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Abstract
Online content platforms optimize engagement by providing
personalized recommendations to their users. These recom-
mendation systems track and profile users to predict relevant
content a user is likely interested in. While the personalized
recommendations provide utility to users, the tracking and
profiling that enables them poses a privacy issue because the
platform might infer potentially sensitive user interests. There
is increasing interest in building privacy-enhancing obfusca-
tion approaches that do not rely on cooperation from online
content platforms. However, existing obfuscation approaches
primarily focus on enhancing privacy but at the same time they
degrade the utility because obfuscation introduces unrelated
recommendations. We design and implement DE-HARPO, an
obfuscation approach for YouTube’s recommendation system
that not only obfuscates a user’s video watch history to protect
privacy but then also denoises the video recommendations by
YouTube to preserve their utility. In contrast to prior obfus-
cation approaches, DE-HARPO adds a denoiser that makes
use of a “secret” input (i.e., a user’s actual watch history) as
well as information that is also available to the adversarial
recommendation system (i.e., obfuscated watch history and
corresponding “noisy" recommendations). Our large-scale
evaluation of DE-HARPO shows that it outperforms the state-
of-the-art by a factor of 2⇥ in terms of preserving utility for
the same level of privacy, while maintaining stealthiness and
robustness to de-obfuscation.

1 Introduction
Online content platforms, such as YouTube, heavily rely on
recommendation systems to optimize user engagement on
their platforms. For instance, 70% of the content watched
on YouTube is recommended by its algorithm [1]. These
recommendation systems provide personalized content rec-
ommendations by tracking and profiling user activity. For
instance, YouTube tracks and profiles activities of its users on
YouTube as well as off of YouTube to this end [2]. This track-
ing and profiling enables these platforms to predict relevant

content that a user is likely to be interested in. On one hand,
this tracking and profiling enables desirable utility to users
by providing relevant content recommendations. On the other
hand, this tracking and profiling poses a privacy issue because
the platform might infer potentially sensitive user interests.

Some platforms, including YouTube, allow users to remove
a subset of the tracked activity (e.g., remove a specific video
from YouTube watch history) or even disable the use of cer-
tain profiled user interests (e.g., gambling) to influence the
recommendations. However, these controls do not necessarily
stop the platform from tracking and profiling user activities in
the first place. Thus, these controls provided by the platforms
may not provide much, if any, privacy benefit to users. More-
over, the exercising of these controls would hurt the quality
of personalized recommendations. For example, if users em-
ploy these controls to curtail tracking or profiling then they
will likely not receive personalized recommendations they are
actually interested in.

The research community is increasingly interested in de-
veloping privacy-enhancing obfuscation approaches that do
not rely on cooperation from online content platforms [3–6].
At a high level, these privacy-enhancing approaches work by
adding fake activity to real user activity to lessen the ability
of the recommendation system to infer sensitive information.
However, the addition of fake activity for the sake of obfus-
cation also ends up impacting the utility users might derive
from the recommendation system in terms of relevance of
personalized recommendations. Prior obfuscation approaches
attempt to navigate the trade-off between privacy and util-
ity, for example [6], by carefully adding fake activity so as to
obfuscate “private” interests but allow “non-private” interests.

In this work, we are interested in designing a privacy-
enhancing and utility-preserving obfuscation approach for
recommendation systems. In contrast to prior approaches that
are typically limited to only obfuscating inputs to the recom-
mendation system, our key idea is to design an obfuscation
approach that can obfuscate inputs to preserve user privacy
but at the same time remove “noise” from outputs to preserve
the utility of recommendations. Since an adversarial recom-
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mendation system might also attempt to remove “noise”, it
is crucial that the denoiser can only be used by the user and
not by the recommendation system. To this end, our insight is
that the denoiser uses a “secret” input (specifically, a user’s
actual browsing history), which is only available to the user
and not the recommendation system. The recommendation
system instead only has access to the obfuscated browsing
history of the user. Therefore, by leveraging the knowledge
of a user’s actual browsing history, the denoiser allows the
user to preserve the recommendations related to the users’ ac-
tual interests while discarding the unrelated recommendations
caused by obfuscation.

We design and implement DE-HARPO, an obfuscation ap-
proach for YouTube’s recommendation system that not only
obfuscates a user’s video watch history to protect privacy but
then also denoises the video recommendations by YouTube
to preserve their utility. DE-HARPO uses an obfuscator to
inject obfuscation videos into a YouTube user’s video watch
history and a denoiser to remove recommended videos that
are unrelated to the user’s actual interests.

The obfuscator is a RL model trained to insert YouTube
videos in a users’ watch history that will maximize the distor-
tion in their interests being inferred by YouTube. We address
two key issues in designing DE-HARPO’s obfuscator, which
is a non-trivial adaptation of Harpo [6] to YouTube. First, we
build a surrogate of YouTube’s recommendation system to
efficiently train the RL model in a virtual environment. Sec-
ond, we design the surrogate model to predict the distribution
of hundreds of different classes of YouTube recommendation
videos (we use the 154 affinity segments used by Google [7]
as our video classes) rather than the sheer number (order of
hundreds of millions) of individual YouTube videos.

The denoiser is a ML model that is trained to reproduce
the original recommendations that would have been received
in the absence of the obfuscator. We address two key issues
in designing DE-HARPO’s denoiser. First, denoiser makes
use of a “secret” input (i.e., a user’s actual watch history)
as well as information that is also available to the adversar-
ial recommendation system (i.e., obfuscated watch history
and corresponding “noisy" recommendations). As we show
later, this design ensures that only DE-HARPO is able to re-
move “noise’ while the adversary is unable to de-obfusacte
without prohibitive collateral damage. Second, we define new
divergence-based metrics to measure privacy and utility in
training obfuscator and denoiser.

We deploy and evaluate DE-HARPO’s effectiveness on
YouTube using 10,000 sock puppet based personas, 10,000
Reddit user personas, and 936 real-world YouTube users [8].
Our evaluation shows that DE-HARPO’s obfuscator is able
to degrade the quality of YouTube’s recommendations by up
to 87.23% (privacy) and its denoiser is able to recover up to
90.40% of the actual recommendations (utility). We show that
DE-HARPO outperforms the state-of-the-art by a factor of
2⇥ in terms of improving utility for the same level of privacy.

Crucially, we also demonstrate that DE-HARPO is stealthy
and robust to de-obfuscation by an adversarial system. Our
evaluation shows that the adversary incurs a prohibitively
large number of false positives (order of tens/hundreds of mil-
lions) in attempting to undermine stealthiness and achieving
de-obfuscating.

Our main contributions are summarized as follows:
• We propose DE-HARPO, a privacy-enhancing and

utility-preserving obfuscation approach for YouTube’s
recommendation system that employs an obfuscator to
obfuscate users’ video watching history and a denoiser

to remove noise in video recommendations.
• We undertake a non-trivial adaptation of Harpo [6] to

YouTube, which involved designing and implementing a
purpose-built YouTube surrogate model.

• We demonstrate the effectiveness of DE-HARPO in
both enhancing user privacy and preserving utility of
YouTube’s recommendation system using 10,000 sock
puppet based personas, 10,000 Reddit user personas, and
936 real-world YouTube users.

2 Preliminaries

2.1 Problem Statement
Recommendation systems track users’ browsing activity to
provide personalized recommendations. YouTube, for exam-
ple, tracks users’ browsing activity on YouTube (e.g., videos
watched, channel subscriptions) as well as off of YouTube
(e.g., activity on other Google services such as Google Search
and Google Analytics, or web pages opened in Chrome
browser) to personalize homepage and up-next video recom-
mendations [2]. Users can selectively remove certain videos
from their YouTube watch history or clear their browsing
activity altogether to influence personalized video recommen-
dations. However, doing so does not necessarily mean that
their browsing activity is not tracked in the first place, and thus
there is no material privacy benefit to users. It will also hurt
the quality of personalized recommendations because users
will likely not receive recommendations for videos they are in-
terested in. In summary, users are unable to exert meaningful
control over recommendation systems to protect their privacy
while preserving the utility of personalized recommendations.

Prior work has proposed obfuscation approaches to pro-
tect user privacy in personalized recommendation systems
without relying on cooperation from online content platforms.
Existing approaches obfuscate a user’s browsing history by
injecting fake activity (e.g., webpage visits) to manipulate a
user’s interest segments and targeted ads in online behavioral
advertising [6, 9]. These obfuscation approaches are designed
for recommendation systems (e.g., online behavioral advertis-
ing) where users are not necessarily interested in consuming
the output of the recommendation system, rather users are
mainly interested in subverting it. While these approaches aim
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Figure 1: Problem Overview.

to protect user privacy (e.g., inferred interest segments), they
do not consider the utility of recommendations (e.g., whether
targeted ads are of interest to the user). In contrast, in recom-
mendation systems such as YouTube, these obfuscation tools
would render the utility of YouTube’s video recommendations
useless to the user.

Can we design privacy-enhancing obfuscation approaches

that can enhance privacy of users and at the same time pre-

serve utility for users in recommendation systems? With this
goal in mind, we propose to build a denoiser to remove the
“noisy" videos injected as part of obfuscation. It is crucial
that the denoiser can only be used by the user and not by
the recommendation system. To this end, our insight is that
the denoiser uses a “secret” (specifically, the user’s actual
browsing history), which is only available to the user and
not the recommendation system. Therefore, by leveraging the
knowledge of a user’s actual browsing history, the denoiser
may preserve the recommendations related to the users’ ac-
tual interests while discarding the unrelated recommendations
caused by obfuscation. Figure 1b illustrates this idea that we
next operationalize in DE-HARPO.

