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ABSTRACT

To deploy compute-intensive neural networks on resource-constrained edge systems, developers use model

optimization techniques that reduce model size and computational cost. Existing optimization tools are application-

agnostic ± they optimize model parameters solely in view of the neural network accuracy ± and can thus miss

optimization opportunities. We propose ApproxCaliper, the first programmable framework for application-

aware neural network optimization. By incorporating application-specific goals, ApproxCaliper facilitates

more aggressive optimization of the neural networks compared to application-agnostic techniques. We perform

experiments on five different neural networks used in two real-world robotics systems: a commercial agriculture

robot and a simulation of an autonomous electric cart. Compared to Learning Rate Rewinding (LRR), a state-

of-the-art structured pruning tool used in an application agnostic setting, ApproxCaliper achieves 5.3× higher

speedup and 2.9× lower GPU resource utilization, and 36× and 6.1× additional model size reduction for the two

evaluated benchmarks, respectively.

1 INTRODUCTION

Many emerging edge applications combine multiple neural

network (NN) models (which extract actionable informa-

tion from sensor data such as RGB, LIDAR, audio, and

GPS) together with other computations to achieve end-to-

end goals. However, deep learning workloads are often

compute- and power-intensive, which makes it challeng-

ing to deploy these models on resource-constrained edge

compute devices with tight constraints on power, weight,

size and production costs (Pedersen et al., 2006; Kim et al.,

2010). An important opportunity, however, is that the ap-

plications exhibit a significant amount of application-level

error resilience: reducing an individual component’s accu-

racy is acceptable if it has minimal observable impact on

the end-to-end quality of the application.

Application-level error-resilience manifests in many differ-

ent domains that use NNs, including autonomous navigation

systems, augmented and virtual reality (AR/VR) stacks, and

real-time data analytics. For instance, in an autonomously

navigating robot, a reduction in the accuracy of the NN
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perception component may not adversely affect the nav-

igation quality, due to the error resilience in the control

components. Similarly, we found that for a real-time data

analytics application (corn stem counting using object de-

tection), the final stem counts are minimally affected by

locationing errors in the object detection component.

Currently, application developers can reduce the costs of NN

models with various NN-specific optimization techniques

such as pruning, quantization, weight compression, and low-

rank factorization (Sainath et al., 2013; Han et al., 2016;

Anwar et al., 2017; Frankle & Carbin, 2019; Hubara et al.,

2017; Swaminathan et al., 2020; Ruan et al., 2021; Xu et al.,

2021; Venkataramani et al., 2019). These techniques opti-

mize a neural network with the goal to maintain the same

accuracy as the original model. They have proven effective

in many scenarios where the NN is the entire application.

However, using NN optimization techniques naÈıvely for

composite edge applications misses the rich opportunity to

take advantage of the application-level resilience. Instead,

it conservatively constrains the optimization levels to retain

the accuracy of the original network, even when the con-

straint is not required to satisfy the application’s end-to-end

QoS (Quality of Service) goal.

Our key insight is to incorporate the application-level error

resilience in the optimization process, which allows relaxing

the accuracy of NN components, yielding more aggressively

optimized models and less costly execution. Application-

aware optimization can provide several times more speedup
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and often more than an order of magnitude less memory

consumption compared to application-agnostic techniques.

These improvements make it possible to deploy compute-

intensive NN models on resource-constrained edge systems,

as we will demonstrate in this paper.

1.1 ApproxCaliper

We develop ApproxCaliper, the first application-aware neu-

ral network optimization framework. It is application-aware

in that it uses a developer-specified application-level QoS

goal for tuning. For instance, for an autonomous robot that

uses neural networks for visual perception, a developer can

specify an application-level QoS goal to autonomously nav-

igate without collisions for a given distance. ApproxCaliper

encodes this QoS goal as constraints under which it relaxes

NN accuracy with approximation techniques to gain higher

performance benefits.

Tuning the accuracy-vs-performance tradeoffs for neural

networks deployed as components in applications is both

complicated and time-consuming. Tuning is complicated

because it searches across many low-level system- and NN-

specific parameters with complex mutual interactions, and

their impacts vary across different applications. For instance,

for a control system that uses predictions from multiple NN

components, errors in one component may affect how much

error can be tolerated from other NNs, before quality of

control decisions becomes unacceptably low. Tuning is time-

consuming because the search space is often intractable,

and empirically evaluating each configuration to measure

application-level QoS can be expensive (e.g., running a

robot in a field). Thus we need to guide the search toward

the configurations that are likely to yield profitable tradeoffs.

To reduce the complexity and cost, our novel optimization

algorithm starts from the observation that the acceptability

of a configuration in the application-level tradeoff space

depends on the error levels in all NN components. We thus

reduce the problem of searching the end-to-end application’s

QoS space to searching the local spaces of NN errors mea-

sured by NN-specific error metrics. Our algorithm navigates

the NN error space with statistical error injection procedure

that varies the level of error in each NN component, and

uses the error injection results in the NN space to direct the

end-to-end QoS optimization.

We present a two-phase optimization approach with an on-

line (on-device) error calibration phase and an offline model

tuning phase. Our novel error calibration algorithm uses

statistical error injection to identify valid regions in the NN

error space (i.e., those that contain the configurations that

lead to acceptable application-level QoS) and separate them

from the invalid regions. We show that this technique can

guide the model selection and tuning phase (that makes

use of one or more off-the-shelf application-agnostic NN op-

timization techniques) towards configurations that maximize

the given objective while satisfying the error constraints.

ApproxCaliper can automatically tune multiple NN compo-

nents jointly to select an optimized model variant for each

component. It can also simultaneously tune for the choice

of model variant and value of NN-specific performance met-

rics, such as model frames per second (FPS) if given by

the developer, to optimize system-level goals such as re-

source utilization. ApproxCaliper provides an easy-to-use

programmable interface for the developer inputs, such as

QoS and error metrics.

