CirFix: Automatically Repairing Defects in Hardware Design
Code

Hammad Ahmad Yu Huang Westley Weimer
hammada@umich.edu yu.huang@vanderbilt.edu weimerw@umich.edu
University of Michigan, Ann Arbor Vanderbilt University University of Michigan, Ann Arbor

Ann Arbor, Michigan, USA
ABSTRACT

This paper presents CirFix, a framework for automatically repairing
defects in hardware designs implemented in languages like Verilog.
We propose a novel fault localization approach based on assign-
ments to wires and registers, and a fitness function tailored to the
hardware domain to bridge the gap between software-level auto-
mated program repair and hardware descriptions. We also present
a benchmark suite of 32 defect scenarios corresponding to a variety
of hardware projects. Overall, CirFix produces plausible repairs for
21/32 and correct repairs for 16/32 of the defect scenarios. This
repair rate is comparable to that of successful program repair ap-
proaches for software, indicating CirFix is effective at bringing over
the benefits of automated program repair to the hardware domain
for the first time.

CCS CONCEPTS

« Hardware — High-level and register-transfer level synthe-
sis; Bug fixing (hardware); - Software and its engineering —
Search-based software engineering,.

KEYWORDS

automated program repair, HDL designs, genetic programming

ACM Reference Format:

Hammad Ahmad, Yu Huang, and Westley Weimer. 2022. CirFix: Auto-
matically Repairing Defects in Hardware Design Code. In Proceedings of
the 27th ACM International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (ASPLOS ’22), February 28 —
March 4, 2022, Lausanne, Switzerland. ACM, New York, NY, USA, 13 pages.
https://doi.org/10.1145/3503222.3507763

1 INTRODUCTION

Recent increases in the complexity of hardware designs have chal-
lenged the ability of developers to find and repair defects in circuit
descriptions [?]. While significant effort has been devoted to effi-
ciently verifying functional correctness in hardware design descrip-
tions, relatively little work has been done in patching defects in such
descriptions automatically. By and large, debugging and repairing
hardware designs remains a very expensive and time-consuming

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ASPLOS °22, February 28 — March 4, 2022, Lausanne, Switzerland

© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9205-1/22/02...$15.00
https://doi.org/10.1145/3503222.3507763

Nashville, Tennessee, USA

Ann Arbor, Michigan, USA

task [?]. Indeed, recent functional and security vulnerabilities due
to defects at the hardware design level have led to expensive conse-
quences [? ? ?]. To reduce the cost and improve the maintenance
of hardware designs, a solution needs to not only precisely identify
sources of defects in real-world off-the-shelf hardware descriptions,
but also automatically produce repairs implementing correct func-
tionality of the circuit designs that can then be shown to developers
for validation before moving on to the synthesis phase. Additionally,
we desire a solution that applies directly to both the behavioral as-
pects (i.e., higher-level descriptions of circuit functionality) and the
register-transfer level (RTL) aspects (i.e., lower-level descriptions)
of circuit designs, and makes use of readily-available resources that
are part of hardware design to validate proposed repairs.

Previous work has attempted to address this problem but may
not satisfy all of these characteristics of a desired solution. For
instance, some techniques automatically localize defects in design
source code but suffer from high false positive rates [? ?]. Other
approaches for automatic error diagnosis and correction require
formal specifications to conduct design verification [?], which usu-
ally do not scale to large designs. Furthermore, previous work does
not operate on behavioral-level descriptions of hardware circuits [?
?]. On the other hand, in the realm of software, significant research
effort focuses on repairing bugs automatically [? ? ?]. Automated
program repair (APR) algorithms fix defects in software by pro-
ducing patches that pass all test cases while retaining required
functionality. Traditional APR for software employs fault localiza-
tion techniques to implicate faulty code, and such techniques are
often crucial to the success of program repair.

While both software programs and hardware description lan-
guages (HDLs) share programming concepts like expressions, state-
ments, and control structures, suggesting the possibility of repurpos-
ing software repair techniques to hardware designs, we highlight
two key differences between the two domains: (1) Software pro-
grams are typically based around a serial execution model, where
one line of code executes before the next. By contrast, HDL designs
are inherently parallel and often include non-sequential statements,
since separate portions of hardware can operate simultaneously.
(2) Software programs usually use test cases to evaluate functional
correctness, where individual test cases may pass or fail depending
on the quality of the software. HDL designs, on the other hand,
use testbenches [?], which are programs with documented and
repeatable sets of stimuli, to simulate behaviors of a device under
test (DUT). In both academia and industry, the majority of digital
hardware design is done using such HDLs.

We present two key insights to bridge the gap between well-
established software repair techniques and hardware designs. We
first hypothesize that while traditional spectrum-based fault local-
ization approaches do not apply to hardware designs that feature a

ASPLOS °22, February 28 - March 4, 2022, Lausanne, Switzerland

more parallel structure [?], dataflow-based fault localization (e.g., [?
]) approaches work well in this domain. Second, we hypothesize
that a traditional hardware testbench can be instrumented to admit
observations for candidate patches that guide the search for APR.

Leveraging these insights, we present CirFix, a framework for
automatically repairing defects in hardware designs implemented
in languages like Verilog, one of the most popular HDLs [?]. CirFix
uses genetic programming (GP), an iterative stochastic search tech-
nique, to find candidate repairs for defects in hardware designs.
CirFix also makes use of readily-available artifacts in the hardware
design process (e.g., testbenches, simulation environments) to di-
agnose and repair defects in a circuit description. We propose an
approach to guide the search for a repair by instrumenting hard-
ware testbenches to record the values of output wires at specified
time intervals during a simulation of the circuit design. CirFix then
performs a bit-level comparison of output wires against information
for expected behavior to assess functional correctness of candidate
repairs. CirFix employs a fixed point analysis of assignments made
to internal registers and output wires to implicate statements and
reduce the search space, enabling our approach to scale to large
circuit designs in industry.

We also present a benchmark suite of 32 defect scenarios [?]
based on three hardware experts — two from industry and one from
academia — asked to transplant bugs they observed in real life into
11 different Verilog projects. CirFix can produce plausible repairs for
21 out of the 32 Verilog defect scenarios within reasonable resource
bounds, of which 16 are deemed correct upon manual inspection.

The main contributions of this paper are:

o CirFix, a hardware-design automated repair algorithm.

e A novel dataflow-based fault localization approach for HDL
descriptions to implicate faulty design code.

o A novel approach to guide the search for a hardware design
repair that is compatible with the testbench-based hardware
testing process.

o A new benchmark suite of 32 scenarios, based on proprietary
bugs but available in 11 open Verilog projects.

e A systematic evaluation of CirFix on our benchmark suite.
CirFix was able to correctly repair 16 out of the 32 Verilog
defects under consideration.

2 MOTIVATING EXAMPLE

In this section, we use an example defect from a faulty 4-bit counter
with an overflow bit, implemented in Verilog, to motivate the fault

localization and candidate evaluation approaches used by CirFix.

The main block of the source code is shown in Figure 1a, with the
corresponding testbench in Figure 1b. The circuit design uses wires
enable and reset to increment (lines 35-37) and reset (lines 30-33)
the counter respectively. Incrementing the counter when it has a
binary value of 4’b1111 results in the overflow bit being set to
true (lines 39-41). This implementation incorrectly manages the
overflow bit: the if-statement at line 30 is missing an assignment that
resets overflow_out. Such defects can have serious consequences
— integer overflow errors can be leveraged into significant security
exploits [?].

Ahmad et al.

