devs/pymc [22] Probabilistic Programming 4 1 3
pyro-ppl/pyro [21] Probabilistic Programming 3 0 3
refnex/refnx [54] Curve Fitting 2 0 2
stellargraph/stellargraph [55] Graph Modelling 3 1 2
WillianFuks/tfcausalimpact [56] Bayesian Optimization 1 0 1
google/trax [57] Code Generation 6 4 2
lmcinnes/umap [58] Visualization 9 3 6
zfit/zfit [59] Model Fitting 3 0 3

Total 87 23 64

threshold of 0.01 (ρ) to compare the original and mutant

sample distributions. For solving the optimization equation, we

use the basinhopping algorithm [30] from the scipy library.

VI. EVALUATION

We evaluate FASER on the following research questions:

RQ1 For how many tests can FASER improve their fault-

detection effectiveness by tightening assertion bounds?

RQ2 By how much does FASER improve the fault-detection

effectiveness of the tests?

RQ3 How do developers respond to the tighter bounds sug-

gested by FASER?

RQ4 What is the cost of running FASER and can it be reduced?

A. RQ1: Tests Improved by FASER

We run FASER on 87 tests collected across 22 projects

to improve their fault-detection effectiveness by tightening

assertion bounds. Table I presents the results. Each row in

the table corresponds to the tests in one project. Project is the

name of the project, T is the number of tests, LB is the number

of loose bound tests ± tests for which FASER can improve the

mutation score by at least 5 percentage points by tightening

the assertion bound, TB is the number of tight bound tests

± tests for which FASER cannot improve the mutation score

by at least 5 percentage points by tightening bounds. We ob-

serve that approximately one out of four tests contain an

assertion bound that is loose (more conservative than needed).

We find that 12 out of 22 projects contain at least one test(s)

that has a loose bound. For these tests, FASER is able tighten

the bound and improve the mutation score of the tests.

Cases where FASER improves the mutation score of

test. Figure 5 presents a loose bound test with the de-

veloper bound of 0.5 (red dotted line) and FASER pro-

posed bound of 0.29 (blue dotted line). The test is test_-

adv_example_success_rate_linf from the cleverhans-

lab/cleverhans project. We observe that the new bound pro-

posed by FASER can improve the mutation score of the test.

Fig. 5: Normalized output distribution of the original and

the effective mutants for a loose bound test in cleverhans

Fig. 6: Normalized output distribution of the original and

the effective mutants for a tight bound test in cleverhans

FASER generates a significant number of effective mutant

samples between the maximum value of the original samples

(0.24) and the developer bound (15.5% of all effective mutant

samples). Hence, FASER is able to improve the mutation score

of the test by 11 percentage points using the new bound,

increasing the mutation score from 76.7% to 87.8%. In total,

FASER tightens the bounds of 23 out of 87 non-flaky tests.

Cases where FASER cannot improve mutation score.

Figure 6 shows the original samples and aggregated mu-

tant samples of test_adv_example_success_rate_l2

from cleverhans-lab/cleverhans project where FASER cannot

tighten the bound. We observe that even though FASER

proposed a bound of 0.4 (blue dotted line) that is less than the

original developer bound of 0.5 (red dotted line), the mutation

score of the new bound is not higher than the original. This

is because, in contrast to the previous example, there are

very few effective mutant samples (only 1.7% of all effective

mutant samples) between the original developer bound and

the maximum value of the original samples. Therefore, the

bound suggested by FASER cannot significantly improve the

mutation score (more than 5pp) of the test. Further, to kill

1.7% of effective mutant samples, we need to set the bound

to be exactly the max value (0.27), which may decrease the

passing probability of the test, making it flaky. The bound set

by the developer in this case is already tight enough to kill

majority of the mutants (mutation score of 55%) and hence

fault-detection effectiveness cannot be improved significantly.

B. RQ2: Improvement in Fault-Detection Effectiveness

We next discuss tests that FASER can tighten and examine

by how much it improves the fault detection effectiveness of

such tests. Table II presents the details of improvements in

fault-detection effectiveness. Each row presents a project with

at least one loose bound test. Column Project is the project

name, #T is the number of loose bound tests in the project,

Avg.# Eftv. mutants is the average number of effective mu-

tants generated by FASER, Avg.pp MS increase is the average

increase in mutation score (percentage points) obtained by

comparing the developer bound and the tight bound proposed

by FASER, Avg.% MS before is the average mutation score of

the original bound, Avg.% MS after is the average mutation

TABLE II: Improvement in Fault-Detection Effectiveness

Project #T
Avg. #Eftv.

mutants
Avg.% MS

before
Avg.% MS

after
Avg.pp MS

increase
Avg. α

allennlp 1 13.0 51.08 66.46 15.38 0.9
cleverhans 2 13.0 75.35 86.42 11.08 0.85
deepchem 2 6.5 20.66 25.75 5.08 0.75
gensim 1 29.0 57.55 77.93 20.38 0.9
gpytorch 5 47.8 33.28 57.88 24.6 0.9
ml-agents 1 6.0 33.33 66.17 32.83 0.9
numpyro 1 156.0 23.11 28.89 5.78 0.8
parlai 1 51.0 0.0 25.96 25.96 0.9
pymc 1 58.0 9.67 18.76 9.08 0.9
stellargraph 1 9.0 50.63 55.88 5.25 0.9
trax 4 15.25 15.8 34.44 18.63 0.88
umap 3 12.0 63.0 69.22 6.22 0.8

Total/Avg. 23 30.3 36.35 52.11 15.76 0.86

score using the new bound, Avg. α is the average α value

FASER uses for determining the optimal bound.