2.2 Threat Model
User. The user’s goal is to routinely browse YouTube videos
and get high-quality recommendation videos fitting their inter-
ests, while misleading the YouTube recommendation system
such that it can not accurately infer the user’s interests. To
achieve this goal, users install a local obfuscation-denoising
system, which consists of an obfuscator and a denoiser. The
obfuscator will obfuscate their video watching history by in-
jecting fake video watches into the user’s real video watches,
and the denoiser will automatically remove “noisy" recom-
mended videos from YouTube (i.e. caused by obfuscation)
that do not fit user’s interests. The obfuscation-denoising sys-
tem is designed to satisfy the following properties:

• it is privacy-preserving in that the user’s interests are
protected from being inferred by YouTube recommenda-

tion system.
• it is utility-preserving in that the user can receive high-

quality videos fitting their interests.
• it is stealthy in that it is impossible for YouTube to detect

the usage of obfuscation-denoising system.
• it is robust to deobfuscation in that it is impossible for

YouTube to distinguish fake video watches from real
video watches.

Recommendation system. The goal of the recommendation
system is to track user activity for personalized recommenda-
tions to maximize user engagement (e.g., click rate and watch
time). We assume that the recommendation system has full
access to the user’s video watching history and it recommends
videos based on the user’s video watching history, which is
true for YouTube [10] (unless the user deletes their watching
history). We also assume that the recommendation system has
substantial computation resources to train a machine learning
model for its recommendations. This assumption also holds
for YouTube [11]. Moreover, we assume that the recommen-
dation system has access to DE-HARPO once it is public,
such that it can use it to analyze the obfuscation approach
and possibly train adversarial detectors to detect and filter the
usage of DE-HARPO. More specifically, we assume that the
recommendation system has a two-step detection workflow.
In the first step, the adversary will train a classifier to detect
whether or not a user uses DE-HARPO. Then, in the second
step, if DE-HARPO usage is detected, the adversary further
attempts to achieve deobfuscation by filtering out obfuscation
videos and keeping the remaining videos.

3 Proposed Approach
In this section, we present the proposed utility-preserving
obfuscation approach DE-HARPO.

3.1 Overview
As already discussed, at a high-level DE-HARPO consists of
an obfuscator designed for enhancing user privacy and a de-

noiser designed for preserving user utility, as demonstrated in
Figure 2b. The DE-HARPO obfuscator is a non-trivial adap-
tation of Harpo’s obfuscator [6] in the context of YouTube’s
recommendation system, which we will refer to as Y-Harpo.
The obfuscator injects fake video playing records into a user’s
video playing history at random times. We refer to videos
played by the user as user videos and to videos played by
the obfuscator as obfuscation videos. Note that without any
obfuscation videos in the user’s video playing history (which
is denoted by V

u in this case), YouTube will recommend a set
of videos desired by the user. We refer to this set of videos as
“clean” YouTube videos. However, with obfuscation videos

in the user’s video playing history (which is denoted by V
o

in this case), YouTube will recommend a set of videos which
include videos undesired by the user. We refer to this set of
videos as “noisy” YouTube videos. The denoiser is designed

3
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Figure 2: Overview of DE-HARPO. Note that V
u denotes the

non-obfuscated user persona, V
o denotes the obfuscated user

persona generated by the obfuscator, C
u is the recommended

video class distribution based on V
u, C

o is the recommended
video class distribution based on V

o, Ĉ
u is the denoiser’s esti-

mate of C
u, and v

u

i
and v

o

i
represent user video and obfuscation

video respectively.

to predict the class distribution of “clean” YouTube videos
from the class distribution of “noisy” YouTube videos, such
that DE-HARPO can repopulate a new set of videos with the
same class distribution as the “clean” YouTube videos. We
refer to the repopulated videos as DE-HARPO videos. Note
that each video class represents a video topic, and we use the
154 affinity segments used by Google [7] as our video classes.

In more detail, DE-HARPO starts by generating video em-
beddings of past played videos via an embedding model. It
then uses an obfuscator model to select obfuscation videos
based on the generated video embeddings. Note that we fol-
low a similar methodology with that in [6] to formulate the
process of inserting obfuscation videos as a Markov Decision
Process (MDP), and use reinforcement learning (RL) to train
the obfuscator model to maximize the divergence between
the class distribution of “noisy” YouTube videos (denoted
by C

o) and the class distribution of “clean” YouTube videos
(denoted by C

u). After receiving the “noisy” YouTube videos,
the denoiser outputs an estimate of the class distribution of
“clean” YouTube videos (denoted by Ĉ

u), by taking as inputs
V

u, V
o, and C

u. Finally, DE-HARPO will use a repopulation
model to generate the set of DE-HARPO videos with class
distribution Ĉ

u.

3.2 System Preliminaries
User persona. We define a user persona as a sequence of
YouTube videos. Formally, we denote the non-obfuscated

user persona as V
u = [vu

1, ...,v
u
n
], where v

u

i
represents the ith

video played by the user, and n is the total number of videos
played by the user. We denote the obfuscated user persona
as V

o = [v j

1, ...,v
j

n0 ], where j 2 {u,o}, v
u

i
and v

o

i
represent that

the ith video is played by the user and obfuscator respectively,
and n

0 is the total number of videos played by the user and
obfuscator combined.
Recommended video class distribution. We define the rec-
ommended video class distribution of a non-obfuscated user
persona V

u (i.e. the class distribution of “clean” YouTube
videos) as C

u = [cu

1, ...,c
u

K
], where Âk=K

k=1 c
u

k
= 1, c

u

k
is the per-

centile of videos from the kth class among recommended
videos for V

u, and K is the total number of classes. Similarly,
we define the recommended video class distribution of an ob-
fuscated user persona V

o (i.e. the class distribution of “noisy”
YouTube videos) as C

o = [co

1, ...,c
o

K
], where Âk=K

k=1 c
o

k
= 1 and

c
o

k
is the percentile of videos from the kth class among the

recommended videos for V
o. We use the recommended video

class distribution as a representation of the user interest profile
built by YouTube instead of directly using the recommended
videos. This design choice is made to (i) mitigate the impact
of non-determinism in YouTube’s recommendations and (ii)
alleviate the difficulty of making video-level recommenda-
tions given an incomplete set of available videos while still
making reasonably fine-grained recommendations (among
154 different classes).
Privacy metric. At a high level, we want to distort the user
interest profile built by YouTube for user personas to enhance
user privacy. Motivated by the use of the recommended video
class distribution as a representation of YouTube’s user inter-
est profile, we define the privacy metric as follows:

P = E[DKL(C
o||Cu)] = E[

k=K

Â
k=1

c
o

k
log

c
o

k

c
u

k

], (1)

which measures the expected KL divergence between the
two probability distributions (Co and C

u)1. We use KL diver-
gence since it is a well-established measure of the discrepancy
between two distributions, and, together with the closely re-
lated mutual information measure they have been used as
on-average privacy metrics in myriad of applications includ-
ing recommendation systems [12–17]. We do not use stricter
privacy metrics which provide worst-case privacy guarantees
(e.g. differential privacy [18]), since in the context of our ap-
plication one would need to inject a lot of obfuscation noise
to satisfy such guarantees, leading to recommendations with
very low utility.

During real-world experimentation on YouTube, we ob-
serve that the recommended video class distribution of the
same persona may differ a bit due to an inherent random-
ness of the system. Since we are interested to measure the
divergence thanks to obfuscation only, we define D

Min as the
1Note that if c

i

k
= 0 (i 2 {u,o}), we assign a small value to it to avoid

getting • in KL divergence calculation.
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expected KL divergence between a random sample of C
u and

its mean C̄
u (i.e., D

Min = E[DKL(C̄u,Cu)]), and subtract from
P the divergence caused by randomness, that is, we work with
P�D

Min. Furthermore, since P is unbounded, we normalize
the privacy metric as follows. Denote the user persona set as
V , which consists of all user personas. Let V

u and V
u
0

be two
user personas uniformly and randomly sampled from V , and
let their associated recommended video class distributions
be C

u and C
u
0

respectively. Then, we define the normalized
privacy metric P

Norm by:

P
Norm =

P�D
Min

DMax �DMin
, (2)

where D
Max = E[DKL(Cu,Cu

0
)] is the expectation of the KL

divergence between C
u and C

u
0 and thus corresponds to the

average “distance" between two video class distributions of
two randomly selected users. Hence, P

Norm measures the frac-
tion of the maximum possible divergence that obfuscation
achieves, on average. Note that for both P and P

Norm, the
higher their value is, the more effective the obfuscator is in
enhancing user privacy (see Figure 3).
Utility metric. In our threat model, the user sends the obfus-
cated persona to YouTube and then receives a “noisy” recom-
mended video list with class distribution C

o. However, the
user desires the “clean” recommended video list with class
distribution C

u. Our denoiser is designed to predict C
u from

C
o, such that DE-HARPO can repopulate the “clean” recom-

mended video list from C
u. With the above in mind, we define

our utility loss metric as follows:

ULoss = E[DKL(Ĉ
u||Cu)] = E[

k=K

Â
k=1

ĉ
u

k
log

ĉ
u

k

c
u

k

], (3)

where Ĉ
u is the output of the denoiser, representing its estima-

tion of C
u. Smaller ULoss means smaller divergence between

the non-obfuscated recommended video class distribution C
u

and the denoiser’s estimate of such distribution Ĉ
u and thus

a better estimate. The theoretical minimum that this value
can take is 0, representing two identical distributions i.e. the
noise is perfectly removed. Note that without applying the
denoiser, the utility loss equals the value of privacy P (since
Ĉ

u =C
o). The denoiser can reduce the utility loss caused by

the obfuscator by P�ULoss which represents the denoiser

utility gain. Similarly to above, because P is unbounded and
YouTube’s randomness causes, on average, a divergence of
D

Min, we define the normalized utility gain metric as follows:

U
Norm

Gain
=

P�ULoss

P�DMin
, (4)

which represents the fraction of obfuscation noise reduced
by the denoiser, on average. Higher U

Norm

Gain
implies that the

denoiser can reduce the utility loss caused by the obfuscator

more effectively and a value of 100% indicates a complete
removal of noise (see Figure 3).