27 always@(posedge clk) // Execute at each rising edge of the clock signal
28 begin: COUNTER

29 // If reset is active, reset the outputs to @
30 if(reset==1'bl) begin

31 counter_out <= #1 4'b200a;

32 // Missing: overflow_out == #1 1'b@;

33 end

34 /f If enable is active, increment the counter
35 else if(enable == 1'b1) begin

36 counter_out <= #1 counter_out + 1;

37 end

38 // If the counter overflows, set overflow_out to be 1
39 if(counter_out == 4'b1111) begin

40 overflow_out == #1 1'bl;

41 end

42 end

(a) Main block of the 4-bit counter with an overflow error

50 always #5 clk = !clk; // Set clock signal oscillations

52 initial begin // Execute this block once

53 #5 // Wait for 5 time units

54 forever begin // Execute this block indefinitely until simulation stops
55 @(reset_trigger); // Wait for the reset_trigger event

56 @(negedge clk);

57 reset = 1; // Set reset to 1 on the next falling edge of the clock
58 @(negedge clk);

59 reset = @; // Set reset to @ on the next falling edge of the clock
60 —> reset_done_trigger; // Send the reset_done_trigger event signal
61 end

62 end

64 initial begin

65 #10 -> reset_trigger; // Send the reset_trigger event signal after 10 time units
66 @(reset_done_trigger); // Wait for the reset_done_trigger event

67 @(negedge clk); // Wait for falling edge of the clock signal

68 enable = 1; // Enable the counter

69 repeat (21) begin // Wait for 21 more falling edges of the clock signal

70 @(negedge clk);

71 end

72 enable = 0; // Disable counter

73 #5 —> terminate_sim; // Terminate simulation after 5 time units

74 end

(b) Main testing logic from the 4-bit counter testbench

Figure 1: A 4-bit counter with an overflow error in Verilog.

For the purposes of this work, there are two key hardware design
concepts that we highlight for a general audience: circuit synchro-
nization and parallelism.

Circuit synchronization. The main block of the circuit design code
shows an always block (line 27, Figure 1a) that executes repeatedly
until the simulation stops. The execution of such blocks can only
be triggered by changes to wires in the sensitivity list that follows
the always keyword. Nearly every digital circuit design includes a
clock signal (line 50, Figure 1b) that oscillates between a high and a
low state (denoted by events posedge and negedge respectively);
circuits rely on clock signals to know when and/or how to execute
their programmed actions. A clock cycle is the period of time it
takes for the clock signal to oscillate from high to low and back to a
high state. For the 4-bit counter in Figure 1a, the wire clk (denoting
the clock signal) is the only wire in the always block’s sensitivity
list (see line 27), and lines 28-42 are executed every time that wire
reaches a high state.

Parallelism. A key property of HDL designs not immediately ap-
parent in Figure 1 is that parts of the design code typically execute in
parallel. When a design is realized into actual hardware, individual
components run all the time. Indeed, every statement in a Ver-
ilog design not inside an explicit sequential block of code exhibits
concurrency. For instance, for the 4-bit counter in Figure 1a, an
implementation managing the overflow bit correctly would include
two assignments to counter_out and overflow_out (on lines 31

CirFix: Automatically Repairing Defects in Hardware Design Code

and 32 respectively) that happen at the same time when reset is
true.

To automatically repair the design code in Figure 1a, CirFix needs
to first answer, for the original design and each candidate repair:
what part of the circuit, if any, is behaving incorrectly? Unfortunately,
standard spectrum-based fault localization tools commonly used
by APR for software do not work for HDL designs that exhibit
parallelism. To overcome this challenge, we propose a novel fault
localization approach based on assignments to wires and registers.
We first instrument the existing testbench to record output values
at given time intervals. This instrumented testbench, when used
to simulate the design, reports the output values from the circuit,
which can be compared against expected output. Any mismatch
between expected and actual output serves as the starting point for
our fault localization. For the 4-bit counter in Figure 1, the testbench
waits for 10 units of time before sending the reset signal (line 65,
Figure 1b — cf. stimuli for unit tests in software). The procedural
block within the testbench that was waiting on the reset signal (line
55, Figure 1b) then sets reset to true upon the next falling edge
of the clock signal. This causes any subsequent executions of the
corresponding if-statement that resets the wires (line 30, Figure 1a)
to evaluate the true branch, following which the counter is reset.
A correct design should also reset the overflow bit: at this point,
the expected output for the circuit requires overflow_out to be 0,
while the actual value recorded by our instrumented testbench is x
(the Verilog representation an uninitialized or unknown logic value).
This causes overflow_out to be implicated for fault localization,
and CirFix focuses repair efforts on assignments to this wire and
parts of design code that such assignments transitively depend on
(e.g., the conditional in line 39, Figure 1a).

For every candidate repair produced, CirFix needs to also an-
swer: how good (i.e., fit) is the proposed repair at fixing the defect?
Unfortunately, evaluation approaches for candidate repairs from
software cannot be applied to HDL descriptions that typically use
testbenches (see Figure 1b). We address this using a novel fitness
evaluation approach. Our instrumented testbench records the val-
ues of output wires and registers at every rising edge of the clock
during an otherwise standard hardware simulation. For developer-
specified time intervals from the design simulation (a clock cycle
by default), our fitness function compares each output bit against
the expected output: for every bit match, we add to the fitness
sum; for every bit mismatch, we subtract from the sum. This fitness
sum is then normalized. For the 4-bit counter shown in Figure 1,
the testbench simulates the design code for 26 clock cycles, out
of which the first 20 produce an output of x (i.e., uninitialized)
for overflow_out on the original design. This causes an output
mismatch for overflow_out for 17 clock cycles, resulting in a fit-
ness score of 0.58 (see Section 3.2 for CirFix fitness calculations). A
repair managing overflow_out correctly would match expected
behavior, resulting in a fitness of 1.0.

This faulty circuit code was obtained by having a hardware
expert from industry adversarially transplant defects from their
experience into open circuit descriptions (see Section 4). We use
this example to motivate and demonstrate the basic design ideas
behind CirFix, an approach that scales well to larger circuit designs,
as we will demonstrate.

ASPLOS °22, February 28 - March 4, 2022, Lausanne, Switzerland

Algorithm 1 The high-level CirFix pseudocode.

Input: Circuit design to be repaired, C.

Input: Instrumented testbench for circuit, TB.

Input: Expected output for circuit behavior, O.

Input: Fitness function, f.

Input: Parameters, popnSize, maxGens, rtThreshold, mutThreshold.
Output: Repaired circuit description.

1: popn « seed_popn(C, popnSize)
2: repeat
3 childPopn < 0
4 while |childPopn| < popnSize and
V candidate € childPopn. f(candidate, TB,O) < 1.0 do

5 parent < tournament_selection(popn, f)

6: fl_set « fault_loc(parent)

7: if probability() < rtThreshold then > Repair templates
8: child « apply_fix_pattern(parent, fl_set)

9: childPopn « childPopn U {child}

10: else > Repair operators
11 if probability() < mutThreshold then

12: child «— mutate(parent, fl_set)

13: childPopn « childPopn U {child}

14: else

15: parent2 «— tournament_selection(popn, f)

16: {child1, child2} « crossover(parent, parent2)
17: childPopn « childPopn U {child1, child2}

18: until resources exhausted or
3 candidate € childPopn. f(candidate, TB,O) = 1.0
19: return minimize(candidate, TB, O)

3 TECHNICAL APPROACH

In this section, we present CirFix, an automated repair algorithm
for defects in hardware design code. Our prototype implementation
of CirFix operates on hardware descriptions written in Verilog. The
pseudocode for the main CirFix loop is shown in Algorithm 1.

CirFix applies our two-pronged HDL-specific approach to im-
plicate faulty design code and assess the correctness of circuit
descriptions to produce repairs that can then be shown to human
developers for review. Our fault localization approach simulates
a faulty circuit and assigns blame to incorrect wire and register
outputs (line 6 in Algorithm 1; see Section 3.1). Note that while
traditional software-based APR techniques typically compute fault
localization once at the start of the search for repairs, we choose
to repeatedly re-localize to support multiple dependent edits made
to the source code. Our fitness function, tailored to the hardware
domain, assigns scores to each candidate patch to guide the search
for repairs (lines 4 and 18 in Algorithm 1; see Section 3.2).

At a high level, CirFix uses genetic programming (GP) [?], an
iterative stochastic search technique, to synthesize candidate re-
pairs to faulty HDL programs. The framework takes as input the
source code implementing a faulty circuit design, an instrumented
testbench used to simulate the circuit for testing and verification
purposes, the expected circuit behavior,! and the input parameters.
The algorithm starts with the original source code and maintains a

!Note that CirFix does not require perfect information for expected behavior for
every timestep: the developer can choose to only provide information at certain time

ASPLOS °22, February 28 - March 4, 2022, Lausanne, Switzerland

Algorithm 2 High-level algorithm for fault localization for HDL
based on a fixed point analysis of assignments.

Input: Faulty circuit design code AST, ast.

Input: Simulation output, S : Time — Var — {0, 1, x, z}.
Input: Expected output, O : Time — Var — {0, 1, x, z}.
Output: Fault localization set, FL.

