
AutoFR: Automated Filter Rule Generation for Adblocking

Hieu Le* Salma Elmalaki* Athina Markopoulou* Zubair Shafiq†

*University of California, Irvine †University of California, Davis

This is an extended version of our paper that appears in USENIX Security 2023

Abstract
Adblocking relies on filter lists, which are manually curated
and maintained by a community of filter list authors. Filter
list curation is a laborious process that does not scale well to a
large number of sites or over time. In this paper, we introduce
AutoFR, a reinforcement learning framework to fully auto-
mate the process of filter rule creation and evaluation for sites
of interest. We design an algorithm based on multi-arm ban-
dits to generate filter rules that block ads while controlling the
trade-off between blocking ads and avoiding visual breakage.
We test AutoFR on thousands of sites and we show that it is
efficient: it takes only a few minutes to generate filter rules
for a site of interest. AutoFR is effective: it generates filter
rules that can block 86% of the ads, as compared to 87% by
EasyList, while achieving comparable visual breakage. Fur-
thermore, AutoFR generates filter rules that generalize well to
new sites. We envision that AutoFR can assist the adblocking
community in filter rule generation at scale.

1 Introduction
Adblocking is widely used today to improve the security,
privacy, performance, and browsing experience of web users.
Twenty years after the introduction of the first adblocker
in 2002, the number of web users who use some form of
adblocking now exceeds 42% [9]. Adblocking primarily
relies on filter lists (e.g., EasyList [22]) that are manually
curated based on crowd-sourced user feedback by a small
community of filter list (FL) authors. There are hundreds of
different adblocking filter lists that target different platforms
and geographic regions [10]. It is well-known that the filter
list curation process is slow and error-prone [6], and requires
significant continuous effort by the filter list community to
keep them up-to-date [40].

The research community is actively working on machine
learning (ML) approaches to assist with filter rule gener-
ation [11, 29, 60] or to build models to replace filter lists
altogether [1, 33, 59, 74]. There are two key limitations of
prior ML-based approaches. First, existing ML approaches
are supervised as they rely on human feedback and/or existing

filter lists (which are also manually curated) for training. This
introduces a circular dependency between these supervised
ML models and filter lists — the training of models relies
on the very filter lists (and humans) that they aim to augment
or replace. Second, existing ML approaches do not explicitly
consider the trade-off between blocking ads and avoiding
breakage. An over-aggressive adblocking approach might
block all ads on a site but may block legitimate content at
the same time. Thus, despite recent advances in ML-based
adblocking, filter lists remain defacto in adblocking.

Fig. 1(a) illustrates the workflow of a FL author for
creating rules for a particular site: (1) select a network
request to block; (2) design a filter rule that corresponds to
this request and apply it on the site; (3) visually inspect the
page to evaluate if the filter rule blocks ads and/or causes
breakage and; (4) repeat for other network requests and rules;
since modern sites are highly dynamic, and often more so in
response to adblocking [6, 17, 40, 76], the FL author usually
revisits the site multiple times to ensure the rule remains
effective; and (5) stop when a set of filter rules can adequately
block ads without causing breakage.

We ask the question: how can we minimize the manual
effort of FL authors by automating the process of generating
and evaluating adblocking filter rules? We propose AutoFR
to automate each of the aforementioned steps, as illustrated
in Fig. 1(b), and we make the following contributions.

First, we formulate the filter rule generation problem
within a reinforcement learning (RL) framework, which
enables us to efficiently create and evaluate good candidate
rules, as opposed to brute force or random selection. We
focus on URL-based filter rules that block ads, a popular and
representative type of rules that can be visually audited. An
important component, which replaces the visual inspection, is
the detection of ads (through a perceptual classifier, Ad High-
lighter [63]) and of visual breakage (through JavaScript [JS]
for images and text) on a page. We design a reward function
that combines these metrics to enable explicit control over
the trade-off between blocking ads and avoiding breakage.

Second, we design and implement AutoFR to train the RL

1

ar
X

iv
:2

20
2.

12
87

2v
2

 [c
s.L

G
]

8
M

ar
 2

02
3

Browser

Site (ℓ)

Filter List
Author

Network
Requests

2. Create Filter
Rule and Apply

3. Visual
Inspection

Filter
Rules

1. Selects 5. Stop

Filter List
Author

4. Repeat

(a) Filter List Authors’ (Human) Workflow. How filter list authors create
filter rules for a site `: (1) they select a network request caused by the site; (2)
they create a filter rule and apply it on the site; (3) they visually inspect whether
it blocked ads without breakage; (4) they repeat the process if necessary for
other network requests; and (5) they stop when they have crafted filter rules
that can block all/most ads for the site without causing significant breakage.

Configs Updates

Environment

User of
AutoFR

Browser

Site (ℓ)

Agent

Policy Action
Space

2. Action (a)
(Filter Rule)

3. Reward

Output

Filter
Rules

1. Selects
5. Stop4. Repeat

(b) AutoFR (Automated) Workflow. AutoFR automates these steps as follows:
(1) the agent selects an action (i.e., filter rule) following a policy; (2) it applies
the action on the environment; (3) the environment returns a reward, used to
update the action space; (4) the agent repeats the process if necessary; and (5) the
agent stops when a time limit is reached, or no more actions are available to be
explored. The human filter list author only provides a site ` and configurations
(e.g., threshold w and hyper-parameters).

Figure 1: AutoFR automates the steps taken by FL authors to
generate filter rules for a particular site. FL authors can configure the
AutoFR parameters but no longer perform the manual work. Once
rules are generated by AutoFR, it is up to the FL authors to decide
when and how to deploy the rules to end-users.

agent by accessing sites in a controlled realistic environment.
It creates rules for a site in under two minutes, which is
crucial for scalability. We deploy and evaluate AutoFR’s
efficient implementation on Top–10K websites, and we find
that the filter rules generated by AutoFR block 86% of the
ads. We also find that they generalize well to new sites, e.g.,
blocking 80% of the ads on the Top 5K–10K sites. The
effectiveness of the AutoFR rules is overall comparable to
EasyList in terms of blocking ads and visual breakage. Thus,
we envision that the adblocking community will use AutoFR
to automatically generate and update filter rules at scale.

