
a
rX

iv
:2

1
1
2
.0

6
9
6
9
v
2

[m

a
th

.O
C

]
 1

5
 F

e
b
 2

0
2
2

A gradient sampling method with complexity guarantees for

Lipschitz functions in high and low dimensions

Damek Davis∗ Dmitriy Drusvyatskiy† Yin Tat Lee‡ Swati Padmanabhan§

Guanghao Ye¶

Abstract

Zhang et al. [25] introduced a novel modification of Goldstein’s classical subgradient method,
with an efficiency guarantee of O(ε−4) for minimizing Lipschitz functions. Their work, however,
makes use of a nonstandard subgradient oracle model and requires the function to be direc-
tionally differentiable. In this paper, we show that both of these assumptions can be dropped
by simply adding a small random perturbation in each step of their algorithm. The resulting
method works on any Lipschitz function whose value and gradient can be evaluated at points
of differentiability. We additionally present a new cutting plane algorithm that achieves better
efficiency in low dimensions: O(dε−3) for Lipschitz functions and O(dε−2) for those that are
weakly convex.

∗School of ORIE, Cornell University, Ithaca, NY 14850, USA. people.orie.cornell.edu/dsd95/. Research of
Davis supported by an Alfred P. Sloan research fellowship and NSF DMS award 2047637.

†Department of Mathematics, U. Washington, Seattle, WA 98195; www.math.washington.edu/∼ddrusv. Research
of Drusvyatskiy was supported by NSF DMS-1651851 and CCF-2023166 awards.

‡yintat@uw.edu. Paul G. Allen School of Computer Science and Engineering, U. Washington, Seattle, WA 98195.
Supported by NSF awards CCF-1749609, DMS-1839116, DMS-2023166, CCF-2105772, a Microsoft Research Faculty
Fellowship, Sloan Research Fellowship, and Packard Fellowship.

§pswati@uw.edu. U. Washington, Seattle, WA 98195.
¶ghye@mit.edu. Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139.

Supported by an MIT Presidential Fellowship. Part of this work was done while the author was a student at
University of Washington.

1 Introduction

The subgradient method [24] is a classical procedure for minimizing a nonsmooth Lipschitz function
f on R

d. Starting from an initial iterate x0, the method computes

xt+1 = xt − αtvt where vt ∈ ∂f(xt). (1.1)

Here, the positive sequence {αt}t≥0 is user-specified, and the set ∂f is the Clarke subdifferential,

∂f(x) = conv

{
lim
i→∞
∇f(xi) : xi → x, xi ∈ dom(∇f)

}
.

In classical circumstances, the subdifferential reduces to familiar objects: for example, when f is
C1-smooth at x, the subdifferential ∂f(x) consists of only the gradient ∇f(x), while for convex
functions, it reduces to the subdifferential in the sense of convex analysis.

For general Lipschitz functions, the process (1.1) may fail to generate any meaningful limit
points due to the existence of highly pathological examples [9]. Nonetheless, for problems that
are weakly convex or semialgebraic, the limit points x̄ of the subgradient method are known to
be first-order critical, meaning 0 ∈ ∂f(x̄). Recall that a function f is called ρ-weakly convex
if the quadratically perturbed function x 7→ f(x) + ρ

2‖x‖
2 is convex. In particular, convex and

smooth functions are weakly convex. Going beyond asymptotic guarantees, finite-time complexity
estimates are known for smooth, convex, or weakly convex problems [14, 22, 17, 1, 8, 12, 13, 26].

Modern machine learning, however, has witnessed the emergence of problems far beyond the
weakly convex problem class. Indeed, tremendous empirical success has been recently powered by
industry-backed solvers, such as Google’s TensorFlow and Facebook’s PyTorch, which routinely
train nonsmooth nonconvex deep networks via (stochastic) subgradient methods. Despite a vast
body of work on the asymptotic convergence of subgradient methods for nonsmooth nonconvex
problems [2, 19, 21, 11, 5], no finite-time nonasymptotic convergence rates were known outside the
weakly convex setting until recently, with [25] making a big leap forward towards this goal.

In particular, restricting themselves to the class of Lipschitz and directionally differentiable
functions, [25] developed an efficient algorithm motivated by Goldstein’s conceptual subgradient
method [15]. Moreover, this was recently complemented by [20] with lower bounds for finding
near -approximate-stationary points for nonconvex nonsmooth functions.

One limitation of [25] is that their complexity guarantees and algorithm use a nonstandard
first-order oracle whose validity is unclear in examples. Our first contribution is to replace this
assumption with a standard first-order oracle model. We show (Section 2) that a small modification
of the algorithm of [25], wherein one simply adds a small random perturbation in each iteration,
works for any Lipschitz function assuming only an oracle that can compute gradients and function
values at almost every point of R

d in the sense of Lebesgue measure. In particular, such oracles
arise from automatic differentiation schemes routinely used in deep learning [4, 5]. Our end result
is a randomized algorithm for minimizing any L-Lipschitz function that outputs a (δ, ǫ)-stationary

point (Definition 1) after using at most Õ
(
∆L2

ǫ3δ
log(1/γ)

)
1 gradient and function evaluations. Here

∆ is the initial function gap and γ is the failure probability.
Having recovered the result of [25] within the standard first-order oracle model, we then proceed

to investigate the following question.

Can we improve the efficiency of the algorithm in low dimensions?

1Throughout the paper, we use Õ(·) to hide poly-logarithmic factors in L, δ,∆, and ǫ.