On average, FASER improves the mutation score of tests

by 15.76pp. The original developer bounds have an average

mutation score of 36.35%, by using the tighter bound, FASER

can improve the average mutation score to 52.11%. For the

test in facebookresearch/ParlAI, the original developer bound

has a zero mutation score - the bound is not able to kill off

any effective mutants. This is because the developer bound is

extremely loose. FASER proposes a tighter bound for this test

and increases mutation score to almost 26%. The significant

increase in mutation score indicates that the tests (with the

new bound) are more likely to detect potential bugs that would

previously remain undetected.

On average, FASER generates 30.3 effective mutants that

significantly change the output distribution of the test. Ef-

fective mutants represent potential accuracy bugs that the

test should detect. We observe that the number of effective

mutants vary across different projects and tests. This is because

FASER generates mutations based on lines covered by the

test. Different tests have different number of coverage lines,

while not all lines equally affect the test execution result ±

leading to a high variance in the number of effective mutants

generated. FASER is able to generate a significant number of

effective mutants in most cases, which gives us confidence

that the computed mutation score is a practical estimate for

the fault-detection effectiveness of the test.

Impact of different mutation operators. We further evaluate

how each mutation operator (Section IV-B) contributes to the

performance of FASER. We perform an ablation study by

removing one mutation operator at a time and computing the

average increase in mutation score and effective mutants in

each case. Table III presents the results of this experiment.

Column Avg.# Eftv. mutants is the average number of

effective mutants generated and Avg.pp MS increase is the

average increase in mutation score. Each row after the first

presents the results when removing one mutation operator with

the decrease in performance compared with FASER indicated

within the brackets. The first row (None) presents the original

results with FASER when using all mutation operators.

Recall that FASER obtained an average of 30.3 effective

TABLE III: Ablation Study of Mutation Operators

Operator Removed Avg.# Eftv. mutants Avg.pp MS increase

None 30.3 15.76
Numeric constants 23.1 (-7.2) 13.40 (-2.36)
Keywords 26.1 (-4.2) 14.22 (-1.54)
Arithmetic operators 21.8 (-8.5) 12.98 (-2.78)
Conditional expressions 28.2 (-2.1) 15.17 (-0.59)
Domain-specific operators 22.0 (-8.3) 13.21 (-2.55)

mutants and mutation score increase of 15.76pp. We observe

that each mutation operator helps to generate new effective

mutants and improve the mutation score. Our ªDomain-

specific operators" on average generate more effective mutants

than most of the simple mutation operators which shows that

leveraging domain knowledge of interchangeable library APIs

to produce mutants that swap library APIs can further boost

the performance of FASER. By using all operators, we can

generate a substantial number of effective mutants per test,

increasing confidence that mutation score is a good estimate

of the fault-detection effectiveness.

Choice of optimization co-efficient. FASER uses an average

α of 0.86 to solve the optimization equation. Recall that the α
value balances the trade-off between mutation score and pass

rate of the test. In order to obtain a high pass rate, FASER

uses a high α value most commonly α = 0.9. However, we

also observed cases where FASER uses an α of 0.8 or lower

in order to obtain the bound that has a high mutation score.

FASER starts with a lower α and incrementally increases it

until the pass rate is at least 0.99. This allows FASER to

effectively tighten the bound to obtain the best mutation score

while not making the tests flaky.

C. RQ3: Developer Response

We send 19 pull requests (one for each test) to the devel-

opers for tightening the assertion bounds based on FASER’s

results. We follow the methodology described in Section V to

first open one pull request (PR) per project and only send the

rest if we receive positive feedback from the developer on the

first pull request. In each PR, we indicate to the developers

that the bound set in the test is too loose and briefly explain the

approach of FASER. We further monitor each PR to answer

any questions or concerns raised by the developers.

Table IV presents the details of the PRs that we sent.

Column Project is the name of the project, #Tests is the

number of loose bound tests in the project, #PRs is the

total number of PRs we send for each project, Accepted

is the number of accepted PRs, Pending is the number of

PRs pending developer response, Rejected is the number of

rejected PRs, Unsubmitted is the number of tests for which

we did not submit the PR since we are waiting for feedback

on the first PR. Developers have accepted 14 of them, rejected

none while 5 PRs are still awaiting developer response.