The rest of our paper is organized as follows. Sec. 2
provides background and related work. Sec. 3 formalizes
the problem of filter rule generation, including the human
process, the formulation as an RL problem, and our particular
multi-arm bandit algorithm for solving it. Sec. 4 presents our
implementation of the AutoFR framework. Sec. 5 provides
its evaluation on the Top–10K sites. Sec. 6 concludes the
paper. The appendices provide additional details and results.

2 Background & Related Work
Filter Rules. Adblockers have relied on filter lists since their
inception. The first adblocker in 2002, a Firefox extension,
allowed users to specify custom filter rules to block resources
(e.g., images) from a particular domain or URL path [48].
There are different types of filter rules. The most popular
type is URL-based filter rules, which block network requests
to provide performance and privacy benefits [61]. Other

types of filter rules are element-hiding rules (hide HTML
elements) and JS-based rules (stop JS execution). App. A
provides a longitudinal analysis and discussion of widely
used filter rules. Filter rules can also be per-site (i.e., they
are only allowed to trigger for particular sites) or treated as
global rules (i.e., allowed to trigger for any sites). Popular
filter lists, such as EasyList, support these rules. Per-site rules
are denoted with the “$domain” option in EasyList. This
paper focuses on URL-based, per-site rules.
Filter Lists and their Curation. Since it is non-trivial for
lay web users to create filter rules, several efforts were estab-
lished to curate rules for the broader adblocking community.
Specifically, rules are curated by filter list (FL) authors
based on informal crowd-sourced feedback from users of
adblocking tools. As elaborated in App. A, there is now a
rich ecosystem of thousands of different filter lists focused
on blocking ads, trackers, malware, and other unwanted web
resources. EasyList [22] is the most widely used adblocking
filter list. Started in 2005 by Rick Petnel, it is now maintained
by a small set of FL authors and has 22 language-specific
versions. An active EasyList community provides feedback
to FL authors on its official forum and GitHub.

The research community has looked into the filter list
curation process to investigate its effectiveness and pain-
points [6, 40, 61, 70]. Snyder et al. [61] studied EasyList’s
evolution and showed that it needs to be frequently updated
(median update interval of 1.12 hours) because of the
dynamic nature of online advertising and efforts from
advertisers to evade filter rules. They found that it has grown
significantly over the years, with 124K+ rule additions and
52K+ rule deletions over the last decade. Alrizah et al. [6]
showed that EasyList’s curation, despite extensive input from
the community, is prone to errors that result in missed ads
(false negatives) and over-blocking of legitimate content
(false positives). They concluded that most errors in EasyList
can be attributed to mistakes by FL authors. We elaborate
further on the challenges of filter rule generation in Sec. 3.1.
Machine Learning for Adblocking. Motivated by these
challenges, prior work has explored using machine learning
(ML) to assist with filter list curation or replace it altogether.

One line of prior work aims to develop ML models to
automatically generate filter rules for blocking ads [11,29,60].
Bhagavatula et al. [11] trained supervised ML classifiers to
detect advertising URLs. Similarly, Gugelmann et al. [29]
trained supervised ML classifiers to detect advertising and
tracking domains. Sjosten et al. [60] is the closest related
to our work. First, they trained a hybrid perceptual and web
execution classifier to detect ad images [13]. Second, they
generated adblocking filter rules by first identifying the URL
of the script responsible for retrieving the ad and then simply
using the effective second-level domain (eSLD) and path
information of the script as a rule (similar to Table 1 row
3). We found that 99% of rules that they open-sourced had
paths. However, this overreliance on rules with paths makes

2

them brittle and easily evaded with minor changes [40].
Furthermore, the design of these rules did not automatically
consider potential breakage.

Another line of prior work, instead of generating filter
rules, trains ML models to automatically detect and block
ads [1, 2, 33, 59, 63, 74]. AdGraph [33], WebGraph [59], and
WTAGraph [74] represent web page execution information
as a graph and then train classifiers to detect advertising
resources. Ad Highlighter [63], Sentinel [2], and PERCI-
VAL [1] use computer vision techniques to detect ad images.
These efforts do not generate filter rules but instead attempt
to replace filter lists altogether.

While promising, existing ML-based approaches have not
seen any adoption by adblocking tools. Our discussions with
the adblocking community have revealed a healthy skepticism
of replacing filter lists with ML models due to performance,
reliability, and explainability concerns. On the performance
front, the overheads of feature instrumentation and running
ML pipelines at run-time are non-trivial and almost negate
the performance benefits of adblocking [47]. On the reliabil-
ity front, concerns about the accuracy and brittleness of ML
models in the wild [1, 2, 60], combined with a lack of explain-
ability [66], have hampered their adoption. In short, it seems
unlikely that filter lists will be replaced by ML models any
time soon, and filter rules remain crucial for adblocking tools.
ML-assisted FL Curation. There is, however, optimism in
using ML-based approaches to assist with maintenance of
filter lists. For example, Brave [60], Adblock Plus [2], and the
research community [40] have been using ML models to assist
FL authors in prioritizing filter rule updates. However, they
have two main limitations. First, they rely on filter lists, such
as EasyList, for training their supervised ML models causing
a circular dependency: a supervised model is only as good as
the ground-truth data it is trained on. This also means that the
adblocking community has to continue maintaining both ML
models as well as filter lists. Second, existing ML approaches
do not explicitly consider the trade-off between blocking ads
and avoiding breakage. An over-aggressive adblocking ap-
proach might block all ads on a site but may block legitimate
content at the same time. It is essential to control this trade-off
for real-world deployment. In summary, a deployable ML-
based adblocking approach should be able to generate filter
rules without relying on existing filter lists for training, while
also providing control to navigate the trade-off between block-
ing ads and avoiding breakage. To the best of our knowledge,
AutoFR is the only system that can generate and evaluate
filter rules automatically (without relying on humans) and
from scratch (without relying on existing filter lists).
Reinforcement Learning. We formulate the problem of
filter rule curation from scratch (i.e., without any ground truth
or existing list) as a reinforcement learning (RL) problem;
see Sec. 3. Within the vast literature in RL [64], we choose
the Multi-Arm Bandits (MAB) framework [7], for reasons ex-
plained in Sec. 3.2. Identifying the top–k arms [14, 44] rather