1

In addition to being natural from the viewpoint of complexity theory, this question is well-grounded
in applications. For instance, numerous problems in control theory involve minimization of highly
irregular functions of a small number of variables. We refer the reader to the survey [6, Section 6]
for an extensive list of examples, including Chebyshev approximation by exponential sums, spectral
and pseudospectral abscissa minimization, maximization of the “distance to instability”, and fixed-
order controller design by static output feedback. We note that for many of these problems, the
gradient sampling method of [6] is often used. Despite its ubiquity in applications, the gradient
sampling method does not have finite-time efficiency guarantees. The algorithms we present here
offer an alternative approach with a complete complexity theory.

The second contribution of our paper is an affirmative answer to the highlighted question. We
present a novel algorithm that uses Õ

(
∆Ld
ǫ2δ

log(1/γ)
)

calls to our (weaker) oracle. Thus we are
able to trade off the factor Lǫ−1 with d. Further, if the function is ρ-weakly convex, the complexity
improves to Õ

(
∆d
ǫδ log(ρ)

)
, which matches the complexity in δ = ǫ of gradient descent for smooth

minimization. Strikingly, the dependence on the weak convexity constant ρ is only logarithmic.
The main idea underlying our improved dependence on ǫ in low dimensions is outlined next. The

algorithm of [25] comprises of an outer loop with O
(
∆
ǫδ

)
iterations, each performing either a decrease

in the function value or an ingenious random sampling step to update the descent direction. Our
observation, central to improving the ε dependence, is that the violation of the descent condition
can be transformed into a gradient oracle for the problem of finding a minimal norm element of the
Goldstein subdifferential. This gradient oracle may then be used within a cutting plane method,
which achieves better ε dependence at the price of a dimension factor (Section 3).

Notation. Throughout, we let R
d denote a d-dimensional Euclidean space equipped with a dot

product 〈·, ·〉 and the Euclidean norm ‖x‖2 =
√
〈x, x〉. The symbol Br(x) denotes an open Euclidean

ball of radius r > 0 around a point x. Throughout, we fix a function f : Rd → R that is L-Lipschitz,
and let dom(∇f) denote the set of points where f is differentiable—a full Lebesgue measure set by

Rademacher’s theorem. The symbol f ′(x, u)
def
= limτ↓0 τ

−1(f(x+τu)−f(x)) denotes the directional
derivative of f at x in direction u, whenever the limit exists.

2 Interpolated Normalized Gradient Descent

In this section, we describe the results in [25] and our modified subgradient method that achieves
finite-time guarantees in obtaining (δ, ǫ)-stationarity for an L-Lipschitz function f : Rd → R. The
main construction we use is the Goldstein subdifferential [15].

Definition 1 (Goldstein subdifferential). Consider a locally Lipschitz function f : Rd → R, a point
x ∈ R

d, and a parameter δ > 0. The Goldstein subdifferential of f at x is the set

∂δf(x)
def
= conv

(⋃

y∈Bδ(x)

∂f(y)
)
.

A point x is called (δ, ǫ)-stationary if dist(0, ∂δf(x)) ≤ ǫ.

Thus, the Goldstein subdifferential of f at x is the convex hull of all Clarke subgradients at
points in a δ-ball around x. Famously, [25] showed that one can significantly decrease the value of
f by taking a step in the direction of the minimal norm element of ∂δf(x). Throughout the rest of
the section, we fix δ ∈ (0, 1) and use the notation

ĝ
def
= g/‖g‖2 for any nonzero vector g ∈ R

d.

2

Theorem 2.1 ([15]). Fix a point x, and let g be a minimal norm element of ∂δf(x). Then as long
as g 6= 0, we have f (x− δĝ) ≤ f(x)− δ‖g‖2.

Theorem 2.1 immediately motivates the following conceptual descent algorithm:

xt+1 = xt − δĝt, where gt ∈ argmin
g∈∂δf(x)

‖g‖2. (2.1)

In particular, Theorem 2.1 guarantees that, defining ∆
def
= f(x0)−min f , the approximate station-

arity condition

min
t=1,...,T

‖gt‖2 ≤ ǫ holds after T = O

(
∆

δǫ

)
iterations of (2.1).

Evaluating the minimal norm element of ∂δf(x) is impossible in general, and therefore the descent
method described in (2.1) cannot be applied directly. Nonetheless it serves as a guiding principle
for implementable algorithms. Notably, the gradient sampling algorithm [7] in each iteration forms
polyhedral approximations Kt of ∂δf(xt) by sampling gradients in the ball Bδ(x) and computes
search directions gt ∈ argming∈Kt

‖g‖2. These gradient sampling algorithms, however, have only
asymptotic convergence guarantees [6].

The recent paper [25] remarkably shows that for any x ∈ R
d one can find an approximate

minimal norm element of ∂δf(x) using a number of subgradient computations that is independent
of the dimension. The idea of their procedure is as follows. Suppose that we have a trial vector
g ∈ ∂δf(x) (not necessarily a minimal norm element) satisfying

f (x− δĝ) ≥ f(x)−
δ

2
‖g‖2. (2.2)

That is, the decrease in function value is not as large as guaranteed by Theorem 2.1 for the true
minimal norm subgradient. One would like to now find a vector u ∈ ∂δf(x) so that the norm of
some convex combination (1− λ)g + λu is smaller than that of g. A short computation shows that
this is sure to be the case for all small λ > 0 as long as 〈u, g〉 ≤ ‖g‖22. The task therefore reduces
to:

find some u ∈ ∂δf(x) satisfying 〈u, g〉 ≤ ‖g‖22.