1.2 Summary of Results

We evaluate two real-world autonomous cyber-physical sys-

tems, CropFollow and Polaris-GEM with five different NN

architectures used for visual perception tasks (detailed in

§2.2 and §2.3). For both systems, ApproxCaliper discovers

significant room for relaxing NN accuracy while maintain-

ing application-level QoS. For CropFollow, ApproxCaliper

co-tunes two different NN models in the application, and

achieves 5.3× higher speedup and 36× greater model size

reduction compared to Learning Rate Rewinding (LRR),

an application-agnostic state-of-the-art structured pruning

algorithm. For Polaris-GEM, ApproxCaliper co-tunes for

model FPS and pruned model variants (two main factors

that affect the QoS of this application), and achieves 2.9×
lower GPU resource utilization and 6.1× greater model size

reduction compared to LRR.

For CropFollow, these performance improvements allowed

us to run the full system on a single $45 Raspberry Pi4. This

compares favorably to the $129 Jetson Nano (2023 prices),

the cheapest device to deliver necessary performance with

application-agnostic pruning (LRR). Our work has led Earth-

sense, CropFollow’s manufacturer (Earthsense, 2020), to

consider lower cost alternatives for computing hardware.

1.3 Contributions

• We propose ApproxCaliper, the first programmable frame-

work that optimizes neural network approximations in an

application-aware manner. It captures how errors and

performance of NN components in an application interact

and affect the application-level QoS.

• We present a novel two-phase neural network model opti-

mization strategy, with an error calibration phase and a

model optimization and selection phase, which achieves

higher end-to-end performance improvements compared

to traditional empirical autotuning.

• Our evaluation on the end-to-end software stacks of two

real-world cyber-physical systems shows that Approx-

Caliper provides significantly higher improvements com-

pared to application-agnostic tuning approaches.

ApproxCaliper is available at https://github.com/

uiuc-arc/approxcaliper.
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2 BACKGROUND AND MOTIVATION

We consider an application that includes one or more neural

networks, and must achieve a design goal captured by a

specified quality-of-service (QoS) metric. The goal of our

work is to enable and simplify the use of aggressive opti-

mizations that relax component-level semantics, such as NN

inference accuracy, to the maximum extent possible while

ensuring the QoS goal is met. We first define terminology

used throughout the paper (§2.1), and then describe the two

evaluated cyber-physical applications (§2.2 and §2.3).

2.1 Preliminaries and Terminology

Configuration is an assignment of a possibly optimized

model variant (e.g., a pruned neural network with specific

pruning fractions) to each NN component in the application,

and (optionally) NN performance parameters such as the

FPS (frames per second) at which the NN processes inputs

(e.g., images).

Application-level QoS is an application-specific metric de-

fined by a real-valued function for a specified configuration

(the ªQoS Evaluatorº), along with a lower-bound value for

the desired application quality (the ªQoS Targetº). This

function should quantify how well the application delivers

on its desired goals. For example, for an autonomous mobile

robot, a relevant QoS metric for navigation quality is the

time the robot travels before requiring human intervention,

e.g., due to a collision.

Valid and Invalid Configurations. A configuration is valid

if it meets the QoS target (QoS ≥ QoSTarget), and is invalid

otherwise (QoS < QoSTarget).

Autotuning is a design space exploration technique that uses

heuristic techniques to find configurations that maximize

a given objective function, while satisfying user-specified

constraints. Since autotuning is a heuristic search performed

over (usually) intractably large search spaces, it may not

discover globally optimal configurations.

2.2 CropFollow Autonomous Navigation System

We evaluate a state-of-the-art commercial agriculture robot

called TerraSentia, obtained from EarthSense (Earthsense,

2020), used by clients for high-throughput phenotyping and

a variety of other agriculture tasks. The robot is equipped

with an autonomous vision-guided navigation system named

CropFollow (Sivakumar et al., 2021) used for row-following

navigation through fields of crops.

CropFollow’s goal is to navigate the robot through the center

line of a (possibly curved) crop row. It contains a number of

components that collaborate to keep the robot on its intended

path, as shown in Figure 1:

• Heading / distance prediction NNs. 2 ResNet-18 NNs

take 320 × 240 RGB images as input and estimate the

heading angle θ and distance-to-edge d of the robot. θ is

the angle of the robot’s direction relative to adjacent crop

rows. d ∈ [0, 1] is the ratio between the robot’s distance

Distance 
Pred. CNN

EKF

Front Camera Image

Heading 
Pred. CNN

MPC

Control 
Commands

IMU

Figure 1: CropFollow navigation system workflow.
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Figure 2: Polaris-GEM vehicle simulator workflow.

to the left crop row and the total row width.

• Extended Kalman Filter (EKF). EKF fuses (θ, d) predic-

tions with measurements of linear and angular velocities

and accelerations from an Inertial Motion Unit (IMU) to

refine these predictions.

• Model Predictive Controller (MPC). MPC uses refined

pose estimations from EKF to compute the angular veloc-

ity commands to be applied over the next few decision

intervals, to keep the robot travelling on its intended path.

2.3 Polaris-GEM Vehicle Simulator

Polaris-GEM is a Gazebo-based simulation of an au-

tonomous lane-following, commercially-sold electric cart,

Polaris GEM e2 (Salfer-Hobbs & Jensen, 2020). The origi-

nal simulator used GPS-based perception, but we modified

it for vision-based perception using LaneNet (Neven et al.,

2018), a state-of-the-art lane detection network. Figure 2

shows the components of Polaris-GEM, which include:

• Lane Detection Network. A LaneNet (Neven et al., 2018)

with a VGG-16 backbone takes a 512× 256 RGB image

(from Gazebo-simulated front camera) and produces 2

outputs: a Boolean mask B : 512×256 and an embedding

tensor E : 4× 512× 256. B distinguishes lanes from the

background; E distinguishes the lanes from each other.

• Lane Post-processing. The post-processing module com-

bines the masks (B,E) with a clustering algorithm and

finds each lane as a cluster of pixels. It then fits a polyno-

mial curve through the pixels of each lane, and eventually

converts these curve equations into heading and distance

estimates (θ, d) (similar to CropFollow).