1: FL, mismatch «— 0,0
2. mismatch’ < get_output_mismatch(O, S) > Section 3.2
3. while mismatch # mismatch’ do > Fixed point calculation
4 mismatch «— mismatch U mismatch’

5: for node in ast do

6 if implicated(node, mismatch) then
7 FL « FL U {node.id}

8 for each child of node do

9 FL « FL U {child.id}

10: if type(child) = ldentifier and
child.name ¢ mismatch then
11: mismatch’ <« mismatch’ U {child.name}

2: return FL

o

population of program variants, each stored as a repair patch [?]
describing a sequence of abstract syntax tree (AST) edits parameter-
ized by unique node numbers. Each program variant is obtained by
applying a repair operator (lines 12 and 16 in Algorithm 1; see Sec-
tion 3.4) or a repair template (line 8 in Algorithm 1; see Section 3.3)
to a parent selected for reproduction. Candidate variants are se-
lected for reproduction based on their fitness scores assigned by
the CirFix fitness function (line 5 in Algorithm 1; see Section 3.5).
Our fix localization identifies code to be inserted or replaced as
part of mutation operations (see Section 3.6). The algorithm loops
for several generations, each maintaining a population of program
variants, until a plausible repair is found that produces output (as
observed by the instrumented testbench) matching the expected
circuit output, or allowed resources are exhausted (i.e., the algo-
rithm reaches a timeout or a certain number of generations). For
the final post processing step, CirFix minimizes [?] a candidate re-
pair to remove extraneous operations not needed to obtain correct
circuit output (line 19 in Algorithm 1; see Section 3.7). Candidate
repairs are not deployed directly but are instead shown to human
developers (e.g., during the pair process between an RTL design
engineer and a verification engineer [?]) for validation before the
design is ultimately synthesized, reducing maintenance costs [? ?].

3.1 Fault Localization

Fault localization is critical to the success and efficiency of APR [?].
Traditional APR for software often relies on spectrum-based fault
localization [?] to narrow down defects to certain parts of a faulty
program by sampling the program counter. Such fault localization
approaches do not extend naturally to the parallel structure of
hardware descriptions [?].

To overcome this challenge, we propose a novel dataflow-based
fault localization approach to implicate faulty code in HDL descrip-
tions. Previous work analyzing defects in large hardware projects

intervals. See Section 5.4 for an evaluation of the trade-off between the level of detail
of expected output and repair success.

Ahmad et al.

reports that most defects in Verilog descriptions correspond to
assignment statements and if-statements [?]. We present an algo-
rithm that implements an analysis of assignments made to wires
and registers in a circuit’s design code to implicate faulty statements.
Our proposed algorithm transitively captures data and control de-
pendencies in a context-insensitive fixed point analysis. While tra-
ditional spectrum-based fault localization approaches for software
return a ranked list of implicated statements [? ? ?], our approach
returns a uniformly-ranked set: due to the parallel structure of HDL
designs, a set of implicated assignments that are equally likely to
contribute to the design defect suffices.

Algorithm 2 outlines the high-level pseudocode for our fault
localization approach. The algorithm takes as input the AST of the
faulty circuit design, the output from design simulation, and the
expected circuit behavior (see Section 3.2 for the structure of the
simulated and expected outputs). It then compares the simulation
output against the expected behavior to produce a set of identifier
names (i.e., variable names) for output wires and registers with
mismatched values. Using this mismatch set as a starting point,
for every node in the AST, the algorithm checks if the node is
implicated by output mismatch. Implication for a node in the AST
occurs when

o (Impl-Data): either the node corresponds to an assignment
statement and the left child of the node corresponds to an
identifier in the mismatch set (cf. data dependency analysis),

e (Impl-Ctrl): or the node corresponds to a conditional state-
ment and an identifier in the conditional statement belongs
to the mismatch set (cf. control dependency analysis).

Any implicated node and all of the node’s children are added to
the fault localization set. Additionally, if any child of an impli-
cated node is itself an identifier not part of the mismatch set, the
name of the identifier is added to the mismatch set (Add-Child).
For example, for the 4-bit counter introduced in Section 2, recall
that the overflow_out wire had incorrect output from the circuit
simulation. This causes the wire to be added to the mismatch set.
The CirFix fault localization implicates the only assignment to
overflow_out (line 40, Figure 1a) by rule (Impl-Data) in the first
iteration of the algorithm. Indeed, the entire if-statement wrapping
this assignment (line 39, Figure 1a) gets implicated by (Impl-Ctrl),
which brings in the new identifier counter_out to the mismatch
set by (Add-Child). The process is repeated until there are no new
identifiers added to the mismatch set, following which the fault
localization set is output.

This novel approach to fault localization for hardware is a good
fit for automatically repairing HDL designs: it returns a precise
set of implicated AST nodes in a faulty circuit design, is context-
insensitive and therefore inexpensive to compute, and applies di-
rectly to node types associated with ASTs for languages like Verilog.

3.2 Fitness Evaluation

The fitness function evaluates the acceptability of a program variant
by assigning a value ranging continuously between 0 and 1 to the
variant, with 1 indicating a plausible [?] (i.e., testbench-adequate)
repair ready to be shown to human developers. Fitness provides a
termination criterion for CirFix and guides the search for a repair.
As mention in Section 1, traditional APR for software uses test-case

CirFix: Automatically Repairing Defects in Hardware Design Code

Simulation Result Expected Behavior
time, ...,overflow_out |time,...,overflow_out
25, cearX 25, x
35, ...,x 35, ...,0
45, ..., % 45, ...,0
165, ...,x 165, ...,0
175, ...,x 175, ...,0
185, ...,x 185, ...,0
195, ...,x 195, ...,0
205, ...,1 205, ...,1

Figure 2: A comparison between the simulation result and
the expected behavior information for the faulty 4-bit
counter in the motivating example. Wires with the correct
output are omitted for space reasons. Note the output mis-
match for the overflow_out wire for timestamps 35 through
195.

based evaluation strategies to assess candidate repairs. Hardware
designs, by contrast, use testbenches to verify functional correct-
ness. We present a novel fitness function tailored to hardware to
guide the search for repairs to HDL designs. Our fitness function
uses two key insights: visibility and comparison.

Traditional hardware testbenches monitor the values of output
wires during simulation and assess correctness based on the final
output values. For instance, the testbench for the 4-bit counter in-
troduced earlier (Figure 1b) may report that the final value of the
counter is 5 and the overflow bit is 1 when the simulation termi-
nates. Some off-the-shelf hardware testbenches, especially those
for large projects, may not even report the exact incorrect value,
reporting instead merely the presence or absence of an error dur-
ing simulation. We want our fitness function to assess a candidate
repair based on intermediary as well as final output values, and
assign fitness values to the repair based on its overall closeness
to the correct circuit design [?]. To do so, given a testbench for
a faulty HDL description, we instrument the testbench to record
the values of output wires and registers for specified time inter-
vals. This instrumentation is easily automatable: every hardware
testbench must instantiate a device-under-test (DUT) and connect
wires to the module being instantiated (cf. unit tests in software
instantiating the object being tested); each module in turn specifies
input and output wires, and a static analysis of the instantiation
of the DUT can provide the information needed to instrument a
testbench automatically.

Once the testbench is instrumented, we simulate the circuit de-
sign and compare the results against the expected output to assess
functional correctness of the HDL description. We desire a fitness
function that assigns high values to candidate repairs that display
behavior similar to expected behavior. To do so, we need to deter-
mine the relative contribution of each bit to the fitness of a proposed
repair. Given a set of time steps Time, a set of output wires and
registers Var, a simulation result S : Time — Var — {0,1,x,z},
and expected output O : Time — Var — {0, 1, x, z}, where x or z
correspond to unknown logic value and high impedance respec-
tively, for timestamp ¢; € Time, we sum over the n = |S(c;)| output
bits of the circuit. We compare the expected value for wire b from
clock cycle c;, O, , = O(c;(b)), against the actual value from the

ASPLOS °22, February 28 - March 4, 2022, Lausanne, Switzerland

simulation result, S¢, , = S(c;(b)) (see Figure 2 for an indicative
example juxtaposing a simulation result with expected behavior).
If the bits match, we add to the fitness sum of the circuit; if the bits
differ, we subtract from the fitness. An additional penalty weight
¢ is assigned to bits with values of x (uninitialized) or z (high
impedance).