Overall, we received overwhelmingly positive feedback for

the pull requests. Developers are happy about the thorough

analysis of FASER in determining the new bound. For in-

stance, developers of cornellius-gp/gpytorch commented: "...

this seems very reasonable to me, thanks for the detailed

TABLE IV: Details of Pull Requests

Project #Tests #PRs Accepted Pending Rejected Unsubmitted

allennlp 1 1 1 0 0 0
cleverhans 2 1 0 1 0 1
deepchem 2 2 1 1 0 0
gensim 1 1 1 0 0 0
gpytorch 5 5 5 0 0 0
ml-agents 1 1 0 1 0 0
numpyro 1 1 1 0 0 0
parlai 1 1 1 0 0 0
pymc 1 1 1 0 0 0
stellagraph 1 1 0 1 0 0
trax 4 1 0 1 0 3
umap 3 3 3 0 0 0

Total 23 19 14 5 0 4

profile!". Developers of facebookresearch/ParlAI commented:

"Super cool! Awesome analysis. Very happy to try this for a

bit and see how it goes.". As we are not active contributors of

the projects, we do not know the details about each developer

who responded to the PR. However, we observe that all

developers who responded (11/11) have contributed multiple

times to their respective projects. Additionally, the developers

of deepchem/deepchem invited us to their developer meeting

on Zoom where the core team of the project discussed about

our proposed change (accepted) and potentially incorporating

FASER to test more bounds in their project.

The developers of deepchem/deepchem indicated to us that

their main concern is the flakiness of the tests in the project

± which forced them to choose loose bounds in the first

place. They mentioned that, in the past, flaky tests have

caused their developers to waste time in investigating spurious

failures, which is a big concern, especially for smaller teams

like theirs. However, they also appreciated our systematic

approach, saying ± "I really like this style of analysis and

want to see if we can tighten up our tests without blowing up

false positive counts" and accepted our proposed bound and

PR. FASER addresses the flakiness concerns by enforcing a

high predicted passing probability during optimization.

To demonstrate that the proposed bound from FASER is not

flaky, we evaluate the passing probability estimated by FASER

by comparing against the empirical pass rate of the proposed

bound. We select 10 tests that FASER proposes a tighter bound

for and calculate the pass rate with the proposed bound from

10,000 executions. We obtain an average pass rate of 99.88%,

with 4 tests achieving 100% pass rate and the lowest pass rate

being 99.64%. This confirms our hypothesis that the estimated

predicted probability produced by FASER is a conversative

measure and the developers can be confident that the tighter

bound proposed by FASER is not flaky.

We closely monitor the tests that developers have accepted

the new bound by scraping the CI logs of test runs. Out of

14 tests, only 2 tests have seen failures across thousands of

CI runs. The single failure from test_improper_normal

in pyro-ppl/numpyro is due to a faulty PR that triggered the

CI where many tests in the test suite failed. The failures

from test_sample_after_set_data in pymc-devs/pymc

are caused by changes in source code that shifted the distribu-

TABLE V: Time, Cost, and Improvement Trade-off when

Executing a Fraction of Mutants.

Project 100% 75% 50% 25%
T $ # T $ # T $ # T $

deepchem 1 257 6.68 0 193 5.02 0 129 3.35 0 64 1.66
gensim 1 145 3.77 1 109 2.83 1 73 1.90 1 36 0.94
numpyro 1 112 2.91 0 84 2.18 0 56 1.47 0 28 0.73
parlai 1 133 2.94 1 100 2.60 1 66 1.72 1 33 0.86
pymc 1 232 6.03 1 174 4.52 1 116 3.02 0 58 1.51
umap 3 397 10.32 2 298 7.75 1 199 5.17 0 99 2.57
trax 3 333 8.66 2 250 6.50 2 167 4.34 2 83 2.16

Count/Avg 11 279 7.25 8 209 5.44 7 140 3.62 5 70 1.81

tion of the assertion value in the test. The bound suggested by

FASER is calculated based on the old distribution that caused

the test to fail on the new source code. This is confirmed

by the developers as they have now adjusted the bound to

reflect the updated source code. The positive feedback from

the developers demonstrates that FASER provides practical

value by improving the quality of tests in ML projects by

tightening approximate assertion bounds.

D. RQ4: Efficiency of FASER

We collected 8700 original test samples corresponding to 87

tests in our experiement. Our experiment took around 9000

CPU-hours with majority of the time spent on running and

collecting mutant samples. On average, each test required

100 CPU-hours. The corresponding estimated dollar cost of

running FASER on a dedicated (more expensive than spot)

Amazon EC2 a1.large instance ($0.026 / CPU hour) [60]

would be $2.55 on average per test.

We expect developers to run FASER offline (once per test).

However, we evaluate if it is possible to further reduce the cost

of FASER when developers have a limited budget. We select

11 tests that FASER can tighten and have high run time (≥
100 CPU-hours). We attempt to reduce their runtime cost by

randomly selecting a portion (75, 50, 25%) of mutants to run

for these tests. Table V presents the results of this experiment

with the number of tests that can be improved ‘#’, run time ‘T’

(in CPU-hours) and cost ‘$’. To account for the randomness,

we repeat each experiment 10 times with different random

seeds and report averages.

We observe that even without running the full set of gen-

erated mutants, FASER can still tighten/improve the bounds

of majority of these tests and achieve a significant decrease

in execution time and cost of running FASER. The results

demonstrate that developers can potentially reduce the cost of

running FASER by using only a subset of mutants and still

achieve close to best results.