!!"# "

#$%&&

!!'(

#)'"# (Denoiser)
100%

100%
!"!

̅"! "! "" "! "!#"!

"!

"*%+, (Obfuscator)
$!"

Figure 3: Privacy and utility metrics.

3.3 System Model

Obfuscator. The obfuscation video selection process of ob-

fuscator can be formulated as a Markov Decision Process
(MDP) defined as follows:

1) Obfuscation step: As shown in Figure 4, at the beginning
of each time step, a video will be played. If the played video
is an obfuscation video injected by the obfuscator, we refer to
this time step as an obfuscation step. We denote the number
of videos that have been played up to obfuscation step t by
nt . Note that we use the obfuscation budget a as a system
parameter to control the percentile of obfuscation videos. At
each time step, with probability a, an obfuscation video will
be injected by obfuscator into the user persona.

2) State: We define state st 2 S at obfuscation step t as
st = [v1, ...,vnt

], where nt is the total number of videos played
until the beginning of obfuscation step t, and S is the state
space of the MDP.

3) Action: At obfuscation step t, an action at will be taken
by the MDP. We define action at 2 A as the obfuscation video
selected by the MDP policy, where A is the action space of
the MDP, i.e. the obfuscation videos set in our application.

4) State Transition: We define the state transition function
as T (·|S ,A) : S ⇥A ⇥S ! R, which outputs the probability
of st+1 = s

0 given st = s and at = a as T (st+1 = s
0|st = s,at =

a). In our system, state st+1 contains all videos played until
state st , the action at (i.e. the obfuscation videos selected at
obfuscation step t), and all the videos played by users between
obfuscation step t and obfuscation step t + 1. Note that the
randomness of this MDP comes from the random injection of
obfuscation videos.

5) Reward: We associate a reward rt for the action at at
obfuscation step t. Specifically, we define rt as the difference
of the privacy metric P (see Eq. (1)) between this obfuscation
step and the previous one, i.e., rt = Pt �Pt�1, where Pt repre-
sents the privacy metric value at obfuscation step t, calculated
based on the recommended video class distributions of a non-
obfuscated user persona and the corresponding obfuscated
user persona at the end of obfuscation step t.

6) Policy: The policy of the MDP can be defined as
p(·|S) : S ⇥A ! R, which outputs the probability of at = a

given st = s as p(at = a|st = s). In our system, the obfus-

cator is modeled as the policy in MDP, which outputs the
probability distribution of obfuscation video selection. Sup-
pose we have M obfuscation videos in the obfuscation video
set (A), then we have Âi=M

i=1 p(at = i|st) = 1, where at = i

5



represents the selection of i-th obfuscation video. At each
obfuscation step t, we randomly choose one obfuscation
video based on a multinomial distribution parameterized by
At = [p(at = 1|st), · · · ,p(at = M|st)], conditioning on the cur-
rent state st . The goal of solving this MDP is to find the op-
timal policy, such that the accumulative rewards Ât=T

t=1 rt can
be maximized. Note that T is the total number of obfuscation
steps since we consider a finite-horizon MDP.
Denoiser. At a high level, we model the denoiser as a map-
ping from the recommended video class distribution of the
obfuscated user persona C

o 2 RK to the recommended video
class distribution of the non-obfuscated user persona C

u 2RK

(K is the total number of video categories).
Estimating directly C

u from C
o can be challenging. In the

extreme case, where the mutual information between C
u and

C
o is zero [19], it is impossible for the denoiser to estimate C

u

from C
o. To estimate C

u, the denoiser may leverage side infor-
mation indicating how the obfuscation videos are injected into
the user personas, as in this case it may be able to undo the
effect of obfuscation videos in the recommendations list. In
our application, such side information is explicitly available
to users (V u portion of V

o), since the obfuscator is installed
locally and users know exactly how the obfuscation videos
are injected into user personas. Therefore, our denoiser is
modeled to be a functional mapping from (V u,V o,Co) to C

u.

… …

State !! State !!"#

"#$ "%!$ "%!"#$"%!"#& "%!"#&
!

"!

Obfuscation step

Time step

#

""

Policy
Action #! Reward $!

# + 1

""#$

Figure 4: MDP for the obfuscator.

3.4 The Secret of the Denoiser
We use the information theory concept of mutual information
(MI) to explain why the denoiser works. In our system, both
V

u and V
o are random vectors, and V

o is generated from V
u

by the obfuscator, which is a random function. Additionally,
both C

u and C
o are random vectors, which are generated from

V
u and V

o respectively by the YouTube recommendation
system. By applying the chain rule of MI, we can derive the
following equation:

I(Co,V o,V u;Cu) = I(Co,V o;Cu)+ I(V u;Cu|Co,V o), (5)

where I(Co,V o,V u;Cu) is the MI between (Co,V o,V u) and
C

u, I(Co,V o;Cu) is the MI between (Co,V o) and C
u, and

I(V u;Cu|Co,V o) is the MI between V
u and C

u conditioning
on (Co,V o).

First, we show that the non-obfuscated user persona V
u can

be leveraged by the denoiser to better estimate C
u. Since C

u

is generated by YouTube recommendation system given V
u,

V
u is correlated with C

u, thus I(V u;Cu|Co,V o)> 0. Hence,

I(Co,V o,V u

| {z }
with secret

;Cu)> I( C
o,V o

| {z }
without secret

;Cu). (6)

Since the MI between (V u,V o,Co) and C
u is larger than the

MI between (Co,V o) and C
u, (Co,V o,V u) can reveal more in-

formation about C
u than (Co,V o), leading to a more accurate

estimate of C
u. As an aside, note that YouTube may attempt

to de-obfuscate V
u from V

o. We evaluate the robustness of
the obfuscator against de-obfuscation in Section 6.6.

Second, we show that including C
o and V

o may help to
further enhance the effectiveness of the denoiser, compared
with using V

u only. Based on the chain rule of MI, we can
rewrite Eq. (5) as follows:

I(V u,V o,Co;Cu)

= I(V u;Cu)+ I(Co;Cu|V u)+ I(V o;Cu|Co,V u). (7)

Consider the term I(Co;Cu|V u). C
o depends on V

u and the
obfuscation videos, and C

u depends on V
u. Crucially, they

both also depend on the (non deterministic) YouTube recom-
mendation system. Hence, even when V

u is given, there is
non-zero MI between C

o and C
u, that is, I(Co;Cu|V u) > 0,

leading to the following inequality:

I(V u,V o,Co;Cu)> I(V u;Cu), (8)

which means the MI between (V u,V o,Co) and C
u is larger

than the MI between V
u and C

u only. Intuitively, knowing
the pair V

o,Co reveals information about how the YouTube
recommendation system selects videos to recommend given
a user video watching history. Therefore, the denoiser taking
C

o and V
o as additional inputs can learn more information

about C
u, as compared to the denoiser taking only V

u as input.
Our evaluation results in Section 6.2 empirically support the
above analysis.

4 System Design and Implementation
In this section, we describe the detailed design of DE-HARPO
and how we implement DE-HARPO as a browser extension.
DE-HARPO consists of five modules: (1) a video embedding
model that maps videos into embeddings; (2) a obfuscator

model that selects obfuscation videos based on the video
embeddings of played videos; (3) a denoiser model that esti-
mates the class distribution of “clean" YouTube videos from
the class distribution of “noisy" YouTube videos; (4) a re-
population model that outputs DE-HARPO videos with the
estimated class distribution of “clean" YouTube videos; (5) a
surrogate model used to train the obfuscator model offline ef-
ficiently (see Figure 2b for the workflow of modules (1)-(4)).

4.1 Video Embedding
To make our system scalable to millions of YouTube videos
without being restricted to a fixed set, we represent each video
by an embedding vector. A YouTube video typically consists

6



Transcript

Category
View count

Average rating

Metadata 
embedding !!"

Transcript 
embedding !!#

Metadata

Pretrained 
Transformers

Video embedding !!

Concatenate

Video "!

(a) Video embedding

Conv

LSTM

… …

Conv

LSTM

!!

!! !!"#

Video 
embeddings

"#$ "%!$ "%!"#$

#! #!"#

$!# ℎ! ℎ!"#

…
∗ ∗

#

&! &!"#

…

!!"#

"%!"#&

FC FC

$!"##

$!' $!"#'

(b) obfuscator

…

!!"

!#"

"" "$

#!$

#%$

…

$$

…!!"

!#&"

…

LSTM LSTM

…

#̂!" #̂%"… &$"

+ +

FC

'! '' '(

(c) denoiser

…!!" !#"

"! "#!

LSTM LSTM…
…

#!"

#$"

…

!
!"#

$
"!% = 1

$"

%"

FC

(d) Surrogate model

Figure 5: Details of system design.

of metadata (e.g. title, description, view count, rating, thumb-
nail, etc), a sequence of image frames (i.e. the video), and the
transcript for the video. Since a video’s transcript is a good
representation of its content and it is more computationally
and spatially efficient to process the transcript compared to
processing the original video stream, we use video metadata
and transcript to generate the video embedding.

