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ABSTRACT
As third-party cookie blocking is becoming the norm in mainstream
web browsers, advertisers and trackers have started to use �rst-
party cookies for tracking. To understand how �rst-party cookies
are being used with respect to third-party cookies, we conduct a
di�erential measurement study on 10K websites with third-party
cookies allowed and blocked. We �nd that �rst-party cookies are
used to store and ex�ltrate identi�ers to known trackers even when
third-party cookies are blocked.

As opposed to third-party cookie blocking, �rst-party cookie
blocking is not practical because it would result in major breakage
of website functionality. We propose C�����G����, a machine
learning-based approach that can accurately and robustly detect
�rst-party tracking cookies. C�����G���� detects �rst-party track-
ing cookies with 90.20% accuracy, outperforming the state-of-the-
art CookieBlock approach by 17.75%.We show thatC�����G���� is
fully robust against cookie name manipulation while CookieBlock’s
accuracy drops by 15.68%. While blocking all �rst-party cookies
results in major breakage on 32% of the sites with SSO logins, and
CookieBlock reduces it to 10%, we show that C�����G���� does
not cause any major breakage on these sites.

Our deployment of C�����G���� shows that �rst-party track-
ing cookies are used on 93.43% of the 10K tested websites. We �nd
that 98.39% of these �rst-party tracking cookies are in fact set by
third-party scripts that are embedded in the �rst-party context. We
also �nd evidence of �rst-party tracking cookies being set by �n-
gerprinting scripts. The most prevalent �rst-party tracking cookies
are set by major advertising entities such as Google, Facebook, and
TikTok.
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1 INTRODUCTION
Major browser vendors such as Safari, Firefox, and Google Chrome
have either blocked or are in the process of blocking third-party
cookies – cookies set on domains that di�er from the domain of
the site visited by a user [22, 80, 89]. Because third-party cookies
are accessible to the same domain that sets them across di�erent
sites that a user visits, they are widely used for cross-site tracking
(i.e., linking a user’s browsing activity across sites). Due to their
ubiquitous use in tracking, the question arises as to how trackers
will respond to third-party cookie blocking. First-party cookies –
cookies that are set on the same domain as that being visited by a
user – are of particular interest to advertisers and trackers because
they will still be available in the face of third-party cookie blocking.
However, since �rst-party cookies are only accessible from the
setting domain, it remains to be seen how they can be used in lieu
of third-party cookies for cross-site tracking.

Prior literature has shown that �rst-party cookies set by third-
party scripts can be ex�ltrated to tracking endpoints [41, 53, 75].
Prior work has also shown that trackers use browser �ngerprinting
to re-spawn �rst-party cookies [54]. Yet, there is no work studying
the full spectrum of tracking possible through �rst-party cookies;
and crucially, no countermeasures exist to speci�cally detect and
block �rst-party tracking cookies. To �ll this gap, we �rst inves-
tigate the use of �rst-party cookies by known trackers and then
use our �ndings to develop a machine-learning based approach,
C�����G����, to detect and block �rst-party tracking cookies.

We �rst perform a di�erential measurement study comparing the
use of �rst- and third-party cookies on 10K websites across multiple
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parallel crawls, both with third-party cookies enabled and blocked.
We show that third-party cookie blocking does not signi�cantly im-
pact the sharing of identi�ers to known tracking endpoints because
major trackers are already using �rst-party cookies. Our analysis
reveals that these trackers store identi�ers in �rst-party cookies
based on probabilistic and deterministic information.

Unlike third-party cookies, blocking all �rst-party cookies is
not practical as many of these cookies are required for legitimate
website functionality. An alternative could be the use of privacy-
enhancing request blocking tools [61, 77, 78] that would also block
the cookies set by the requested resources. Unfortunately, our eval-
uation shows that these tools also cause breakage because tracking
cookies are often set by domains that also set functional cookies.
Researchers have recently started to develop approaches to detect
and block (both �rst and third-party) tracking cookies [39, 58].
However, these approaches rely on content-based features such as
cookie names and values, which can lead to a high number of false
positives (and consequently major website breakage) while also
being susceptible to evasion [77].

To address these limitations, we design and implement C������
G����, a machine-learning approach to detect �rst-party tracking
cookies. Instead of using content-based features, C�����G����
captures fundamental tracking behaviors exhibited by �rst-party
cookies that we discover in our di�erential measurement study.
C�����G���� is able to detect �rst-party tracking cookies with
90.20% accuracy, outperforming the state-of-the-art CookieBlock
[39] approach by 17.75%. We also show that blocking all �rst-party
cookies results inmajor breakage on 32% of the sites with SSO Login,
which is improved to 10% by CookieBlock. In contrast, C������
G���� does not cause any major breakage on these sites. Moreover,
C�����G���� is robust to evasion through cookie name manipula-
tion while CookieBlock’s accuracy degrades by 15.68%.

We deploy C�����G���� on 10K websites to �nd 46,237 �rst-
party tracking cookies on 93.43% of the 10K websites. The most
prevalent �rst-party tracking cookies are set by major advertising
entities, such as Google, Facebook, and TikTok, and then ex�ltrated
to a large number of other advertising and tracking endpoints. We
�nd that 98.39% of the �rst-party tracking cookies are in fact set by
third-party scripts, 77 of which also conduct �ngerprinting, that
are served from a total of 1,588 unique third-party domains.

In summary, our key contributions are as follows:

(1) We conduct a large-scale di�erentialmeasurement study
to understand the usage of �rst-party cookies by trackers
when third-party cookies are blocked. Our analysis shows
that blocking third-party cookies does not reduce the num-
ber of tracking requests containing identi�ers and provides
evidence that trackers use �rst-party cookies in lieu of third-
party cookies for tracking.

(2) We introduce C�����G����, a machine-learning based
countermeasure to detect and block �rst-party tracking
cookies. C�����G���� captures fundamental tracking be-
haviors of �rst-party cookies that.C�����G����outperforms
the state-of-the-art in terms of accuracy, robustness, and
breakage minimization.

(3) We deploy C�����G���� on 10K out of the top-100K
websites to measure the prevalence of �rst-party tracking

cookies. We detect a total of 1,588 distinct domains that
set �rst-party tracking cookies, including major advertising
entities such as Google, and show that �ngerprinting scripts
set �rst-party cookies on 984 sites.

Paper Organization: The rest of this paper is organized as fol-
lows: Section 2 provides an overview of the recent developments
and related work on third-party and �rst-party cookies. Section 3
describes the threat model of �rst-party cookies. Section 4 presents
our di�erential measurement study to evaluate the impact of third-
party cookie blocking on the use of �rst-party cookies by trackers.
Section 5 describes the design and evaluation of C�����G����. We
discuss the limitations of C�����G���� in Section 6 and conclude
in Section 7.

2 BACKGROUND & RELATEDWORK
2.1 Adoption of third-party cookies for

tracking
Cookies were originally designed to recognize returning users, e.g.,
to maintain virtual shopping carts [69]. Soon, they were adopted
by third-parties to track users across websites and serve targeted
ads [7]. Early standardization e�orts mostly focused on limiting
unintended cookie sharing across domains [44] and, despite well-
known privacy concerns [1], largely ignored the intentional misuse
of cookies by third-parties for cross-site tracking. Over the years,
the use of third-party cookies for cross-site tracking has become
prevalent [40, 45, 74, 75]. Prior research has found that the vast
majority of third-party cookies are set by advertising and tracking
services [45] and that the third-party cookies outnumber �rst-party
cookies by a factor of two [40] – and up to four when they contain
identi�ers [75].

2.2 Countermeasures against third-party
cookies

2.2.1 Safari. Since its inception in 2003, Safari has blocked third-
party cookies from domains that have not been visited by the user
as full-�edged websites [82]. In 2017, Safari introduced Intelligent
Tracking Prevention (ITP). ITP used machine learning to automat-
ically detect third-party trackers. It revoked storage access from
classi�ed domains if users did not interact with them on a daily
basis [83]. Since 2017, ITP went through several iterations, i.e., ITP
1.1 [84], ITP 2.0 [85], ITP 2.1 [86], ITP 2.2 [87] and ITP 2.3 [88],
eventually leading to full third-party cookie blocking [89].