VII. THREATS TO VALIDITY

Internal. There can be potential implementation issues in

FASER. To reduce such threats, the first two authors regularly

checked the results and code to eliminate potential bugs.

External. Our results may not generalize beyond selected

projects and tests. To reduce this threat, similar to prior

work [10], [9], [8], we select from the dependent projects

of popular, actively-maintained ML and probabilistic pro-

gramming libraries. We believe these tests and projects are

representative. Further, the number of selected tests is also on

a similar scale as previous works in this domain [10], [9], [8],

[12]. Similar to these works, we also assume that the code

under test is correct, which means that FASER’s bounds are

based on the intended implementation of the source code.

Construct. Mutants may not be representative of real accuracy

bugs. To mitigate this risk, we choose mutation operators

commonly used in literature and also design domain-specific

mutations that simulate real bugs. It may be possible to further

optimize the bounds proposed by FASER. Since the tests are

non-deterministic and we employ various statistical heuristics,

FASER may suggest inaccurate bounds. To minimize this risk,

we collect a large number of samples both for original test and

all mutants to improve confidence in our results.

VIII. RELATED WORK

Flaky Tests. Previous works have characterized the common

causes of flaky tests in real world open-source projects [13],

[61], [62], [63] as well as in industry [64], [62]. Researchers

have developed general and specialized approaches for detect-

ing [10], [65], [66], [67] and fixing [68], [69], [8] flaky tests.
Dutta et al. [10] studied the characteristics of flaky tests in

Machine Learning and Probabilistic Programming projects. In

a subsequent work, they developed an approach TERA [9],

which reduces the execution time of such non-deterministic

tests without making them unacceptably flaky. In contrast to

FASER, TERA changes algorithm hyper-parameters and does

not significantly impact fault-detection effectiveness.
FLEX [8] is an approach for fixing flaky tests by leveraging

extreme value theory to loosen assertion bounds. Similar

to FASER, FLEX also updates the assertion bounds of the

test. However, unlike FASER, FLEX’s approach is based on

conservative estimates stemming from applying extreme value

theory. Further, FLEX only reduces flakiness, but does not

discuss its impact on fault-detection effectiveness of the test. It

may often require thousands of samples to reach convergence

and provide very conservative bounds when it converges to

a heavy tailed distribution. In contrast, FASER’s statistical

approach aims to identify subtle accuracy differences and

requires fewer samples (100 in our case).

Mutation Testing. Mutating testing has been widely studied

over past few decades in the context of measuring test effec-

tiveness in detecting faults. Jia and Harman [70] provide a

comprehensive survey of mutation testing techniques. Several

approaches improve mutation testing through custom mutation

operators [71], [72], test prioritization and selection [73], [74],

[75], and eliminate duplicate/equivalent mutants [76], [77].
Shi et al. [78] investigated the effects of flaky tests on muta-

tion testing. They proposed techniques to mitigate the effects

of flakiness by strategically re-running tests. In contrast, we

apply mutation testing to help improve non-deterministic tests.

Also, we execute each mutation 100 times. This allows us to

use a probabilistic version for mutation score unlike traditional

mutation testing, which expects deterministic behavior.

Metamorphic Testing. Metamorphic testing [79] has been

widely used to leverage the relationships between multiple

inputs (metamorphic relations) to address the test oracle

problem. Because the ML domain typically lacks reliable test

oracles, researchers have identified metamorphic relations for

specific applications, including autonomous driving [80], [81],

[82] (e.g., insensitivity of the result to weather conditions),

search engines [83], [84], and machine translation [85], [86].

FASER targets tests where the metamorphic relationship be-

tween outputs is numerical (continuous).

FASER plays a complementary role to metamorphic testing

(i.e., it fixes loose bounds in existing tests) and, as a special

case, can be used to improve the ML tests generated by

applying metamorphic relations. For example, let us consider

a scenario where a developer uses metamorphic testing to

provide relevant test inputs (e.g., image of an animal and

the same image with slightly altered background) and output

relationships (e.g., classification likelihoods of images should

be similar) [87]. However, due to the non-deterministic nature

of ML systems, the appropriate tolerance bound of the output

relationship (e.g., allowable difference between the classifica-

tion likelihoods) may not be known. FASER can help tackle

this problem by running the test with different animal/altered-

background images to build a distribution of the differences of

the classification likelihood of the true label and estimate the

optimal bound (e.g., within 5%) that aims to minimize flaki-

ness and maximize fault-detection effectiveness of the test.

Testing Non-Deterministic Systems. Machine Learning

frameworks like TensorFlow [20] and PyTorch [19] are pre-

dominantly used to develop machine learning applications.

Similarly probabilistic programming systems [88], [89], [90],

[91] are also gaining in importance in recent years. Recently,

researchers have proposed approaches for testing machine

learning frameworks [92], [93], [94], [95], [96], [97], [98],

[99], [100], [101], [102], probabilistic programming sys-

tems [37], [103], [104], and randomized algorithms [105].