The fitness sum, sum(S, O), and total possible fitness, total(S, O),
are defined as follows, where _ represents a bit value of 0 or 1:

- é(),,,,, ,,@}:&U ﬂ).‘(ltl)}1r
. . @ (),,p,,h,,) € {(z,2),(2,2)
sum(S,0) = Z_UE C1 (0 Se) € {(10). (0. 1)}
R W™ (Oz, b Sen) € L), (). (2., (2 2)}
L (Oc, b, Secn) € {(0,0), (1,1), (1,0, (0, 1)}
total(S,0) Z Z @ (Ocyb, Se, j,) e{(,z), (z,.), (2,),
=0 b=0 (2,0, (5, 2), (2, 2)}

For the example shown in Figure 2, the mismatch x = S35, #
O35, = 0 subtracts ¢ from the fitness sum, whereas the match
S205,0 = 1 = O205,5 adds 1 to the fitness sum, where v = overflow_out.

The normalized fitness of the circuit is then defined as:

sum(S,0) <0

0
fitness(S,0) = { sum(5,0) sum(S,0) >0

total(S,0)

This novel approach to calculating normalized fitness is effective

at capturing whether or not a candidate design is close to the correct
implementation of the circuit, and at guiding the search for a repair.

3.3 Repair Templates

A repair template for a defect in code is defined as a pre-identified
pattern that can be applied to some aspect of the code to fix the
defect. The idea of using templates for APR is well-studied for
software [? ? ?]. We apply repair templates to aid CirFix in its search
for repairs. We propose nine repair templates corresponding to four
defect categories for HDL designs. Of the four defect categories we
consider, three are suggested in previous work by Sudakrishnan et
al. [?] that analyzes the bug fix history of four hardware projects
written in Verilog and presents several commonly-occurring fixes
for HDL descriptions; we propose the remaining defect category
based on our experience with defects in hardware designs.

The repair templates in CirFix are presented in Table 1. Incor-
rect conditionals, sensitivity lists, and assignments correspond to
the three most commonly occurring defects in the four hardware
projects analyzed in previous work [?, Tab. 2]. Note that our repair
templates focus on correct behavior from circuit designs during
simulation (cf. rules targeting synthesizability [?]). For an incor-
rect conditional for a program branch (e.g., the condition for a
while-loop or an if-statement), our repair templates can negate
the conditional. For an incorrect sensitivity list, recall that in HDL
descriptions, a developer can specify blocks of code to execute infin-
itely often (e.g., line 27, Figure 1a); the execution of such blocks can
only be triggered by events described in the block’s sensitivity list.
Our repair templates for this defect category can modify a block’s
sensitivity list to change when the block is executed. HDL designs

ASPLOS °22, February 28 - March 4, 2022, Lausanne, Switzerland

H Defect Category | Pattern Description H

Conditionals Negate the conditional of a code block (e.g.,
if-statement, while-loop)

Trigger an always block on a signal’s falling
edge

Trigger an always block on a signal’s rising
edge

Trigger an always block on any change to a
variable within the block

Trigger an always block when a signal is level
Change a blocking assignment to non-
blocking

Change a non-blocking assignment to block-
ing

Increment the value of an identifier by 1
Decrement the value of an identifier by 1

Sensitivity Lists

Assignments

Numeric

Table 1: Repair templates in CirFix

also allow the use of blocking and non-blocking statements for
assignments. A blocking assignment statement (written =) must be
executed before any subsequent sequential statements. By contrast,
a non-blocking assignment (written <=) allows assignments to be
made without delaying the procedural flow of a block. Our repair
templates for incorrect assignments can change assignments from
blocking to non-blocking, and vice versa. Finally, for numeric er-
rors, our repair templates can increment or decrement the values
of declared identifiers.

3.4 Repair Operators

CirFix uses two standard repair operators from well-known soft-
ware repair approaches [? ? ?], mutation and crossover, to search
the nearby space of circuit designs to produce a repair and to avoid
local optima during the process. The input parameter mutThreshold
(line 11, Algorithm 1) tunes the relative application of mutation
and crossover.

As in common software APR approaches (e.g., [? , Sec. III-F]),
the mutation operator itself can be characterized into three sub-
types: replace, insert, and delete. The mutate function of the CirFix
framework generates a random probability value and employs the
user-provided replace, insert, and delete thresholds to choose a
mutation sub-type. The replace operator picks a random node from
the fault localization space and replaces the node with another
randomly chosen node from the corresponding fix localization (see
Section 3.6) space. The insert operator picks a random node from the
fix localization space and inserts it after another randomly picked
node within a code block. The delete operator picks a random node
from the fault localization and replaces it with an empty node —
this operation is equivalent to deleting certain statements from the
program variant under consideration.

CirFix uses the standard single-point crossover [?], which starts
by picking a crossover point for each of the two parents. Edit opera-
tions to the right of that point are swapped between the two parents.
This results in two children program variants, each carrying some
information from both parents. The crossover operator plays a

Ahmad et al.

key role in avoiding local optima when searching for high-fitness
patches.

3.5 Selection

Automated program repair techniques based on GP use selection to
choose parent variants from a population based on fitness. Tourna-
ment selection [?], a selection approach that selects a random pool
of t program variants in a population and selects the fittest member
of this pool as the parent, has been used widely for software-based
APR [? ? ? ?]. CirFix uses tournament selection to select a parent
variant to transfer genetic information to the next generation as a
child variant. The top e% fittest program variants from the previous
generation are automatically chosen to be included in the next
generation in a process known as elitism [? ?].

3.6 Fix Localization

Given that fault localization has identified faulty design code to be
changed, our fix localization provides some guidelines on how to
perform the changes. While early works on APR for software chose
a node at random for insertion and replacement operations [?],
such approaches caused a substantial fraction of mutants to not
compile [?]. We use fix localization to restrict the scope of the
insert and replace operators to reduce the number of syntactically
invalid mutants.

For the insert operator, we propose to only use statements types
(e.g., conditional statements, assignments, etc. — see Annex A.6.4
in the IEEE Standard for Verilog [?] for the full BNF definition
of statement types) as the sources for insertion code. We further
allow such statements to be inserted only into initial or always
blocks, since such statements inserted elsewhere violate the syntax
of Verilog [? , Annex A.6.2]. For the replace operator, we design
CirFix such that an item in a Verilog module [? , Annex A.1.4] can
be replaced either by another item of the same type, or by an item
sharing the same immediate parent type (as specified in the formal
syntax definition of Verilog [? , Annex Al]).

We observe that our fix localization approach reduces the aver-
age number of mutants producing compilation errors in our proto-
type from 35% to 10%. This reduction is comparable to that of fix
localization techniques in software (e.g., [?]).

3.7 Repair Minimization

During the search for a repair, CirFix might produce edits to the
code that do not contribute to the repair (e.g., repeated assignment
statements within an always block). Such edits do not increase the
fitness of the candidate repair, but they could introduce inefficien-
cies in the final circuit design or affect the design’s readability [?
]

CirFix removes such extraneous edits in a postprocessing min-
imization step by finding a subset of the edits in a repair patch
from which no further elements can be dropped without causing
a reduction in the fitness of the patch. Following the norm set by
APR for software [?], we use the delta debugging algorithm [?]
to efficiently (i.e., in polynomial time) compute this one-minimal
subset of the repair patch. The minimized set of repairs is then
converted back into HDL code implementing the hardware design
correctly.

CirFix: Automatically Repairing Defects in Hardware Design Code

Project Description Project | Testbench
LOC LOC
decoder_3_to_8 3-to-8 decoder 25 56
counter 4-bit counter with overflow 56 135
flip_flop T-flip flop 16 39
fsm_full Finite state machine 115 66
Ishift_reg 8-bit left shift register 30 44
mux_4_1 4-to-1 multiplexer 19 51
i2c Two-wire, bidirectional serial | 2018 482
bus for data exchange between
devices
sha3 Cryptographic hash function 499 824
tate_pairing Core for the Tate bilinear pair- | 2206 983
ing algorithm for elliptic curves
reed_solomon_ de- | Core for Reed-Solomon error | 4366 148
coder correction
sdram_controller | Synchronous DRAM memory | 420 95
controller
[[Total [[9770] 2923 0

Table 2: Benchmark hardware projects in our experiments.

4 EXPERIMENTAL SETUP

This section describes the experimental setup for our evaluation of
CirFix, including the construction of our new benchmark suite and
our choice of experimental parameters.