The ingenious idea of [25] is a randomized procedure for establishing exactly that in expectation.
Namely, suppose for the moment that f happens to be differentiable along the segment [x, x− δĝ];
we will revisit this assumption shortly. Then the fundamental theorem of calculus, in conjunction
with (2.2), yields

1

2
‖g‖2 ≥

f(x)− f (x− δĝ)

δ
=

1

δ

∫ δ

0
〈∇f(x− τ ĝ), ĝ〉 dτ. (2.3)

Consequently, a point y chosen uniformly at random in the segment [x, x− δĝ] satisfies

E〈∇f(y), g〉 ≤
1

2
‖g‖22. (2.4)

Therefore the vector u = ∇f(y) can act as the subgradient we seek. Indeed, the following lemma
shows that, in expectation, the minimal norm element of [g, u] is significantly shorter than g. The
proof is extracted from that of [25, Theorem 8].

3

Lemma 2.2 ([25]). Fix a vector g ∈ R
d, and let u ∈ R

d be a random vector satisfying E〈u, g〉 <
1
2‖g‖

2
2. Suppose moreover that the inequality ‖g‖2, ‖u‖2 ≤ L holds for some L < ∞. Then the

minimal-norm vector z in the segment [g, u] satisfies:

E‖z‖22 ≤ ‖g‖
2
2 −
‖g‖42
16L2

.

Proof. Applying E〈u, g〉 ≤ 1
2‖g‖

2
2 and ‖g‖2, ‖u‖2 ≤ L, we have, for any λ ∈ (0, 1),

E‖z‖22 ≤ E‖g + λ(u− g)‖22 = ‖g‖22 + 2λE〈g, u− g〉+ λ2
E‖u− g‖22

≤ ‖g‖22 − λ‖g‖22 + 4λ2L2.

Plugging in the value λ =
‖g‖2

2

8L2 ∈ (0, 1) minimizes the right hand side and completes the proof.

The last technical difficulty to overcome is the requirement that f be differentiable along the
line segment [g, u]. This assumption is crucially used to obtain (2.3) and (2.4). To cope with
this problem, [25] introduce extra assumptions on the function f to be minimized and assume a
nonstandard oracle access to subgradients.

We show, using Lemma 2.3, that no extra assumptions are needed if one slightly perturbs g.

Lemma 2.3. Let f : Rd → R be a Lipschitz function, and fix a point x ∈ R
d. Then there exists

a set D ⊂ R
d of full Lebesgue measure such that for every y ∈ D, the line spanned by x and y

intersects dom(∇f) in a full Lebesgue measure set in R. Then, for every y ∈ D and all τ ∈ R, we
have

f(x + τ(y − x))− f(x) =

∫ τ

0
〈∇f(x + s(y − x)), y − x〉 ds.

Proof. Without loss of generality, we may assume x = 0 and f(x) = 0. Rademacher’s theorem
guarantees that dom(∇f) has full Lebesgue measure in R

d. Fubini’s theorem then directly implies
that there exists a set Q ⊂ S

d−1 of full Lebesgue measure within the sphere S
d−1 such that for

every y ∈ Q, the intersection R+{y} ∩ (dom(∇f))c is Lebesgue null in R. It follows immediately
that the set D = {τy : τ > 0, y ∈ Q} has full Lebesgue measure in R

d. Fix now a point y ∈ D and
any τ ∈ R+. Since f is Lipschitz, it is absolutely continuous on any line segment and therefore

f(x + τ(y − x))− f(x) =

∫ τ

0
f ′(x + s(y − x), y − x) ds =

∫ τ

0
〈∇f(x + s(y − x)), y − x〉 ds.

The proof is complete.

We now have all the ingredients to present a modification of the algorithm from [25], which,
under a standard first-order oracle model, either significantly decreases the objective value or finds
an approximate minimal norm element of ∂δf .

The following theorem establishes the efficiency of Algorithm 1, and its proof is a small modi-
fication of that of [25, Lemma 13].

Theorem 2.4. Let {gk} be generated by MinNorm(x). Fix an index k ≥ 0, and define the stopping

time τ
def
= inf {k : f(x− δĝk) < f(x)− δ‖gk‖2/4 or ‖gk‖2 ≤ ǫ}. Then, we have

E
[
‖gk‖

2
21τ>k

]
≤

16L2

16 + k
.

4

Algorithm 1 MinNorm(x)

Input: x, δ > 0, and ǫ > 0.
Let k = 0, g0 = ∇f(ζ0) where ζ0 ∼ Bδ(x).
while ‖gk‖2 > ǫ and δ

4‖gk‖2 ≥ f(x)− f (x− δĝk) do

Choose any r satisfying 0 < r < ‖gk‖2 ·

√
1− (1−

‖gk‖
2
2

128L2)2.
Sample ζk uniformly from Br(gk).
Choose yk uniformly at random from the segment [x, x− δζ̂k].
gk+1 = argminz∈[gk,∇f(yk)]

‖z‖2.
k = k + 1.

end

Return gk.

Proof. Fix an index k, and let Ek[·] denote the conditional expectation on gk. Suppose we are in
the event {τ > k}. Taking into account the Lipschitz continuity of f and Lemma 2.3, we deduce
that almost surely, conditioned on gk, the following estimate holds:

1

4
‖gk‖2 ≥

f(x)− f (x− δĝk)

δ
≥

f(x)− f(x− δ · ζ̂k)

δ
− L‖ĝk − ζ̂k‖2

=
1

δ

∫ δ

0
〈∇f(x− sζ̂k), ζ̂k〉 ds− L‖ĝk − ζ̂k‖2

≥
1

δ

∫ δ

0
〈∇f(x− sζ̂k), ĝk〉 ds− 2L‖ĝk − ζ̂k‖2

= Ek〈∇f(yk), ĝk〉 − 2L‖ĝk − ζ̂k‖2.