While these approaches focus on detecting new bugs, in this

work we focus on improving fault-detection effectiveness of

existing regression tests in such projects.

IX. CONCLUSION

We proposed a novel approach, FASER, for balancing the

trade-offs between flakiness and fault-detection effectiveness

of non-deterministic tests in ML projects. We found that 23 out

of 87 studied non-deterministic tests contain bounds that can

be tightened to improve their fault-detection effectiveness. Our

observations and the positive feedback from developers reflect

that FASER is practically useful.

ACKNOWLEDGMENTS

This work was partially supported by NSF grants CCF-

1763788, CCF-1956374, CCF-1846354, CCF-2008883, CCF-

2131943, and CCF-2141474. We acknowledge support for

research on flaky tests and ML systems from Meta and Google.

REFERENCES

[1] B. Huval, T. Wang, S. Tandon, J. Kiske, W. Song, J. Pazhayampallil,
M. Andriluka, P. Rajpurkar, T. Migimatsu, R. Cheng-Yue, F. Mujica,
A. Coates, and A. Y. Ng, ªAn empirical evaluation of deep learning
on highway driving,º 2015.

[2] T. Davenport and R. Kalakota, ªThe potential for artificial intelligence
in healthcare,º Future Hospital Journal, vol. 6, pp. 94±98, 06 2019.

[3] ªUnderstanding the fatal tesla accident on autopilot and the
nhtsa probe,º electrek, 2016, https://electrek.co/2016/07/01/
understanding-fatal-tesla-accident-autopilot-nhtsa-probe.

[4] ªA google self-driving car caused a crash for the first time,º
The Verge, 2016, https://www.theverge.com/2016/2/29/11134344/
google-self-driving-car-crash-report.

[5] I. Goodfellow, Y. Bengio, A. Courville, and Y. Bengio, Deep learning.
MIT Press Cambridge, 2016.

[6] N. D. Goodman and A. Stuhlmüller, ªThe design and implementation
of probabilistic programming languages,º 2014.

[7] V. Francois-Lavet, P. Henderson, R. Islam, M. G. Bellemare, and
J. Pineau, ªAn introduction to deep reinforcement learning,º 2018.

[8] S. Dutta, A. Shi, and S. Misailovic, ªFlex: Fixing flaky tests in machine
learning projects by updating assertion bounds,º in Proceedings of the

29th ACM Joint Meeting on European Software Engineering Confer-

ence and Symposium on the Foundations of Software Engineering,
2021.

[9] S. Dutta, J. Selvam, A. Jain, and S. Misailovic, ªTera: Optimizing
stochastic regression tests in machine learning projects,º in ISSTA,
2021.

[10] S. Dutta, A. Shi, R. Choudhary, Z. Zhang, A. Jain, and S. Misailovic,
ªDetecting flaky tests in probabilistic and machine learning applica-
tions,º in ISSTA, 2020.

[11] M. Nejadgholi and J. Yang, ªA study of oracle approximations in testing
deep learning libraries,º in ASE, 2019.

[12] S. Dutta, A. Arunachalam, and S. Misailovic, ªTo seed or not to seed?
an empirical analysis of usage of seeds for testing in machine learning
projects,º in ICST, 2022.

[13] Q. Luo, F. Hariri, L. Eloussi, and D. Marinov, ªAn empirical analysis
of flaky tests,º in FSE, 2014.

[14] M. Mitzenmacher and E. Upfal, Probability and computing: Random-

ization and probabilistic techniques in algorithms and data analysis.
Cambridge university press, 2017.

[15] P. L. Chebyshev, ªDes valeurs moyennes,º J. Math. Pures Appl, 1867.
[16] A. DasGupta, ªBest constants in chebyshev inequalities with various

applications,º Metrika, 2000.
[17] F. P. Cantelli, Intorno ad un teorema fondamentale della teoria del

rischio. Tip. degli operai, 1910.
[18] Y. Jia and M. Harman, ªAn analysis and survey of the development of

mutation testing,º IEEE Transactions on Software Engineering, 2011.
[19] ªPytorch,º 2018, http://pytorch.org.
[20] ªTensorflow,º 2020, https://www.tensorflow.org.
[21] ªPyro,º 2022, https://github.com/pyro-ppl/pyro.
[22] ªPymc,º 2022, https://github.com/pymc-devs/pymc.
[23] ªCleverhans,º 2022, https://github.com/cleverhans-lab/cleverhans.
[24] J. Uesato, B. O’Donoghue, A. van den Oord, and P. Kohli, ªAdversarial

risk and the dangers of evaluating against weak attacks,º 2018.
[25] T. N. Tolhurst, ªModel-free tests and evidence of bubbles in real

markets,º Ph.D. dissertation, University of California, Davis, 2020.
[26] V. V. Buldygin and Y. V. Kozachenko, ªSub-gaussian random vari-

ables,º Ukrainian Mathematical Journal, 1980.
[27] F. J. Anscombe and W. J. Glynn, ªDistribution of the kurtosis statistic

b 2 for normal samples,º Biometrika, 1983.
[28] S. S. Shapiro and M. B. Wilk, ªAn analysis of variance test for

normality (complete samples),º Biometrika, 1965.
[29] R. T. Marler and J. S. Arora, ªThe weighted sum method for multi-

objective optimization: new insights,º Structural and multidisciplinary

optimization, 2010.
[30] D. J. Wales and J. P. K. Doye, ªGlobal optimization by basin-hopping

and the lowest energy structures of lennard-jones clusters containing
up to 110 atoms,º The Journal of Physical Chemistry A, 1997.