than searching for the one best arm [27] has been used in the
problems of coarse ranking [35] and crowd-sourcing [15, 30].
Contextual MAB has been used to create user profiles to per-
sonalize ads and news [42]. Bandits where arms have similar
expected rewards, commonly called Lipschitz bandits [36],
have also been utilized in ad auctions and dynamic pricing
problems [37]. In our context of filter rule generation, we
leverage the theoretical guarantees established for MAB to
search for “good” filter rules and identify the “bad” filter
rules, while searching for opportunities of “potentially good”
filter rules (hierarchical problem space [71]), as discussed in
Sec. 3.3. While RL algorithms, in general, have been applied
to several application domains [12, 24, 25, 75], RL often faces
challenges in the real-world [21] including convergence and
adversarial settings [8, 28, 32, 55, 73].
Our Work in Perspective. The design of the framework is
described in Sec. 3 and illustrated in Fig. 1(b). AutoFR is the
first to fully automate the process of filter rule generation and
create URL-based, per-site rules that block ads from scratch,
using reinforcement learning. The majority of prior ML-based
techniques relied on existing filter lists at some point in their
pipeline, thus creating a circular dependency. Furthermore,
AutoFR is the first to choose the granularity of the URL-based
rule to explicitly optimize the trade-off between blocking ads
and avoiding visual breakage.

The implementation is described in Sec. 4 and illustrated in
Fig. 4. Within the RL framework, AutoFR’s key design con-
tributions include the action space, the RL components (e.g.,
agent, environment, reward, policy), the annotation of raw Ad-
Graphs into site snapshots, and the logic and implementation
of utilizing site snapshots to emulate site visits. The latter was
instrumental in scaling the approach (it reduced the time for
generating rules for a single site from approximately 13 hours
to 1.6 minutes) and making our results reproducible. For some
individual RL components, we leverage state-of-the-art tools:
(1) we utilize one part of AdGraph that creates a graph rep-
resenting the site (we do not use the trained ML model of
AdGraph); and (2) we use Ad Highlighter to automatically
detect ads, which is used to compute our reward function. As
these individual components improve over time, the AutoFR
framework can benefit from new and improved versions or
even incorporate newly available tools in the future.

3 AutoFR Framework
We formalize the problem of filter rule generation, including
the process followed by human FL authors (Sec. 3.1 and
Fig. 1(a)), our formulation as a reinforcement learning
problem (Sec. 3.2 and Fig. 1(b)), and our multi-arm bandit
algorithm for solving it (Sec. 3.3 and Alg. 1). Table 4 in the
appendix summarizes the notation used throughout the paper.

3.1 Filter List Authors’ Workflow
Scope. Among all possible filter rules, we focus on the
important case of URL-based rules for blocking ads to

3

Description Filter Rule

1 eSLD ||ad.comˆ

2 FQDN ||img.ad.comˆ

3 With Path ||ad.com/banners/ or ||img.ad.com/banners/

Table 1: URL-based Filter Rules. They block requests, listed from
coarser to finer-grain: eSLD (effective second-level domain), FQDN
(fully qualified domain), With Path (domain and path).

demonstrate our approach. In App. A, we provide a
longitudinal analysis of filter lists to show that these rules
are the most widely used today. Table 1 shows examples of
URL-based rules at different granularities: blocking by the
effective second-level domain (eSLD), fully qualified domain
(FQDN), and including the path.
Filter List Authors’ Workflow for Creating Filter Rules.
Our design of AutoFR is motivated by the bottlenecks of filter
rule generation, revealed by prior work [6,40], our discussions
with FL authors, and our own experience in curating filter
rules. Next, we break down the process that FL authors
employ into a sequence of tasks, also illustrated in Fig. 1(a).
When FL authors create filter rules for a specific site, they
start by visiting the site of interest using the browser’s devel-
oper tools. They observe the outgoing network requests and
create, try, and select rules through the following workflow.

Task 1: Select a Network Request. FL authors consider the
set of outgoing network requests and treat them as candidates
to produce a filter rule. The intuition is that blocking an
ad request will prevent the ad from being served. For sites
that initiate many outgoing network requests, it may be
time-consuming to go through the entire list. When faced
with this task, FL authors depend on sharing knowledge of
ad server domains with each other or heuristics based on
keywords like “ads” and “bid” in the URL. FL authors may
also randomly select network requests to test.

Task 2: Create a Filter Rule and Apply. FL authors must
create a filter rule that blocks the selected network request.
However, there are many options to consider since rules can
be the entire or part of the URL, as shown in Table 1. FL
authors intuitively handle this problem by trying first an
eSLD filter rule because the requests can belong to an ad
server (i.e., all resources served from the eSLD relate to ads).
However, the more specific the filter rule is (e.g., eSLD!
FQDN), the less likely it would lead to breakage. Then, the
FL authors apply the filter rule of choice onto the site.

Task 3: Visual Inspection. Once the filter rule is applied
on the site, FL authors inspect its effect, i.e., whether it
indeed blocks ads and/or causes breakage (i.e., legitimate
content goes missing or the page displays improperly). FL
authors use differential analysis. They visit a site with and
without the rule applied, and they visually inspect the page

and observe whether ads and non-ads (e.g., images and
text) are present/missing before/after applying the rule. In
assessing the effectiveness of a rule, it is essential to ensure
that it blocks at least one request, i.e., a hit. Filter rules are
considered “good” if they block ads without breakage and
“bad” otherwise. Avoiding breakage is critical for FL authors
because rules can impact millions of users. If a rule blocks ads
but causes breakage, it is considered a “potentially good” rule.

Task 4: Repeat. FL authors repeat the process of Tasks 1, 2,
3, multiple times to make sure that the filter rule is effective.
Repetition is necessary because modern sites typically are
dynamic. Different visits to the same site may trigger different
page content being displayed and different ads being served. If
a rule from Task 2 blocks ads but causes breakage, the author
may then try a more granular filter rule (e.g., eSLD! FQDN
from Table 1). If the rule does not block ads, go back to Task 1.

Task 5: Stop and Store Good Filter Rules. FL authors stop
this iterative process when they have identified a set of filter
rules that block most ads without breakage (i.e., a best-effort
approach). None of the considered rules may satisfy these
(somewhat subjective) conditions, in which case no filter
rules are produced.