As demonstrated in Figure 5a, we start by extracting the
category, view count and average rating of each video from
its metadata. We then use an one-hot embedding to represent
the category of each video (with dimension 18)2, and use two
real numbers to represent the standardized view count and
average rating of each video. By combining them together, we
derive the metadata embedding with 20 elements. We denote
the metadata embedding for video vi as e

M

i
2 R20.

Next, we use a pretrained natural language processing
(NLP) Transformer from [20] to generate the transcript em-
bedding for the video transcript. Since the pretrained NLP
Transformer has a constraint on the maximal number of words
in the input text (256 words in our case), we firstly split video
transcript with more than 256 words into multiple transcript
chunks, each of which contains 256 words. Then, for each
transcript chunk, we use it as input of the NLP model and get
the output embedding vector. We take the average of these em-
bedding vectors for these transcript chunks to derive the final
transcript embedding. We denote the transcript embedding
for video vi as e

T

i
2 R384, which is a real vector with dimen-

sion 384. Note that if a video does not contain any transcript
(e.g. music videos), we use the video title and description
as an alternative of transcript to generate the transcript em-
bedding. Last, we concatenate the metadata and transcript
embeddings and derive the complete video embedding vector
ei = [eM

i
,eT

i
] 2 R404.

2Note that YouTube has 17 video categories, and we add an additional
“none” category for videos without category metadata. Hence, the one-hot-
embedding for category information has a dimension of 18.

4.2 Obfuscator Model
As discussed before, we model the process of injecting ob-
fuscation videos as an MDP. Due to the prohibitively large
state space of this MDP, we use RL, parameterized by a deep
neural network, to learn the optimal policy for obfuscation
video selection.

The obfuscator takes as input the state at each obfuscation
step, and outputs a video embedding. Recall that we have M

obfuscation videos as the action space of the MDP. By measur-
ing the cosine similarity between the output video embedding
and each obfuscation video embedding, the obfuscator derives
the probability distribution of the obfuscation video selection,
where an obfuscation video with more similar embedding as
the output video embedding is assigned a higher probability.
Specifically, as shown in Figure 5b, the obfuscator consists
of a convolutional layer (Conv), a LSTM layer, and a fully-
connected layer (FC). At step t, the convolutional layer takes
the embeddings of the past nt videos as input (Et 2 Rnt⇥404)
and outputs a real vector with m1 elements (f1

t
2 Rm1 ). Next,

the LSTM layer takes f1
t

and the hidden vector at obfuscation
step t �1 with m3 elements ht�1 2 Rm3 as input, and outputs
a real vector with m2 elements (f2

t
2 Rm2 ) and the hidden

vector ht 2 Rm3 for obfuscation step t (m1 = m2 = m3 = 128
in our experiments). Finally, a linear layer converts f2

t
into a

real vector with the same dimension as the video embedding.
We denote this vector by et 2 R404 as it represents the target
embedding for the obfuscation video. Let E = [e1, ...,eM] de-
note the embedding vectors of the M obfuscation videos at
our disposal. Then, the probability of selecting the i-th obfus-
cation video, i = 1 . . .M, is calculated proportionally to the
similarity between its embedding and the target embedding
after normalizing using a softmax function:

p(at = i|st) =
e
het ,eii

Âi=M

i=1 ehet ,eii
, (9)

where hx,yi denotes the inner product between x and y.
To train the obfuscator, we use the on-policy RL algorithm

A2C (Advantage Actor and Critic) [21], which is one of the
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state-of-the-art on-policy RL agorithms. Note that we choose
the on-policy RL algorithm since it fits our application well,
where the obfuscator (RL agent) needs to keep interacting
with the YouTube recommendation system (environment) to
improve the policy in an online fashion due to the dynamics
of the YouTube recommendation system.

4.3 Denoiser Model
As mentioned in Section 3.3, the denoiser has three inputs:
the non-obfuscated user persona V

u, the obfuscated user per-
sona V

o, and the recommended video class distribution of
obfuscated user persona C

o. The denoiser uses two LSTM
layers and an FC layer to encode inputs, as shown in Figure
5c. Specifically, the first LSTM layer takes as input the em-
beddings of videos in the non-obfuscated user persona V

u

recurrently and outputs its final hidden vector f
1 2 Rn (we

use n = 128 in our experiments). Similarly, the inputs of the
second LSTM layer are the embeddings of videos in the obfus-
cated user persona V

o and its output is its last hidden vector
f

2 2 Rn. Last, the FC layer converts the class distribution
C

o 2 RK (where K represents the number of categories) into
a real vector f

3 2 Rn. By concatenating vectors f
1, f

2, and
f

3 into a single vector with dimension 3n, a final FC layer is
used to map it into the estimated recommended video class
distribution Ĉ

u 2 RK .

4.4 Repopulating Recommended Videos
Recall that the denoiser in DE-HARPO outputs a target video
class distribution Ĉ

u. In order to go from a target video class
distribution back to actual videos on the user’s screen, we
repopulate the recommendations using a browser extension.

For efficiency, we maintain a “bank" of videos per class
and use it to repopulate the recommendations. This leads
to the question of how often should we refresh this bank in
order to get a suitable trade-off between the recency of the
videos and the overhead required to collect the videos. To
ascertain what the optimal time period would be to refresh
this bank we run a 24-hour experiment where we query the
name of a class in the YouTube search bar as a proxy for
the explicit class and collect statistics for each class’s most
popular recommended videos. Specifically, we run the same
query each hour, collect the top 20 search results per query,
and compute the percentile of top queries that remain the same.
The results indicate that for most classes about 70-80% of the
top search results remain the same. Motivated by this, we use
a 24 hour delay in re-crawling videos to re-populate our bank.
Note that the “noisy" recommended videos removed during
the repopulation process will be included into our obfuscation
video sets such that they can be played later to augment the
obfuscation effect.

4.5 Surrogate Model
The training of the obfuscator requires frequent interactions
with the YouTube recommendation system. However, directly

interacting with YouTube is time-consuming, since it takes
more than 30 minutes to construct a single persona (as de-
scribed in Section 5.2). To train the obfuscator efficiently, we
build a surrogate model as a replication of the actual YouTube
recommendation system.

Prior approaches to learn latent user-item relationships for
recommendation systems (e.g., matrix factorization [22–29],
neural MF [30–37]) are not scalable because they rely on a
fixed set of users and items. To address this limitation, recent
work has focused on embedding based recommendation sys-
tems that predict the next item clicked by users from their
item-click history and thus can scale to a large and dynamic
set of users and items [11,38]. YouTube, deals with a large in-
flux of videos and users everyday [10] and thus uses a scalable
recommendation system that predicts the next watched videos
based on the embeddings of the past watched videos and other
factors [11]. Similar to YouTube’s embedding based recom-
mendation architecture, our surrogate model also takes as in-
put the video embeddings. Slightly different from YouTube’s
embedding based recommendation architecture and as ex-
plained in Section 3.2, our surrogate model is designed to
predict the recommended video class distribution, instead of
making video-level recommendations.

Figure 5d demonstrates the architecture of our surrogate
model, which consists of a LSTM layer and a FC layer. The
LSTM layer takes as input the embeddings of videos in a user
persona recurrently and outputs its last hidden vector, which
will be used as the input of the FC layer. Then, the FC layer
will output the recommended video class distribution C

i 2
RK (i 2 {u,o}). We train the surrogate model via supervised
learning with stochastic gradient descent (see Section 5.3).

4.6 DE-HARPO Implementation
We implement DE-HARPO as a browser extension, which
consists of two components: obfuscator and denoiser.
Obfuscator. The obfuscator is a lightly modified version
of Harpo’s browser extension [6]. The browser extension
plays the selected obfuscation videos in a background tab
that is hidden from users. In order to determine the timing of
playing obfuscation videos, the obfuscator component uses
a background script to keep monitoring the URLs visited by
the user and estimating the arrival rate of YouTube videos
watched by user as lu. Then, given obfuscation budget a, the
obfuscator component will use a Poisson Process with rate
lo = lua

1�a to inject randomly select obfuscation videos. In
order to avoid detection by YouTube’s anti-fraud mechanisms
(i.e., users typically watch one video at a time), the selected
obfuscation videos can be stored in a queue and only played
when the user stops watching YouTube.

Denoiser. The denoiser has two modules: HTML modifica-
tion and the denoising. The HTML modification module is
implemented in the background script. Whenever the user vis-
its YouTube homepage, the HTML modification module sends
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the “noisy" homepage recommendation video list requested
from the content script to the denoising module. Once HTML
modification module receives the “clean" homepage recom-
mended video list from the denoising module, it will modify
the HTML of YouTube homepage to show “clean" homepage
recommended videos. The denoising module is implemented
in the back-end, which is responsible for accessing the meta-
data of the received “noisy” homepage recommended videos,
running the denoiser model to convert the “noisy” homepage
recommended video list into a “clean" one, and then sends
the “clean” video list back to the HTML modification module.
We evaluate the implementation overhead of the obfuscator

and denoiser components in Section 6.4.

5 Experimental Setup

5.1 User Personas

To train and evaluate DE-HARPO, we need to construct realis-
tic user personas. However, it is challenging to have access to
real-world YouTube users’ video watch history in a large scale
as our training data. To address this concern, we design two
approaches that can generate a large number of synthetic user
personas to simulate real-world users: 1) the first approach
creates sock puppet based personas by following the “up next”
videos recommended by YouTube; 2) the second approach
leverages the YouTube videos publicly posted by Reddit users
as an approximation of their YouTube user personas. We use
these synthetic user persona datasets to train DE-HARPO.
Then, we evaluate it on both synthetic user persona datasets
and a real user persona dataset that contains YouTube video
watch history collected from real-world users. We describe
these three datasets in detail below.