[31] F. J. Massey Jr, ªThe kolmogorov-smirnov test for goodness of fit,º
Journal of the American statistical Association, 1951.

[32] V. W. Berger and Y. Zhou, ªKolmogorov±smirnov test: Overview,º
Wiley statsref: Statistics reference online, 2014.

[33] 2009, https://coverage.readthedocs.io/en/6.2/.

[34] ªMutmut: Python mutation tester,º 2020, https://github.com/boxed/
mutmut.

[35] Y. Zhang, Y. Chen, S.-C. Cheung, Y. Xiong, and L. Zhang, ªAn
empirical study on tensorflow program bugs,º in ISSTA, 2018.

[36] N. Humbatova, G. Jahangirova, G. Bavota, V. Riccio, A. Stocco, and
P. Tonella, ªTaxonomy of real faults in deep learning systems,º in ICSE,
2020.

[37] S. Dutta, O. Legunsen, Z. Huang, and S. Misailovic, ªTesting proba-
bilistic programming systems,º in FSE, 2018.

[38] 2017, https://docs.conda.io.
[39] 2020, https://docs.pytest.org/en/stable.
[40] ªScipy ks-test,º 2022, https://docs.scipy.org/doc/scipy/reference/

generated/scipy.stats.kstest.html.
[41] ªAllennlp,º 2022, https://github.com/allenai/allennlp.
[42] ªCaptum,º 2022, https://github.com/pytorch/captum.
[43] ªCoax,º 2022, https://github.com/microsoft/coax.
[44] ªDeepchem,º 2022, https://github.com/deepchem/deepchem.
[45] ªGensim,º 2022, https://github.com/RaRe-Technologies/gensim.
[46] ªGpflow,º 2022, https://github.com/GPflow/GPflow.
[47] ªGpytorch,º 2022, https://github.com/cornellius-gp/gpytorch.
[48] ªKornia,º 2022, https://github.com/kornia/kornia.
[49] ªlearn2learn,º 2022, https://github.com/learnables/learn2learn.
[50] ªMl-agents,º 2022, https://github.com/Unity-Technologies/ml-agents.
[51] ªnumpyro,º 2022, https://github.com/pyro-ppl/numpyro.
[52] ªParlai,º 2022, https://github.com/facebookresearch/ParlAI.
[53] ªpgmpy,º 2022, https://github.com/pgmpy/pgmpy.
[54] ªrefnx,º 2022, https://github.com/refnx/refnx.
[55] ªstellargraph,º 2022, https://github.com/stellargraph/stellargraph.
[56] ªtfcausalimpact,º 2022, https://github.com/WillianFuks/tfcausalimpact.
[57] ªtrax,º 2022, https://github.com/google/trax.
[58] ªumap,º 2022, https://github.com/lmcinnes/umap.
[59] ªzfit,º 2022, https://github.com/zfit/zfit.
[60] ªAmazon ec2 on-demand pricing,º 2022, https://aws.amazon.com/ec2/

pricing/on-demand/.
[61] J. M. Zhang, M. Harman, L. Ma, and Y. Liu, ªMachine learning testing:

Survey, landscapes and horizons,º TSE, 2020.
[62] M. Harman and P. O’Hearn, ªFrom start-ups to scale-ups: Opportunities

and open problems for static and dynamic program analysis,º in SCAM,
2018.

[63] A. Romano, Z. Song, S. Grandhi, W. Yang, and W. Wang, ªAn
empirical analysis of ui-based flaky tests,º in ICSE, 2021.

[64] W. Lam, P. Godefroid, S. Nath, A. Santhiar, and S. Thummalapenta,
ªRoot causing flaky tests in a large-scale industrial setting,º in ISSTA,
2019.

[65] J. Bell, O. Legunsen, M. Hilton, L. Eloussi, T. Yung, and D. Marinov,
ªDeFlaker: Automatically detecting flaky tests,º in ICSE, 2018.

[66] W. Lam, R. Oei, A. Shi, D. Marinov, and T. Xie, ªiDFlakies: A
framework for detecting and partially classifying flaky tests,º in ICST,
2019.

[67] A. Shi, A. Gyori, O. Legunsen, and D. Marinov, ªDetecting assump-
tions on deterministic implementations of non-deterministic specifica-
tions,º in ICST, 2016.

[68] A. Shi, W. Lam, R. Oei, T. Xie, and D. Marinov, ªifixflakies: A
framework for automatically fixing order-dependent flaky tests,º in
FSE, 2019.

[69] P. Zhang, Y. Jiang, A. Wei, V. Stodden, D. Marinov, and A. Shi,
ªDomain-specific fixes for flaky tests with wrong assumptions on
underdetermined specifications,º in ICSE, 2021.