For our prototype implementation of CirFix, we use the open-
source PyVerilog toolkit [?] (version 1.2.1, modified to support
numbering for each node type) to parse a Verilog description of a
circuit and produce an AST representing the circuit design code.
We use Synopsys VCS [?], the primary hardware verification tool
used by a majority of the world’s top-twenty semi-conductor com-
panies [?], to simulate the code using a manually instrumented
testbench to assess functional correctness of the circuit design.
Our prototype for CirFix is implemented using Python 3.6.8 and is
made publicly available on GitHub (https://github.com/hammad-
a/verilog_repair).

4.1 Benchmark Suite for Hardware Defects

For our evaluation of CirFix, we desire a benchmark suite consisting
of faulty hardware designs that are indicative of defects in industry,
comprise a wide range in terms of project size, and correspond to
a variety of components found in real-world designs. To the best
of our knowledge, there are no publicly available benchmarks that
satisfy our requirements. Additionally, there is limited open source
community support for industrial hardware designs, since such
designs are often considered Intellectual Property (IP) of the stake-
holder companies. As such, we propose to adapt the defect-seeding
approach common in software [? ? ?] and present a benchmark
suite of defects scenarios [? ? | — each consisting of a circuit design,
an instrumented testbench for the design, information for correct
circuit behavior, and an expert-transplanted defect from real-life
experience — to be used for the evaluation of automated repair
techniques for hardware.

4.1.1 Selecting Hardware Projects. Every defect scenario includes
a base circuit design and a testbench, as introduced in Section 2
(Figure 1). We required circuit designs with an available testbench
and that admit simulation using the Synopsys VCS tool without any

ASPLOS °22, February 28 - March 4, 2022, Lausanne, Switzerland

changes to the design code. This is a common requirement compa-
rable to the benchmarks suites for APR in software [?, Sec. IV-A] [?
, Sec. 3.1]. The hardware projects for our benchmark suite are
presented in Table 2. For each hardware project, we need an instru-
mented testbench to record output values for our fitness function.
While the instrumentation process is automatable (see Section 3.2),
we manually instrument the testbenches for our prototype. Each
testbench instrumentation required under 10 lines of Verilog code,
took at most 5 minutes of developer time, and did not require any
circuit-specific knowledge besides the information already available
in the testbench (i.e., identifier names of output wires and registers,
and the clock cycle duration).

We choose six projects from undergraduate VLSI courses to be
indicative of repairing a small component in hardware design. We
augment this by choosing the remaining five projects from Open-
Cores (a popular website for open-source HDL designs) and GitHub
collectively to be indicative of repairing the entirety of a large
circuit design. Unlike some previous works that only use toy bench-
marks for evaluation (e.g., [? ?]), our benchmarks include a range
of project sizes (in terms of source lines of code), and all projects —
including those from courses taught at the undergraduate level —
correspond to components found in real-world hardware designs.
To satisfy our variety requirement, we include a project from each
of the key cores listed on the OpenCores website for OpenCores
certified projects (i.e., arithmetic, communication, crypto, error
correction, and memory).

4.1.2 Obtaining Information for Correct Circuit Behavior. CirFix
requires information about expected behavior for a circuit design
to assign fitness values to candidate repairs. In APR for software,
guidelines for correct behavior often take the form of passing and
failing test cases [?]. More generally, however, such information
can be induced from a previous version of the design known to

static analyses of the design [? ? ? ?], or manually provided by the
human developer [????].

This so-called “oracle problem” [?] remains a challenging is-
sue in general for hardware testing and automated repair: implicit,
high-level test oracles (e.g., “the program does not divide by zero”)
used by APR tools for software do not typically carry over to hard-
ware. Given that circuit designs exhibit parallelism and require
synchronization against a clock signal [?], how a circuit design
reaches a certain output is often equally important as the actual
final output produced. As such, any hardware test oracles need
detailed information about the intermediate values from design
simulation, and it does not suffice to only use the output values
from the simulation as correctness information for an approach
like CirFix.

For our benchmark suite, we follow an established approach in
APR for software [? ?] and employ a previously-functioning version
of the circuit design to record the expected behavior information
for circuits in our benchmark suite. We acknowledge that such a
previously-functioning version might not always be available, or
the circuit specification may have changed. In that case, a developer
can use a partially correct or most up-to-date version of the circuit
as a starting point, and manually annotate the missing or incorrect

ASPLOS °22, February 28 - March 4, 2022, Lausanne, Switzerland

bits based on knowledge of the circuit design. This process is analo-
gous to test suite evolution in software [?]. Ultimately, however, if
manual developer effort and previous designs are both unavailable,
CirFix cannot be applied to repair defects in a circuit.

While we recognize that the process of manually annotating
the correctness information may take longer than manually fixing
a single defect, this information is a one-time cost as long as the
high-level circuit specification (i.e., I/O wires and registers, expected
behavior) does not change. Given the number of bugs that may arise
during the development and maintenance of a circuit design, we
believe that it would still be more cost effective to invest developer
effort in the correctness information, which can then be used by
CirFix during inexpensive machine idle time (see discussion in
Section 5.1).

4.1.3 Transplanting Hardware Defects. Since actual industrial de-
fects are not made publicly available, we propose an approach
based on defect transplantation by experts. Previous works have
used either randomly-seeded or self-seeded defects for evaluation,
potentially admitting bias (e.g., [?]). To combat this, we recruited
three hardware experts — two of whom work in industry and one
who works in academia, with 19 years of experience with hardware
design collectively — to transplant (proprietary or non-public) de-
fects from their real-world experience into otherwise-correct open
source implementations of the hardware projects in our benchmark
suite. We desire defects in our benchmark suite corresponding to
a variety of complexities, both in terms of finding and fixing the
defect. As such, we define two defect categories for this process:

e Category 1: A Category 1 (i.e., “easy”) defect denotes mistakes
pertaining to simpler, higher-level aspects of circuit design.

e Category 2: A Category 2 (i.e., “hard”) defect denotes more
intricate errors that usually require more effort to diagnose,
understand, and/or fix.

To get the benefits of real-world defects in our benchmark suite,
we instructed our recruited experts to transplant and categorize
real defects they have previously encountered to the open-source
circuits in our benchmark. We also asked our experts for ... variety
in how the defects appear and would be fixed, as long as that variety
aligns with how often [they] observe these bugs or mistakes in real
life”. We further required that any transplanted defects should com-
pile successfully and change the externally visible behavior of the
circuit with respect to the instrumented testbench, and correspond
to approximately the same level of complexity as that of real-world
defects.

Table 3 lists the transplanted defects from our experts that met
these criteria. In total, our experimental setup includes 32 different
defect scenarios spanning across 11 hardware projects, with 19
Category 1 (i.e., “easy”) and 13 Category 2 (i.e., “hard”) defects. This
benchmark suite is 1.5-10X as large as benchmark suites used in

4.2 Experimental Parameters

We refer to each execution of CirFix as a trial. Each trial is initialized
with a distinct random seed for reproducibility of our results, and
conducted on a quad-core 3.4GHz machine with hyperthreading
and 16GB of memory. We ran 5 independent CirFix trials for each
defect scenario, stopping when an acceptable repair was found. Each

Ahmad et al.

Project Defect Description Cat Repair
| et
decoder 3 to_8 Two separate numeric errors 1| V/13984.3
Incorrect assignment 2 —
counter Incorrect sensitivity list 1 Vv19.8
Incorrect reset 1| v/32239.2
Incorrect incremental of counter 1| V277813
flip_flop Incorrect conditional 1 V1.8
Branches of if-statement swapped 1 V/923.5
fsm_full Incorrect case statement 1 -
Incorrectly blocking assignments 1 4282.2
Assignment to next state and default 2 1536.4

in case statement omitted
Assignment to next state omitted, in- 2 V'37.0
correct sensitivity list

Ishift_reg Incorrect blocking assignment 1 V'14.6
Incorrect conditional 1 v'33.74
Incorrect sensitivity list 1 V1.8
mux_4 1 1 bit instead of 4 bit output 1 —
Hex instead of binary constants 1 10315.4
Three separate numeric errors 2 15387.9
i2c Incorrect sensitivity list 2 V183
Incorrect address assignment 2 57.9
No command acknowledgement 2| V15605
sha3 Off-by-one error in loop 1 V'50.4
Incorrect bitwise negation 1 —
Incorrect assignment to wires 2 —
Skipped buffer overflow check 2 v'50.0
tate_pairing Incorrect logic for bitshifting 1 —
Incorrect operator for bitshifting 1 —
Incorrect instantiation of modules 2 —
reed_solomon_ de- | Insufficient register size for decimal 1 —
coder values
Incorrect sensitivity list for reset 2 | V/28547.8
sdram_controller Numeric error in definitions 1 —
Incorrect case statement 2 -
Incorrect assignments to registers dur- 2 | V16607.6

ing synchronous reset
Table 3: Repair results for CirFix. “Cat” indicates the cate-
gory for the defect, “Repair Time” shows the time for re-
pair (in seconds), and a missing time for repair indicates
no repair was found in 5 independent trials. CirFix pro-
duced plausible repairs to 21 of the 32 defect scenarios in
our benchmark suite, of which 16 were correct upon man-
ual inspection (denoted with a V).

individual trial was terminated after 8 generations of evolution or
12 hours of wall-clock time (whichever came first).