Rearranging yields Ek〈∇f(yk), ĝk〉 ≤
1
4‖gk‖2 + 2L‖ĝk − ζ̂k‖. Simple algebra shows ‖ĝk − ζ̂k‖

2
2 ≤

2(1−
√

1− r2/‖gk‖
2
2) ≤

‖gk‖
2
2

64L2 . Therefore, we infer that Ek〈∇f(yk), ĝk〉 <
1
2‖gk‖2. Lemma 2.2 then

guarantees that

Ek[‖gk+1‖
2
21τ>k] ≤

(
‖gk‖

2
2 −
‖gk‖

4
2

16L2

)
1τ>k.

Define bk := ‖gk‖
2
21τ>k for all k ≥ 0. Then the tower rule for expectations yields

Ebk+1 ≤ E[‖gk+1‖
2
21τ>k] ≤ E

[(
1−

bk
16L2

)
bk

]
≤

(
1−

Ebk
16L2

)
Ebk,

by Jensen’s inequality applied to the concave function t 7→ (1− t/16L2)t. Setting ak = Ebk/L
2, this

inequality becomes ak+1 ≤ ak−a
2
k/16, which, upon rearranging, yields 1

ak+1
≥ 1

ak(1−ak/16)
≥ 1

ak
+ 1

16 .

Iterating the recursion and taking into account a0 ≤ 1 completes the proof.

An immediate consequence of Theorem 2.4 is that MinNorm(x) terminates with high-probability.

Corollary 2.5. MinNorm(x) terminates in at most
⌈
64L2

ǫ2

⌉
· ⌈2 log(1/γ)⌉ iterations with probability

at least 1− γ.

Proof. Notice that when k ≥ 64L2

ε2
, we have, by Theorem 2.4, that

Pr(τ > k) ≤ Pr(‖gk‖21τ>k ≥ ǫ) ≤
16L2

(16 + k)ε2
≤

1

4
.

5

Similarly, for all i ∈ N, we have Pr(τ > ik | τ > (i− 1)k) ≤ 1/4. Therefore,

Pr(τ > ik) = Pr(τ > ik | τ > (i− 1)k)Pr(τ > (i− 1)k) ≤
1

4
Pr(τ > (i− 1)k) ≤

1

4i
.

Consequently, we have Pr(τ > ik) ≤ 1
4i
≤ γ whenever i ≥ log(1/γ)/ log(4), as desired.

Combining Algorithm 1 with (2.1) yields Algorithm 2, with convergence guarantees summarized
in Theorem 2.6, whose proof is identical to that of [25, Theorem 8].

Algorithm 2 Interpolated Normalized Gradient Descent (INGD(x0, T))

Input: Initial x0, counter T
for t = 0, . . . , T − 1 do

g = MinNorm(xt) // Computational complexity Õ(L2/ǫ2)

Set xt+1 = xt − δĝ
end

Return xT

Theorem 2.6. Fix an initial point x0 ∈ R
d, and define ∆ = f(x0) − infx f(x). Set the num-

ber of iterations T = 4∆
δǫ . Then, with probability 1 − γ, the point xT = INGD(x0, T) satisfies

dist(0, ∂δf(xT)) ≤ ǫ in a total of at most
⌈

4∆

δǫ

⌉
·

⌈
64L2

ǫ2

⌉
·

⌈
2 log

(
4∆

γδǫ

)⌉
function-value and gradient evaluations.

In summary, the complexity of finding a point x satisfying dist(0, ∂δf(x)) ≤ ǫ is at most

O
(
∆L2

δǫ3
log

(
4∆
γδǫ

))
with probability 1 − γ. Using the identity ∂f(x) = lim supδ→0 ∂δf(x), this

result also provides a strategy for finding a Clarke stationary point, albeit with no complexity
guarantee. It is thus natural to ask whether one may efficiently find some point x for which there
exists y ∈ Bδ(x) satisfying dist(0, ∂f(y)) ≤ ǫ. This is exactly the guarantee of subgradient methods
on weakly convex functions in [10]. [23] shows that for general Lipschitz functions, the number of
subgradient computations required to achieve this goal by any algorithm scales with the dimension
of the ambient space. Finally, we mention that the perturbation technique similarly applies to
the stochastic algorithm of [25, Algorithm 2], yielding a method that matches their complexity
estimate.

3 Faster INGD in Low Dimensions

In this section, we describe our modification of Algorithm 1 for obtaining improved runtimes in the
low-dimensional setting. Our modified algorithm hinges on computations similar to (2.2), (2.3),
and (2.4) except for the constants involved, and hence we explicitly state this setup. Given a vector
g ∈ ∂δf(x), we say it satisfies the descent condition at x if

f(x− δĝ) ≤ f(x)−
δǫ

3
. (3.1)

Recall that Lemma 2.3 shows that for almost all g, we have

f(x)− f(x− δĝ) =

∫ 1

0
〈∇f(x− tδĝ), ĝ) dt = δ · Ez∼Unif[x−δĝ,x]〈∇f(z), ĝ〉.

6

Hence, when g does not satisfy the descent condition (3.1), we can output a random vector u ∈
∂δf(x) such that

E〈u, g〉 ≤
ǫ

3
‖g‖2. (3.2)

Then, an arbitrary vector g either satisfies (3.1) or can be used to output a random vector u
satisfying (3.2). As described in Corollary 2.5, Algorithm 1 achieves this goal in Õ(L2/ǫ2) iterations.