[70] Y. Jia and M. Harman, ªAn analysis and survey of the development of
mutation testing,º IEEE transactions on software engineering, 2010.

[71] O. L. Vera-Pérez, M. Monperrus, and B. Baudry, ªDescartes: a pitest
engine to detect pseudo-tested methods: tool demonstration,º in ASE,
2018.

[72] F. Hariri, A. Shi, O. Legunsen, M. Gligoric, S. Khurshid, and S. Mis-
ailovic, ªApproximate transformations as mutation operators,º in ICST,
2018.

[73] L. Zhang, D. Marinov, and S. Khurshid, ªFaster mutation testing
inspired by test prioritization and reduction,º in ISSTA, 2013.

[74] M. Gligoric, L. Zhang, C. Pereira, and G. Pokam, ªSelective mutation
testing for concurrent code,º in ISSTA, 2013.

[75] L. Zhang, M. Gligoric, D. Marinov, and S. Khurshid, ªOperator-based
and random mutant selection: Better together,º in ASE, 2013.

[76] B. J. Grün, D. Schuler, and A. Zeller, ªThe impact of equivalent
mutants,º in 2009 International Conference on Software Testing, Veri-

fication, and Validation Workshops, 2009.

https://electrek.co/2016/07/01/understanding-fatal-tesla-accident-autopilot-nhtsa-probe
https://electrek.co/2016/07/01/understanding-fatal-tesla-accident-autopilot-nhtsa-probe
https://www.theverge.com/2016/2/29/11134344/google-self-driving-car-crash-report
https://www.theverge.com/2016/2/29/11134344/google-self-driving-car-crash-report
http://pytorch.org
https://www.tensorflow.org
https://github.com/pyro-ppl/pyro
https://github.com/pymc-devs/pymc
https://github.com/cleverhans-lab/cleverhans
https://coverage.readthedocs.io/en/6.2/
https://github.com/boxed/mutmut
https://github.com/boxed/mutmut
https://docs.conda.io
https://docs.pytest.org/en/stable
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.kstest.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.kstest.html
https://github.com/allenai/allennlp
https://github.com/pytorch/captum
https://github.com/microsoft/coax
https://github.com/deepchem/deepchem
https://github.com/RaRe-Technologies/gensim
https://github.com/GPflow/GPflow
https://github.com/cornellius-gp/gpytorch
https://github.com/kornia/kornia
https://github.com/learnables/learn2learn
https://github.com/Unity-Technologies/ml-agents
https://github.com/pyro-ppl/numpyro
https://github.com/facebookresearch/ParlAI
https://github.com/pgmpy/pgmpy
https://github.com/refnx/refnx
https://github.com/stellargraph/stellargraph
https://github.com/WillianFuks/tfcausalimpact
https://github.com/google/trax
https://github.com/lmcinnes/umap
https://github.com/zfit/zfit
https://aws.amazon.com/ec2/pricing/on-demand/
https://aws.amazon.com/ec2/pricing/on-demand/

[77] M. Papadakis, Y. Jia, M. Harman, and Y. Le Traon, ªTrivial compiler
equivalence: A large scale empirical study of a simple, fast and effective
equivalent mutant detection technique,º in 2015 IEEE/ACM 37th IEEE

International Conference on Software Engineering, 2015.
[78] A. Shi, J. Bell, and D. Marinov, ªMitigating the effects of flaky tests

on mutation testing,º in ISSTA, 2019.
[79] T. Y. Chen, S. C. Cheung, and S. M. Yiu, ªMetamorphic testing: a new

approach for generating next test cases,º CS Department, Hong Kong
University of Science and Technology, Tech. Rep., 1998.

[80] Y. Tian, K. Pei, S. Jana, and B. Ray, ªDeeptest: Automated testing of
deep-neural-network-driven autonomous cars,º in Proceedings of the

40th international conference on software engineering, 2018, pp. 303±
314.

[81] Z. Q. Zhou and L. Sun, ªMetamorphic testing of driverless cars,º
Communications of the ACM, vol. 62, no. 3, pp. 61±67, 2019.

[82] M. Zhang, Y. Zhang, L. Zhang, C. Liu, and S. Khurshid, ªDeeproad:
Gan-based metamorphic testing and input validation framework for
autonomous driving systems,º in 2018 33rd IEEE/ACM International

Conference on Automated Software Engineering (ASE). IEEE, 2018,
pp. 132±142.

[83] Z. Q. Zhou, S. Xiang, and T. Y. Chen, ªMetamorphic testing for
software quality assessment: A study of search engines,º IEEE Trans-

actions on Software Engineering, vol. 42, no. 3, pp. 264±284, 2016.
[84] T. Y. Chen, F.-C. Kuo, W. Ma, W. Susilo, D. Towey, J. Voas, and Z. Q.

Zhou, ªMetamorphic testing for cybersecurity,º Computer, vol. 49,
no. 6, pp. 48±55, 2016.