Bottlenecks: Scale and Human-in-the-Loop. The workflow
above is labor-intensive and does not scale well. There is
a large number of candidate rules to consider for sites with
a large number of network requests (Task 1) and long and
often obfuscated URLs (Task 2). The scale of the problem is
amplified by site dynamics, which requires repeatedly visiting
a site (Task 4). The effect of applying each single rule must
then be evaluated by the human FL author through visual
inspection (Task 3), which is time-consuming on its own.

Motivated by these observations, we aim to automate the
process of filter rule generation per-site. We reduce the num-
ber of iterations needed (by intelligently navigating the search
space for good filter rules via reinforcement learning), and we
minimize the work required by the human FL author in each
step (by automating the visual inspection and assessment
of a rule as “good” or “bad”). Our proposed methodology
is illustrated in Fig. 1(b) and formalized in the next section.

3.2 Reinforcement Learning Formulation
As described earlier and illustrated in Fig. 1(a), FL authors
repeatedly apply different rules and evaluate their effects until
they build confidence on which rules are generally “good” for
a particular site. This repetitive action-response cycle lends
itself naturally to the reinforcement learning (RL) paradigm,
as depicted in Fig. 1(b), where actions are the applied filter
rules and rewards (response) must capture the effectiveness
of the rules upon applying them to the site (environment).
Testing all possible filter rules by brute force is infeasible in
practice due to time and power resources. However, RL can
enable efficient navigation of the action space.

4

Figure 2: Hierarchical Action Space. A node (filter rule) within
the action space has two different edges (i.e., dependencies to other
rules): (1) the initiator edge,!, denotes that the source node initiated
requests to the target node; and (2) the finer-grain edge, 99K, targets
a request more specifically, as discussed in Task 4 and Table 1. An
example of an entire action space is provided in App. B.2 and Fig. 15.

More specifically, we choose the multi-arm bandit (MAB)
RL formulation. The actions in MAB are independent k-
bandit arms and the selection of one arm returns a numerical
reward sampled from a stationary probability distribution that
depends on this action. The reward determines if the selected
arm is a “good” or a “bad” arm. Through repeated action
selection, the objective of the MAB agent is to maximize the
expected total reward over a time period [7].

The MAB framework fits well with our problem. The MAB
agent replaces the human (FL author) in Fig. 1(a). The agent
knows all available “arms” (possible filter rules), i.e., the
action space; see Sec. 3.2.1. The agent picks a filter rule (arm)
and applies it to the MAB environment, which, in our case, con-
sists of the site ` (with its unknown dynamics as per Task 4),
the browser, and a selected configuration (how we value block-
ing ads vs. avoiding breakage, explained in Sec. 3.3). The
latter affects the reward of an action (rule) the agent selects.
Filter rules are independent of each other. Furthermore, the
order of applying different filter rules does not affect the result.
In adblockers, like Adblock Plus, blocking rules do not have
precedence. Through exploring available arms, the agent effi-
ciently learns which filter rules are best at blocking ads while
minimizing breakage; see Sec. 3.2.2. Next, we define the key
components of the proposed AutoFR framework, depicted
in Fig. 1(b). It replaces the human-in-the-loop in two ways:
(1) the FL author is replaced by the MAB policy that avoids
brute force and efficiently navigates the action space; and (2)
the reward function is automatically computed, as explained
in Sec. 3.2.2, without requiring a human’s visual inspection.

3.2.1 Actions

Action a (Filter Rule). An action is a URL blocking filter
rule that can have different granular levels, shown in Table 1,
and is applied by the agent onto the environment. We use the
terms action, arm, and filter rule, interchangeably.
Hierarchical Action Space AH. Based on the outgoing
network requests of a site ` (Task 1), there are many possible
rules that can be created (Task 2) to block that request. Fig. 2

shows an example of dependencies among candidate rules:
1. We should try rules that are coarser grain first

(doubleclick.net) before trying more finer-grain
rules (stats.g.doubleclick.net) (the horizontal dotted
lines). This intuition was discussed in Task 4.

2. If doubleclick.net initiates requests to clmbtech.com, we
should explore it first, before trying clmbtech.com (the
vertical solid lines). Sec. 4.2 describes how we retrieve
the initiator information.
The dependencies among rules introduce a hierarchy in

the action space AH , which can be leveraged to expedite
the exploration and discovery of good rules via pruning. If
an action (filter rule) is good (it brings a high reward, as
defined in Sec. 3.2.2), the agent no longer needs to explore
its children. We further discuss the size of action spaces in
App. D.1.2 and Fig. 20; we show that they can be large. The
creation of AH automates Task 2.

3.2.2 Rewards

Once a rule is created, it is applied on the site (Task 2).
The human FL author visually inspects the site, before and
after the application of the rule, and assesses whether ads
have been blocked without breaking the page (Task 3). To
automate this task, we need to define a reward function for
the rule that mimics the human FL author’s assessment of
whether a rule blocks ads and the breakage that could occur.
Site Representation. We abstract the representation of a
site ` by counting three types of content visible to the user:
we count the ads (CA), images (CI), and text (CT) displayed.
An example is shown in Fig. 3. The baseline representation
refers to the site before applying the rule. Since a site ` has
unknown dynamics (Task 4), we need to visit it multiple
times and average these counters: CA, CI , and CT .

We envision that obtaining these counters from a site
can be done not only by a human (as it is the case today in
Task 3) but also automatically using image recognition (e.g.,
Ad Highlighter [63]) or better tools as they become available.
This is an opportunity to remove the human-in-the-loop and
further automate the process. We further detail this in Sec. 4.3.
Site Feedback after Applying a Rule. When the agent
applies an action a (rule), the site representation will change
from (CA,CI ,CT) to (CA, CI , CT). The intuition is that, after
applying a filter rule it is desirable to see the number of ads
decrease as much as possible (ideally CA=0) and continue to
see the legitimate content (i.e., no change in CI , CT compared
to the baseline). To measure the difference before and after
applying the rule, we define the following:

bCA=
CA�CA

CA
, bCI =

|CI�CI |
CI

, bCT =
|CT�CT |

CT
(1)

bCA measures the fraction of ads blocked; the higher, the better
the rule is at blocking ads. Ideally all ads are blocked, i.e.,
bCA is 1. In contrast, bCI and bCT measure the fraction of page