In this section, we improve upon this oracle complexity by applying cutting plane methods to
design Algorithm 3, which finds a better descent direction in Õ(Ld/ǫ) oracle calls for L-Lipschitz
functions and O(d log(L/ǫ) log(δρ/ǫ)) oracle calls for ρ-weakly convex functions. In Section 3.2, we
demonstrate how to remove the expectation in (3.2) and turn the inequality into a high probability
statement. For now, we assume the existence of an oracle O as in Definition 2.

Definition 2 (Inner Product Oracle). Given a vector g ∈ ∂δf(x) that does not satisfy the descent
condition (3.1), the inner product oracle O(g) outputs a vector u ∈ ∂δf(x) such that

〈u, g〉 ≤
ǫ

2
‖g‖2.

We defer the proof of the lemma below to Section 3.2.

Lemma 3.1. Fix x ∈ R
d and a unit vector ĝ ∈ R

d such that f is differentiable almost everywhere on

the line segment [x, y], where y
def
= x−δĝ. Suppose that z ∈ R

d sampled uniformly from [x, y] satisfies
Ez〈∇f(z), ĝ〉 ≤ ǫ

3 . Then we can find z̄ ∈ R
d using at most O(Lǫ log(1/γ)) gradient evaluations of

f , such that with probability at least 1 − γ the estimate 〈∇f(z̄), ĝ〉 ≤ ǫ
2 holds. Moreover, if f is

ρ-weakly convex, we can find z̄ ∈ R
d such that 〈∇f(z̄), ĝ〉 ≤ ǫ

2 using only O(log(δρ/ǫ)) function
evaluations of f .

Our key insight is that this oracle is almost identical to the gradient oracle of the minimal norm
element problem

min
g∈∂δf(x)

‖g‖2.

Therefore, we can use it in the cutting plane method to find an approximate minimal norm element
of ∂δf . When there is no element of ∂δf with norm less than ǫ, our algorithm will instead find a
vector that satisfies the descent condition. The main result of this section is the following theorem.

Theorem 3.2. Let f : Rd → R be an L-Lipschitz function. Fix an initial point x0 ∈ R
d, and let

∆
def
= f(x0) − infx f(x). Then, there exists an algorithm that outputs a point x ∈ R

d satisfying
dist(0, ∂δf(x)) ≤ ǫ and, with probability at least 1− γ, uses at most

O

(
∆Ld

δǫ2
· log(L/ǫ) · log(1/γ)

)
function value/gradient evaluations.

If f is ρ-weakly convex, the analogous statement holds with probability one and with the improved
efficiency estimate O

(
∆d
δǫ log(L/ǫ) · log(δρ/ǫ)

)
of function value/gradient evaluations.

3.1 Finding a Minimal Norm Element

In this section, we show, via Algorithm 3, how to find an approximate minimal norm element of
∂δf(x). Instead of directly working with the minimal norm problem, we note that, by Cauchy-
Schwarz inequality and the Minimax Theorem, for any closed convex set Q, we have

min
g∈Q
‖g‖2 = min

g∈Q

[
max
‖v‖2≤1

〈g, v〉

]
= max

‖v‖2≤1

[
min
g∈Q
〈g, v〉

]
= max

‖v‖2≤1
φQ(v), (3.3)

7

where φQ(v)
def
= ming∈Q〈g, v〉, and Lemma 3.3 formally connects the problem of finding the minimal

norm element with that of maximizing φQ. The key observation in this section (Lemma 3.4) is
that the inner product oracle O is a separation oracle for the (dual) problem max‖v‖2≤1 φQ(v) with
Q = ∂δf(x) and hence can be used in cutting plane methods.

Lemma 3.3. Let Q ⊂ R
d be a closed convex set that does not contain the origin. Let g∗Q be a

minimizer of ming∈Q ‖g‖2. Then, the vector v∗Q = g∗Q/‖g
∗
Q‖2 satisfies

〈v∗Q, g〉 ≥ ‖g
∗
Q‖2 for all g ∈ Q.

and v∗Q = arg max‖v‖2≤1 φQ(v).

Proof. We omit the subscript Q to simplify notation. Since, by definition, g∗ minimizes ‖g‖2 over
all g ∈ Q, we have

〈g∗, g〉 ≥ ‖g∗‖22 for all g ∈ Q,

and the inequality is tight for g = g∗. Using this fact and φ(v∗) = ming∈Q〈g,
g∗

‖g∗‖2
〉 gives

φ(v∗) = ‖g∗‖2 = min
g∈Q
‖g‖2 = min

g∈Q
max

v:‖v‖2≤1
〈g, v〉 = max

‖v‖2≤1
min
g∈Q
〈g, v〉 = max

v:‖v‖2≤1
φ(v),

where we used Sion’s minimax theorem in the second to last step. This completes the proof.

Using this lemma, we can show that O is a separation oracle.

Lemma 3.4. Consider a vector g ∈ ∂fδ(x) that does not satisfy the descent condition (3.1), and
let the output of querying the oracle at g be u ∈ O(g). Suppose that dist(0, ∂δf(x)) ≥ ǫ

2 . Let g∗

be the minimal-norm element of ∂δf(x). Then the normalized vector v∗
def
= g∗/‖g∗‖2 satisfies the

inclusion:
v∗ ∈

{
w ∈ R

d : 〈u, ĝ − w〉 ≤ 0
}
.