For the GP parameters, we use population size popSize = 5000,
repair template threshold rtThreshold = 0.2, mutThreshold = 0.7. In
line with established practices from APR for software [? ? ? |, we use
deletion, insertion, and replacement thresholds of 0.3,0.3 and 0.4
respectively. For parent selection, we use a tournament size t = 5
to increase the selection pressure on candidate variants [?]. For
elitism, we propagate the top e = 5% candidates in each generation
to the next generation without any modifications.

For fitness evaluations, we use ¢ = 2 as additional weight as-
signed to bits with values of x or z. This makes incorrect compar-
isons between ill-defined wires twice as detrimental to the fitness
score of a candidate repair as binary bit mismatches. We found that
a weight ¢ = 1 did not penalize such incorrect comparisons enough
(resulting in longer times to find a repair), while ¢ = 3 caused
too significant a drop in fitness for candidate variants (negatively
impacting the exploration of the search space for a repair).

CirFix: Automatically Repairing Defects in Hardware Design Code

While we leave a comprehensive study of CirFix’s parameter
sensitivity as future work, we evaluated other values suggested
by literature (e.g., smaller population sizes [? ?]), and found no
significant differences in CirFix’s performance.

5 EXPERIMENTAL RESULTS

In this section, we present an empirical evaluation CirFix on our
benchmark suite of hardware defect scenarios. We address the
following research questions:

RQ1. What fraction of defect scenarios can CirFix repair?

RQ2. Does CirFix perform better at repairing Category 1 hard-
ware defects compared to Category 2 defects?

RQ3. How effective is the CirFix fitness function at guiding the
search for a repair to a circuit description?

RQ 4. How sensitive is CirFix to the quality of the information
for expected behavior?

5.1 RQ1. Repair Rate and Quality for CirFix

Repair Rate. Table 3 presents the repair results for each defect sce-
nario. CirFix produced plausible (i.e., testbench-adequate) repairs
for 21 of the 32 (65.6%) defects. Of the 11 defects that were not
repaired, 4 exhausted resource limits while 7 required edits not
supported by CirFix operators and repair templates. While a direct
comparison between CirFix and APR for software is not possible,
we observe that the repair rate of CirFix comparable to the re-
ported repair rates of well-known software repair approaches, e.g.,
GenProg (52.4%) [?] and Angelix (34.1%) [?]. When comparing
CirFix to a more straightforward search algorithm applying edits
at uniform to a circuit design, we found that the brute force algo-
rithm did not scale to the complexity of defects in our benchmark
suite and reported no repairs within the 12 hour resource bounds.
Though not part of a comprehensive scientific evaluation, when
tested on simple single-edit defects (not part of our benchmark
suite) in smaller projects from undergraduate courses, the brute-
force algorithm still took hours to find repairs that CirFix found in
seconds to minutes, highlighting CirFix’s efficient pruning of the
search space. We leave a full investigation of CirFix against more
straightforward search as future work. Note that we can not com-
pare CirFix to other baselines for hardware repair, since at the time
of writing, there are no baselines that operate on source code level
Verilog descriptions to automatically repair defects; indeed, that is
precisely the improvement CirFix brings over the state-of-the-art.

The average wall-clock time for a trial to find a repair was 2.03
hours, of which an average of over 90% was spent on fitness evalu-
ations (i.e., design simulations). Most non-repairs timed out after
12 hours, though defects for some projects with smaller search
spaces hit the 8 generation maximum first. These results are in line
with previously-reported patterns of behavior for APR for software,
supporting our hypothesis that the CirFix algorithm is capable of
performing as well on hardware design defects as established APR
approaches do on software.

We acknowledge that wall-clock runtime for CirFix on a given
defect can be longer than that of an expert human manually fix-
ing the defect. However, CirFix was designed to favor situations
in which developer time is significantly more expensive than ma-
chine time: it is often more cost-effective to run tools like CirFix

ASPLOS °22, February 28 - March 4, 2022, Lausanne, Switzerland

1 1 always @ (posedge clk)

2 2 if (~rst_n)

3 3 begin

4 4 state <= INIT_NOP1;

5 5 command <= CMD_NOP;

6 6 state_cnt <= 4'hf;

7 7 haddr_r <= {HADDR_WIDTH{1'b@}};

8 -

9 - rd_data_r <= data;
8 + state_cnt_next <= 4'd0;
9 + rd_data_r <= IDLE;

10 10 busy <= 1'b0;

11 11 end

Figure 3: A representative multi-edit repair by CirFix for a
defect in the sdram_controller benchmark. The original de-
fect, with a missing and an incorrect assignment, is shown in
red; the repaired code is shown in green. Edits on lines 8 and
9 correspond to insert and replace operations respectively.

using inexpensive machine idle time and then to employ expensive
developer time to ensure the repairs are correct before being syn-
thesized [?]. As such, we see CirFix as being cost-effective in terms
of reducing the burden on designers.

Repair Quality. We follow the approach taken by Long and Ri-
nard [?] and manually analyze the 21 repairs produced by CirFix.
We found 5 to be correct and identical to a human repair, another
11 to be correct but different from a human repair, and the final 5
to be correct only with respect to the testbench (i.e., overfitting).?
While we acknowledge that having a single developer manually
examine a patch is not a substitute for a full human study on patch
correctness, this analysis adds some confidence that a majority of
the plausible repairs from CirFix do not overfit to the testbench (a
common problem in APR for software [? ? ?]), since we inspect
intermediate wire values when assigning fitness scores. Correct-
ness is critical in hardware designs (e.g., since manufactured chips
cannot be easily updated once deployed), and we note that our
use case does not involve deploying patches directly but instead
showing plausible patches to developers to reduce maintenance
costs [??].

We observed that 7 out of the 21 minimized repairs were multi-
edit repairs, highlighting CirFix’s ability to produce repairs to de-
fects that require more than one change to the circuit design. By
comparison, common APR approaches for software usually only
produce single-edit repairs [?], and only recently have there been
works investigating multi-edit repairs [? ?]. For instance, in a faulty
version of the sdram_controller benchmark, one of our experts
changed assignments to two wires to transplant a Category 2 de-
fect, causing incorrect functionality in the host interface. CirFix
assigned this faulty design code a fitness value of 0.818 based on out-
put mismatch. CirFix repaired this defect scenario in 4.6 hours by
inserting a new assignment and modifying an existing assignment.
The original defect and the repaired code are shown in Figure 3.
This is an indicative instance of CirFix repairing Category 2 (i.e.,
“hard”) defects in circuit descriptions with multiple edits to the
faulty circuit design.

2We focus on correctness of a patch against the specification of the circuit (e.g.,
ensuring the absence of clock- or reset-domain issues) during our manual inspections.
The synthesizability of the design is left to be evaluated by the developer during the
validation phase of the hardware design process [?].

ASPLOS °22, February 28 - March 4, 2022, Lausanne, Switzerland

CirFix produced plausible repairs to 21 out of 32 (65.6%)
defect scenarios in our benchmark suite, of which 16 repairs
were fully correct and 5 were correct only with respect to
the testbench. The CirFix repair rate is comparable to strong
results from APR for software, suggesting that our approach
brings the benefits of APR to hardware designs.