Sock Puppet Based Personas. According to YouTube, about
70% of the videos viewed on the platform are sourced from
its recommendation system [39]. Accordingly, given the cur-
rent video, the “up next” videos recommended by YouTube
are good representations of the potential subsequent videos
watched by real-world YouTube users. Based on this insight,
we build a sock puppet user persona model that generates ran-
dom recommendation trails from a single seed video to model
realistic YouTube user personas, by keeping playing one of
the “up next” videos recommended by YouTube randomly
with uniform probability.

Specifically, we denote this model as G(D,T ) parameter-
ized by D, the depth of the recommendation trail, and T , the
total number of videos in the watch history, and we define the
recommendation trail as a sequence of videos that are rec-
ommended and subsequently watched by a user starting from
the given seed video. At each step of the recommendation
trail, we randomly select one “up next" video to watch from
the list of recommended videos with uniform probability. We
repeat this process until the recommendation trail reaches the
depth D at which point we check if the user has watched T

videos. If not, we randomly select another seed video from the
user’s homepage and repeat the process until T videos have
been watched. Note that we randomly select around 20,000
popular videos from a set of popular YouTube channels as
our seed videos. For each seed video, we randomly generate a
recommendation trail and use it as a synthetic user persona.

Since these personas are synthetically built, we are able to
exercise more control over the distribution of watched videos.
This leads to simpler watch histories, as compared to real-
world personas, that is expected to help with the training of
our surrogate model. In total, we generate 10,000 sock pup-
pet based personas with 40 videos each. Note that we set
the length of each user persona as 40, since we empirically
observe that 40 videos can trigger enough personalized rec-
ommended videos on the YouTube homepage and the average
time it takes to watch them is close to the average daily time
spent by each YouTube user (35 min) [10].

Reddit User Personas. As a second way of simulating real-
world user personas in a large scale, we gather YouTube links
publicly posted by social media users as an approximation of
their YouTube personas. While there are various social media
platforms where users can share YouTube videos, we choose
to collect data from Reddit, since it is one of the largest and
most popular communities where users post links related to
their interests, and millions of Reddit’s user submissions3 are
publicly available.

Specifically, we download Reddit user submissions from
2017 to 2021 using APIs provided by pushshift.io [40].
For each user submission, we first extract the username and
all YouTube links posted by this Reddit account. Next, we
filter out any duplicate or broken links. Then, we extract the
YouTube video ids from these remaining links in order, as
the YouTube persona of this Reddit user. Finally, we remove
users with less than 40 YouTube video posts, since a small
number of videos is not a fair approximation of the user’s
actual YouTube persona. In total, we collect 10,000 Reddit
user personas with length 40.

Real-world YouTube Users. To conduct a more realistic
evaluation of DE-HARPO, we use a real-world user dataset
from [8]. This dataset contains the web browsing histories of
936 real users collected through Web Historian [41] for three
months. It is a good representative of real YouTube users,
since: 1) the demographic distribution of these users, includ-
ing their gender, age (18-65+), and education level (from less
than high school to Doctoral degree), are relatively uniform;
2) on average 650 YouTube video URLs are watched by each
user in three months; 3) the first 40 videos watched by these
users have different video class distribution, indicating diverse
user interests. Considering that the dataset is collected over a
long period, we select the first 40 YouTube videos watched by

3A Reddit user submission is a json file storing metadata of a Reddit
user’s posts, including the username, the timestamp, the URL of post, the
text, etc.
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each of these 936 users as our real user personas, to evaluate
DE-HARPO.

5.2 Data Collection and Preparation
User Persona Construction. We use a fresh Firefox browser
based on Selenium to construct each user persona. For each
sock puppet based persona, we start with a seed video and
then follow the “up next" video recommendations to generate
a recommendation trail. We play each video in a user persona
for 30 seconds before playing the next video. Note that we
clear any pop-up windows and skip the ads before playing the
video. For each Reedit user and real user persona, since we
already known the video ids in each persona, we visit these
videos sequentially4. Similar to constructing synthetic user
personas, if there are any pop-up windows or ads, we clear
them and then play the video for 30 seconds.
Recommended Video Collection. After we complete the
construction of each user persona, we go back to the YouTube
homepage and refresh it for 50 times to collect all the recom-
mended videos into a list. Note that we refresh the homepage
multiple times since we want to collect enough homepage rec-
ommended videos to estimate the recommended video class
distribution. We choose the number of refresh times as 50
since we empirically observe that it is a good tradeoff between
collecting enough samples and minimizing the quantity of
crawls to be performed. Because extremely popular videos
are common across many users regardless of their profile, we
remove them to underscore personalized recommendations.
With this in mind, we filter out videos which appear in more
than 1% of personas’ homepage recommended video lists.
Then, for each recommended video, we extract the associ-
ated tags (i.e. a list of keywords) from its metadata, and map
each of them into one of the 154 topic-level video classes we
have (note that a video may belong to multiple video classes).
Last, for each persona, we count the number of recommended
videos in each class and divide it by the sum of videos in all
classes to derive the recommended video class distribution of
each persona.
Video Data Collection and Embedding Preparation. We
use youtube-dl, a free command-line software for download-
ing YouTube videos [42], to collect metadata and transcripts
of videos. For metadata, we extract the category, average rat-
ing, view count, title, and description of each video, which is
then used to generate the metadata embedding of each video.
For a transcript, after we download it, we extract the transcript
text, split it into text chunks with 256 words each, and use
the pretrained Transformer all-MiniLM-L6-v2 from [20] to
convert them into transcript embeddings. As described in Sec-
tion 4.1, we combine the metadata and transcript embeddings

4Note that directly visiting the URL of each video doesn’t trigger cookies
from YouTube and hence no personal recommendation can happen. To
address this, we first search the video id at YouTube and then click the
first search result.

to generate the final video embedding.
User Persona Dataset Collected for Surrogate Model. We
construct 10,000 sock puppet based personas and 10,000 Red-
dit user personas with 40 videos each. For each of these
personas, we collect the YouTube homepage recommended
videos and derive the recommended video class distribution.
We use these constructed personas as inputs (V u) and the as-
sociated recommended video class distributions as labels (Cu)
to build the dataset for surrogate model training and testing.
As discussed in Section 5.3, we use supervised learning to
train the surrogate model.
User Persona Dataset Collected for Obfuscator and De-
noiser. To evaluate the effectiveness of the obfuscator model
against the real-world YouTube recommendation system, we
need to construct both non-obfuscated and obfuscated user
personas. Specifically, for each obfuscator model under an
obfuscation budget a, we first construct 2,936 non-obfuscated
user personas 5 with 40 videos each and the corresponding
2,936 obfuscated user personas generated by the obfusca-

tor with on average 40 ⇤ a
1�a videos each. Then for each

pair of non-obfuscated and obfuscated user persona (V u and
V

o), we collect their associated recommended videos from
the YouTube homepage and derive their recommended video
class distribution (Cu and C

o).
Moreover, we use the same user persona data collected for

the obfuscator evaluation to create the dataset for the denoiser

training and testing (see Section 5.3). Specifically, each input
of this dataset consists of one non-obfuscated user personas
(V u), the corresponding obfuscated user persona generated by
the obfuscator (V o), and its associated recommended video
class distribution (Co). Each label of this dataset is the recom-
mended video class distribution of the non-obfuscated user
persona (Cu).
Obfuscation Video Set. We create our obfuscation video set
by combining played videos during persona construction and
videos appearing in homepage recommendations of all per-
sonas. In total, we collect approximately one million YouTube
videos and use them as the obfuscation video set. Note that
the obfuscator will select one obfuscation video from the
obfuscation video set at each obfuscation step.

5.3 Training and Testing
Surrogate Model. We split the user persona dataset collected
for the surrogate model in 80% for training and 20% for
testing. We use stochastic gradient descent for the surrogate
model to minimize its loss, which is defined as the KL diver-
gence between its output distribution and the actual recom-
mended video category distribution of input user persona. We
train our surrogate model for 50 epochs, where all the training
samples are used once at each training epoch. We report that

5Note that 2,936 non-obfuscated user personas consist of 1,000 sock
puppet based personas, 1,000 Reddit user personas, and the 936 real user
personas from real-world users.
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the average loss of our surrogate model on the testing dataset
is 0.55.

Obfuscator. Recall that the obfuscator needs to take as input
the non-obfuscated user personas. We use the training and
testing user personas in the dataset collected for the surrogate
model as the non-obfuscated user personas, and train the ob-

fuscator to generate obfuscated user personas that maximize
privacy (see Section 3.3). Specifically, we train the obfusca-

tor against the surrogate model for 50 epochs, where all the
training user personas are used once at each epoch. After that,
we use the testing user personas to evaluate the obfuscator

against both the surrogate model and the real-world YouTube
recommendation system, and report the average privacy met-
rics (P and P

Norm). Note that to evaluate the performance of
the obfuscator against YouTube, we construct non-obfuscated
and obfuscated user personas to collect real-world data from
YouTube (see Section 5.2).

Denoiser. As described in Section 5.2, we create a dataset
with 1,800 samples to train and test the denoiser, where 80%
of the samples are used for training and 20% are used for
testing. Specifically, the denoiser is trained via stochastic
gradient descent to minimize the KL divergence between the
output of the denoiser Ĉ

u, i.e. the estimated recommendation
video category distribution of a non-obfuscated user persona,
and the actual distribution C

u. We train the denoiser for 50
epochs, where all the training samples are used once at each
training epoch. We test the denoiser using the remaining 20%
samples and report the average utility metrics (UNorm

Gain
and

U
Loss).