• Stanley Controller. A Stanley controller (Thrun et al.,

2006) uses (θ, d) estimates and current velocity (from

Gazebo-simulated IMU) to compute a steering angle and

guide the vehicle back to the center.
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Figure 3: ApproxCaliper High-level Workflow

3 APPROXCALIPER FRAMEWORK

Figure 3 shows the workflow of the ApproxCaliper frame-

work. At a high-level ApproxCaliper takes as input (1) NN

models to optimize, (2) NN-specific metrics that are used

to quantify the output error of the NN models (used for

error calibration analysis), (3) a developer-provided QoS

evaluator and QoS target, and (4) a developer-provided ap-

plication performance evaluator, and uses these to perform

application-aware optimizations on the NN models. To

reduce the cost of tuning and improve the quality of con-

figurations, ApproxCaliper performs optimization in two

phases: (1) An error calibration phase (§3.2) that evaluates

empirically how the end-to-end application QoS is affected

by accuracy degradation of the NN components in the appli-

cation pipeline, and (2) A model tuning and selection phase

(§3.3) that optimizes the NNs based on the application’s

error constraints computed by the calibration phase.

First, we discuss the high-level intuition of our approach,

and next, the algorithmic details of the error calibration and

model tuning phases in ApproxCaliper. In §3.4, we dis-

cuss how developers can use the ApproxCaliper interface to

optimize neural networks in an application-specific manner.

3.1 Intuition for our Two-phase Tuning Approach.

Motivation. Empirical autotuning is computationally ex-

pensive because (1) it usually requires many tuning itera-

tions to achieve good results, and (2) each empirical eval-

uation can be expensive; for instance, for CropFollow, em-

pirical evaluation can be expensive in terms of both time

and human resources because the TerraSentia robot needs a

human observer for potential manual interventions.

ApproxCaliper’s two-phase tuning approach achieves higher

speedups and model footprint improvements in the same

tuning time budget as traditional empirical tuning. System-

atically quantifying the error constraints before the tuning

phase allows for filtering invalid configurations (unaccept-

ably low QoS), and helps direct the search towards configu-

rations that more likely has high speedups.

Goal of the Error Calibration Phase. The purpose of er-

ror calibration is to learn the extent to which the accuracy

of NN components can be reduced without violating end-

to-end application-level QoS targets. This is achieved by

statistical error injection into NN outputs and empirical eval-

uation of the application QoS for a limited number of times.

The injected errors are quantified using one or more tradi-

tional error metrics per NN, such as accuracy, precision, or

any custom function. These error metrics Mj , 1 ≤ j ≤ N

define a bounded N -dimensional error constraint space.

Figure 4 shows an example error constraint space with two

error metrics M1 and M2. The error constraint space cap-

tures how simultaneous changes in the error metrics affects

the end-to-end QoS. Error calibration partitions this space

into three disjoint regions: valid (QoS ≥ QoSTarget, shown

in green) invalid (QoS < QoSTarget, shown in red) and

unvisited (unknown QoS, shown in white).
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Figure 4: Example shows how the error calibration algorithm
partitions the 2-dimensional error space into valid (green) and
invalid (red) configuration regions. M1 and M2 are error metrics.
Valid regions marked number 1, 2, 3 are created in the first 3
iterations, respectively. The green crosses show the MVP (maximal
valid points) and red crosses show the MIP (minimal invalid points).
The black dots show configurations searched on the boundary of
the valid and unvisited regions.

Goal of the Model Optimization and Autotuning Phase.

The model autotuner uses heuristic search techniques to

navigate the configuration space and filters away (1) in-

valid region (red region) configurations, and (2) valid region

(green region) configurations with low error metric values.

Configurations with lower error are not desirable since a

lower error means less opportunity for optimization. We

refer to valid configurations with high error metric values

as high potential since a higher metric value indicates a

higher error slack, and hence more optimization opportunity.

High potential configurations are likely found close to the

boundary of the valid and unvisited region, as this area in-

cludes the highest error values but still produces valid QoS.

In Figure 4, the black dots in the green and white regions

show the configurations searched in the model tuning phase.

The unvisited (white) region is included in the search since

it potentially includes valid configurations (has unknown

QoS). There are no visited configurations on the bottom left

of Figure 4, since points with low error metric values are

not high potential configurations.

3.2 Error Calibration Phase

The error calibration phase uses artificial error injection to

add varying levels of errors to NN outputs, and measures

the impact on the end-to-end application-level quality. Next,
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we describe the key inputs to the error calibration phase,

the error calibration algorithm, and our approach to error

injection in NN outputs.

Developer Input #1: Baseline Neural Networks. Devel-

opers specify one pretrained NN model per NN component

to use for error injection. These are the baseline models with

no approximation. It is preferred that developers specify

models with high accuracy since it gives the highest margin

for error injection.

Developer Input #2: Neural Network Metrics. The Ap-

proxCaliper interface provides developers with a flexible

way to specify task-specific NN error metrics, which is

important since different NN tasks use different metrics.

Developers can use a predefined error metric or provide a

custom function ErrorMetric(Y,G), where Y is the output

of the NN model after error injection and G is the ground

truth. Developers can also specify a performance metric

such as DNN throughput, and ApproxCaliper can analyze

the combined impact of NN compute performance (e.g.,

FPS) and prediction error (e.g., accuracy) on end-to-end

QoS. The interface allows specifying multiple metrics (e.g.,

precision and recall) per NN that capture different aspects of

the error. For each metric, users also need to provide lower

and upper bound values as the range for error injection.

The error calibration algorithm assumes that all the metrics

are monotonic with the same directionality, i.e., a higher

metric value is always more desirable than a lower value.

This monotonicity assumption is satisfied by most common

metrics such as classification accuracy, F1 score, PSNR

(peak signal-to-noise ratio), etc. If a metric m is monotonic

but in the opposite direction, one can instead use −m.

Developer Input #3: End-to-end QoS Evaluator. Devel-

opers provide the QoS evaluator and the QoS target via the

ApproxCaliper interface. The error calibration algorithm

uses this QoS evaluator to measure the impact of NN errors

on the end-to-end QoS. This function should initialize the

application, run the application for some time / iterations,

and return the end-to-end QoS.

Output. The output is an N -dimensional error constraint

space that captures the effect of increasing NN error on the

application QoS. The error constraint space is a space of the

N metrics (Input #2). The lower and upper bounds of each

metric collectively define two N -dimensional points Mlb =
(Mlb,1, . . . ,Mlb,N ) and Mub = (Mub,1, . . . ,Mub,N ) and

an N -dimensional box between them that forms the over-

all search space. We refer to a single or an union of more

N -dimensional boxes as a region. The algorithm partitions

the search space into valid (green) and invalid (red) region,

effectively finding the boundary between these two regions.

Figure 4 shows an example of a 2-dimensional error con-

straint space where Mlb = (0, 0) and Mub = (8, 8).