Proof. Set Q = ∂δf(x). By using 〈u, ĝ〉 ≤ ǫ
2 (the guarantee of O per Definition 2) and 〈u, v∗〉 ≥

‖g∗‖2 (from Lemma 3.3), we have 〈u, ĝ − v∗〉 = 〈u, ĝ〉 − 〈u, v∗〉 ≤ ǫ
2 − ‖g

∗‖2 ≤ 0.

Thus Lemma 3.4 states that if x is not a (δ, ǫ
2)-stationary point of f , then the oracle O produces

a halfspace Hv that separates ĝ from v∗. Since O is a separation oracle, we can combine it with
any cutting plane method to find v∗. For concreteness, we use the center of gravity method and
display our algorithm in Algorithm 3. Note that in our algorithm, we use a point ζk close to the
true center of gravity of Ωk, and therefore, we invoke a result about the perturbed center of gravity
method.

Theorem 3.5 (Theorem 3 of [3]; see also [16]). Let K be a convex set with center of gravity µ and
covariance matrix A. For any halfspace H that contains some point x with ‖x − µ‖A−1 ≤ t, we
have

vol(K ∩H) ≤ (1− 1/e + t)vol(K).

Theorem 3.6 (Theorem 4.1 of [18]). Let K be a convex set in R
d with center of gravity µ and

covariance matrix A. Then,

K ⊂
{
x : ‖x− µ‖A−1 ≤

√
d(d + 2)

}
.

We now have all the tools to show correctness and iteration complexity of Algorithm 3.

8

Algorithm 3 MinNormCG(x)

Input: center point x.
Set k = 0, the search region Ω0 = B2(0), the set of gradients Q0 = {∇f(x)}, and r satisfying
0 < r < ǫ/(32dL)
while ming∈Qk

‖g‖2 > ǫ do
Let vk be the center of gravity of Ωk.
if vk satisfies the descent condition (3.1) at x then

Return vk
end

Sample ζk uniformly from Br(vk)
uk ← O(ζk)
Ωk+1 = Ωk ∩ {w : 〈uk, ζk −w〉 ≤ 0}.
Qk+1 = conv(Qk ∪ {uk})
k = k + 1

end

Return arg ming∈Qk
‖g‖2.

Theorem 3.7. Let f : Rd → R be an L-Lipschitz function. Then Algorithm 3 returns a vector
v ∈ ∂δf(x) that either satisfies the descent condition (3.1) at x or satisfies ‖v‖2 ≤ ǫ in

⌈8d log(8L/ǫ))⌉ calls to O .

Proof. By the description of Algorithm 3, either it returns a vector v satisfying the descent condition
or returns g ∈ ∂δf(x) with ‖g‖2 ≤ ǫ. We now obtain the algorithm’s claimed iteration complexity.

Consider an iteration k such that Ωk does contain a ball of radius ǫ
4L . Let Ak be the covariance

matrix of convex set Ωk. By Theorem 3.6, we have

Ak �
(ǫ

8dL

)2
I.

Applying this result to the observation that in Algorithm 3 ζk is sampled uniformly from Br(vk)
gives

‖vk − ζk‖A−1

k

≤ r ·
8dL

ǫ
≤

1

4
. (3.4)

Recall from Algorithm 3 and the preceding notation that Ωk has center of gravity vk and covariance
matrix Ak. Further, the halfspace {w : 〈uk, ζk − w〉 ≤ 0} in Algorithm 3 contains the point ζk
satisfying (3.4). Given these statements, since Algorithm 3 sets Ωk+1 = Ωk ∩{w : 〈uk, ζk − w〉}, we
may invoke Theorem 3.5 to obtain

vol(Ωk) ≤ (1− 1/e + 1/4)kvol(B2(0)) ≤ (1− 1/10)kvol(B2(0)). (3.5)

We claim that Algorithm 3 takes at most T + 1 steps where T = d log(1− 1

10
)(ǫ/(8L)). For the sake

of contradiction, suppose that this statement is false. Then, applying (3.5) with k = T + 1 gives

vol(ΩT+1) ≤
(ǫ

4L

)d
vol(B1(0)). (3.6)

On the other hand, Algorithm 3 generates points ui = O(ζi) in the i-th call to O and the set
Qi = conv {u1, u2, · · · , ui}. Since we assume that the algorithm takes more than T + 1 steps, we
have ming∈QT+1

‖g‖2 ≥ ǫ. Using this and ui ∈ QT+1, Lemma 3.4 lets us conclude that v∗QT+1
∈

9

{
w ∈ R

d : 〈ui, ζi − w〉 ≤ 0
}

for all i ∈ [T + 1]. Since ΩT+1 is the intersection of the unit ball and
these halfspaces, we have

v∗QT+1
∈ ΩT+1.

Per (3.6), ΩT+1 does not contain a ball of radius ǫ
4L , and therefore we may conclude that

there exists a point ṽ ∈ B ǫ

2L
(v∗QT+1

) such that ṽ /∈ ΩT+1.

Since ṽ ∈ B2(0), the fact ṽ /∈ ΩT+1 must be true due to one of the halfspaces generated in
Algorithm 3. In other words, there must exist some i ∈ [T + 1] with

〈ui, ζi − ṽ〉 > 0.