5.4 Baselines
Obfuscator. We compare the privacy-enhancing performance
of DE-HARPO obfuscator with two baselines:

1) Rand-Obf: At each obfuscation step, we randomly select
one obfuscation video from the obfuscation video set, and the
probability of selecting each obfuscation video is equal to 1

M

(M is the total number of obfuscation videos in the set).
2) Bias-Obf: At each obfuscation step, we randomly se-

lect one obfuscation video from the obfuscation video set.
However, the probability of selecting each obfuscation video
is proportional to the reward triggered by each obfuscation
video. To create such non-uniform distribution, we firstly use
Rand-Obf to randomly select obfuscation videos and then
record the reward after injecting them into non-obfuscated
user personas. We repeat this experiment for 50 epochs and
count the accumulative reward of each obfuscation video,
normalize it by the sum of the accumulative rewards of all
obfuscation videos, and use the normalized rewards as the
non-uniform probability distribution.
Denoiser. We compare the utility-preserving performance
of the denoiser in DE-HARPO with the Surro-Den baseline,
where we use the same architecture as the surrogate model to
predict C

u directly from a non-obfuscated user persona V
u,

without taking the obfuscated persona V
o and the associated

recommended video class distribution C
o as inputs. Ideally,

if the surrogate model is a perfect replication of YouTube’s
recommendation system, then users could directly use it to
get recommended videos based on their non-obfuscated user
personas. Clearly this is unrealistic in practice since the surro-
gate model does not have access to the complete universe of
YouTube videos which are updated constantly, and the model
is merely an approximation of the actual YouTube recommen-
dation system.

6 Evaluation
In this section, we evaluate the effectiveness of DE-HARPO
from six perspectives: privacy, utility, overhead, stealthiness,
robustness to de-obfuscation, and personalization.

6.1 Privacy
We first evaluate the effectiveness of DE-HARPO in enhanc-
ing privacy using three user persona datasets, and report the
results in TABLE 1. Note that we test the obfuscator of DE-
HARPO and other obfuscator baselines against the real-world
YouTube recommendation system.

As shown in TABLE 1a, DE-HARPO can trigger 0.91 KL
divergence in the recommended video class distribution af-
ter obfuscation (P) on sock puppet based personas, which
translates into triggering 41.63% of the maximal potential
KL divergence in the recommended video class distribution
(PNorm). Compared with other baselines, DE-HARPO can in-
crease P

Norm by up to 2.01⇥ and at least 1.93⇥. Similarly, on
Reddit user personas, DE-HARPO outperforms all baselines
by up to 1.57⇥ and at least 1.50⇥, as reported in TABLE 1b.

Moreover, we evaluate whether the effectiveness of DE-
HARPO in enhancing privacy can be transferred to real-
world user personas. Specifically, we use the same obfuscator
trained on sock puppet based personas to inject obfuscated
videos into real-world user’s video watch history, and then test
it against YouTube. As reported in TABLE 1c, DE-HARPO
can trigger 87.23% of the maximal potential KL divergence
in the recommended video class distribution (PNorm), which
outperforms all baselines against YouTube by up to 1.92⇥
and at least 1.82⇥ in terms of P

Norm.

6.2 Utility
Next, we evaluate the effectiveness of DE-HARPO in preserv-
ing user utility. TABLE 2a reports our evaluation results in
terms of ULoss and U

Norm

Gain
using sock puppet based personas.

Compared with Surro-Den, the DE-HARPO denoiser achieves
on average 26% better performance in terms of decreasing
ULoss (i.e. increasing U

Norm

Gain
). Recall that different from Surro-

Den, the DE-HARPO denoiser also takes as inputs the obfus-
cated user persona V

o, and the associated recommended video
class distribution C

o which comes directly from the actual
YouTube system. In contrast, the surrogate model is merely
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Table 1: Privacy evaluation results against YouTube w.r.t. P

and P
Norm.

Obfuscator Rand-Obf Bias-Obf DE-HARPO
P 0.71 0.70 0.91

P
Norm 21.55% 20.76% 41.63%

(a) Using sock puppet based personas (DMin :0.49,DMax :1.51).
Obfuscator Rand-Obf Bias-Obf DE-HARPO

P 1.05 1.07 1.30
P

Norm 48.79% 50.99% 76.49%
(b) Using Reddit user personas (DMin :0.60,DMax :1.51).
Obfuscator Rand-Obf Bias-Obf DE-HARPO

P 0.98 1.00 1.39
P

Norm 45.45% 48.01% 87.23%
(c) Using real-world user personas (DMin :0.53,DMax :1.51).

Table 2: Utility evaluation results w.r.t. ULoss and U
Norm

Gain
. Note

that each cell in the table reports ULoss/U
Norm

Gain
. For the results

in the column where denoiser is DE-HARPO, it represents that
we use the DE-HARPO denoiser for different obfuscators.

Obfuscator
Denoiser Surro-Den DE-HARPO

Rand-Obf 0.60 / 50.91% 0.54 / 79.09%
Bias-Obf 0.60 / 49.06% 0.53 / 82.08%

DE-HARPO 0.60 / 74.59% 0.53 / 90.35%
(a) Using sock puppet based personas (DMin :0.49).

Obfuscator
Denoiser Surro-Den DE-HARPO

Rand-Obf 0.68 / 83.26% 0.64 / 91.18%
Bias-Obf 0.68 / 83.98% 0.66 / 88.96%

DE-HARPO 0.68 / 89.32% 0.65 / 93.80%
(b) Using Reddit user personas (DMin :0.6).

Obfuscator
Denoiser Surro-Den DE-HARPO

Rand-Obf 0.66 / 59.01% 0.62 / 81.12%
Bias-Obf 0.66 / 45.45% 0.61 / 82.34%

DE-HARPO 0.66 / 86.05% 0.61 / 90.40%
(c) Using real-world user personas (DMin :0.53).

a “first-order" model of the actual, quite complex YouTube
system. We also evaluate the effectiveness of DE-HARPO
in preserving user utility using both Reddit user personas
and real-world users. As reported in TABLE 2b-2c, the DE-
HARPO denoiser can consistently preserve the utility well,
reducing the utility loss by 93.80% and 90.40% respectively.

It is worth noting that the effectiveness of the denoiser in
preserving utility does not depend on the effectiveness of the
obfuscator in enhancing privacy. As shown in Table 2a-2c,
the same denoiser can achieve almost the same utility loss
ULoss under different obfuscators, which implies the denoiser
does not need to sacrifice privacy in order to preserve utility.
We discuss the privacy-utility tradeoff in the next subsection.

6.3 Privacy-Utility Tradeoff
To further illustrate the effectiveness of the DE-HARPO de-

noiser in preserving utility, we plot the privacy-utility tradeoff
of different obfuscators with/without the denoiser in Figure
6. Specifically, we combine the Rand-Obf obfuscator with
the DE-HARPO denoiser, denoted by Rand-Obf/DE-HARPO,

and combine the Bias-Obf obfuscator with the DE-HARPO
denoiser, denoted by Bias-Obf/DE-HARPO.

As demonstrated in Figure 6, with the DE-HARPO denoiser,
the utility loss caused by different obfuscators can be signif-
icantly reduced without sacrificing privacy. Note that since
our denoiser is designed to work after obfuscation, it does
not hurt the performance of the obfuscator. Moreover, with
the DE-HARPO denoiser, the utility loss remains almost the
same as we keep increasing the obfuscation budget to get
higher privacy. For example, compared with baselines with-
out using the DE-HARPO denoiser, DE-HARPO can reduce
the utility loss by 2.12⇥ when a = 0.5. Note that without the
DE-HARPO denoiser, the obfuscator needs to sacrifice utility
(higher utility loss) to achieve higher privacy. This is a key
difference between DE-HARPO and prior works that consider
privacy-utility tradeoff (see Section 8).
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Figure 6: Privacy-utility tradeoff w.r.t. P
Norm and ULoss un-

der different obfuscation budget a. Note that Rand-Obf/DE-
HARPO represents the combination of Rand-Obf obfusca-
tor and the DE-HARPO denoiser, and Bias-Obf/DE-HARPO
represents the combination of Bias-Obf obfuscator and the
DE-HARPO denoiser. Top left of figure represent both high
privacy and high utility.

6.4 Overhead

Obfuscation budget. So far, the obfuscation budget a is set
to 0.2 in our evaluation (with the exception of Figure 6 that
we further discuss below). To evaluate how the obfuscation
budget (i.e. the percentile of obfuscation videos in a user
persona) can affect the performance of DE-HARPO, we se-
lect a from {0.2,0.3,0.5} and evaluate DE-HARPO under
different a w.r.t. both privacy (PNorm) and utility (ULoss). We
also consider two baselines: Rand-Obf/DE-HARPO (i.e. the
combination of Rand-Obf and the DE-HARPO denoiser) and
Bias-Obf/DE-HARPO (i.e. the combination of Bias-Obf and
the DE-HARPO denoiser).