5

CT

CI

CA
11

20

3

Figure 3: Site Representation. We represent a site as counts of visi-
ble ads (CA), images (CI), and text (CT), as explained in Sec. 3.2.2. Ap-
plying a filter rule changes them, by blocking ads (reducingCA) and/or
hiding legitimate content (changing CI and CT , thus breakage B).

broken. Higher values incur more breakage. We define page
breakage (B) as the visible images (bCI) and text (bCT), which
are not related to ads but are missing after a rule is applied:

B =
bCI+ bCT

2
(2)

We take a neutral approach and treat both visual components
equally and average bCI , bCT . This can be configured to
express different preferences by the user, e.g., treat content
above-the-fold as more important. Lastly, avoiding breakage
is measured by 1�B . It is desirable that 1�B is 1, and the
site has no visual breakage.
Trade-off: Blocking Ads (bCA) vs. Avoiding Break-
age (1�B). The goal of a human FL author is to choose filter
rules that block as many ads as possible (high bCA) without
breaking the page (high 1� B). There are different ways
to capture this trade-off. We could have taken a weighted
average of bCA and B . However, to better mimic the practices
of today’s FL authors, we use a threshold w2 [0,1] as a design
parameter to control how much breakage a FL author tolerates:
1�B�w. Blocking ads is easy when there is no constraint on
breakage — one can choose rules that break the whole page.
FL authors control this either by using more specific rules
(e.g., eSLD! FQDN) to avoid breakage or avoid blocking
at all. We rely on this trade-off as the basis of our evaluation
in Sec. 5. An example is illustrated in App. D.1.2 and Fig. 19.
It is desirable to operate where bCA = 1 and 1�B = 1. In
practice, FL authors tolerate little to no breakage, e.g., w�0.9.
However, w is a configurable parameter in our framework.
Reward Function RF. When the MAB agent applies a filter
rule F (action a) at time t on the site ` (environment), this will
lead to ads being blocked and/or content being hidden, which
is measured by feedback (bCA, bCI , bCT) defined in Eq. (1). We
design a reward function RF :R3! [�1,1] that mimics the
FL author’s assessment (Task 3) of whether a filter rule F

is good (RF(w, bCA,B) > 0)) or bad (RF(w, bCA,B) < 0)) at
blocking ads based on the site feedback:

RF(w,bCA,B)=

8
><

>:

�1 if bCA=0 (3a)
0 if bCA>0 , 1�B <w (3b)
bCA if bCA>0 , 1�B�w (3c)

The rationale for this design is as follows.

a) Bad Rules (Eq. (3a)): If the action does not block any
ads (bCA=0), the agent receives a reward value of �1 to
denote that this is not a useful rule to consider.

b) Potentially Good Rules (Eq. (3b)): If the rule blocks some
ads (bCA>0) but incurs breakage beyond the FL author’s
tolerable breakage, then it is considered as “potentially
good”1 and receives a reward value of zero.

c) Good Rules (Eq. (3c)): If the rule blocks ads2 and causes
no more breakage than what is tolerable for the FL
author, then the agent receives a positive reward based
on the fraction of ads that it blocked (bCA).

3.2.3 Policy

Our goal is to identify “good” filter rules, i.e., rules that give
consistently high rewards. To that end, we need to refine our
notion of a “good” rule and define a strategy for exploring
the space of candidate filter rules.
Expected Reward Qt(a). The MAB agent selects an action
a, following a policy, from a set of available actions A , and
applies it on the site to receive a reward (rt =RF(w,bCA,B)).
It does this over some time horizon t = 1,2,..,T . However,
due to the site dynamics as explained in Task 4, the reward
varies over time, and we need a different metric that cap-
tures how good a rule is over time. In MAB, this metric is the
weighted moving average of the rewards over time: Qt+1(a)=
Qt(a)+a(rt�Qt(a)), where a is the learning step size.
Policy. Due to the large scale of the problem and the cost of
exploring candidate rules, the agent should spend more time
exploring good actions. The MAB policy utilizes Qt(a) to
balance between exploring new rules in AH and exploiting
the best known a so far. This process automates Task 1 and 2.

We use a standard Upper Bound Confidence (UCB)
policy to manage the trade-off between exploration and
exploitation [7]. Instead of the agent solely picking the
maximum Qt(a) at each t to maximize the total reward,
UCB considers an exploration value Ut(a) that measures the
confidence level of the current estimates, Qt(a). An MAB
agent that follows the UCB policy selects a at time t, such
that at = argmaxa[Qt(a) + Ut(a)]. Higher values of Ut(a)
mean that a should be explored more. It is updated using

1“Potentially” means that the rule may have children rules within the
action space that are effective at blocking ads with less breakage.

2Eq. (3) explicitly requires a rule to block at least some ads, to receive a
positive reward. AutoFR can select rules that have additional side-benefits
(e.g., also blocks tracking requests, typically related to ads).

6

Algorithm 1 AutoFR Algorithm
Require:

Design-parameter: w2 [0,1]
Inputs: Site (`)

Reward function (RF :R3! [�1,1])
Noise threshold (e =0.05)
Number of site visits (n=10)

Hyper-parameters: Exploration for UCB (c=1.4)
Initial Q-value (Q0 =0.2)
Learning step size (a= 1

N[a])
Time Horizon (T)

Output: Set of filter rules (F)
1:
2: procedure INITIALIZE(`, n)
3: CA,CI ,CT , reqs VISITSITE(`, n, /0)
4: AH BUILDACTIONSPACE(reqs)
5: return CA,CI ,CT ,AH
6: end procedure
7:
8: procedure AUTOFR(`, w, c, a, n)
9: CA,CI ,CT ,AH INITIALIZE(`,n)

10: F /0, A /0
11: A AH .root.children
12: repeat
13: Q(a) Q0, 8a2A
14: for t=1 to T do
15: at CHOOSEARMUCB(A , Qt , c)
16: CAt ,CIt ,CTt , hits VISITSITE(`, 1, at)
17: bCAt ,bCIt ,bCTt SITEFEEDBACK(CAt ,CIt ,CTt)
18: Bt BREAKAGE(bCIt ,bCTt)
19: if at 2hits then
20: rt RF (w, bCAt ,Bt)
21: Qt+1(at) Qt(at)+a(rt�Qt(at))
22: else
23: Put at to sleep
24: end if
25: end for
26: A {a.children , 8a2A |� e <=Q(a)<= e}
27: F F [{8a2A |Q(a)> e }
28: until A is /0
29: return F
30: end procedure

Ut(a) = c⇥
q

logN[a0]
N[a] , where N[a0] is the number of times

the agent selected all actions (a0) and N[a] is the number of
times the agent has selected a, and c is a hyper-parameter
that controls the amount of exploration.