5.2 RQ2. Performance for Individual Defect
Categories

CirFix found plausible repairs to 12 out of 19 (63.2%) of Category 1
and 9 out of 13 (69.2%) of Category 2 defects. The average number of
fitness probes for a trial finding a repair to a Category 1 defect was
9500, taking an average wall-clock time of 2.07 hours to complete.
By comparison, the average number of probes for a trial repairing
a Category 2 defect was 5000, taking an average wall-clock time
of 1.97 hours to complete. We found no statistically significant
difference in the average amount of time to find a repair between
Category 1 and 2 defects (two-tailed Mann-Whitney U test, p =
0.373), suggesting that for defects that CirFix is able to patch, the
repair can be produced in about the same time, regardless of the
category (and therefore, difficulty) of the defect.

The CirFix repair operators and repair templates were particu-
larly successful at repairing defects of both categories pertaining to
incorrect sensitivity lists for always blocks, and numeric errors in,
or omissions of assignments to wires and registers. On the other
hand, CirFix was less successful in defect scenarios where wires or
registers are defined incorrectly, or where modules are incorrectly
instantiated. For instance, in a Category 1 defect scenario for the
reed_solomon_decoder project, one of our experts changed the
size of a register to 8 bits before assigning a decimal value of 500 to
the register. This produces incorrect circuit behavior since 8 bits
are not sufficient to store a value of 500. CirFix could not produce
a repair to this defect scenario: none of its operators or repair tem-
plates are capable of increasing the number of bits allocated to the
integer 500. We note that while adding more repair templates can
help in such cases, in general, CirFix is able to repair both Category
1 and 2 defects with comparably high success rates.

CirFix performs equally well for Category 1 and Category
2 hardware defects, adding confidence that our approach
scales well to a variety of defect types in hardware design.

5.3 RQ3. Quality of Fitness Function

CirFix’s high repair rate suggests that our fitness function, coupled
with our testbench instrumentation approach, is highly effective at
guiding the search for repairs to faulty circuit designs. We observe
that for each change to design code that brings a candidate repair
closer to a correct repair, our fitness function shows a corresponding
increase in the candidate repair’s fitness (i.e., our fitness function
has a strong fitness distance correlation, a trait that makes genetic
algorithms thrive [?]). This is best observed in transplanted defects
that require multiple edits to the design code to be corrected. For
instance, one of our experts transplanted a defect in the counter
project that required three edits to the design be repaired. The triple-
edit repair produced by CirFix for this defect scenario incrementally
raised the fitness of the best candidate patch first from 0 to 0.58,

Ahmad et al.

then to 0.77, and finally to 1.0 to produce a correct repair. Similar
behavior is seen for every other multi-edit repair produced by
CirFix, indicating that our fitness function is effective at capturing
incremental changes to a circuit design during the search for a
repair.

We also observe instances where CirFix produces a repair deemed
unfit by our fitness function and instrumented testbench but con-
sidered correct by the original, unannotated testbench. We examine
one such case in detail, related to the out_stage module in the error
correction core reed_solomon_decoder. This module is responsi-
ble for generating output bytes from pipelining input memories.
A faulty version of this circuit obtained from one of our experts
removed the reset wire from the sensitivity list of an always block.
This caused incorrect resetting of output wires by the circuit. Our
fitness function assigns the incorrect design code a non-perfect
fitness value of 0.999. The original testbench, however, reports no
errors in the incorrect code. The final repair produced by CirFix
fixes this defect and passes all checks by the original testbench and
our instrumented testbench. This suggests that our fitness function
and testbench instrumentation can catch errors beyond the capabil-
ities of the original testbench without adding any additional testing
logic.

The CirFix fitness function is highly effective at capturing
incremental changes to a circuit’s design code to guide the
search for a repair, and has the potential to increase testing
prowess without any added testing logic to a bench.

5.4 RQ4. Sensitivity to Correctness
Information

Since the information for expected circuit behavior is a non-trivial
cost for our algorithm, we investigate the quality of the repairs
produced by CirFix as a function of the quality of this informa-
tion. We consider the defects in our benchmark suite repaired un-
der conditions where high quality guidelines for correctness were
available, since repairing the remaining defects with lower quality
information could be attributed to the randomness associated with
a stochastic approach.

As we varied the amount of correctness information (i.e., an-
notations of expected wire and register values) available from
100% — 50% — 25%, we observed the number of plausible re-
pairs transition from 21 — 20 — 20 and the number of correct
repairs go from 16 — 12 — 10. Breaking down the scenario where
only 50% of the correctness information was available, we observed
that 5 are correct and identical to a human repair, another 7 are
correct but different from a human repair, and the final 8 are cor-
rect only with respect to the testbench (including a partial repair
to a defect requiring multiple edits to be patched). Note that this
is a reduction of 25% in the number of correct repairs when the
correctness information is reduced by half. Indeed, of these plausi-
ble repairs, a total of 10 were identical to repairs produced under
conditions when the full expected behavior was available. For the
scenario where only a quarter of the expected behavior information
was available, we found that 4 are correct and identical to a human
repair, another 6 are correct but different from a human repair, and
the final 10 are correct only with respect to the testbench (including
a partial repairs). This corresponds to a decrease of only 37.5% in

CirFix: Automatically Repairing Defects in Hardware Design Code

the number of correct patches when the correctness information is
reduced by 75%.

Our results indicate that the repair rate, and, more importantly,
the quality of the repairs produced by CirFix, is not overly sensi-
tive to the quality of the provided expected behavior information.
Furthermore, reducing said behavior information does not increase
the manual burden of inspecting produced plausible patches, since
CirFix only reports the first plausible patch it finds (cf. program
repair for software, where developers may need to evaluate an
increasing number of plausible patches as the quality of the test
suite is degraded [? ?]). This analysis gives confidence that even in
settings where high quality information for correct circuit behav-
ior might not be available, high marginal benefit and reduction in
maintenance costs are still obtainable from CirFix.

CirFix is not overly sensitive to the quality of the expected
circuit behavior information, yielding high repair rates and
quality even under settings when low quality correctness
information is used as input to the algorithm.

6 LIMITATIONS AND THREATS TO VALIDITY

Our results in Section 5 suggest that CirFix is highly effective at
automatically repairing defects in HDL descriptions. That said,
there are several limitations to our approach and threats to the
validity of our results that we describe in this section.

Timing bugs. Faults in HDL descriptions stemming from timing
flow issues and incorrect circuit behavior with respect to the clock
signal often go undetected by a traditional testbench, requiring
instead complicated analyses of waveforms from the simulation.
Such timing bugs are therefore not in scope of our approach that
heavily relies on testbenches to assess functional correctness of
designs. We note that while such bugs are complex to debug, they
represent only a subset of hardware defects in industry, and a non-
trivial amount of defects in hardware correspond to functional
correctness [?].

Threats to Validity. The parameters for the prototype imple-
mentation of CirFix are chosen based on empirical performance and
may not be optimal. We do note, however, that the repair operators,
fault and fix localization approaches, and representation choice for
repairs matter more than the actual values of the GP parameters
for APR [?].

Our benchmark defects may not be indicative of defects in real-
world hardware projects, posing a potential threat to external va-
lidity. To mitigate this threat, we evaluated CirFix on a variety of
hardware projects taken from different sources, and had expert
hardware designers transplant defects from their real-life expe-
rience with HDL designs covering a variety of defect types (see
Section 4.1.3).

7 RELATED WORK

Automatic Error Diagnosis and Correction in Hardware De-
signs. While a significant amount of work has been done in auto-
matic error diagnosis of hardware designs, the correction of such
errors automatically has not been well-explored to the best of our
knowledge. Techniques in the works of Jiang et al. [?] and Ran
et al. [?] employ software analysis approaches to identify state-
ments in design code responsible for defects, but suffer from high

ASPLOS °22, February 28 - March 4, 2022, Lausanne, Switzerland

false positive rates. Bloem and Wotawa [?] use formal analysis
of circuit descriptions to identify defects, but their approach re-
quires formal specifications for large real-world designs that are
not always available. Staber et al. [?] use state-transition analysis
to diagnose and correct hardware designs automatically, but their
techniques similarly do not scale to real-world circuits with large
state spaces. Our approach, by contrast, is more scalable to large,
real-world hardware descriptions. Chang et al. [?] explicitly insert
multiplexers to automatically diagnose faults in hardware designs
and suggest repairs; Madre et al. [?] use Boolean equation solving
to diagnose and rectify gate-level design errors. By contrast, our
technique applies to both behavioral (higher level) and RTL aspects
of a circuit design.