2.2.2 Firefox. Firefox experimented with third-party cookie block-
ing in 2013 [49, 50], but did not ship default-on third-party cookie
blocking until the release of Enhanced Tracking Protection (ETP)
in 2018 [70]. ETP blocks third-party cookies based on a blocklist
of trackers provided by Disconnect [6]. As of 2022, Firefox has
launched Total Cookie Protection (TPC) which partitions all third-
party cookie access [22]. Partitioning ensures that cookies set by
a third-party on one site are distinct from those set by the same
third-party on other websites, eliminating the third-party’s ability
to track users across those websites.
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2.2.3 Internet Explorer and Microso� Edge. Amongst the main-
stream browsers that have deployed countermeasures against third-
party cookies, Internet Explorer (IE) and Microsoft Edge have the
most permissive protections. IE blocked third-party cookies from
domains that did not specify their cookie usage policy with the P3P
response header [2]. However, website owners oftenmisrepresented
their own cookie usage policies, which rendered P3P ine�ective [67].
Since 2019, Microsoft Edge blocks access to cookies and storage in
a third-party context from some trackers, based on Disconnect’s
tracking protection list [6, 14, 80].

2.2.4 Chrome. Google Chrome is the only mainstream browser
that does not restrict third-party cookies in any way in its default
mode. In 2020, Google announced plans to phase out third-party
cookies in Chrome by 2022 [76]. However, the plan has been post-
poned several times and the latest timeline suggests the phasing
out of cookies by late 2024 [55].

2.3 Adoption of �rst-party cookies for tracking
While third-party cookies are widely considered as the main mech-
anism for cross-site tracking, trackers have also relied on �rst-party
cookies for various forms of tracking, as described below.

Same-site tracking.As early as 2012, Roesner et al. [74], noted that
third-party tracking scripts, embedded on the main webpage (i.e.,
in �rst-party context), set �rst-party cookies. First-party cookies
enable same-site tracking, where trackers can determine whether
a user is revisiting a website or internal pages of a site. While
not as invasive as tracking users across di�erent sites, signi�cant
information about a user can be gleaned from tracking their activity
on the sites they frequent (e.g., a social media or news site).

Cross-domain same-site tracking. First-party cookies can also
be used for cross-domain same-site tracking, where a website’s cook-
ies are shared by trackers to other domains. In 2020, Fouad et al. [53]
found that trackers sync �rst-party cookies to several third-parties
on as many as 67.96% of the websites they tested. In 2021, Chen et
al. [41] found that more than 90% of the websites contain at least
one �rst-party cookie that is set by a third-party script. Similar
to Fouad et al., they found that at least one �rst-party cookie is
ex�ltrated to a third-party domain on more than half of the tested
websites, raising concerns that these cookies might be used for
tracking. Sanchez et al. [75] echoed these concerns, uncovering
several instances where di�erent third-parties interacted with the
same �rst-party cookies. They conclude, through a large-scale mea-
surement study of top websites and a number of case studies, that
even after blocking third-party cookies, users are still at risk of
tracking through �rst-party cookies.

Cross-domain sharing of �rst-party cookies presents a bigger
privacy issue for users than same-site tracking. While same-site
tracking is only restricted to domains that are able to set �rst-party
cookies, cross-domain sharing of �rst-party cookies allows other
trackers, which are not collaborating with the �rst-party domains,
to receive information about user activity. This simpli�es operations
for trackers as instead of collaborating with each di�erent publisher
to set �rst-party cookies, they can instead leverage tracking cookies
set by another tracker to monitor user activity. With this practice,
not only the domains which are setting �rst-party cookies can track

users’ activities on the site, but tracking is also extended to other
domains which receive these �rst-party cookies.

Cross-site tracking. While third-party cookies have been used
extensively in cross-site tracking, i.e., where a tracker links a user’s
activity across sites, the mechanisms by which �rst-party cookies
are used in cross-site tracking have not been studied so far. Oh et al.
[71] perform experiments to determine sharing of �rst-party data
with trackers in lieu of third-party cookie blockage, determining
that identi�ers such as email addresses were also being shared
to popular trackers. Their experiments show that trackers make
use of identi�ers like email addresses to link user activity across
di�erent sites. They make use of this knowledge to perform identity
entanglement, where an attacker can make use of an email address
or other identi�ers to in�uence the advertisements shown to a
victim. This sharing of additional information when third-party
cookies are blocked allows trackers to track users across di�erent
sites.

Previous research has also shown that it is non-trivial to generate
�rst-party identi�ers that are accessible across websites. Prior re-
search has found that trackers often leverage browser �ngerprinting
to generate �rst-party tracking cookies [54]. Browser �ngerprint-
ing provides unique identi�ers that are accessible across websites
but drift over time [64]. However, identi�ers generated through
browser �ngerprinting can be stored in cookies that persist even
after �ngerprints change. In addition to browser �ngerprinting, sev-
eral advertising and tracking services, such as Google Ad Manager
[16] and ID5 [26], specify in their documentation that they also use
publisher-provided identi�ers (PPIDs), such as email addresses, to
set �rst-party cookies.

We note that techniques such as CNAME cloaking also allow
advertisers or trackers to use �rst-party cookies. In this paper, we
do not focus on CNAME cloaking because �rst-party cookie leaks
due to CNAME cloaking have already been extensively studied by
prior work [46, 47].

2.4 Countermeasures against �rst-party
cookies

2.4.1 Deployed countermeasures. Safari is the only mainstream
browser that has deployed protections against �rst-party tracking
cookies. Safari’s ITP expires �rst-party cookies and storage set
by scripts in 7 days if users do not interact with the website [82].
This limit is lowered to 24 hours if ITP detects link decoration
being used for tracking [82]. However, �rst-party cookie tracking
does not require link decoration to be e�ective. In cases where
link decoration is not used, trackers can still track users within the
7-day window and beyond if users interact with the website within
the 7-day window.

2.4.2 Countermeasures proposed by prior research. There exist two
machine-learning-based approaches to detect �rst-party and third-
party tracking cookies. Hu et al. [58]’s approach uses sub-strings
in cookie names (e.g., track, GDPR) as features to detect �rst-party
and third-party tracking cookies. Bollinger et al. [39] proposed
CookieBlock. CookieBlock uses several cookie attributes such as
the domain name of the setter, cookie name, path, value, expiration,
etc. as features to detect �rst-party and third-party tracking cookies.
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These approaches rely on hard-coded content features which
makes them susceptible to adversarial evasions (as we show later
in Section 5.6.3). Moreover, these approaches mainly rely on self-
disclosed cookie labels as ground truth which are known to be
unreliable [81].

2.4.3 Request blocking approaches. Request blocking through browser
extensions, such as Adblock Plus [3], and machine-learning-based
tracker detection approaches proposed by prior research, e.g., [77],
can potentially block �rst-party tracking cookies set by requests.
However, request blocking is prone to cause breakage because it
blocks access to content or cookies that might be essential for web-
site functionality. We con�rm this is the case in Section 5.6.3)
Unique focus of this paper. Prior work has only incidentally mea-
sured the usage of �rst-party tracking cookies, and existing ap-
proaches to detect �rst-party tracking cookies are lacking. In this
paper, we �ll this void by conducting a large-scale study to mea-
sure the prevalence of �rst-party tracking cookies and develop an
accurate and robust machine-learning approach, C�����G����,
aimed at detecting �rst-party cookies.

3 THREAT MODEL
In this section, we describe the threat model of tracking via �rst-
party cookies.1

First- vs third-party cookies. Before describing the threat model, we
de�ne what we mean by �rst- and third-party cookies. Cookies can
either be set by the Set-Cookie HTTP response header or by using
document.cookie in JavaScript. Cookies set via response header
from the same domain as the �rst-party are �rst-party cookies. Sim-
ilarly, cookies set via response header from the a di�erent domain
than the �rst-party are third-party cookies. When cookies are set
by a script, their classi�cation depends on whether the script is
embedded in a �rst- or third-party execution context. The cook-
ies set by third-party scripts running in the �rst-party context are
�rst-party cookies. The cookies set by third-party scripts running
in a third-party context (e.g., third-party iframes) are third-party
cookies.
There are three main entities in this threat model: users (the victim),
trackers (the adversary), and publishers.
We assume that the user:

• visits di�erent websites using one or more desktop/mobile
devices that have distinct �ngerprints [63]

• is not averse to logging in to those websites and providing PII
(personally identi�able information) such as email addresses

• has third-party cookies disabled and �rst-party cookies en-
abled

We assume that the publisher:
• controls the content on the site being visited by the user
• embeds the tracker in the �rst-party context, allowing the
tracker to set �rst-party cookies

• shares email and other deterministic identi�ers (e.g., user-
name, phone number) with the tracker, if provided by the
user

1This threat model is informed by prior literature [41, 53, 54, 71, 75] and our case
studies of popular tracking services described in Appendix A.1.