Algorithm 1: Error Calibration Algorithm.

1 Inputs:
2 • baselineNNs: pretrained NNs, one per NN component
3 • qosEvaluator: function that evaluates app-level QoS
4 • qosTarget: QoS target to satisfy
5 • lowerBound, upperBound: thresholds for metrics
6 • errorDistrib: error distribution for sampling errors
7 • maxDiagEvals: maximum evaluations per diagonal
8 • totalEvals: total number of evaluations
9 Output: validRegion, invalidRegion, unvisitedRegion

10 Function errorCalibrate
11 fullRectangle = Rectangle(lowerBound, upperBound);
12 rectQueue = PriorityQueue([fullRectangle]);
13 nEvals = 0;
14 while not rectQueue.empty() and nEvals < totalEvals do
15 rectangle = rectQueue.pop();
16 diag = rectangle.getDiagonal();
17 for rEvals = 0 to maxDiagEvals do
18 if nEvals ≥ totalEvals then break;
19 errorInjectedNNs = errorInject(baselineNNs,

errorDistrib, diag.midPoint);
20 qos = qosEvaluator(errorInjectedNNs);
21 if qos ≥ qosTarget then
22 diag = Diagonal(diag.midPoint, diag.MIP);
23 diag.MVP = diag.midPoint;

24 else
25 diag = Diagonal(diag.MVP, diag.midPoint);
26 diag.MIP = diag.midPoint;

27 nEvals += 1;

28 validRegion ∪= DominatedRect(diag.MVP);
29 invalidRegion ∪= DominatedRect(diag.MIP);
30 rectQueue.push(rectangle.getSubRectsToVisit());

31 unvisitedRegion = fullRectangle − validRegion −

invalidRegion;
32 return validRegion, invalidRegion, unvisitedRegion;

3.2.1 Error Calibration Algorithm

Algorithm 1 shows the error calibration algorithm. The core

idea is to recursively divide the search space into smaller

rectangles and search for boundary points (representing

configurations) on the diagonal of each rectangle. The algo-

rithm exploits domination relation in the space to efficiently

infer validity of rectangles. If a point P is evaluated as valid,

the algorithm infers the rectangle with lower or equal error

than P in all metrics RL;P = {Q | ∀i. Qi ≤ Pi} as

valid. We say point P dominates all points Q ∈ RL;P , and

P is the highest point of RL;P . Conversely, if P is invalid,

the rectangle RU ;P with higher or equal error than P is

invalid, P is dominated by all points Q ∈ RU ;P , and P is

the lowest point of RU ;P . By this definition, each rectangle

has a unique lowest point and a unique highest point.

For each rectangle, we perform a binary search (Lines 16-

27) on its diagonal. For each point to evaluate, the error

injection procedure adds error into NNs’ outputs (Line 19);

see §3.2.2 for details on error injection. The algorithm tra-

verses this diagonal to find a pair of boundary points: a max-

imal valid point (MVP) and a minimal invalid point (MIP).

MVP is the highest point on the diagonal that evaluates as

valid and MIP is the lowest invalid point. The rectangle
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dominated by MVP is added into the valid region (Line

28), and the rectangle that dominates MIP is added into

the invalid region (Line 29). Then the algorithm computes

rectangles to visit next based on the coordinates of MVP

and MIP (Line 30). The gap between MVP and MIP also

creates an unvisited rectangle (usually small). The volume

of this rectangle is controlled by the number of evaluations

done per diagonal (maxDiagEvals); a higher number of

evaluations per diagonal increases analysis time but reduces

the size of the unvisited rectangle. The algorithm finishes

when the queue of rectangles is empty or the number of QoS

evaluations reaches totalEvals.

Example. Figure 4 illustrates three outer loop iterations

of the algorithm. Assuming two error metrics, M1 and

M2, the first iteration traverses the diagonal between (0, 0)
(lowest metric values) and (8, 8) (highest metric values). It

first evaluates the midpoint (4, 4) (shown as a black cross).

Given (4, 4) is found as a valid point a new higher midpoint

(6, 6) is evaluated. (6, 6) is found as an invalid configura-

tion and hence the search proceeds to evaluate a new mid-

point (5, 5). Assuming three evaluations on the diagonal

(maxDiagEvals = 3), (5, 5) is found to be the diagonal’s

MVP and (6, 6) is found as the MIP, which are used to cre-

ate the dominating rectangular green (valid) region and red

(invalid) region, respectively. Subsequent iterations create

further green and red rectangles ± green rectangles labelled

2 and 3 are created in 2nd and 3rd iteration, respectively.

3.2.2 Error Injection in NN outputs

The error injection algorithm injects error to NNs’ outputs as

Y = X + ε, where X is the output of the non-approximate

NN, Y is the output after error injection, and ε ∼ D(p) is

a sample from an error distribution with parameters p. For

given error values (a point x chosen by the error calibration

algorithm), the error injection algorithm searches for the

distribution parameter values that produce an output error

close to the given x. This step does not require expensive

empirical evaluation and has negligible overhead.

Selecting an Error Distribution. ApproxCaliper automat-

ically selects a distribution that best mimics the errors that

occur with an approximation technique (e.g., with low-rank

factorization). Given a pretrained NN, a calibration dataset,

and approximation techniques, ApproxCaliper generates

approximated NN variants and evaluates them on the cali-

bration dataset to measure the output errors. ApproxCaliper

then finds a fittest one from a set of predefined parametric

distributions, by computing the Bayesian information cri-

terion (BIC) for each distribution on the output errors and

selecting the one with the lowest BIC. For floating-point

outputs, ApproxCaliper chooses from Gaussian, log-normal,

exponential, and Student-T distribution; for integer outputs,

it evaluates binomial, Poisson, and logarithmic distributions.

Users can easily add more error distributions by implement-

ing a sampling function usually with a few lines of code.

3.3 Model Tuning and Optimization

In the model tuning phase, ApproxCaliper searches for con-

figurations that minimize the given performance objective

while satisfying the application-level QoS target. A configu-

ration contains choices of optimized NN variants generated

by approximation techniques (described later). It may also

include NN-specific performance metrics (e.g., model FPS);

this allows ApproxCaliper to co-tune for NN performance

and error. Each configuration corresponds to a point (black

dots in Figure 4) in the error constraint space.