3.3 AutoFR Algorithm
Algorithm 1 summarizes our AutoFR algorithm. The inputs
are the site ` that we want to create filter rules for, the design
parameter (threshold) w, and various hyper-parameters (dis-
cussed in App. D.1.1). In the end, it outputs a set of filter rules
F , if any. It consists of the two procedures discussed next.
INITIALIZE Procedure. First, we obtain the baseline rep-
resentation of a site of interest ` (Sec. 3.2.2), when no filter
rules are applied. To do so, it will visit the site n times (i.e.,
VISITSITE) to capture some dynamics of `. The environment
will return the average counters CA,CI ,CT , and the set of out-
going reqs. The average counters will be used in evaluating

the reward function (Eq. (3)). Next, we build the hierarchical
action space AH using all network requests reqs (Task 1, 2).
AUTOFR Procedure. This is the core of AutoFR algorithm.
We call INITIALIZE and then traverse the action space AH
from the root node to get the first set of arms to consider,
denoted as A . Note that we treat every layer (A) of AH as
a separate run of MAB with independent arms (filter rules).

One run of MAB starts by initializing the expected values
of all “arms” at Q0 and then running UCB for a time horizon
T , as explained in Sec. 3.2.3. Since the size of A can change
at each run, we scale T based on the number of arms; by
default, we used 100⇥A .size. Each run of the MAB ends
by checking the candidates for filter rules. In particular, we
check if a filter rule should be further explored (down the
AH) or become part of the output set F , using Eq. (3) as a
guide. A technicality is that Eq. (3b) compares the reward RF
to zero, while in practice, Q(a) may not converge to exactly
zero. Therefore, we use a noise threshold (e=0.05) to decide
if Qt(a) is close enough to zero (�eQ(a) e). Then, we
apply the same intuition as in Eq. (3) but using Q(a), instead
of RF , to assess the rule and next steps.

a) Bad Rules: Ignore. This case is not explicitly shown but
mirrors Eq. (3a). If a rule is Q(a)< e, then we ignore it
and do not explore its children.

b) Potentially Good Rules: Explore Further. Mirroring
Eq. (3b), if a rule is within a range of ± e of zero, it helps
with blocking ads but also causes more breakage than
it is acceptable (w). In that case, we ignore the rule but
further explore its children within AH . An example based
on doubleclick.net is shown on Fig. 2. In that case, A is
reset to be the immediate children of these arms, and we
proceed to the next MAB run.

c) Good Rules: Select. When we find a good rule (Q(a)>
e), we add that rule to our list F and no longer explore its
children. This mimicks Eq. (3c). An example is shown in
Fig. 2: if doubleclick.net is a good rule, then its children
are not explored further.

We repeatedly run MAB until there are no more potentially
good filter rules to explore3. This stopping condition auto-
mates Task 5. The output is the final set of good filter rules F .

4 AutoFR Implementation
In this section, we present the AutoFR tool that fully
implements the RL framework as described in the previous
section. AutoFR removes the human-in-the-loop. The
FL author only needs to provide their preferences (i.e.,
how much they care about avoiding breakage via w) and
hyper-parameters (detailed in Alg. 1), and the site of interest
`. AutoFR then automates Tasks 1– 5 and outputs a list of
filter rules F specific to `, and their corresponding values Q.

3When we find a rule that we cannot apply, we put it to “sleep”, in MAB
terminology. This is because they do not block any network request (i.e., no hits,
in Task 3), and we expect them to not likely affect the site in the future, either.

7

Environment (Controlled)

Site Snapshots
(NetworkX)

Agent (Python)

Policy
(Python)

Action Space
(NetworkX)

2. Action (a)
(adblockparser)

Output
(Text File)

Filter
Rules

User of
AutoFR

Site (ℓ)

Configs
(𝑤)

Hits by Action
(adblockparser)

b. Extract requests (Selenium)

Updates

1. Selects

c. Extract (JS) &
annotate (Selenium)

Docker

a. Visit site n times (Selenium)

5. Stop

AdGraph
Browser

Ad
Highlighter

4. Repeat

In
iti

al
iz

e
A

ut
oF

R
 A

lg
or

ith
m

3. Reward (Python)

Figure 4: AutoFR Example Workflow (Controlled Environ-
ment). INITIALIZE (a–c, Alg. 1): (a) spawns n=10 docker instances
and visits the site until it finishes loading; (b) extracts the outgoing
requests from all visits and builds the action space; (c) extracts the
raw graph and annotates it to denoteCA,CI , andCT , using JS and Sele-
nium. Once all 10 site snapshots are annotated, we run the RL portion
of the AUTOFR procedure (steps 1–4). Lastly, AutoFR outputs the
filter rules at step 5, e.g., ||s.yimg.com/rq/darla/4-10-0/html/r-sf.html.

Implementation Costs. Let us revisit Fig. 1(b) and reflect
on the interactions with the site. The MAB agent (as well as
the human FL author) must visit the site `, apply the filter
rule, and wait for the site to finish loading the page content
and ads (if any). The agent must repeat this several times
to learn the expected reward of rules in the set of available
actions A . First, for completeness, we implemented exactly
that in a live environment (referred to as AutoFR-L: details
in App. C and evaluation in App. C.2.3).

We employed cloud services using Amazon Web Services
(AWS) to scale to tens of thousands of sites. This has high
computation and network access costs and, more importantly,
introduces long delays until convergence.