We assume that the tracker:
• is present in a �rst-party context on the publisher’s site
• can set and read �rst-party cookies using document.cookie
• can collect information such as IP addresses, screen resolu-
tion etc., which can be used to construct a device �ngerprint

Trackers can use the information shared by the publisher, and
the �ngerprints collected by their own scripts to perform same-site,
cross-domain same-site, and cross-site tracking. We describe them
below.
Same-site tracking. A user visits the same publisher’s site mul-
tiple times. During the �rst visit of the user, the tracker A sets a
�rst-party cookie on the user’s device. Upon subsequent visits by
the user, tracker A can read the �rst-party cookie set and know
that it is the same user who is revisiting the site. When performing
same-site tracking, tracker A is able to gather information about
the user across the pages maintained by the same publisher.
Same-site cross-domain tracking.After setting a �rst-party cookie
on a user’s device, tracker A also shares the �rst-party cookie with a
di�erent tracker B that is not itself present in the �rst-party context
(and thus unable to set a �rst-party cookie of its own). On each
subsequent visit of the user, tracker A shares the �rst-party cookie
and the pages visited by the user with tracker B. Thus, without
setting its own �rst-party cookie and directly colluding with the
publisher, tracker B is also able to track the user’s activity on the
same site.
Cross-site tracking. Consider a scenario in which a user visits
three di�erent sites (publishers 1, 2, 3) where tracker A is embed-
ded in the �rst-party context. The user visits sites 1 and 2 on one
device, and site 3 on a di�erent device. Publishers 2 and 3 ask the
user for a deterministic identi�er (e.g., email address) which we

F
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F + PPID
UID

 PPIDF

F + 
PPID

PPID
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Figure 1: Cross-site tracking. Flow of information and iden-
ti�ers through an identity graph for cross-site tracking. Ini-
tially, the user visits publishers 1 and 2 from one device.
Tracker A, on publishers 1 and 2, collects and sends �nger-
print � to the identity graph. The identity graph returns a
* �⇡ for all the publisher visits, by matching �ngerprints
sent on each respective publisher. A publisher-provided ID,
%%�⇡ , is also sent when visiting publisher 2. The user visits
publisher 3 on a di�erent device, thus tracker A is unable to
construct a �ngerprint whichmatches � . Publisher 3 sends a
publisher-provided ID that matches %%�⇡ provided on pub-
lisher 2. As a result, the identity graph matches and returns
the same* �⇡ for publisher 3. This ID is stored in �rst-party
cookies on the user’s device for each respective publisher.
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denote as %%�⇡ (Publisher-Provided ID). Tracker A also constructs
�ngerprints on sites 1 and 2, denoted by �8 , where 8 denotes the
publisher visited.

When the user visits sites 1 and 2, tracker A collects �ngerprints
�1 and �2, which are the same (i.e., �1 = �2 = � ) since they are
all constructed for the same device. This allows tracker A to infer
that the same user/device is visiting both sites. Tracker A links
the deterministic identi�ers and �ngerprints belonging to the same
user/device by constructing an identity graph (refer to Appendix A.1
for examples). The gray edge in Figure 1 shows the link in the
identity graph constructed by tracker A for the �ngerprints on sites
1 and 2.

The user then visits site 3 from a di�erent device where tracker
A is not able to construct the same �ngerprint � . Publisher 3 asks
the user for deterministic identi�er (e.g., email address), which is
the same as the %%�⇡ provided by the user to publisher 2. Based
on this additional information, tracker A can add a black edge to
the identity graph.

Tracker A is �nally able to connect all nodes in the identity
graph to the user. Tracker A then assigns all connected nodes in the
identity graph the same ID * �⇡ , which it can store in a �rst-party
cookie on each of the sites. On each subsequent visit by the user
to any of the sites, tracker A can now simply read the �rst-party
cookie containing* �⇡ . Because* �⇡ is same across sites 1, 2 and
3, this allows tracker A to track the user across di�erent sites.

4 MEASUREMENTS
In this section, we conduct a preliminary measurement study to
investigate the usage of �rst-party cookies by advertising and track-
ing services (ATS) when third-party cookies are blocked.

4.1 Data Collection
Data collection.We use OpenWPM [51] to crawl a sample of 10K
out of the top-100K websites [17]. To ensure that our crawls cover
websites of variable popularity, we crawl the top 1K sites – ensuring
coverage of the most popular websites– and uniformly sample an-
other 9K sites from the sites ranked 1K-100K. To capture behaviors
that may be di�erent in the landing and internal pages of a website
[37], we perform an interactive crawl that covers both kinds of
pages. Speci�cally, for each site, we crawl its landing page and then
select up to 20 internal pages to visit at random. We conduct four
parallel crawls: two with third-party cookies enabled (3P-Allowed)
and two with third-party cookies blocked (3P-Blocked). Paralleliz-
ing the crawls minimizes temporal variations across crawls and
mitigates the e�ect of the dynamic behavior of websites. We re-
peat failed crawls up to four times. This enables us to successfully
conduct the four parallel crawls for 99.38% of the 10K websites.
Labeling tracking activity. To label tracking, we use EasyList [8]
and EasyPrivacy [9]. Speci�cally, we use them to label requests as
tracking (ATS) or not tracking (Non-ATS). We label a request as
tracking (ATS) if its URL matches the rules in either one of the lists.
Otherwise, we label it as not tracking (Non-ATS).

Since the basic premise of tracking is to identify users, we are
particularly interested in sharing of identi�ers in these tracking
requests. In line with prior work [52, 62], we de�ne identi�ers as
a string that is longer than 8 characters and matches the regex
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Figure 2: Presence of top-10 tracking domains. The plot
shows the percentage of sites where at least one request con-
taining an identi�er is sent to a tracking domain.
( ) 3P-Allowed: Third-party cookies allowed
( ) 3P-Blocked: Third-party cookies blocked

[0�I��/0� 9_ = �]. Using this de�nition, we look for identi�ers
in URL query parameters [73] and cookie values [40, 41, 48, 75].

4.2 Tracking under Third-Party Cookies
Blocking

We �rst study whether blocking third-party cookies e�ectively elim-
inates ATS requests. We compare the number of requests containing
identi�ers with and without third-party cookies.

Table 1 shows the average number of requests for two parallel
crawls conducted with third-party cookies allowed and blocked.
Table 1 shows that there is only a modest reduction in the over-
all number of ATS requests when third-party cookies are blocked.
The di�erence in the number of ATS requests containing identi-
�ers is just 6.41%. This is surprising because cookie syncing, which
is widely used for same-site-cross-domain and cross-site track-
ing [53, 72], entails sharing third-party identi�er cookies in query
parameters [40, 41, 48]. With third-party cookies blocked, cookie
syncing between third-parties cannot occur and we would expect to
see a larger drop in identi�ers shared in ATS requests.We conclude
that third-party cookie blocking does not e�ectively limit the
ex�ltration of identi�ers to trackers.

Next, we analyzewhether third-party cookie blocking disparately
impacts di�erent ATS domains (eTLD+1). Figure 2 plots the per-
centage of sites with at least one ATS request with identi�ers. Six
of the top-10 ATS domains, all owned by Google, show only a neg-
ligible reduction in the number ATS requests with identi�ers when
third-party cookies are blocked. In contrast, three other ATS do-
mains, owned by Pubmatic, Rubicon, and OpenX, show a signi�cant
reduction.
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Table 1: Average number of requests per site in 3P-Allowed
and 3P-Blocked con�gurations

Request Count 3P-Allowed 3P-Blocked Change

Total 848.02 841.69 -0.75%
Tracking 358.97 349.56 -2.62%
Non-Tracking 489.05 492.13 0.63%
Tracking with ID 143.36 134.16 -6.41%
Tracking without ID 215.61 215.40 -0.10%

Table 2: Average number of �rst-party cookies per site in
3P-Allowed and 3P-Blocked con�gurations

1P Cookie Count 3P-Allowed 3P-Blocked Change

Total 150.57 153.91 -2.22%
Set by Trackers 118.72 121.12 -2.02%
Set by Non-Trackers 31.85 32.79 -2.94%
Set by Trackers with ID 73.41 74.27 -1.17%
Set by Trackers without ID 45.30 46.85 -3.41%
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Figure 3: Comparison of percentage of sites on which �rst-
party and third-party identi�er cookies are set by ATS do-
mains.
( ) �rst-party identi�er cookies set when third-party
cookies are allowed
( ) �rst-party identi�er cookies set when third-party
cookies are blocked
( ) third-party identi�er cookies set when third-party
cookies are allowed

4.3 Tracking through First-Party Cookies
Table 1 shows that even after blocking third-party cookies, there
is only a small decrease in ATS requests containing identi�ers

(6.41%). The identi�ers in these ATS requests are likely originat-
ing from some storage mechanism other than third-party cookies.
Since recent prior work has shown that ATS are increasingly using
�rst-party cookies [41, 75], we next investigate whether �rst-party
cookies are being used in lieu of third-party cookies to circumvent
third-party cookie blockage.