To explore the search space more efficiently, ApproxCaliper

uses the error constraint space to skip empirical evalua-

tions for (1) configurations in the invalid region, and (2)

low-potential configurations in the valid region. We now

describe how the autotuning search decides if a configu-

ration lies within a low-potential valid region. The error

calibration phase yields a valid region as a union of rect-

angles. each with one vertex at (0, 0). Moving the MVP

vertex of each rectangle by k% towards (0, 0) creates a

smaller rectangle, which we treat as a low-potential valid re-

gion. Here, k% is a user-configurable hyperparameter. For

example, in a rectangle between (0, 0) and (1, 1), the rect-

angle between (0, 0) and (0.95, 0.95) is low-potential when

k% = 5%. ApproxCaliper skips navigating configurations

in these low-potential rectangle regions.

Figure 4 shows how ApproxCaliper only searches for high

potential configurations in these regions. This helps steer

the search away from both low-potential (too conservative)

and known invalid configurations. Our approach ensures

that costly empirical evaluations are only spent on configu-

rations that are likely to provide high improvements.

NN Approximation Techniques in ApproxCaliper. Ap-

proxCaliper currently supports two existing approxima-

tion techniques (which can be applied in combination):

(1) structured pruning based on Learning Rate Rewinding

(LRR) (Renda et al., 2020) and (2) low-rank factorization

(or LR factorization) based on (Tai et al., 2016). Developers

can also incorporate new approximation techniques (e.g.,

perforated convolutions (Figurnov et al., 2015)) with the

ApproxCaliper interface.

Structured pruning works iteratively: in each iteration, it

removes a fraction of filters with the lowest L1 norm from

each convolution layer, and retrains the model to recover

some of the lost accuracy. Each iteration produces smaller

and more efficient models with (usually) lower accuracy,

creating a tradeoff space of models to choose from.

LR factorization decomposes each (convolution and ma-

trix multiply) weight tensor into 2 lower-rank tensors.

For instance, a 2D convolution layer with weights of

shape (Cout, Cin, Hk,Wk) can be decomposed into 2 con-

volution layers with weights of shape (R,Cin, 1,Wk) and

(Cout, R,Hk, 1) where the free parameter R controls the

rank of the decomposition. A lower R means more ap-
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import approx_caliper as ac

# Load NN models; supports Pytorch and ONNX models

heading_nn, distance_nn = ac.load_model("resnet18_h.onnx"), ac.load_model("resnet18_d.onnx")

nns = [heading_nn, distance_nn]

trainset = ac.load_dataset("cropfollow_data/", "cropfollow_labels.json")

# Define metrics for measuring the error of each NN’s output; to be used in error calibration.

metrics = [ac.ErrorMetric(heading_nn, ac.l1_error), ac.ErrorMetric(distance_nn, ac.l1_error)]

# Use predefined Structured Pruning method to compress the NNs

# Prune 20 levels with each level pruning 20% of the weights

structured_pruner = ac.nn_approx.StructuredPruner(n_steps=20, prune_fraction=0.2)

# Fits the errors of the optimization technique to an error distribution -- e.g., Gaussian, Bernoulli

error_dist = ac.find_error_distribution(structured_pruner, nns, trainset)

# User provides method to evaluate end-to-end application quality and application performance

qos_eval, perf_eval = CropFollowQoSEvaluator(), CropFollowPerfEvaluator()

# error_calibrate interface invokes the Error Calibration phase -- computes error constraints

constraints = ac.error_calibrate(

nns, error_model, metrics, qos_eval, qos_target={"collision": 0}, iters=25)

# optimize input NNs using the given optimization scheme (structured pruner)

optimized_nns = ac.optimize(structured_pruner, constraints, nns, trainset, qos_eval, perf_eval)

Figure 5: Example of using the ApproxCaliper interface with the NN components in the CropFollow autonomous navigation stack.

proximation, less computation, and less accuracy. Similar

to pruning, we apply LR factorization iteratively (not pro-

posed in the original work (Tai et al., 2016)), where ranks of

weight tensors are reduced in each iteration. Additionally, in

the first iteration, each layer is decomposed into two layers.

In further iterations, only the ranks of weight tensors are

reduced, and no more layer splitting is performed. We make

this choice to avoid an explosion of layers, which can hurt

compute performance.

Autotuning to Search Profitable Configurations. The NN

variants produced by the approximation techniques and NN-

specific performance metrics (if any) together create a large

search space of configurations on which an exhaustive ap-

proach is intractable. To make the search feasible, we use

OpenTuner (Ansel et al., 2014), a library for building custom

autotuners. In addition to the QoS evaluator, autotuning also

uses the application performance evaluator that developer

provided to ApproxCaliper.

3.4 ApproxCaliper Programmable Interface

ApproxCaliper is developed as a Python library with an

easy-to-use API. Figure 5 presents an example of how the

ApproxCaliper interface is used to optimize the heading

and distance prediction NNs in the CropFollow autonomous

navigation stack. The key interface functions in the example

are described and explained within the comments.

As Figure 5 shows, using ApproxCaliper’s interface to op-

timize a new application requires only a few lines of code.

The application QoS evaluation and performance evaluator

are the only functions that developers need to implement.

These evaluators run the application multiple times to com-

pute the QoS and measure the performance. Since appli-

cation test suites usually include such scripts, it requires

minimal additional effort in most cases. Further, developers

need to specify the number of runs used in error calibration

phase and model optimization phase. This is a common

practice in existing autotuning works, as automatic stopping

criteria (e.g. stop on convergence) are rarely satisfied.

4 EXPERIMENTAL METHODOLOGY

Optimization Goals and Constraints. We apply Approx-

Caliper on CropFollow to optimize its 2 NN models simul-

taneously, maximizing the application-level FPS without

introducing collisions. The QoS target is that the robot

should have 0 collisions with the row boundaries in a 100m

run in corn fields at the Illinois Autonomous Farm. The

QoS evaluator prompts for the number of total collisions,

which a human observer observes and manually inputs after

each run, since the robot has no automatic collision detec-

tion mechanism. The optimization goal FPS is a proxy for

latency, and is relevant for autonomous navigation systems

because feedback control systems have minimal FPS re-

quirements (Falanga et al., 2019; Anwar & Raychowdhury,

2020) to function correctly. FPS improvements enable exe-

cution on low-end compute devices which would otherwise

not provide minimal FPS.