By the guarantee of O, we have 〈ui, ζi〉 ≤
ǫ
2 , and hence

〈ui, ṽ〉 = 〈ui, vi〉 − 〈u, vi − ṽ〉 <
ǫ

2
. (3.7)

By applying ṽ ∈ B ǫ

2L
(v∗QT+1

), ui ∈ ∂δf(x), L-Lipschitzness of f , and Lemma 3.3, we have

〈ui, ṽ〉 ≥ 〈ui, v
∗
QT+1

〉 −
ǫ

2L
‖ui‖2 ≥ 〈ui, v

∗
QT+1

〉 −
ǫ

2
≥ ‖g∗QT+1

‖2 −
ǫ

2
. (3.8)

Combining (3.7) and (3.8) yields that ming∈QT+1
‖g‖2 = ‖g∗QT+1

‖2 < ǫ. This contradicts the
assumption that the algorithm takes more than T + 1 steps and concludes the proof.

Now, we are ready to prove the main theorem.

Proof of Theorem 3.2. We note that the outer loop in Algorithm 2 runs at mostO(∆δǫ) times because
we decrease the objective by Ω(δǫ) every step. Combining this with Theorem 3.7 and Lemma 3.1,
we have that with probability 1− γ, the oracle complexity for L-Lipschitz function is

⌈
4∆

δǫ

⌉
· ⌈8d log(8L/ǫ))⌉ ·

⌈
36L

ǫ

⌉
·

⌈
2 log

(
4∆

γδǫ

)⌉
= O

(
∆Ld

δǫ2
· log(L/ǫ) · log(1/γ)

)

and for L-Lipschitz and ρ-weakly convex function is O
(
∆d
δǫ log(L/ǫ) · log(δρ/ǫ)

)
.

3.2 Implementation of the oracles: proof of Lemma 3.1

In this section, we show how to convert (3.2) into a deterministic guarantee.

Lemma 3.8. Fix a unit vector ĝ ∈ R
d and let z ∈ R

d be a random vector satisfying E〈∇f(z), ĝ〉 ≤ ǫ
3 .

Let z1, . . . , zk be i.i.d realizations of z with k =
⌈
36L
ǫ

⌉
·
⌈
log(1/γ)
log(4)

⌉
. Then with probability at least

1− γ, one of the samples zi satisfies 〈∇f(zi), ĝ〉 ≤
ǫ
2 .

Proof. Define the random variable Y
def
= 〈∇f(z), ĝ〉, and use p

def
= Pr[Y ≤ ǫ

2]. We note that

E[Y] = p · E[Y | Y ≤
ǫ

2
] + (1− p) · E[Y | Y >

ǫ

2
].

Rearranging the terms and using E[Y] ≤ ǫ/3 gives

p ·
(
E[Y | Y >

ǫ

2
]− E[Y | Y ≤

ǫ

2
]
)
≥

ǫ

6
.

Finally, taking into account that f is L-Lipschitz, we deduce |Y | ≤ L, which further implies p ≥ ǫ
12L .

The results follows immediately.

10

Lemma 3.9. Let f : Rd → R be an L-Lipschitz continuous and ρ-weakly convex function. Fix a
point x and a unit vector ĝ ∈ R

d such that f is differentiable almost everywhere on the line segment

[x, y], where y
def
= x − δĝ. Suppose that a random vector z sampled uniformly from [x, y] satisfies

Ez〈∇f(z), ĝ〉 ≤ ǫ
3 . Then, Algorithm 4 finds z̄ ∈ R

d such that 〈∇f(z̄), ĝ〉 ≤ ǫ
2 using 3 log(12δρ/ǫ)

function evaluations of f .

Algorithm 4 Binary Search for z̄

Input: Line Segment [x, y = x− δĝ]
Let [a, b] = [0, 1]
while b− a > ǫ

6δρ do

if f(x− aδĝ)− f(x− a+b
2 δĝ) ≤ f(x− a+b

2 δĝ)− f(x− bδĝ) then

Let [a, b]← [a, a+b
2]

else

Let [a, b]← [a+b
2 , b]

end

end

Return x− aδĝ

Proof. Define the new function h : [0, 1]→ R by h(t) = 〈∇f(x + t(y − x)), ĝ〉. Clearly, we have

ǫ

3
≥ E[h(t)] =

1

2
E[h(t) | t ≤ 0.5]︸ ︷︷ ︸

P≤

+
1

2
E[h(t) | t > 0.5]︸ ︷︷ ︸

P>

.

Therefore P≤ or P> is at most ǫ/3. The fundamental theorem of calculus directly implies P≤ =
f(x)−f(x− δ

2
ĝ)

2δ and P> =
f(x− δ

2
ĝ)−f(y)

2δ . Therefore with three function evaluations we may determine
one of the two alternatives. Repeating this procedure log(12δρ/ǫ) times, each times shrinking the
interval by half, we can find an interval [a, b] ⊂ [0, 1] such that b − a ≤ ǫ

6δρ and Et∈[a,b]h(t) ≤ ǫ
3 .

Note that for any t̄ ∈ [a, b], we have h(t̄) = Eh(t) + (h(t̄)− Eh(t)), while weak convexity implies

h(t̄)− Eh(t) =
1

δ
Et∈[a,b]〈∇f(x + t̄(y − x))−∇f(x + t(y − x)), x − y〉

≤ Et∈[a,b]
t̄− t

δ
ρ‖y − x‖2 ≤

ǫ

6
.

We thus conclude h(t̄) ≤ ǫ
3 + ǫ

6 = ǫ
2 as claimed.