We �rst compare the average number of �rst-party cookies in
3P-Allowed and 3P-Blocked crawls in Table 2. We observe only a
minor di�erence in the average number of �rst-party cookies set
with third-party cookies allowed/blocked. It is also noteworthy that
78.69% of the �rst-party cookies are set by ATS scripts. A further
61.31% of them are identi�er cookies. We conclude that the vast
majority of �rst-party cookies are in fact set by ATS and that they
are not signi�cantly impacted by third-party cookie blocking.

Next, we compare the setting of �rst- and third-party identi�er
cookies by ATS domains (eTLD+1 of the setting script URL) to
understand if �rst-party cookie usage is equally prevalent across
di�erent ATSes. Figure 3 plots the percentage of sites where at least
one �rst-party and/or third-party identi�er cookie is set by a top-10
ATS domain.

For the six Google-owned ATS domains, which showed a neg-
ligible di�erence in requests containing identi�ers after blocking
third-party cookies, there is also little to no change in the use of
�rst-party identi�er cookies across both crawls. These domains
do not set a large number of third-party identi�er cookies, even
when those are allowed, which likely explains why they were not
impacted by third-party cookie blocking.

On the contrary, the other set of ATS domains for which we ob-
serve a reduction of identi�ers (i.e., Pubmatic, Rubicon, and OpenX)
do use more third-party identi�er cookies than �rst-party identi�er
cookies when third-party cookies are authorized. This observation
also explains the drastic drop in the number of requests containing
identi�ers to these other ATS domains after blocking third-party
cookies in Figure 2. We conclude that trackers which are not
a�ected by third-party cookie blocking are using �rst-party
cookies as a replacement.

4.4 Takeaway
Our di�erential measurement study reveals that third-party cookie
blocking does not e�ectively prevent tracking. There is only a
negligible reduction in the ex�ltration of identi�ers to trackers
when third-party cookies are blocked. We �nd that this is because
ATSes use �rst-party cookies in lieu of third-party cookies.

We also �nd that the impact of third-party cookie blocking is not
uniform across di�erent trackers. Some ATS domains show more
reduction in the ex�ltration of identi�ers than others. This disparity
exists because some trackers only use �rst-party cookies regardless
of the availability of third-party cookies; while others are using
both �rst-party and third-party cookies to store identi�ers.

5 COOKIEGRAPH: DETECTING FIRST-PARTY
TRACKING COOKIES

In this section, we describe C�����G����, a graph-based machine
learning approach to detect �rst-party ATS cookies. C�����G����
creates a graph representation of a webpage’s execution based on
HTML, network, JavaScript, and storage information collected by an
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Figure 4: Overview of C�����G���� pipeline: (1) Webpage crawl using an instrumented browser; (2) Construction of a graph
representation to represent the instrumented webpage execution information; (3) Feature extraction for graph nodes that
represent �rst-party cookies; and (4) Classi�er training to detect �rst-party ATS cookies.

instrumented browser, in which �rst-party cookies are represented
as storage nodes. C�����G���� extracts distinguishing features of
these cookies and uses a random forest classi�er to detect �rst-party
ATS cookies. Figure 4 provides an overview of C�����G����’s
pipeline.

5.1 Design and Implementation
Browser instrumentation. C�����G���� relies on our extended
version of OpenWPM [51] to capture webpage execution infor-
mation across HTML, network, JavaScript, and the storage layers
of a webpage. Our measurements in Section 4 found signi�cant
use of localStorage in addition to cookies. Thus, we use the term
“storage” to refer to both cookies and localStorage. In most cases,
the description for cookies is also applicable to localStorage and
vice versa.

C�����G���� captures HTML elements created by scripts, net-
work requests sent by HTML elements (as they are parsed) and
scripts, responses received by the browser, ex�ltration/in�ltration
of identi�ers in network requests/responses, and read/write opera-
tions on the browser’s storage mechanisms.
Graph construction. The nodes in C�����G����’s graph repre-
sent HTML elements, network requests, scripts, and storage ele-
ments. When localStorage and �rst-party cookie nodes share the
exact same name, C�����G���� considers them as one storage
node. C�����G����’s edges represent a wide range of interactions
among di�erent types of nodes e.g., scripts sending HTTP requests,
scripts setting cookies etc. In addition to interactions considered by
prior work [77], C�����G���� incorporates edges that model the
actions associated to tracking using �rst-party cookies. We identify
these actions from the result of our measurement study in Sec-
tion 4, and the case studies described in Appendix A.1.Cookies are
typically set with the values in�ltrated with HTTP responses and
are ex�ltrated via URL parameters and request headers or bodies;
C�����G���� captures in�ltrations and ex�ltrations by linking the
script-read/write cookies in the �rst-party execution context to the

requests of reader/writer script that contains those cookie values.
In addition to plain text cookie values, C�����G���� also monitors
Base64-, MD5-, SHA-1-, and SHA-256- encoded cookie values in
URLs, headers, request, and response bodies. C�����G���� tracks
the value of each cookie and associates the relevant interaction
(ex�ltration or in�ltration) to the element which initiated the in-
teraction. Because of our focus on identi�ers, C�����G���� only
captures cookie values that are at least 8 characters long (but it
would be trivial to extend it to consider smaller cookie values).

Figure 5 illustrates how C�����G���� creates a graph repre-
sentation. In this example, a third-party script from tracker1.com
executes in a �rst-party context on the webpage, example.com. The
script �rst reads infoCookie (1), which contains tracking informa-
tion such as the publisher ID and a user signature. Then, the script
sends the content of the cookie to tracker1.com’s sync endpoint
via an HTTP POST request (2). The endpoint returns a user ID (UID)
in the response body (3), which is stored in both a �rst-party cookie
and localStorage named IDStore (4). At a later point, the script
reads the value from IDStore (5) and ex�ltrates the UID to two
other tracking endpoints: to tracker2.com via a URL parameter
(6) and to tracker3.com via an HTTP header (7).

Figure 6 shows the graph representation that C�����G����
generates for the execution of the example script. The nodes in the
graph represent the script, the storage, and the network endpoints.
The edge numbers show the actions performed in Figure 5. The
dotted and dashed lines in the graph show the in�ltration and
ex�ltration behaviors captured by C�����G����. C�����G����
is not only able to capture the interactions of the script with the
storage and the network endpoints but is also able to precisely link
ex�ltration and in�ltration of the �rst-party cookie via an edge from
the cookie node to the endpoint.

Feature extraction. We use C�����G����’s representation to
extract two kinds of features.

Structural features represent relationships between nodes in the
graph, such as ancestry information and connectivity. Structural
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Figure 5: Example scenario to illustrate C�����G����’s graph construction (shown in Figure 5).

1

4, 5

2, 3

6

7

3, 4

5, 6

5, 7

Figure 6: Graph representation of Figure 5 inC�����G����.
network nodes, script nodes, and storage nodes.

While the solid lines show the interactions of the script
nodes with the storage and request nodes, the dashed (- - -)
and dotted (. . .) lines represent the ex�ltration and in�ltra-
tion edges that are captured by C�����G����.

features capture the relationships between the �rst-party cookie
nodes and scripts on the page. For example, how many scripts
interacted with a cookie or whether a script that interacted with a
cookie also interacted with other cookies.

Flow features represent �rst-party ATS cookie behavior. We
extract three types of �ow features. First, we count the number of
times a cookie was read or written. Second, we count the number of
times a cookie was in�ltrated via HTTP responses or ex�ltrated via
URL parameters, request headers, or request bodies. Third, features
related to the setter of the cookie. Concretely, whether the setter’s
domain also acted as an end-point for other cookie ex�ltrations, and
whether the setter’s domain was involved in redirect chains (since
redirects are commonly used in tracking). The intuition behind
the third category of features is that domains involved in setting
�rst-party ATS cookies are also involved in sharing information
with other ATSes.

C�����G���� does not use content features, e.g., based on
cookie name, as they can be trivially used to evade the detector
[62, 77].

5.2 Evaluation
Similar to previous work on graph-based webpage modelling [61,
77], we use a random forest classi�er to distinguish between ATS
and Non-ATS cookies. We �rst train and test the accuracy of this
classi�er on a carefully labeled dataset. Then, we deploy it on our
10K website dataset.