Similarly, we apply ApproxCaliper on Polaris-GEM to

jointly optimize model FPS and model approximation. Ap-

proxCaliper searches for an optimized (e.g., pruned) NN

model and the FPS that the NN component runs at, to mini-

mize GPU utilization without introducing lane departures.

Running the model at a lower FPS reduces GPU utilization

as the process sleeps between frames, freeing up GPU cy-

cles. The QoS target is the robot should make 0 departures

from the current lane in a 506 meter run in simulation. The

optimization goal, GPU utilization, is a known proxy (Fan

et al., 2007) for power usage; we don’t report power num-

bers since there is no easy way to precisely measure power

on the target GPU, an Nvidia Quadro P5000.
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Approximation Techniques Setup. We implemented struc-

tured pruning and LR factorization based on the original

papers ± (Renda et al., 2020) for pruning and (Tai et al.,

2016) for LR factorization. For both techniques, we set up

ApproxCaliper to use a fixed number of iterations each re-

moving an additional 20% filters or ranks. We apply pruning

with 20 iterations for NNs in CropFollow and 12 iterations

for LaneNet (as the lane detection quality decreases sig-

nificantly after that point). We apply LR factorization to

LaneNet with also 12 iterations. We name as a prune level

the output model of each iteration and label it from 1 to 20

(or 12) inclusive, and 0 is the unpruned baseline.

Error Calibration and Model Tuning Setup. There are 63
candidates for each of the two NN components in CropFol-

low, creating a total of 63×63 = 3969 combinations. Brute

force search is infeasible since each empirical field evalu-

ation takes 4-5 minutes. The same holds true for Polaris-

GEM which has 2730 configurations and each run takes 5-6

minutes. While we had performed more than 700 hours of

field experiments to refine our algorithms, we limit the tun-

ing to 50 navigation runs (∼5 hours). Of those, we use 20

runs in error calibration phase and 30 in model optimization

phase. We compare the result against 50 unguided (without

ApproxCaliper) autotuning runs using Opentuner. For the

k% parameter that decides the size of the high-potential

valid region we use 5%.

Tuning Space and Tuning Time Budgets. As shown

above, there are 3969 configurations for CropFollow; for

Polaris-GEM, the autotuner searches over 26 model can-

didates for LaneNet and 105 FPS values (chosen between

0 to 10.5 at 0.1 intervals), with total 2730 configurations.

The LaneNet FPS is limited by the clustering algorithm (see

§2.3) which runs at a max of 10.5 FPS. Like CropFollow,

each evaluation is expensive since it involves a 506-meter

long simulator navigation run that consumes 5-6 minutes,

and we maintain an ∼5 hour tuning time budget for 50 runs.

The fractions of configurations searched in unvisited and

valid regions are set to 75% and 25%, respectively. For

the valid region, 5% of the area closest to the boundary is

included in the search (k% = 5%).

Neural Network Specific Error Metrics. For both NNs

in CropFollow, we use standard deviation of error as the

error metric in error calibration, because pruned models

mostly have zero-centered errors (confirmed by zero-mean

Gaussian distribution that ApproxCaliper found). In Polaris-

GEM, the quality of lane detection is measured by lane

detection accuracy, a quantity between 0 (worst) and 1

(best): Acc =
∑

image
Cim

Sim

, where Cim is the number of

correctly detected lanes in an image, and Sim the number

of lanes in ground truth. A lane is correctly detected if the

average distance between its detected points and the ground-

truth points is less than 20 pixels (the same threshold used

in the TuSimple challenge (Zhou, 2018)).

Application-agnostic Baseline. As baselines for compar-

ison, we apply pruning using LRR (Renda et al., 2020) or

LR factorization using the technique in (Tai et al., 2016)

to all the candidate neural network architectures with the

constraint to retain the same accuracy as the original model,

and pick the most efficient pruned variant from this set

as our baseline. This represents an intelligent use of to-

day’s state-of-the-art model optimization approaches, which

accounts for manual selection of neural network architec-

ture and optimized variants, but does not exploit applica-

tion resilience to increased inference error. For instance,

for Polaris-GEM, LaneNet-DarkNet prune level 1 (20%

weights pruned) is selected as the baseline since it is the

most efficient pruned model that retains the original model

accuracy of the unpruned LaneNet-DarkNet model, and is

more compute-efficient than any of the LaneNet-VGG16

optimized model variants with equivalent accuracy.

Model Architectures and Training. For CropFollow, we

evaluate three NN architectures for both heading and dis-

tance prediction: ResNet-18 (He et al., 2016) (default),

SqueezeNet-v1.1 (Iandola et al., 2016), and DarkNet (Red-

mon & Farhadi, 2018). We use NNs pretrained on Ima-

geNet (Deng et al., 2009) and fine-tune with 25K corn row

images. For Polaris-GEM, we evaluate LaneNet with two

backbones: VGG-16 (Simonyan & Zisserman, 2014) (de-

fault) and DarkNet (Redmon & Farhadi, 2018). We fine-tune

pretrained backbones on the TuSimple dataset (Zhou, 2018)

with 3600+ images. We use a 4:1 split between training and

validation sets for both datasets.

Error Distributions. ApproxCaliper finds zero-mean Gaus-

sian N (0, σ2) as the closest error distribution for the NNs in

CropFollow (using the ac.find err distribution

routine ± §3.4). The mean is 0 since the errors are mostly

zero-centered; the variance σ is a parametric value that is

varied in error injection. In Polaris-GEM, ApproxCaliper

finds Bernoulli distribution B(p) for the Boolean mask and

zero-mean Gaussian distribution N (0, σ2) for the embed-

ding tensor (see §2.3 for these outputs).

5 EVALUATION

In our experiments, we consider the following questions:

RQ1: Does ApproxCaliper’s application-aware pruning

provide more benefits than today’s practice of application

agnostic pruning (retaining original model accuracy)?

RQ2: Does the ApproxCaliper error calibration framework

identify opportunities for relaxing NN accuracy require-

ments without impacting the end-to-end QoS?

RQ3: Do the error calibration results guide ApproxCaliper

to better tune the NN components than ªunguided tuningº?