Automated Program Repair for Software. In the realm of
software, significant research effort has been devoted to repairing
bugs automatically over the last decade [? ? ?]. Automated program
repair usually takes as input source code with a deterministic bug
and a test suite with at least one failing test that reveals the bug,
and aims to automatically generate fixes to the buggy code. Test
suite based repair, where test cases are used to guide the search
for a patch, can be further divided into generate-and-validate and
semantics-driven approaches. Generate-and-validate techniques
produce candidate patches for the buggy code and evaluate them
against the test suite to check if all tests pass [? ? ? ?]. Semantics-
driven approaches first extract constraints on a program based on
test suite execution and then use these constraints to synthesize
a patch [? ? ? ?]. While software approaches to APR make use of
test suites to evaluate candidate repairs, CirFix uses instrumented
hardware testbenches to make visible the internal and external
behavior of a simulated circuit for fitness evaluation. Additionally,
APR for software usually uses spectrum-based fault localization
to implicate faulty code, whereas CirFix uses our novel fault lo-
calization approach supporting the analysis of parallel hardware
descriptions.

8 CONCLUSION

This paper presents CirFix, a framework for automatically repair-
ing defects in hardware designs implemented in languages like
Verilog. CirFix makes use of readily-available artifacts included in
the hardware design process (e.g., testbenches) to diagnose and
repair defects in both behavioral and RTL designs in the circuit
description. These repairs can then be shown to developers for vali-
dation before the synthesis phase, reducing maintenance costs. The
testbench-based evaluation and the parallel structure of hardware
designs pose challenges that render traditional APR approaches
from software inapplicable to the hardware domain. We present
two key insights to bridge this gap. First, we propose a method to
instrument hardware testbenches to admit a circuit’s behavior to
guide the search for repairs. We present a novel fitness function
tailored that performs a bit-level comparison of the made-visible
output wire values against expected behavior to assess functional
correctness of candidate repairs. Second, we present a novel fault
localization approach based on a fixed point analysis of assign-
ments made to registers and output wires to implicate statements
for defects. Our systematic evaluation of CirFix presents a new

ASPLOS °22, February 28 - March 4, 2022, Lausanne, Switzerland

benchmark suite of 32 defect scenarios transplanted by three hard-
ware experts across 11 different Verilog projects. CirFix produces
plausible repairs for 21 out of 32 and fully correct repairs for 16 out
of 32 of the Verilog defects within reasonable resource bounds.

ACKNOWLEDGMENTS

We gratefully acknowledge the partial support of the NSF (CCF
1908633, CCF 1763674) and a Google Faculty Research Award. Toy-
ota Research Institute (“TRI”) provided funds to assist the authors
with their research, but this article solely reflects the opinions and
conclusions of its authors and not TRI or any other Toyota entity.

A ARTIFACT APPENDIX

A.1 Abstract

We provide the public repository for CirFix, both on Zenodo and
GitHub. The artifact includes instructions for installing and running
CirFix, as well as scripts and instructions used to reproduce core
results from our paper.

A.2 Artifact check-list (meta-information)

Program: python3.6.8, pyverilog-1.2.1, iverilog, VCS

Run-time environment: Red Hat Enterprise Linux 7.9
Hardware: Intel quad-core 3.4GHz machine with hyperthreading
and 16GB of memory

Output: Repair patchlist (i.e., sequence of edits to source code)
fixing a defect, if a repair is found

Experiments: Running CirFix on the defects in our benchmark

suite, runtime analysis of CirFix
How much disk space required (approximately)?: 5GB

<1 hour (if setting up CirFix locally), <10 minutes if running CirFix
on our lab servers
o How much time is needed to complete experiments (approxi-
mately)?: 15-20 hours (longer experiments can be run concurrently
and overnight)
Publicly available?: Yes (GitHub repository:
https://github.com/hammad-a/verilog_repair)
o Code licenses (if publicly available)?: MIT License
e Archived (provide DOI)?: Available at Zendodo:
https://doi.org/10.5281/zenod0.5846419

A.3 Description

The artifact contains all of CirFix’s source code as well as the
instructions to install and run CirFix and its dependencies. The
README.md files at the root of the repository and the /prototype
and /pyverilog_changes directories contain all of the instructions
used in the Artifact Evaluation process.

A.3.1 How to access the artifact. CirFix is available at our public
GitHub repository as well as an archive on Zenodo (see Appen-
dix A.2). Due to the commercial nature of the Synopsys VCS license
used by CirFix, we offer remote access to our lab server (contact
the AE chairs for details on how to SSH remotely to our server).

A.3.2 Hardware dependencies. There artifact does not have any
explicit dependencies, though older, slower hardware might take
slightly longer to reproduce our results. For our experiments, we

How much time is needed to prepare workflow (approximately)?:

Ahmad et al.

used an Intel quad-core 3.4GHz machine with hyperthreading and
16GB of memory.

A.3.3 Software dependencies. CirFix requires Python 3.6.8, PyVer-
ilog version 1.2.1, and Icarus Verilog. It also requires Synopsys VCS
simulator (commercial license) to simulate Verilog designs.

A.4 Installation

This section assumes that users already have access to the Synopsys
VCS tool. Note that alternative Verilog simulation tools may be used,
but would likely require modifications to the scripts to support the
API for the simulation tool.

Users first need to install Python 3.6.8 and all external Python
dependencies (listed under the README.md file at the root of the
repository). Some source files for PyVerilog need to be changed
to support CirFix; instructions to do so can be found at /pyver-
ilog_changes/README.md. Users then need to configure CirFix to
run on a defect by editing the configuration file (located at /proto-
type/repair.conf). This involves setting the source file, testbench,
correctness information, and evaluation script paths. Users also
need to configure the CirFix GP parameters if necessary (we include
our default values in the configuration file). The detailed instruc-
tions for this process are included in the README file located at
/prototype/README.md.

A.5 Experiment workflow

After all dependencies have been installed and the configuration file
set, users may run the outer CirFix script (/prototype/repair.py) to
start a CirFix run using the terminal command python3 repair.py.
The script invokes calls to PyVerilog to parse the Verilog source
code into a program AST, which is then manipulated to edit the
source code. For every change to the AST, CirFix re-generates the
Verilog source code before passing it on to the Synopsys VCS simu-
lator, which in turn uses the new code and the provided testbench
to generate the circuit output on given input stimuli. The produced
circuit output is then passed back to CirFix and compared against
developer provided circuit behavior information to assess the cor-
rectness of the produced circuit design. CirFix terminates when
it finds a design producing output that matches expected behav-
ior. Users may pass the log=true flag to store detailed logs in the
/prototype/repair_logs directory.

A.6 Evaluation and expected results

The artifact provides instructions for reproducing the main re-
sults from CirFix’s evaluation (Table 3). Every CirFix execution
(or trial) that finds a repair to a bug ends with the minimized
repair patchlist (i.e., a sequence to edits to the source code that
ultimately repair the defect). This repair patchlist can be verified
against our reported results (Table 3; raw data included in /pro-
totype/experiments_results.xIsx), along with the time to find the
repair. We also provide instructions on how to use this repair patch-
list to produce Verilog source code for inspection in the file /proto-
type/README.md.

CirFix: Automatically Repairing Defects in Hardware Design Code ASPLOS 22, February 28 — March 4, 2022, Lausanne, Switzerland

be submitted as GitHib issues on our repository or communicated

via email.

A.7 Notes
We hope to maintain CirFix as an open-source tool. Any issues that
are found with the available artifact or any questions that arise can

	Abstract
	1 Introduction
	2 Motivating Example
	3 Technical Approach
	3.1 Fault Localization
	3.2 Fitness Evaluation
	3.3 Repair Templates
	3.4 Repair Operators
	3.5 Selection
	3.6 Fix Localization
	3.7 Repair Minimization

	4 Experimental Setup
	4.1 Benchmark Suite for Hardware Defects
	4.2 Experimental Parameters

	5 Experimental Results
	5.1 RQ1. Repair Rate and Quality for CirFix
	5.2 RQ2. Performance for Individual Defect Categories
	5.3 RQ3. Quality of Fitness Function
	5.4 RQ4. Sensitivity to Correctness Information

	6 Limitations and Threats to Validity
	7 Related Work
	8 Conclusion
	Acknowledgments
	A Artifact Appendix
	A.1 Abstract
	A.2 Artifact check-list (meta-information)
	A.3 Description
	A.4 Installation
	A.5 Experiment workflow
	A.6 Evaluation and expected results
	A.7 Notes