5.2.1 Ground truth labeling. Weuse two complementary approaches
to construct our ground truth for �rst-party ATS cookies. We repre-
sent each �rst-party cookie as a cookie-domain pair since the same
cookie name can occur on multiple sites.

Filter lists.We rely on �lter lists [8, 9] as previous work has found
them to be reasonably reliable in detecting ATS endpoints [61, 77].
Filter lists are designed to label resource URLs, rather than cookies.
We adapt them to label cookies by assigning the label of a particular
resource to all the cookies set by that resource. Since both ATS and
Non-ATS cookies can be set by the same resource, this labeling
procedure could result in a non-trivial number of false positives.
To limit the number of false positives in our ground truth, we only
label Non-ATS cookies based on �lter lists: i.e., if a script that sets a
cookie is not marked by any of the �lter lists, we label these cookies
as Non-ATS. Conservatively, if any one of the �lter lists marks the
cookie’s setter as ATS, we label the cookie as Unknown.

Cookiepedia. Inspired by priorwork [39], we use Cookiepedia [13]
as an additional source of cookie labels. Cookiepedia is a database
of cookies maintained by a well-known Consent Management Plat-
form (CMP) called OneTrust [39, 57]. For each cookie/domain pair,
Cookiepedia provides its purpose, de�ned primarily through the
cookie integration with OneTrust. Each cookie is assigned one of
four labels: strictly necessary, functional, analytics, and advertis-
ing/tracking. As Cookiepedia-reported purposes are self-declared,
we adopt a conservative approach: we only label a cookie-domain
pair as ATS if a cookie’s purpose is declared as advertising/tracking
or analytics in a particular domain. If the declared purpose is strictly
necessary or functional, we label the cookie as Unknown, as the
cookie might have been, mistakenly or intentionally, mislabeled.

We combine the results of the labeling approaches to obtain a
�nal label for the cookies. If both approaches label a cookie as Un-
known, its �nal label is Unknown. If only one of the approaches has
a known label, this is the �nal label. If Cookiepedia marks a cookie
as ATS and �lter lists mark it as Non-ATS, we give precedence to
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Figure 7: Feature distribution of cookie ex�ltrations (top)
and storage sets (bottom) for ATS and Non-ATS cookies. ATS
cookies are ex�ltrated and set more than Non-ATS cookies,
resulting in �ow features based on ex�ltrations and sets be-
ing helpful for the classi�er.

the Cookiepedia label and assign the �nal label as ATS because
websites are unlikely to self-declare their Non-ATS cookies as ATS.

Using this labeling process, 20,927 out of 78,560 �rst-party cook-
ies (26.64%) have a known (ATS or Non-ATS) label and the rest are
labeled as Unknown. We observe that cookies set by the same script
across two di�erent sites are often labeled ATS in one instance and
Unknown in another instance because Cookiepedia does not have
data for the latter. As it is unlikely that an ATS script changes pur-
pose across sites, we propagate the ATS label to all instances set by
the same script. Using this label propagation, we label 51.76% of the
data, with 21,875 (53.79%) ATS and 18,786 (46.20%) Non-ATS labels.

5.2.2 Classification. We train and test the classi�er on the labeled
dataset using standard 10-fold cross-validation. We ensure that
there is no overlap in the websites used for training and testing in
each fold. Similar to Section 5.1, we limit the classi�er to cookies
whose value is at least 8 characters long. The classi�er has 89.84%
precision and 92.52% recall, with an overall accuracy of 90.20%,
indicating that the classi�er is successful in detecting ATS cookies.

5.3 Feature Analysis
We conduct feature analysis to understand the most in�uential fea-
tures in the classi�cation of cookies. We �nd that the most in�uen-
tial features are the �ow features, which capture cookie ex�ltrations,
set operations, and redirections by cookie setters. Figure 7 shows
the distributions for the number of cookie ex�ltrations (top) and
the number of times a cookie is set (bottom), for ATS and Non-ATS
cookies. ATS cookies are much more likely to be ex�ltrated than
Non-ATS cookies: ATS have a median number of 6 ex�ltrations
(mean/std is 11.11/15.95) as compared to a median of 0 for Non-ATS
(mean/std is 0.62/5.29). Also, ATS cookies tend to be set much more
frequently by scripts, with a median of 3 set operations (mean/std
is 4.86/6.99) as compared to 1 for Non-ATS cookies (mean/std is

2.17/6.08). These �ndings con�rm our conclusions in Section 4:
�rst-party ATS cookies are used to store identi�ers which are then
ex�ltrated to multiple endpoints.
Error analysis.We conduct a manual analysis of C�����G����’s
false positives and false negatives to understand why the approach
fails.

We �nd that the cookies that were most misclassi�ed as ATS are
those whose publicly available descriptions indicate they are used
to track visitors on a page (e.g., __attentive_id, messagesUtk,
omnisendAnonymousID) [4, 10, 12]. We also �nd a few instances of
well-known Google Analytics cookies _ga and _gid that are labeled
in ground truth as Non-ATS, but are classi�ed by C�����G����
as ATS. Our manual inspection also shows that the false positives
are not caused by misclassi�cations, but mostly that the tracking
cookies �agged by C�����G���� were mislabeled as Non-ATS in
the ground truth. In other words, C�����G���� has likely correctly
classi�ed these tracking cookies. We note that even after our proce-
dures to improve ground truth labels, there may be cookies that did
not have self-disclosed labels or were served from slightly di�erent
scripts (thereby missing our hash-based script matching) leading.
This is a limitation of the ground-truth we use, as it relies on either
the self-declaration of the cookie purpose or a match between the
setting scripts to determine if a cookie is ATS. We leave the investi-
gation of further methods of improving the ground truth labeling
to future work.

Regarding false negatives, i.e., ATS cookies missed by C������
G����, wemainly observe two cases. First, we have the case of �nite
coverage of encodings. A representative case is the _pin_unauth
cookie. Its value is double-base64-encoded, which is not included
in the list of potential encoding schemes used by C�����G���� to
detect ex�ltration. These false negatives can be averted by using
a more comprehensive list of encoding schemes or by performing
full-blown information �ow tracking instead of approximating ex-
�ltration �ows; however, the latter would come at a performance
cost as we discuss in Section 5.5.

Second, we have the case of lack of coverage of actions. Our
crawl to create the graphs in C�����G���� may not capture all
possible actions on a webpage. If C�����G���� does not capture
su�cient activity during webpage execution, some cookies may not
be triggered and therefore, the analysis will miss them. We further
discuss these cases of false negatives in Section 6.1

5.4 Deployment
WedeployC�����G���� to classify all cookies, including Unknown
cookies, in our crawl of 10K sites.
Prevalence of �rst-party ATS cookies. C�����G���� classi�es
62.48% of the 74,003 �rst-party cookies in our dataset as ATS. We
�nd that 93.43% of sites deploy at least one �rst-party ATS cookie.
Of these sites, the average number of �rst-party ATS cookies per
site is 6.29.
Who sets �rst-party ATS cookies? The vast majority (98.39%)
of the �rst-party ATS cookies are set by third-party embedded
scripts served from a total of 1,588 unique domains. This shows
that �rst-party ATS cookies are in fact set and used by third-parties.
These �rst-party cookies enable third-parties to perform same-site
tracking as described in Section 3.
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Who sends and receives �rst-party ATS cookies? Next, we an-
alyze the most prevalent �rst-party cookies and the third-party
entities that actually set them. Table 3 lists top-25 out of 5,019
�rst-party ATS cookies2 based on their prevalence. Two major ad-
vertising entities (Google and Facebook) set �rst-party ATS cookies
on approximately a third of all sites in our dataset. C�����G����
detects _gid and _ga cookies by Google Analytics as ATS on 77.11%
and 68.88% of the sites. The public documentation acknowledges us-
ing these two �rst-party cookies to store user identi�ers for tracking
[24]. We also �nd evidence of widespread cross-domain �rst-party
�rst-party ATS cookie sharing. For example, _gid and _ga cookies
are respectively ex�ltrated to 56 and 179 destination domains, more
than 95% of which are non-Google domains.

C�����G���� detects _fbp cookie by Facebook as ATS on 33.22%
of the sites. Their public documentation acknowledges that Face-
book tracking pixel stores unique identi�ers in the �rst-party _fbp
cookie [21]. In fact, Facebook made a recent change to include
�rst-party cookie support in its tracking pixel to avoid third-party
cookie countermeasures [35]. It is again noteworthy that the _fbp
cookie by Facebook is ex�ltrated to 73 destination domains, more
than 98% of which are non-Facebook domains.