To make things concrete. For the delay, we found it took
47 seconds per-visit to a site, on average, by sampling 100
sites in the Top–5K. Thus, running AutoFR for one site with
ten arms in the first MAB run, for 1K iterations, would take
13 hours for one site alone! For the monetary cost, running
AutoFR-L on 1K sites and scaling it using one AWS EC2
instance per-site ($0.10/hour) would cost roughly $1.3K for
1K sites, or $1.3 to run it once per-site. This a well-known
problem with applying RL in a real-world setting. Thus, an
implementation of AutoFR that creates rules by interacting
with live sites is inherently slow, expensive, and does not
scale to a large number of sites.
Scalable and Practical. Although AutoFR-L is already an
improvement over the human workflow, we were able to de-
sign an even faster tool, which produces rules for a single site
in minutes instead of hours. The core idea is to create rules
in a realistic but controlled environment, where the expensive
and slow visits to the website are performed in advance, stored
once, and then used during multiple MAB runs, as explained
in Sec. 3.3. In this section, we present the design of this imple-
mentation in a controlled environment: AutoFR-C, or AutoFR

for simplicity. An overview of our implementation is provided
in Fig. 4. Importantly, this allows our AutoFR tool to scale
across thousands of sites and, thus, utilized as a practical tool.

4.1 Environment
To deal with the aforementioned delays and costs during
training, we replace visiting a site live with emulating a
visit to the site, using saved site snapshots. This provides
advantages: (1) we can parallelize and speed up the collection
of snapshots, and then run MAB off-line; (2) we can reuse
the same stored snapshots to evaluate different w values,
algorithms, or reward functions while incurring the collection
cost only once; and (3) we plan to make these snapshots
available to the community (i.e., it can replicate our results
and utilize snapshots in its own work).
Collecting and Storing Snapshots. Site snapshots are
collected up-front during the INITIALIZE phase of Alg. 1 and
saved locally. We illustrate this in Fig. 4, steps a–c. We use Ad-
Graph [33], an instrumented Chromium browser that outputs
a graph representation of how the site is loaded. To capture
the dynamics, we visit a site multiple times using Selenium to
control AdGraph and collect and store the site snapshots. The
environment is dockerized using Debian Buster as the base
image, making the setup simple and scalable. For example, we
can retrieve 10 site snapshots in parallel, if the host machine
can handle it. In Sec. 5.1, we find that a site snapshot takes
49 seconds on average to collect. Without parallelization, this
would take 8 minutes to collect 10 snapshots sequentially.
Defining Site Snapshots. Site snapshots represent how a site
` is loaded. They are directed graphs with known root nodes
and possible cycles. An example is shown in Fig. 5. Site
snapshots are large and contain thousands of nodes and edges;
see App. D.1.2, Fig. 20. We use AdGraph as the starting
point for defining the graph structure and build upon it. First,
we automatically identify the visible elements, i.e., ads (AD),
images (IMG), and text (TEXT) (technical details in Sec. 4.3),
for which we need to compute counts CA, CI , and CT ,
respectively. Second, once we identify them, we make sure
that AdGraph knows that these elements are of interest to us.
Thus, we annotate the elements with a new attribute such as
“FRG-ad”, “FRG-image”, and “FRG-textnode” set to “True”.
Annotating is challenging because ads have complex nested
structures, and we cannot attach attributes to text nodes. Third,
we include how JS scripts interact with each other using
“Script-used-by” edges, shown in Fig. 5. Lastly, we save site
snapshots as “.graphml” files. Due to lack of space, we defer
technical details on building site snapshots to App. B.3.
Emulating a Visit to a Site. Emulation means that the agent
does not actually visit the site live but instead reads a site
snapshot and traverses the graph to infer how the site was
loaded. To emulate a visit to the site, we randomly read a
site snapshot into memory using NetworkX and traverse
the graph in a breadth-first search manner starting from
the root — effectively replaying the events (JS execution,

8

HTML node creation, requests that were initiated, etc.) that
happened during the loading of a site. This greatly increases
the performance of AutoFR as the agent does not wait for the
per-site visit to finish loading or for ads to finish being served.
Thus, reducing the network usage cost. We hard-code a
random seed (40) so that experiments can be replicated later.
Applying Filter Rules. To apply a filter rule, we use an of-
fline adblocker, adblockparser [56], which can be instantiated
with our filter rule. If a site snapshot node has a URL, we can
determine whether it is blocked by passing it to adblockparser.
We further modified adblockparser to expose which filter rules
caused the blocking of the node (i.e., hits). If a node is blocked,
we do not consider its children during the traversal.
Capturing Site Feedback from Site Snapshots. The next
step is to assess the effect of applying the rule on the site
snapshot. At this point, the nodes of site snapshots are already
annotated. We need to compute the counters of ads, images,
and text (CA, CI , CT), which are then used to calculate the re-
ward function. Its python implementation follows Sec. 3.2.2.

We use the following intuition. If we block the source node
of edge types “Actor”, “Requestor”, or “Script-used-by”,
then their annotated descendants (IMG, TEXT, AD) will
be blocked (e.g., not visible or no longer served) as well.
Consider the following examples on Fig. 5: (1) if we block
JS Script A, then we can infer that the annotated IMG and
TEXT will be blocked; (2) if we block the annotated IMG
node itself, then it will block the URL (i.e., stop the initiation
of the network request), resulting in the IMG not being
displayed; and (3) if we block JS Script B that is used by JS
Script A, then the annotated nodes IMG, TEXT, IFRAME
(AD) will all be blocked. As we traverse the site snapshot,
we count as follows. If we encounter an annotated node, we
increment the respective counters CA. CI , CT . If an ancestor
of an annotated node is blocked, then we do not count it.
Limitations. To capture the site dynamics due to a site serv-
ing different content and ads, we perform several visits per-
site and collect the corresponding snapshots. We found that
10 visits were sufficient to capture site dynamics in terms of
the eSLDs on the site, which is a similar approach taken by
prior work [40, 76] (see App. D.1.1). However, there is also
a different type of dynamics that snapshots miss. When we
emulate a visit to the site while applying a filter rule, we infer
the response based on the stored snapshot. In the live setting,
the site might detect the adblocker (or detect missing ads [40])
and try to evade it (i.e., trigger different JS code), thus leading
to a different response that is not captured by our snapshots.
We evaluate this limitation in App. D.1.3 and show that it
does not greatly impact the effectiveness of our rules. An-
other limitation can be explained via Fig. 5. When JS Script
B is used by JS Script A, we assume that blocking B will
negatively affect A. Therefore, if A is responsible for IMG
and TEXT, then blocking B will also block this content; this
may not happen in the real world. When we did not consider
this scenario, we found that AutoFR may create filter rules

Figure 5: Site Snapshot. It is a graph that represents how a site
is loaded. The nodes represent JS Scripts, HTML nodes (e.g., DIV,
IMG, TEXT, IFRAME), and network requests (e.g., URL). “Actor”
edges track which source node added or modified a target node.
“Requestor” edges denote which nodes initiated a network request.
“DOM” edges capture the HTML structure between HTML nodes.
Lastly, “Script-used-by” edges track how JS scripts call each other.
As described in Sec. 4.1, nodes annotated by AutoFR have filled
backgrounds, while grayed-out nodes are invisible to the user.

that cause major breakage. Since breakage must be avoided
and we cannot differentiate between the two possibilities, we
maintain our conservative approach.