[85] P. He, C. Meister, and Z. Su, ªStructure-invariant testing for machine
translation,º in 2020 IEEE/ACM 42nd International Conference on

Software Engineering (ICSE). IEEE, 2020, pp. 961±973.
[86] Z. Sun, J. M. Zhang, M. Harman, M. Papadakis, and L. Zhang,

ªAutomatic testing and improvement of machine translation,º in Pro-

ceedings of the ACM/IEEE 42nd International Conference on Software

Engineering, 2020, pp. 974±985.
[87] Y. Tian, S. Ma, M. Wen, Y. Liu, S.-C. Cheung, and X. Zhang, ªTo

what extent do dnn-based image classification models make unreliable
inferences?º Empirical Softw. Engg., vol. 26, no. 5, sep 2021.

[88] N. D. Goodman, V. K. Mansinghka, D. Roy, K. Bonawitz, and J. B.
Tenenbaum, ªChurch: a language for generative models,º in UAI, 2008.

[89] B. Carpenter, A. Gelman, M. Hoffman, D. Lee, B. Goodrich, M. Be-
tancourt, M. A. Brubaker, J. Guo, P. Li, A. Riddell et al., ªStan:
A probabilistic programming language,º JSTATSOFT, vol. 20, no. 2,
2016.

[90] T. Gehr, S. Misailovic, and M. Vechev, ªPSI: Exact symbolic inference
for probabilistic programs,º in CAV, 2016.

[91] Z. Huang, S. Dutta, and S. Misailovic, ªAqua: Automated quantized
inference for probabilistic programs,º in ATVA, 2021.

[92] H. V. Pham, T. Lutellier, W. Qi, and L. Tan, ªCradle: cross-backend
validation to detect and localize bugs in deep learning libraries,º in
ICSE, 2019.

[93] A. Dwarakanath, M. Ahuja, S. Sikand, R. M. Rao, R. J. C. Bose,
N. Dubash, and S. Podder, ªIdentifying implementation bugs in ma-
chine learning based image classifiers using metamorphic testing,º in
ISSTA, 2018.

[94] Y. Zhang, L. Ren, L. Chen, Y. Xiong, S.-C. Cheung, and T. Xie,
ªDetecting numerical bugs in neural network architectures,º in FSE,
2020.

[95] Q. Guo, X. Xie, Y. Li, X. Zhang, Y. Liu, X. Li, and C. Shen, ªAudee:
Automated testing for deep learning frameworks,º in ASE, 2020.

[96] Q. Hu, L. Ma, X. Xie, B. Yu, Y. Liu, and J. Zhao, ªDeepmutation++: A
mutation testing framework for deep learning systems,º in ASE, 2019.

[97] A. Wei, Y. Deng, C. Yang, and L. Zhang, ªFree lunch for testing:
Fuzzing deep-learning libraries from open source,º in 2022 IEEE/ACM

44th International Conference on Software Engineering (ICSE), 2022,
pp. 995±1007.

[98] J. Liu, Y. Wei, S. Yang, Y. Deng, and L. Zhang, ªCoverage-guided
tensor compiler fuzzing with joint ir-pass mutation,º Proc. ACM

Program. Lang., vol. 6, no. OOPSLA1, 2022.
[99] Y. Deng, C. Yang, A. Wei, and L. Zhang, ªFuzzing deep-learning

libraries via automated relational api inference,º in FSE, 2022.
[100] C. Yang, Y. Deng, J. Yao, Y. Tu, H. Li, and L. Zhang, ªFuzzing

automatic differentiation in deep-learning libraries,º in ICSE, 2023.
[101] Y. Deng, C. S. Xia, H. Peng, C. Yang, and L. Zhang, ªFuzzing

deep-learning libraries via large language models,º arXiv preprint

arXiv:2212.14834, 2022.
[102] J. Liu, J. Lin, F. Ruffy, C. Tan, J. Li, A. Panda, and L. Zhang, ªNnsmith:

Generating diverse and valid test cases for deep learning compilers,º
in ASPLOS, 2023.

[103] S. Dutta, W. Zhang, Z. Huang, and S. Misailovic, ªStorm: program re-
duction for testing and debugging probabilistic programming systems,º
in FSE, 2019.

[104] Y. R. S. Llerena, M. Böhme, M. Brünink, G. Su, and D. S. Rosenblum,
ªVerifying the long-run behavior of probabilistic system models in the
presence of uncertainty,º in FSE, 2018.

[105] K. Joshi, V. Fernando, and S. Misailovic, ªStatistical algorithmic
profiling for randomized approximate programs,º in ICSE, 2019.

	Introduction
	Example
	Problem Formulation
	Concentration Inequalities
	Computing Passing Probability of Test
	Estimating Fault-Detection Ability of Test
	Finding Optimal Assertion Bound

	FASER
	FASER Algorithm
	Mutant Generation
	Estimating Optimal Assertion Bound
	Applicability of Assertion Bounds

	Methodology
	Evaluation
	RQ1: Tests Improved by FASER
	RQ2: Improvement in Fault-Detection Effectiveness
	RQ3: Developer Response
	RQ4: Efficiency of FASER

	Threats to Validity
	Related Work
	Conclusion
	References