This extensive sharing of �rst-party ATS cookies to other do-
mains enables cross-domain same-site tracking, through which
a tracker who is unable to set �rst-party cookies is still able to track
user activity on a site.

TikTok, a social media app that is known to aggressively harvest
sensitive user information [27], also recently added support for
setting �rst-party tracking cookies using TikTok Pixel [32, 34]. Tik-
Tok’s �rst-party _ttp tracking cookie is present on 3.75% percent
of sites, which is considerably lower than Facebook and Google but
comparable to more specialized entities such as Criteo.

Criteo’s cto_bundle cookie is amongst the most prevalent �rst-
party ATS cookies. We observe that Criteo sets this �rst-party ATS
cookie on 5.98% of the sites in our dataset.
Cross-site tracking. As discussed in Section 3, trackers can use
deterministic (e.g., email address) or probabilistic (�ngerprinting)
identi�ers for cross-site tracking using �rst-party cookies.3 We
show that scripts that set �rst-party ATS cookies are also involved
in �ngerprinting.

First, we analyze the �rst-party cookies set by the scripts from
entities that are known to engage in browser �ngerprinting. We
use Disconnect’s sublist of �ngerprinters [23, 30] from its tracking
protection list [6]. We �nd that 45 (2.83%) distinct domains that set
�rst-party cookies are also known �ngerprinters. These domains
are responsible for setting 41.45% of all �rst-party ATS cookies.

Second, we use FP-Inspector [59] to further determine whether
�rst-party ATS cookies are set by �ngerprinting scripts. Using FP-
Inspector, we are able to �nd �ngerprinting scripts on 1,264 out
of 10k websites. We further �nd that �ngerprinting scripts on 984
websites set �rst-party cookies. In total, 349 �rst-party cookies are
set by �ngerprinting scripts. 72 out of these 349 cookies, set by
77 di�erent �ngerprinting scripts, are classi�ed by C�����G����
as ATS cookies. It is noteworthy that 70 of these 72 cookies (e.g.,
2We report distinct tuples of the cookie name and the setter script’s URL.
3While our automated crawls do not allow us to test the use of deterministic identi�ers
for cross-site tracking at scale, recent work [71] showed the use of email addresses
and other deterministic identi�ers by trackers such as Criteo.

adtech_uid, tfstk, bafp, pxde) are not listed as tracking cookies
on Cookiepedia. Our manual analysis of the remaining 268 Non-
ATS cookies shows that they store non-identi�able information
(e.g., domain names, �ags for cookie permissions).

5.5 Comparison with Existing
Countermeasures

In this section, we compareC�����G����with some of the existing
countermeasures which are used to restrict the e�ect of �rst-party
cookies.
Intelligent Tracking Prevention (ITP) is used by Safari as a
broad countermeasure against online tracking activities. Under ITP,
Safari limits the maximum expiry time of a �rst-party cookie set
through JavaScript to seven days [82]. In addition, Safari limits
this time to only 24 hours for known trackers.4 While this can
be a prudent countermeasure if the �rst-party tracking cookies
were meant to be a storage for the identi�er for the repeat visits
of the user. However, as we have shown in the previous section,
�rst-party tracking cookies are shared with a large number of other
domains immediately after being set. This sharing of identi�ers
among di�erent trackers is meant to enhance their ability to track
users across di�erent sites. Limiting the amount of time that a
cookie is set for will not be able to stop this sharing of information,
thus proving ine�ective in protecting user privacy.

5.6 Comparison to classi�er-based blocking
Next, we compare C�����G���� with state-of-the-art countermea-
sures against ATS, CookieBlock [39] and WebGraph [77], in terms
of detection accuracy, website breakage, and robustness.
CookieBlock [39] is a state-of-the-art approach to classify cook-
ies, including advertising/tracking and analytics. It makes use of
both manually curated allow lists and a machine learning classi�er,
which mainly relies on features based on cookie attributes (cookie
names and values).
WebGraph [77] is the state-of-the-art graph-based approach to
classify ATS requests. Since WebGraph is not designed to directly
classify cookies, we adapt it to this end by identifying ATS resources
identi�ed by WebGraph in 3P-Blocked and generating a block list
of cookies for each domain set by those resources. This list is meant
to mimic the e�ect of blocking these resources on �rst-party ATS
cookies.

5.6.1 Detection Accuracy. Table 4 compares the detection accuracy
of C�����G���� with CookieBlock and WebGraph. C�����G����
outperforms both approaches in all metrics. The superiority in
precision indicates that existing countermeasures result on many
more false positives than C�����G����. These additional false
positives mean that previous approaches would block functional
�rst-party cookies potentially a�ecting user experience.

5.6.2 Website Breakage. Wemanually analyze the breakage caused
by C�����G����, CookieBlock and WebGraph’s on 50 sites that
are sampled from the 10K sites used in Section 4 (25 sites chosen
randomly from the top 100 and other 25 from the rest). We list these
sites in A.2.
4Firefox also limits the expiry time for cookies set by known trackers to 24 hours [68].
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Table 3: List of top-25 ATS cookies detected by C�����G����

Cookie Script Org. Percentage Destination Top-3 Destination Domains
Name Domain of Sites Domains # 1 # 2 # 3

_gid google-analytics.com Google 77.11% 56 google-analytics.com doubleclick.net mountain.com
_ga google-analytics.com Google 68.88% 179 google-analytics.com doubleclick.net google.com
_fbp facebook.net Facebook 33.22% 73 facebook.com appier.net google-analytics.com
_gcl_au googletagmanager.com Google 14.22% 21 google.com doubleclick.net tealiumiq.com
__gpi googlesyndication.com Google 14.02% 4 doubleclick.net googleadservices.com ezoic.net
_ga googletagmanager.com Google 12.79% 48 google-analytics.com doubleclick.net google.com
__gads googlesyndication.com Google 12.35% 2 doubleclick.net googleadservices.com
__gads doubleclick.net Google 11.68% 11 doubleclick.net googleadservices.com ezoic.net
_uetsid bing.com Microsoft 10.22% 15 bing.com hotjar.com tealiumiq.com
_uetvid bing.com Microsoft 10.22% 21 bing.com hotjar.com tealiumiq.com
__gpi doubleclick.net Google 10.11% 10 doubleclick.net googleadservices.com ezoic.net
_clck clarity.ms Microsoft 8.81% 9 tealiumiq.com driftt.com lmiutil.com
_hjTLDTest hotjar.com Hotjar 8.05% 1071 azercell.com musinsa.com google-analytics.com
_clsk clarity.ms Microsoft 7.88% 7 tealiumiq.com driftt.com clicktripz.com
cto_bundle criteo.net Criteo 5.98% 7 criteo.com fullstory.com ezoic.net
_ym_d yandex.ru Yandex 4.85% 178 google-analytics.com yandex.ru doubleclick.net
_ym_uid yandex.ru Yandex 4.85% 48 yandex.ru adfox.ru google-analytics.co
_pin_unauth pinimg.com Pinterest 4.57% 7 tealiumiq.com fullstory.com azure.com
__utma google-analytics.com Google 4.32% 3 google-analytics.com fullstory.com ringostat.net
__utmb google-analytics.com Google 4.32% 5 google-analytics.com piwik.pro intellimize.co
__utmz google-analytics.com Google 4.32% 2 google-analytics.com ringostat.net
__qca quantserve.com Quantcast 4.19% 29 rubiconproject.com yahoo.com openx.net
__utmc google-analytics.com Google 4.17% 5 fullstory.com google.com google-analytics.com
_ttp tiktok.com TikTok 3.75% 3 tealiumiq.com m-pages.com clicktripz.com
hubspotutk hs-analytics.net HubSpot 3.29% 34 hubspot.com facebook.com hsforms.com

Table 4: Classi�cation accuracy of C�����G����, Web-
Graph, and CookieBlock

Classi�er Accuracy Precision Recall

C�����G���� 90.20% 89.84% 92.52%
WebGraph 78.74% 71.59% 85.49%
CookieBlock 72.45% 69.95% 80.78%

We divide our breakage analysis into four categories of typ-
ical website usage: navigation (from one page to another), SSO
(initiating and maintaining login state), appearance (visual consis-
tency), and miscellaneous functionality (chats, search, shopping
cart, etc.). We label breakage as major or minor for each category:
major breakage – when it is not possible to use the functionality
on the site included in either of the aforementioned categories, and
minor breakage – when it is di�cult, but not impossible, for the
user to make use of the functionality. To assess website breakage,
we compare a vanilla Chrome browser (with no countermeasures
against �rst-party cookies) with browsers enhanced with an ex-
tension which blocks all �rst-party cookies classi�ed as ATS by
C�����G����, enhanced with an extension which blocks all cook-
ies set by resources labeled as ATS by WebGraph, and enhanced
with the o�cial CookieBlock extension [19]. We also include two
additional con�gurations in this analysis, �lter lists [8, 9], and a
Google Chrome with all cookies blocked. We use two reviewers
to perform the breakage analysis to mitigate the impact of biases
or subjectivity. Any disagreements between the reviewers were
resolved after careful discussion.