Figure 6 shows the privacy-utility tradeoff between P
Norm

and ULoss with varying a, where the top left region corre-
sponds to both high privacy and high utility. We observe that
with increasing obfuscation budget a, the privacy (PNorm) will
increase for all obfuscators. Among them, DE-HARPO can
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achieve the best privacy-enhancing performance under dif-
ferent a values in terms of P

Norm. Specifically, with a = 0.2,
DE-HARPO can achieve the same level of privacy as other
baselines achieve with a = 0.5. That is, DE-HARPO can be as
effective as baseline obfuscator in terms of enhancing privacy
with 2.5⇥ less obfuscation budget.
System overhead. We evaluate the system overhead of DE-
HARPO in terms of CPU and memory usage and the video
page load time using a an Intel i7 workstation with 64GB
RAM on a campus WiFi network. As described in Section
4.6, DE-HARPO consists of an obfuscator component that
always runs in the background and a denoiser component that
only runs when the user visits the YouTube homepage. We
separately report their overhead below.

1) Obfuscator: We select an obfuscation budget a from
{0.0,0.2,0.3,0.5}, where a = 0.0 is used as the baseline (i.e.
no obfuscation videos). For each obfuscation budget a we
construct 10 user personas with 15 user videos each, and
the browser extension visits 15 ·a obfuscation videos in the
background. We find that the increased CPU usage is less
than 5% and the increased memory usage is less than 2%,
even for obfuscation budget a = 0.5. Moreover, the change
in video page load time of user videos is less than 2% as a
increases. Hence, we conclude that the obfuscator component
in DE-HARPO has a negligible impact on the user experience
overall.

2) Denoiser: The YouTube’s homepage load time with
DE-HARPO is 1.79 seconds, which represents just a 37.8 mil-
lisecond increase as compared to the homepage load time
without DE-HARPO. Specifically, it takes less than 24.6 mil-
lisecond to get the “noisy" recommended videos from the
homepage, 13.0 millisecond for the denoising module to get
“clean" recommended videos, and 0.2 millisecond for showing
these videos in the homepage. In terms of the CPU and mem-
ory usage, the denoiser of DE-HARPO will increase them by
27.1% and 2.2% respectively, which is mainly due to running
the ML model in the denoising module. Note that the increase
of the CPU usage (from 12.9% to 40.0%) lasts for just 13
milliseconds while the ML model runs and returns to the
normal level right after that. It is worth noting that the afore-
mentioned measurements are conducted for the live version of
DE-HARPO. In practice, we can reduce the overhead even fur-
ther by implementing a cached version of DE-HARPO, which
caches the YouTube homepage periodically in the background
and simply shows the cached homepage when the user navi-
gates to the YouTube homepage. Hence, we conclude that the
denoiser component in DE-HARPO has a negligible impact
on the user experience overall.

6.5 Stealthiness
In this subsection, we evaluate whether an adversary can train
an ML classifier to accurately detect the usage of obfuscators.
We use the precision and recall of this adversarial detector to
measure stealthiness of obfuscation. If the detector achieves

Table 3: Stealthiness of DE-HARPO under different obfus-
cation budget a. Note that we choose a from {0.2,0.3,0.5}
and report (Precision, Recall) of the adversarial detector for
different obfuscators.

Obfuscator (Precision, Recall)
a = 0.2 a = 0.3 a = 0.5

Rand-Obf (52%, 94%) (53%, 98%) (83%, 94%)
Bias-Obf (55%, 94%) (87%, 84%) (93%, 93%)

DE-HARPO (97%, 98%) (97%, 99%) (98%, 99%)

high precision and recall, then it means that an obfuscator is
less stealthy. Specifically, the input of the adversary is a user
persona consisting of a sequence of videos and the binary
output indicates whether or not the user persona contains at
least one obfuscation video.

We train the adversarial classifier via supervised learning.
To create the labeled dataset, we use the same set of non-
obfuscated and obfuscated personas used for evaluation in
Section 6.4 as inputs, and assign the corresponding labels to
the personas (0: non-obfuscated, 1: obfuscated). For each ob-
fuscator and obfuscation budget a, we get a dataset with 1,800
non-obfuscated personas and 1,800 obfuscated personas, and
we split them into 80% for training and 20% for testing.

Table 3 reports the precision and recall of the adversar-
ial detector under different a values. We observe that as a
increases, both the precision and recall of detector also in-
crease. This is expected as larger a represents more obfusca-
tion videos, which makes it easier for the adversarial detector
to distinguish obfuscated personas from non-obfuscated per-
sonas. Moreover, while both the Rand-Obf and the Bias-Obf
are a bit more stealthy than DE-HARPO, we observe that DE-
HARPO can still achieve reasonable stealthiness even when
a = 0.5. For example, it leads to 99% recall (1% false nega-
tive rate) and 98% precision (2% false positive rate) even with
a = 0.5. It is noteworthy that while the 2% false positive rate
seems low at surface, it actually presents the major obstacle
in deployment of the adversarial detector due to base-rate
fallacy [43]. Specifically, since we expect a small fraction
of billions of YouTube users to employ DE-HARPO, the ad-
versarial detector would incur a prohibitively large number
of false positives (order of tens/hundreds of millions, despite
only 2% false positive rate). Essentially, the adversarial de-
tector will have to achieve exceptionally high precision to be
useful in practice.

Note that such a binary detector may be used as a first step
of the detection workflow. Once the adversary detects the us-
age of DE-HARPO, it may further attempt to de-obfuscate the
obfuscated user personas. That is, the adversary may attempt
to identify obfuscation videos in the obfuscated user persona
such that it may remove them to retrieve the non-obfuscated
user personas. We evaluate this de-obfuscation performance
of an adversary next.
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Table 4: De-obfuscation robustness of DE-HARPO under dif-
ferent obfuscation budget. Note that we set a2 {0.2,0.3,0.5}
and report (Precision, Recall) of adversarial detector under
different obfuscation approaches.

Obfuscator (Precision, Recall)
a = 0.2 a = 0.3 a = 0.5

Rand-Obf (62%, 97%) (67%, 91%) (69%, 99%)
Bias-Obf (67%, 89%) (71%, 89%) (77%, 92%)

DE-HARPO (79%, 93%) (83%, 97%) (84%, 97%)

6.6 De-obfuscation Robustness
Once the adversary detects the usage of DE-HARPO in a user
persona, it can conduct de-obfuscation. To evaluate whether
an obfuscator is robust to de-obfuscation, we train a second
adversarial detector to distinguish the obfuscation videos from
the actual user videos. Specifically, we build a second ML
classifier to detect the type of each video (user versus obfus-
cation video) in each user persona, and use its precision and
recall to measure the de-obfuscation robustness. Smaller pre-
cision and recall represents higher de-obfuscation robustness.

We use the same set of obfuscated personas as in Section
6.4 as inputs. For each video in an obfuscated user persona,
we assign a binary label, where 0 represents it is watched by
the user while 1 represents that it is injected by the obfuscator.
The detector model takes as input the obfuscated user persona,
and predicts a label for each video in the user persona. We
use a recurrent neural network (LSTM layer) to model this
adversarial detector.

As shown in Table 4, the precision of this adversarial de-
tector is lower than 85%, which means more than 15% of
the obfuscated videos identified by the adversary are false
positives (they are actual user videos). Similar to stealthiness,
false positives present a bigger challenge to the adversary in
deploying this detector in practice. Therefore, we conclude
that DE-HARPO is robust to de-obfuscation by an adversary.

6.7 Personalization
The obfuscator in DE-HARPO so far is trained to maximize
the KL divergence in the recommended video class distribu-
tion after obfuscation, by either increasing or reducing the
probability of each video class. However, a YouTube user may
have a list of sensitive video classes (e.g. health or wellness
related), where they do not want the YouTube recommenda-
tions containing videos from these classes after obfuscation
(i.e. reducing their probability to zero).

Motivated by this, we design a mechanism that can treat
sensitive video classes and non-sensitive video classes differ-
ently based on user preferences. Without loss of generality,
suppose the first L classes of the recommended video class
distribution are non-sensitive and the remaining K�L classes
are sensitive. We then train the obfuscator in DE-HARPO to
maximize the following privacy metric, which aims to treat
non-sensitive classes like before (maximize divergence before
and after obfuscation) and eliminate sensitive class videos:

Table 5: Personalization results. D
NonSens

KL
and D

Sens

KL
denote

the divergence in non-sensitive classes and sensitive classes
respectively.

D
NonSen

KL
D

Sen

KL

DE-HARPO 1.18 0.26
Personalized DE-HARPO 0.81 (# 31.36%) 0.05 (# 80.77%)

P
Personalized=E[DKL(C

o

1:L,C
u

1:L)| {z }
D

NonSens

KL

�lDKL(C
o

L+1:K ,[e]L+1:K)| {z }
D

Sens

KL

],

(10)
where [e]L+1:K 2 RK�L indicates a close-to-zero vector filled
with e, which is a small positive number (e.g. 0.0001), and
l > 0 is an adjustable parameter for controlling the relative
importance of D

NonSens

KL
versus D

Sens

KL
. Specifically, the term

D
NonSens

KL
aims to maximize the distance between the distribu-

tion of non-sensitive classes before and after obfuscation, like
we did before for all classes. The term �lD

Sens

KL
aims to min-

imize the distance between the distribution of the sensitive
classes and a distribution of very small probabilities.6

Table 5 reports our evaluation results of personalized DE-
HARPO against surrogate models, where we select 27 out of
154 video classes related to Beauty & Wellness and Sports &
Fitness as sensitive classes. Compared with non-personalized
DE-HARPO, personalized DE-HARPO can reduce the diver-
gence between sensitive video class distribution and a zero
vector (DSens

KL
) by more than 80%, while still triggering high

divergence in non-sensitive class distribution (DNonSens

KL
).