11

References

[1] Zeyuan Allen-Zhu. How to make the gradients small stochastically: Even faster convex and
nonconvex sgd. Advances in Neural Information Processing Systems, 31, 2018. 1

[2] Michel Benäım, Josef Hofbauer, and Sylvain Sorin. Stochastic approximations and differential
inclusions. SIAM Journal on Control and Optimization, 44(1):328–348, 2005. 1

[3] Dimitris Bertsimas and Santosh S. Vempala. Solving convex programs by random walks. J.
ACM, 51(4):540–556, 2004. 3.5

[4] Jerome Bolte and Edouard Pauwels. A mathematical model for automatic differentiation in
machine learning. arXiv preprint arXiv:2006.02080, 2020. 1

[5] Jérôme Bolte and Edouard Pauwels. Conservative set valued fields, automatic differentiation,
stochastic gradient methods and deep learning. Mathematical Programming, 188(1):19–51,
2021. 1

[6] James V Burke, Frank E Curtis, Adrian S Lewis, Michael L Overton, and Lucas EA Simões.
Gradient sampling methods for nonsmooth optimization. In Numerical Nonsmooth Optimiza-
tion, pages 201–225. Springer, 2020. 1, 2

[7] James V Burke, Adrian S Lewis, and Michael L Overton. A robust gradient sampling algorithm
for nonsmooth, nonconvex optimization. SIAM Journal on Optimization, 15(3):751–779, 2005.
2

[8] Yair Carmon, John C Duchi, Oliver Hinder, and Aaron Sidford. Accelerated methods for
nonconvex optimization. SIAM Journal on Optimization, 28(2):1751–1772, 2018. 1

[9] Aris Daniilidis and Dmitriy Drusvyatskiy. Pathological subgradient dynamics. SIAM Journal
on Optimization, 30(2):1327–1338, 2020. 1

[10] Damek Davis and Dmitriy Drusvyatskiy. Stochastic model-based minimization of weakly con-
vex functions. SIAM Journal on Optimization, 29(1):207–239, 2019. 2

[11] Damek Davis, Dmitriy Drusvyatskiy, Sham Kakade, and Jason D Lee. Stochastic subgradient
method converges on tame functions. Foundations of computational mathematics, 20(1):119–
154, 2020. 1

[12] Damek Davis, Dmitriy Drusvyatskiy, Kellie J MacPhee, and Courtney Paquette. Subgradient
methods for sharp weakly convex functions. Journal of Optimization Theory and Applications,
179(3):962–982, 2018. 1

[13] Cong Fang, Chris Junchi Li, Zhouchen Lin, and Tong Zhang. Spider: Near-optimal non-
convex optimization via stochastic path-integrated differential estimator. Advances in Neural
Information Processing Systems, 31, 2018. 1

[14] Saeed Ghadimi and Guanghui Lan. Stochastic first-and zeroth-order methods for nonconvex
stochastic programming. SIAM Journal on Optimization, 23(4):2341–2368, 2013. 1

[15] AA Goldstein. Optimization of lipschitz continuous functions. Mathematical Programming,
13(1):14–22, 1977. 1, 2, 2.1

12

[16] Branko Grünbaum. Partitions of mass-distributions and of convex bodies by hyperplanes.
Pacific Journal of Mathematics, 10(4):1257–1261, 1960. 3.5

[17] Chi Jin, Rong Ge, Praneeth Netrapalli, Sham M Kakade, and Michael I Jordan. How to escape
saddle points efficiently. In International Conference on Machine Learning, pages 1724–1732.
PMLR, 2017. 1

[18] R. Kannan, L. Lovász, and M. Simonovits. Isoperimetric problems for convex bodies and a
localization lemma. Discrete Comput. Geom., 13(3–4):541–559, Dec 1995. 3.6

[19] Krzysztof C Kiwiel. Convergence of the gradient sampling algorithm for nonsmooth nonconvex
optimization. SIAM Journal on Optimization, 18(2):379–388, 2007. 1

[20] Guy Kornowski and Ohad Shamir. Oracle complexity in nonsmooth nonconvex optimization.
Advances in Neural Information Processing Systems, 34, 2021. 1

[21] Szymon Majewski, B lażej Miasojedow, and Eric Moulines. Analysis of nonsmooth stochastic
approximation: the differential inclusion approach. arXiv preprint arXiv:1805.01916, 2018. 1

[22] Sashank J Reddi, Ahmed Hefny, Suvrit Sra, Barnabas Poczos, and Alex Smola. Stochas-
tic variance reduction for nonconvex optimization. In International conference on machine
learning, pages 314–323. PMLR, 2016. 1

[23] Ohad Shamir. Can we find near-approximately-stationary points of nonsmooth nonconvex
functions? arXiv preprint arXiv:2002.11962, 2020. 2

[24] Naum Z. Shor, Krzysztof C Kiwiel, and Andrzej Ruszcayński. Minimization methods for
non-differentiable functions, 1985. 1

[25] Jingzhao Zhang, Hongzhou Lin, Stefanie Jegelka, Suvrit Sra, and Ali Jadbabaie. Complexity
of finding stationary points of nonconvex nonsmooth functions. In Hal Daumé III and Aarti
Singh, editors, Proceedings of the 37th International Conference on Machine Learning, volume
119 of Proceedings of Machine Learning Research, pages 11173–11182, Virtual, 13–18 Jul 2020.
(document), 1, 2, 2, 2, 2, 2, 2.2, 2, 2, 2, 2, 2

[26] Dongruo Zhou, Pan Xu, and Quanquan Gu. Stochastic nested variance reduction for nonconvex
optimization. Advances in Neural Information Processing Systems, 31, 2018. 1

13

	1 Introduction
	2 Interpolated Normalized Gradient Descent
	3 Faster INGD in Low Dimensions
	3.1 Finding a Minimal Norm Element
	3.2 Implementation of the oracles: proof of Lemma 3.1