Out of the 50 sites, C�����G���� only had major breakage on
one site where a cookie popup kept freezing up and preventing
navigation around the website due to the deletion of a cookie that
stores user preferences. In contrast, WebGraph, CookieBlock, and
�lter lists cause major breakage in one of the four categories on
at least 6% of the sites. For example, WebGraph causes issues with
cart functionality on etsy.com, complete homepage breakage on
aliexpress.us, and SSO issues on other sites. Most of the breakage
issues of CookieBlock relate to SSO logins and additional login-
dependent functionality (e.g., missing pro�le picture). Our results,
that CookieBlock causes breakage on 10% of the sites with SSO
logins, are similar to the 7-8% breakage reported by the authors
[39]. Blocking all cookies results in major breakage on 32 percent
of the sites tested, with SSO and cart functionality proving to be
the most recurring issue.

We also �nd that WebGraph blocks some additional �rst-party
cookies that are important for server-side functionality, but not
directly related to user experience and therefore not immediately
perceptible. For example, WebGraph blocks essential cookies such
as Bm_sz cookie used by Akamai for bot detection, XSRF-TOKEN
cookie used to prevent CSRF on di�erent sites, and AWSALB cookies
used by Amazon for load balancing. C�����G���� correctly clas-
si�ed these cookies at Non-ATS, and thus does not prevent these
measures from being deployed.

5.6.3 Robustness. We compare the robustness to evasion of C����
��G����, CookieBlock, and WebGraph, i.e., to intentional modi�-
cations of the cookies to cause the misclassi�cation of ATS cookies
as Non-ATS. Since ATS are known to engage in the arms race with
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Table 5: Website breakage comparison of all three
countermeasures.( ) signi�es no breakage, ( ) minor
breakage, and ( ) major breakage. Each cell represents
the percentage of sites on which breakage was observed.

Classi�er Navigation SSO Appearance Miscellaneous
Minor Major Minor Major Minor Major Minor Major

C�����G���� 0% 2% 0% 0% 0% 0% 0% 0%
WebGraph 6% 2% 0% 2% 4% 2% 2% 2%
CookieBlock 2% 0% 0% 10% 0% 0% 2% 2%
Filter lists 4% 2% 0% 2% 2% 2% 2% 4%
No Cookies 8% 8% 0% 32% 6% 12% 2% 28%

privacy-enhancing tools [36, 60, 65], it is important to test whether
the detection of �rst-party ATS cookies is brittle in the face of trivial
manipulation attempts such as changing cookie names.

We evaluate robustness on a test set of 2,000 sites from our
dataset which also have the required CMP needed by CookieBlock
for data collection and training. This translates to a total set of 7,726
�rst-party cookies. We change the names of the cookies in our test
set to randomly generated strings between 2 and 15 characters.
Both C�����G���� and WebGraph are fully robust to manipula-
tion of cookies names while CookieBlock’s accuracy degrades by
more than 15.68%, while precision and recall degrade by 15.08%
and 16.54% respectively. C�����G���� and WebGraph are robust
because they do not use any content features (features related to
the cookie characteristics, such as cookie name or domain) since
these can be somewhat easily manipulated by an adversary aiming
to evade classi�cation [77]. On the contrary, the most important
feature of CookieBlock depends on the cookie name, i.e., whether
the name belongs to the top-500 most common cookie names [38].

C�����G����’s implementation of �ow features can be ma-
nipulated by an adversary by using a di�erent encoding than it
currently considers or by changing the domains of ex�ltration end-
points.C�����G����’s robustness to these attacks can be improved
by more comprehensive information �ow tracking. However, full-
blown information �ow tracking would incur prohibitively high
run-time overheads (up to 100X-1000X [56]) and implementation
complexity in the browser [42, 43, 66, 79].

To assess the robustness of C�����G���� against manipula-
tion of these �ow features, we remove the features related to the
�ow of cookie information (ex�ltration and in�ltration of �rst-
party ATS cookies) and then re-train/test the classi�er. We �nd
that C�����G����’s accuracy drops by only 2% when ex�ltration
and in�ltration features are removed. Our feature analysis using
information gain shows that, instead of focusing on ex�ltration
features, C�����G���� shifts focus to other features such as the
number of local storage accesses by a script and redirections by
cookie setters. While there is a slight performance degradation
when these features are removed, C�����G���� is able to adapt
and still outperforms existing countermeasures by more than 10%
in terms of classi�cation accuracy.

6 LIMITATIONS
6.1 Completeness
C�����G���� relies on a graph representation of interactions be-
tween di�erent elements during webpage execution. The number
of interactions captured depends on the intensity and variety of

user activity on a webpage (e.g., scrolling activity, number of in-
ternal pages clicked). Thus, it is possible that C�����G���� does
not detect certain ATS cookies if user activity is insu�cient as
that would mean that its graph representation has not captured
particular interactions between di�erent elements in the webpage.

To study the impact of user activity, we recrawl sites performing
two to three times more internal page clicks than in the original
crawl. We speci�cally recrawl 238 sites where Criteo’s cto_bundle
cookie was originally classi�ed as Non-ATS by C�����G����.
C�����G����’s deployment on the recrawled sites results in suc-
cessful detection of Criteo’s cto_bundle cookie as ATS on 121 of
the 238 recrawled sites. We �nd that the average number of in�ltra-
tions (ex�ltrations) increase from 1.54 to 2.95 (1.13 to 4.01) across
the original and recrawled sites. We observed a similar trend for
other prevalent �rst-party ATS cookies in our dataset.

We surmise that while there are cases where C�����G����
incorrectly classi�es ATS as Non-ATS due to incompleteness of
the graph representation, its decision re�ects the behavior of the
cookie at the time of classi�cation. As more interaction is captured
in the graph, C�����G���� is able to correctly switch the label to
ATS. More importantly, C�����G���� never switches labels from
ATS to Non-ATS due to increased interaction.

6.2 Deployment
C�����G����’s implementation is not suitable for runtime de-
ployment due to the performance overheads associated with the
browser instrumentation and machine learning pipeline. We envi-
sion C�����G���� to be used in an o�ine setting: First �rst-party
ATS cookie-domain pairs are detected using C�����G���� and
(2) the detected cookie-domain pairs are added to a cookie �lter
list such as those already supported in privacy-enhancing browser
extensions (e.g., uBlock Origin [33]) for run-time blocking. We ar-
gue that a reasonably frequent (e.g., once a week) deployment of
C�����G���� on a large scale would be su�cient in generating and
keeping the �lter list up-to-date. While advertisers and trackers can
in theory change cookie names at a rate faster than C�����G����’s
periodic deployment, updating cookie names frequently is challeng-
ing in practice because setting these �rst-party ATS cookies across
many di�erent sites requires tight coordination between di�erent
entities. To illustrate the practical issues associated with changing
cookie names, consider the legacy demdex cookie set by Adobe’s
embedded script that is then ex�ltrated to the demdex.net domain.
Adobe’s documentation explains that it is di�cult to change the
legacy name because “... it is entwined deeply with Audience Man-
ager, the Adobe Experience Cloud ID Service, and our installed user
base” [5, 15]. If advertisers or trackers are somehow able to over-
come these practical challenges and change cookie names at a much
faster pace, C�����G����’s online implementation for run-time
cookie classi�cation would be necessary. Further research is needed
for e�cient and e�ective online implementation of C�����G����.

7 CONCLUSION
In this paper, we investigated the use of �rst-cookies for tracking.
Through a large-scale di�erential measurement, we showed that
trackers use �rst-party cookies to ex�ltrate identi�ers even when
third-party cookies are blocked. We found that third-party cookie
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blocking is ine�ective and blanket �rst-party cookie blocking is not
practical because it results in major functionality breakage on al-
most one-third of sites. To detect and block �rst-party tracking cook-
ies, we proposed C�����G����, a machine-learning approach that
captures fundamental tracking behaviors exhibited by �rst-party
cookies. Our evaluation showed that C�����G���� outperformed
the state-of-the-art in terms of detection accuracy, minimization
of website breakage, and robustness to evasion attacks. Our de-
ployment of C�����G���� on 10K websites provided evidence
of widespread use of �rst-party tracking cookies on 93.43% of the
tested sites. These �rst-party tracking cookies are set by third-party
embedded scripts served from 1,588 domains that include major
advertising entities such as Google, Facebook, and TikTok.
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A APPENDIX
A.1 Case Studies
In this section, we look at case studies of ATSes identi�ed in Sec-
tion 4.3 which are found to be extensively using �rst-party cookies
for tracking purposes. We analyze the behavior of these ATS in our
crawls, compare the observed behavior with their documentation,
and create a generic model which all �rst-party-cookie-based ATSes
follow in Section 3. We present case studies of three ATSes here:
Lotame, ID5, and Criteo.