7 Discussion

7.1 Ethical Considerations
We outline the potential benefits and harms to the user and the
recommendation system. We argue that the potential benefits
of DE-HARPO outweigh its potential harms.
Users. DE-HARPO provides a clear privacy benefit to its users,
especially when platforms such as YouTube do not provide
any meaningful control over its tracking and profiling of users.
Crucially, DE-HARPO is able to enhance privacy while mostly
preserving the utility of personalized recommendations. Thus,
DE-HARPO does not degrade user experience on YouTube.
However, users of DE-HARPO potentially violate YouTube’s
Terms of Service (TOS) [44] because YouTube might inter-
pret obfuscation as “fake engagement”. Therefore, if a user
is signed-in to YouTube, their YouTube account might be
suspended if YouTube is able to detect DE-HARPO’s usage
(though we showed that YouTube would be unable to do so
without risking significant collateral damage). More seriously,
the violation of TOS might be considered possible violation
of the Computer Fraud and Abuse Act (CFAA, 18 U.S. Code
§ 1030) [45]. However, given that DE-HARPO users only

6Notice that we are somewhat abusing the “distribution" term above,
because we do not re-normalize the corresponding probabilities to sum up to
1, as this would (i) de-emphasize the contrast between the patterns of interest
and (ii) is not required to meaningfully use the KL divergence formula.
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watch videos that they are authorized to (i.e., publicly avail-
able videos), we argue that the videos injected to the watch
history for obfuscation nor the videos injected to the recom-
mendations for repopulation exceed authorized access that
could be a violation of CFAA [46].
YouTube. Since DE-HARPO aims to preserve utility of rec-
ommendations to YouTube users, we argue that it will not
directly hurt user engagement on YouTube. DE-HARPO’s
obfuscator and denoiser would, however, contribute to addi-
tional traffic to YouTube servers and may have some indirect
impact on the effectiveness of YouTube’s recommendation
system. Overall, as compared to extant privacy-enhancing
obfuscation tools, we conclude that DE-HARPO is more fa-
vorable since it specifically aims to preserve utility and user
engagement on YouTube.

7.2 Limitations & Future Work
Side channels. DE-HARPO’s stealthiness can be undermined
by exploiting various implementation side channels. For ex-
ample, YouTube could use Page Visibility API [47] or the
Performance API [48] to detect whether obfuscation videos
are unusually not being played in the foreground. However,
there are patches such as wpears [49] to avoid detection. Ad-
ditionally, the obfuscator plays the obfuscation videos in full
in a background tab while disabling background throttling
(or other such optimizations [50, 51]) to prevent detection by
such side channels. As another example, the repopulation of
recommendations on the homepage after denoising would
entail manipulation of the HTML DOM [52], which might
be detectable. However, such an attach would be infeasible
in practice, because the detection approaches would add an
overhead of up to several seconds [53, 54].

Deployment on mobile devices. DE-HARPO is currently im-
plemented as a browser extension for desktops and cannot be
readily used on mobile apps or mobile browser apps. Since
browsers extensions are not supported on iOS or Android,
the only option for users to benefit from DE-HARPO on their
mobile phone is to use other Chromium based browsers that
allow extensions [55, 56]. Another option for mobile users
is to use a remote desktop utility [57] to access YouTube
with DE-HARPO on a desktop. Finally, users might still be
able to reap the obfuscation benefits of DE-HARPO if they
at least deploy the extension on their desktop while they are
using YouTube without DE-HARPO on their mobile devices.
For this to work, the user needs to be logged-in to the same
Google account [58] on both their mobile app and desktop
with DE-HARPO. We leave DE-HARPO’s implementation as
a standalone mobile browser app for future work.

Joint Training of Obfuscator and Denoiser. The obfusca-

tor and denoiser in DE-HARPO are separately trained and
their joint training might be much more effective. We experi-
mented with jointly training the obfuscator and the denoiser

using multi-objective reinforcement learning. Specifically,

we started by training a denoiser model. Then, we trained
the obfuscator to maximize the privacy against the surrogate
model, while minimizing the loss of the denoiser with obfus-
cated user personas as inputs. After we trained the obfuscator,
we retrained the denoiser and repeat the above process until
both the obfuscator and the denoiser converge. We found that
jointly training did not improve privacy or utility because of
our use of the surrogate model, instead of YouTube in the
wild, for practical reasons. When trained against the surrogate
model, denoiser was able to trivially replicate the surrogate
model. While in theory we could jointly train the obfuscator

and the denoiser in the wild to avoid this issue, it would not
be practical due to its time consuming nature. Future work
can look into hybrid surrogate and in the wild joint training
of obfuscator and denoiser.

8 Related Work
In this section, we discuss prior work on privacy-enhancing
obfuscation in recommendation systems.

One line of prior research focuses on developing privacy-
enhancing obfuscation approaches in online behavioral adver-
tising. These efforts are relevant to our work because online
behavioral advertising is essentially a recommendation sys-
tem where the advertiser’s goal is to “recommend” personal-
ized ads to users based on their online activity. However, as
we discuss next, most of these privacy-enhancing obfuscation
approaches aimed towards online behavioral advertising are
not designed to preserve the utility (i.e., relevance of personal-
ized ads) [3, 5, 59–61]. These approaches generally randomly
insert a curated set of obfuscation inputs to manipulate online
behavioral advertising.

TrackThis [59] by Mozilla injects a curated list of 100
URLs to obfuscate a user’s browsing profile. The approach
is fairly simple because these obfuscation URLs are fixed,
i.e., they do not vary across different users. AdNauseam [3]
clicks a random set of ads to “confuse” advertisers. Note
that AdNauseam’s browser extension allows users to see the
personalized ads that were targeted to them.

One subset of these efforts propose “pollution attacks”
against online behavioral advertising that also serve a dual
role as privacy-enhancing obfuscation [5, 60, 61]. Meng et
al. [60] propose a pollution attack that can be launched by
publishers to increase their advertising revenue by manipulat-
ing advertisers into targeting higher paying ads. The attack
involves the addition of curated URLs into a user’s browsing
profile. The evaluation showed that the addition of even a
small subset of these obfuscation URLs led to a significant
increase in the categories of ads (e.g., Health) that generate
higher revenue for publishers.

Degeling et al. [5] and Kim et al. [61] propose similar at-
tacks but focus on two distinct stages of the online behavioral
advertising pipeline: user profiling and ad targeting. Degeling
et al. [5] propose an obfuscation approach that involves adding
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URLs posted on Reddit into a user’s browsing profile. Their
evaluation shows that adding a small number of these obfus-
cation URLs is successful in triggering new interest segments
in Oracle/BlueKai. Kim et al. [61] propose “AdbudgetKiller"
that involves adding a sequence of URLs into a user’s brows-
ing profile to trigger retargeted ads, which are costly for ad-
vertisers and waste their advertising budget.

Moving beyond online behavioral advertising, Xing et al [9]
propose pollution attacks against more general personalized
recommendation systems such as YouTube, Amazon, and
Google Search. The authors show that personalized recom-
mendations could easily be manipulated by injecting random
or curated obfuscation inputs. Since the attack’s victim is the
user, it does not take into account the utility of recommen-
dations to the user. In contrast to this work, DE-HARPO is
a privacy-enhancing obfuscation system that also takes into
account the utility of the recommendations.

Follow up privacy-enhancing obfuscation systems do at-
tempt to take into account the utility-privacy trade-off. Beigi
et al, [62] propose PBooster, a greedy search approach to
obfuscate a user’s browsing profile while also keeping util-
ity in consideration. PBooster employs topic modeling to
select a subset of target topics and corresponding obfuscation
URLs to add in a user’s browsing history. Zhang et al. [6]
propose Harpo, a reinforcement learning approach to obfus-
cate a user’s browsing profile such that a subset of interest
segments are kept while others are modified. Huang et al. [63]
propose a context-aware generative adversarial privacy (GAP)
approach to train a “privatizer” for privacy-enhancing obfus-
cation against an adversary who attempts to infer sensitive
information from input data. This approach is used to obfus-
cate mobile sensor data while navigating the privacy-utility
tradeoff [64–66]. Beiga et al. [67] propose a crowd-based
obfuscation approach that allows individual users to preserve
privacy by scrambling their browsing profiles via mediator
accounts, which are selected such that the personalized rec-
ommendations to these mediator accounts are still coherent
and utility-preserving to the users behind each mediator ac-
count. However, this approach requires a collaboration across
multiple users of a recommendation system, and cannot be
used by standalone users.

While recent work on privacy-enhancing obfuscation has
attempted to balance the privacy-utility tradeoff, they are lim-
ited to obfuscating the input to the recommendation system
to achieve this balance. These approaches are fundamentally
limited as to how much utility can be preserved without un-
dermining privacy by obfuscating the input to the recommen-
dation system (see Fig. 6). In contrast, DE-HARPO employs
a two-step approach to this end. It first obfuscates the input
to the recommendation system to preserve user privacy and
then attempts to de-obfuscate the output recommendations to
preserve utility. Thus, having our cake and eating it too!

9 Conclusion
In this paper, we proposed DE-HARPO, a privacy-enhancing
and utility-preserving obfuscation approach for YouTube’s
recommendation system that does not rely on cooperation
from YouTube. DE-HARPO used an obfuscator to inject ob-
fuscation videos into a user’s video watching history and a
denoiser to remove the “noisy” recommended videos thus
recovering the initial, unobfuscated recommendations. Our
evaluation results demonstrated that DE-HARPO can reduce
the utility loss by 2⇥ for the same level of privacy compared
to existing state-of-the-art obfuscation approaches. Our work
provides a template for implementing such utility-preserving
obfuscation approaches on other similar online platforms,
such as TikTok [68] and Facebook [69]. We will publicly
release our code in conjunction with this paper to facilitate
follow-up research.
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