Unguided tuning is in-field autotuning without considering

the error constraint space computed by the calibration phase,

i.e., this requires exploring configurations anywhere within

the search space.
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Figure 6: CropFollow tuning result. Graph shows how the perfor-
mance in FPS (higher is better) of the best configuration evolves
with increasing field evaluations. ApproxCaliper guided and un-
guided tuning is compared with LRR app-agnostic baseline.
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Figure 7: Polaris-GEM tuning result. Graph shows how the GPU
utilization rate (lower is better) of the best configuration evolves
with increasing simulator evaluations. ApproxCaliper guided and
unguided tuning is compared with LRR app-agnostic baseline.
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Figure 8: Error constraint space for CropFollow. It captures the
interaction of errors in the heading model (x-axis) and the distance
model (y-axis). Green region is the valid QoS region, red region is
the invalid QoS region, and white regions are unvisited. The black
dots on the figure show field evaluations.
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Figure 9: Error constraint space for Polaris-GEM. It captures the
interaction of FPS (x-axis) and the errors in the LaneNet model
(x-axis). Green region is the valid QoS region, red region is the
invalid QoS region, and white regions are unvisited. The black dots
on the figure show simulator evaluations.

RQ4: Do the valid and invalid regions obtained by cali-

bration correspond to the real-world separation between

acceptable and unacceptable configurations?

RQ5: Does ApproxCaliper’s application-aware optimiza-

tion provide performance improvements with other approxi-

mations such as LR factorization?

5.1 Application-aware vs Application-agnostic Pruning

To answer RQ1, we compare the best pruning configura-

tions for CropFollow and Polaris-GEM, selected by 3 strate-

gies, all using LRR: (1) guided tuning with ApproxCaliper,

(2) unguided autotuning with ApproxCaliper, and (3) the

application-agnostic pruning baseline. We focus on LRR

(i.e., structured pruning) here because it gave dominant re-

sults over LR factorization.

For CropFollow, Figure 6 shows how the performance (FPS)

of the best configuration (found until that point) evolves with

the increasing number of tuning iterations. Application-

agnostic pruning using LRR gives a flat line (31.8 FPS)

since this approach simply uses the best performing pruned

model for heading and distance predictions, and does not

involve any further tuning in the field. Application-aware

pruning using ApproxCaliper provides significantly higher

FPS: unguided tuning provides an FPS of 105.8 (i.e., 3.3×
faster than application-agnostic pruning) and guided tuning

provides 184.9 FPS (i.e., 5.8× faster). These are dramatic

speedups obtained with the same optimization techniques,

i.e., purely by accounting for application-level quality goals.

Similarly, for Polaris-GEM, Figure 7 shows the GPU utiliza-

tion rate of configurations, which decreases over the course

of tuning. Using application-agnostic pruning on LaneNet

achieves a GPU utilization of 7.77%. Unguided and guided

application-aware pruning using ApproxCaliper reduces the

utilization to 2.92% (2.66× reduction) and 2.67% (2.91×
reduction) respectively.

5.2 Error Calibration using ApproxCaliper

To answer RQ2, we apply ApproxCaliper’s error calibration

framework to identify how much error can be introduced to

the NN predictions without affecting the navigation quality

of CropFollow and Polaris-GEM. These experiments ex-

plain how ApproxCaliper achieves substantial overall gains.

Error Calibration Results on CropFollow. Figure 8 shows

the error constraint space for CropFollow. Each of the 20

error calibration field evaluations are shown as black dots.

Our key findings are:

• The heading model error in isolation (no errors in dis-

tance model) can be increased from 2.5 (baseline) to 11.5

degrees, without introducing collisions.

• Distance model error can be increased from 0.05 (base-

line) to 0.13, without introducing collisions. In absolute

terms, 0.13 is a large standard deviation of error since

0 ≤ distance ≤ 1 (row center is 0.5).



ApproxCaliper: A Programmable Framework for Application-aware Neural Network Optimization

• Errors can be simultaneously increased in both models.

For instance, heading error and distance error can be

simultaneously increased by 3× and 1.6×, respectively,

without introducing collisions.

Overall, these observations show that ApproxCaliper dis-

covers significant room for relaxing the accuracy.

Error Calibration Results on Polaris-GEM. For Polaris-

GEM, we study the interplay of model FPS and lane detec-

tion accuracy. We performed a similar analysis (and found

similar insights) for CropFollow that we do not include for

lack of space. Figure 9 shows the generated error constraint

space. The key findings are:

• Higher FPS can counteract the effect of higher errors. As

FPS increases from 4.5 to 9.8, lane detection accuracy can

be reduced from 99.7% to 70.3%, without introducing

any lane departures. Further investigation showed that, at

high FPS, the effect of an erroneous prediction is short-

lived since it enables more control actions per second.

• FPS and lane detection accuracy compensate for each

other to a limited extent. No configuration with FPS

below 4.5 or lane detection rate below 70% is feasible.

5.3 Guided vs. Unguided Tuning on CropFollow.

To answer RQ3, we compare guided and unguided tuning

with ApproxCaliper.

Comparing Speedups. Figure 6 shows the model FPS

achieved by guided and unguided tuning for CropFol-

low. Guided tuner provides a 1.76 × speedup (184.9 FPS

vs. 105.8 FPS) over unguided tuning. Guided tuning also

finds many more high-performance configurations. Across

30 field evaluations of guided tuning, it found 5 configura-

tions that provided higher FPS than the unguided tuner’s

best result (105.8 FPS) in 50 field evaluations.

Figure 7 shows the utilization rate achieved by guided and

unguided tuning for the Polaris-GEM experiment. Guided

tuning provides a 1.1× speedup over unguided tuning (GPU

utilization of 2.66% vs. 2.92%). In addition, guided auto-

tuning discovers the best found configuration on only the

second simulator evaluation, while unguided tuning didn’t

find a single valid configuration (i.e., one with acceptable

QoS) for the first 10 evaluations (hence the blue line starts

at evaluation 10 in Figure 7).

Effectiveness of Guided Tuning. Guided tuning uses the

error calibration result to filter out configurations in the in-

valid regions and less performant configurations that are

not fully pushing the boundary of acceptable error. A

large fraction, 82% (41/50) of configurations evaluated in

our unguided tuning experiment for CropFollow, and 78%

(39/50) of configurations for unguided tuning for Polaris-

GEM would be filtered/skipped if the same configurations

are considered using guided tuning (i.e., using the error con-

straint space from calibration phase). Guided tuning is more

effective because it focuses more of the tuning budget on
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Figure 10: CropFollow: Configurations evaluated empirically in
unguided autotuning (points) vs. error calibration regions used by
guided autotuning (red and green polygons).

configurations that are not known to be (likely) invalid, and

likely to be performant.