A.1.1 Lotame. Lotame is a data and identity management solu-
tion which claims to provide a single ID to users across multiple
browsers, devices, and platforms. Lotame’s Lightning Tag [29] pack-
ages the user visit data in a JSON object and sends it to its servers.
Code 1 shows an example payload sent to Lotame. The payload
includes IDs assigned by the website, third-party identi�ers present
on the site, certain user behaviors (con�gured through collaboration
between the publisher and Lotame), and other custom rules de�ned
per website [28]. Lotame processes the payload and matches the
data with its Cartographer Identity Graph [18], and sends back an
ID, called panoramaID [31], which is stored as a �rst-party cookie
or in localStorage.

A.1.2 ID5 Universal ID. ID5 provides identity resolution for pub-
lishers and advertisers through its Identity Cloud [25]. ID5’s script
packages a payload that contains several deterministic identi�ers,
such as email, usernames, and phone numbers (if available) and
as well as probabilistic identi�ers include, such as IP address, user
agent, and location of the user [11]. ID5 then processes the payload
and matches the data with its Identity Cloud and send back an ID,
called universal_id, which is stored as a �rst-party cookie and as
well as in local storage. An example payload from ID5 is shown in
Figure 2. We note that ID5 also provides Partner Graph, a service
that enables information sharing among its partners [25]. Partner
Graph allows di�erent identify providers to exchange information
with each other.

A.1.3 Criteo. Criteo provides Criteo Identity Graph for identity
resolution [20]. Criteo Identity Graph is built from four di�erent
sources: (i) data contributed by advertisers, (ii) data collected from
publisher websites by Criteo itself, (iii) data provided by Criteo

1 data: {
2 behaviorIds: [1,2,3],
3 behaviors: {
4 int: [�behaviorName �, �behaviorName2 �],
5 act: [�behaviorName �]
6 },
7 ruleBuilder: {
8 key1: [�value 1a�, �value 1b�]
9 },
10 thirdParty: {
11 namespace: �NAMESPACE �,
12 value: �TPID_VALUE �
13 }
14 }

Code 1: Example of data sent structure sent to Lotame
during a user’s �rst visit.

1 {
2 �created_at�:�2022 -02-09T11:42:40.817811Z�,
3 �id5_consent�:true ,
4 �original_uid�:�ID5*

FnFOGLkYzdJjuoK3KvAecVW2oFpZ7OrZiW7h-M0H
5 ACAHYuWkxQrEGcpWuOkQUXbHB2OO8Rj0wt94jllT
6 WHQ6wdkqOwSbnYea8cesuONCF4HZeIoDaB_TwBsy
7 lKrs3tHB2Y87ZwP0DrpYlGz1OG1Fgdn0YdgqoSGU
8 SGxzS1gUzsHaMIUBVqf2I08es6aUULEB2n48oyL0
9 nGnRtstVqtcQQdquS3Aay4Hhgbzh9gIZyYHa_nLT
10 d5rjbbR0ZXwkXDzB2yU1XUC2dukip1J_clVAgdtt
11 xC_xaRRBOLi0fnvp9cHbqr_pWihTtaUMS_R6eLuB
12 2_AMExt1UdhJZBe2mcXZAdwm9lcbeMMvlpg3MBrC
13 oHcUgzNypi-5xLUqBD8GC4B3KsefcNkiDvI4n9ZL
14 7OjAdzqB9PD-KczAx63Ck0gEIHdNPfQeEi-f5VaO
15 OEhf6B3VUqDoL11hqVoIuDhKJbgd2kp0mgXabhwJ
16 tPO7sgWwHd_vz_uIYYmqQBTbH-JFVB3h1-kI9GQv
17 dby2PyftDawd596ho3tuOsKtoDOk4S4Her2Uw-_u
18 BYRxrt6YzVYqB3tRwTVI3Fxm8cGJyjdmYAd88lom
19 BIpkOeg2Ok4VTNc�,
20 �universal_uid�:�ID5*

HGH7W7iMpMu3-EPZCXUuqNBB7fFHUUVcbSddSSG
21 Fu5UHYucsBxMz2jncvKS7rkwlB2MWiiPupapPxa
22 79 eieMAdkTyMQz82s1vIekPr28DEHZbqTCrapj9
23 Fb9K0x4zjlB2YHOKNDwQY6mZwxk_1mwAdna3wWna
24 hrpMEUrPxJSnAHaPYB-InS5DXGpQgqbqirB2nHFI
25 D4j9i9BgCP3k0VygdqdtFHsT7eeDfFYuB8EQ0Ha4
26 -yV9Ifvbvi5oxmtH7HB2xg-mmmOeyVOPBYGi2tfw
27 dtREZnUE83cfn_LHvHvu4HbvkLkwEFJiddOEp4PT
28 ZbB2-de_VPyKHax5JtpO46xwdwZ_0UMgANOsZygV
29 0SrrMHcZ37qQB-LkCO4tWoTbv_B3KMGCMrebcfLE
30 TeCn0AEgdzIR1utDJzM6AaiL9KVkAHdPtrAtTv73
31 ZyDg92Rq-_B3XeRNOOc7b2CEBsilXOlQd2sfmR36
32 NyW-dsK9CUmd4Hd3vcrlAWzfYEfw01Q5J1B3ibAF
33 UYrA0XWMl-D9jSlAd5iX1tGA4vPu0wdZkXVOEHek
34 q2xibOm9XwN2nSdZjbB3v8nOyzGuF9QgwI67pMGQ
35 d85BszRCJDUkiiu-tv5BQ�,
36 �signature�:�ID5_Ab6tnGgmCcjKo-qFGVKszuNpNePqkOHZT
37 rbCmpuktLLOlNOCALhmY_91AHP8LU0BvfJT2Q
38 JQWlsUEfynB1hBGZc�,
39 �link_type�:1,
40 �cascade_needed�:true ,
41 �privacy�:{
42 �jurisdiction�:�other�,
43 �id5_consent�:true
44 }
45 }

Code 2: Example of data structure received from ID5 during
a user’s �rst visit.

partners such as LiveRamp and Oracle, (iv) and predictions on ex-
isting data by Criteo’s machine learning models. Criteo claims that
its identity graph is able to stitch together identi�ers from more
than 2 billion users across the world, and that it contains persis-
tent deterministic identi�ers for 96% of the users [20]. Similar to
other identity resolution services, Criteo generates an ID, based on
identi�ers, such as hashed emails, mobile device IDs, cookie IDs,
and stores it in �rst-party storage as cto_bundle. Their documen-
tation shows that Criteo makes use of both �rst-party cookies and
localStorage for storing cto_bundle cookie. We consider this to
be one of the fundamental behaviors of �rst-party ATS cookies.
As described in Section 5.1, C�����G����’s graph representation
abstracts storage to refer to both Cookies and localStorage. We also
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include a count of localStorage accesses in the feature set computed
from the graph representation. Inclusion of these features help
C�����G���� e�ectively model �rst-party ATS cookies behavior.

A.2 Breakage Analysis
Following sites were used for breakage analysis:

• bidswitch.com
• kirkusreviews.com
• csdn.net
• dropbox.com
• trello.com
• deodap.com
• baidu.com
• stvincent.edu
• microsoft.com
• promopult.ru
• twitch.tv
• pikiran-rakyat.com
• etsy.com
• jar-download.com
• seoreviewtools.com
• planvital.cl
• snnp.co.th
• telfar.net
• tribunnews.com
• gop.edu.tr
• coinbase.com
• uideck.com

• vk.com
• amssoft.ru
• generateblocks.com
• swissid.ch
• zhanqi.tv
• google.com.hk
• withgoogle.com
• hindi�re.com
• aparat.com
• ebay.com
• shopee.co.th
• chase.com
• medium.com
• box.com
• calendardate.com
• weibo.com
• zoom.us
• google.com
• castlelearning.com
• o�ce.com
• rocketpunch.com
• freepik.com
• aliexpress.us
• huanqiu.com
• plati.market
• daysmartspa.com
• klett.pl
• stackover�ow.co
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