5.4 Testing the Configurations in the Wild

To evaluate RQ4, Figure 10 shows the 50 configurations

evaluated in unguided tuning for CropFollow (Figure 6)

overlaid on the error calibration results (Figure 8). We il-

lustrate using unguided tuning since the configurations are

more spread out across all 3 regions (valid, invalid, and

undetermined regions) than guided tuning. Valid and invalid

configurations are shown as green and red points respec-

tively. Only two of the 50 points are false positives (red

points in the green region), and there are no false negatives

(no green points in the red region). The white region is

unvisited and is expected to include both valid and invalid

points. Similarly, for Polaris-GEM (figure not shown), we

observe only three false positives and no false negatives out

of 50 simulator evaluations for unguided tuning.

The results show that the valid/invalid regions found by the

error calibration phase correspond well to the real-world sep-

aration between acceptable and unacceptable configurations.

The few false positives we observe (e.g., red point in the

green boundary region) are likely due to out-of-distribution

errors, caused by networks being trained on different data

(standard neural network training assumption).

5.5 ApproxCaliper with Low-rank Factorization

Our results so far used structured pruning since it provided

a strictly better tradeoff (better accuracy and performance)

compared to LR factorization. A key contribution of Ap-

proxCaliper, however, is that it can make NN optimizations

more effective by allowing them to be used more aggres-

sively, even with reduced accuracy, by ensuring that the

overall application use case meets its goals. Here we evalu-

ate the LR factorization technique to show that these benefits

of ApproxCaliper generalize beyond pruning. We generate

12 factorization levels of the LaneNet-VGG16 NN used in

Polaris-GEM and evaluate the end-to-end QoS (lane depar-

ture situations) for each of the optimized model variants. For

simplicity, we do not vary FPS and configure the FPS to its

maximum of 10.5. If the model provides an FPS higher than

the configured FPS of 10.5, artificial sleeps are added be-
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Figure 11: The compute performance (FPS) vs. lane detection
error of low-rank factorized models. Green points have valid QoS,
and red points have invalid QoS. The red dotted line shows error
threshold (36.4%) above which configurations are invalid.

tween model invocations, to reduce GPU utilization. Hence,

a higher model FPS enables lower GPU utilization. Fig-

ure 11 presents the different factorization levels laid out on

an accuracy vs. performance tradeoff space.

The highest factorization level with acceptable QoS is level

10, which provides an FPS of 59.1, 2.2× higher than factor-

ization level 2, which is the most efficient model with error

lower than (or equal to) the baseline. The key takeaway is

that ApproxCaliper enables both LR factorization and LRR

to deliver much higher benefits by considering the error

slack in the application; we expect these benefits to extend

to other accuracy-relaxing optimizations.

6 RELATED WORK

There is a long record of work on approximate computing

approaches (Stanley-Marbell et al., 2020) that relax accu-

racy to improve application performance and programming

systems for accuracy-aware optimization (Misailovic, 2022).

We focus here on systems for optimization in deep learning.

Systems for Automatic Model Optimization. A major

limitation of existing neural network optimization systems

(Han et al., 2016; 2015; Zhu & Gupta, 2018; Frankle &

Carbin, 2019; Anwar et al., 2017; He et al., 2017; Li et al.,

2017; Molchanov et al., 2017; Hubara et al., 2017; Zhou

et al., 2016; 2017; Zhu et al., 2017; Swaminathan et al.,

2020; Sainath et al., 2013; Davis & Arel, 2014; Chen et al.,

2017) is that they tune NN models in isolation, and unlike

ApproxCaliper, do not exploit application-level error re-

silience. ApproxCaliper has complementary goals to these

model optimization techniques. ApproxCaliper can use

these techniques (e.g., pruning and low-rank factorization)

much more aggressively ± it relaxes model accuracy to the

extent that application-level goals are not compromised.

Accuracy-aware ML Optimization Systems. While some

automated model optimization systems (Tian et al., 2021;

Sharif et al., 2019; 2021; Xu et al., 2020; 2021; Joseph et al.,

2020) allow users to specify an acceptable accuracy loss

specification (e.g., 1%, 2% loss) for optimization, these

strategies are not application-aware. Instead, they consider

the neural network to be the entire application, i.e., the NN

error is the QoS loss. This work shows that application-

level error resilience often allows individual NN accuracy

to be relaxed more aggressively to gain higher compute

performance while satisfying end-to-end QoS goals. One

important limitation of existing accuracy-aware optimiza-

tion systems is the lack of mechanisms for jointly optimizing

in the presence of simultaneous errors in multiple neural

network components in the application (as ApproxCaliper

does in §5.2) A second important limitation is that none of

these systems can model the joint impact of NN’s accuracy

and performance on application QoS. As our Polaris-GEM

results show, the end-to-end QoS is not only dependent on

NN accuracy: it can also be impacted by NN latency (FPS)

and other application-specific parameters (§5.2). Approx-

Caliper’s capabilities are broader than existing accuracy-

aware optimization systems. It defines a programmable in-

terface for computing application-specific error constraints,

and can model error interactions across multiple NN com-

ponents and between performance and accuracy.

7 DISCUSSION AND CONCLUSION

ApproxCaliper is the first programmable framework for

application-aware neural network optimization. We present

a novel approach for optimizing an application’s end-to-

end QoS that reduces the search space to the error space

of its neural network components. Our evaluations on au-

tonomous cyber-physical systems show that application-

aware optimization has tremendous potential in enabling

compute-intensive ML models to run on edge hardware.

Similar opportunities for approximation exist in AR/VR,

data analytics, and robotic manipulation, and many others.

Our preliminary results (not included) show that a stem

counting data analytics workload and a eye-tracking based

foveated rendering (Singh et al., 2023) also present sig-

nificant opportunities for application-aware optimization.

Beyond inherently approximate applications, we anticipate

that ApproxCaliper’s error calibration can be generally used

to quantify the level of error-resilience across various kinds

of applications.
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