4.2 Agent
Action Space AH . During the INITIALIZE procedure (Alg. 1),
we visit the site ` multiple times and construct the action
space, as explained in App. B.2 and summarized here. First,
we convert every request to three different filter rules, as
shown in Table 1. We add edges between them (eSLD !
FQDN!With path), which serve as the finer-grain edges,
shown in Fig. 2. We further augment AH by considering
the “initiator” of each request, retrieved from the Chrome
DevTools protocol and depicted in solid lines in Fig. 2.
This makes the AH taller and reduces the number of arms
to explore per run of MAB, as described in Sec. 3.3. The
resulting action space is a directed acyclic graph with nodes
that represent filter rules; see Fig. 2 for a zoom-in along with
App. B.2 and Fig. 15 for a larger example. We implement
it as a NetworkX graph and save it as a “.graphml” file, a
standard graph file type utilized by prior work [60].
Policy. The UCB policy of Sec. 3.2.3 is implemented in
python. At time t (Alg. 1, line 14), the agent retrieves the filter
rule selected by the policy and applies it on the randomly
chosen site snapshot instance.

4.3 Automating Visual Component Detection
A particularly time-consuming step in the human workflow is
Task 3 in Fig. 1(a). The FL author visually inspects the page,

9

before and after they apply a filter rule, to assess whether the
rule blocked ads (bCA) and/or impacted the page content (bCI ,
bCT). AutoFR in Fig. 1(b) summarizes this assessment in the
reward in Eq. (3). However, to minimize the human work, we
also need to replace the visual inspection and automatically
detect and annotate elements as ads (AD), images (IMG), or
text (TEXT) on the page.
Detection of AD (Perceptual). To that end, we automatically
detect ads using Ad Highlighter [63], a perceptual ad
identifier (and web extension) that detects ads on a site.
We evaluated different ad perceptual classifiers, including
Percival [1], and we chose Ad Highlighter because it has high
precision and does not rely on existing filter rules. We utilize
Selenium to traverse nested iframes to determine whether Ad
Highlighter has marked them as ads. The details of how Ad
Highlighter works are deferred to App. B.3, C.2.1.
Detection of IMG and TEXT. We automatically detect visi-
ble images and text by using Selenium to inject our custom JS
that walks the HTML DOM and finds image-related elements
(i.e., ones that have background-urls) or the ones with text
node type, respectively. To know if they are visible, we see
whether the element’s or text container’s size is > 2px [40].
Discussion of the Visual Components. It is important
to note that our framework is agnostic to how we detect
elements on the page. For detecting ads, this can be done
by a human, the current Ad Highlighter, future improved
perceptual classifiers, heuristics, or any component that
identifies ads with high precision. This also applies to
detecting the number of images and text. Images can be
counted using an instrumented browser that hooks into the
pipeline of rendering images [1]. Text can be extracted from
screenshots of a site using Tesseract [63], an OCR engine.
Therefore, the AutoFR framework is modular and dependent
on how well these components perform.
Discussion of Blocking Ads vs. Tracking. We focus on de-
tecting ads and generating filter rules that block ads for two
reasons. First, they are the most popular type of rules in filter
lists (App. A, Fig. 14). Second, ads can be visually detected,
enabling a human (FL author) or a visual detection module
(such as Ad Highlighter) to assess if the rule was successful
(the ad is no longer displayed) or not at blocking ads. Al-
though tracking is related to ads, it is impossible to detect
visually, and assessing the success of a rule that blocks track-
ing is more challenging, e.g., involves JS code analysis [17].
Extending AutoFR for tracking is a direction for future use.

5 Evaluation
In this section, we evaluate the performance of AutoFR (i.e.,
the trade-off between blocking ads and avoiding breakage)
and compare it to EasyList as a baseline. In addition, we char-
acterize properties of the filter rules produced by AutoFR: how
they can be controlled via parameter w, how they compare to
EasyList rules, how fast they need to be updated, and how well

Datasets w=0.9 Sites Filter Rules Snapshots

W09-Dataset (Sites� 1 rule) 933 361 9.3K

Full-W09-Dataset (All sites) 1042 361 10.4K

Table 2: AutoFR Top–5K Results.

they generalize across sites. Parameter selection, automated
evaluation workflow, and more can be found in App. D.

5.1 Filter Rule Evaluation Per-Site
We apply AutoFR on the Tranco Top–5K sites [41,67] to gen-
erate rules using the breakage tolerance threshold of w=0.9.
All other AutoFR parameters are the same as in Alg. 1.
AutoFR Results. Table 2 summarizes our results. Overall,
AutoFR generated 361 filter rules for 933 sites. For some
sites, AutoFR did not generate any rules since none of the
potential rules were viable at the selected w threshold.
Efficiency. AutoFR is efficient and practical: it can take 1.6–9
minutes to run per-site (see App. D.1.2), which is an order
of magnitude improvement over the 13 hours per-site of live
training in Sec. 4. During each per-site run, we explore tens to
hundreds of potential rules and conduct up to thousands of it-
erations within MAB runs (see Fig. 20). This efficiency is key
to scaling AutoFR to a large number of sites and over time.
AutoFR: Validation with Snapshots. Since AutoFR gener-
ates rules for each particular site (i.e., per-site), we first apply
these rules to the site for which they have been created. To
that end, we first apply the rules to the stored site snapshots,
and we report the results in Fig. 6(a) and Table 3 col. 1. We
see that the rules block ads on 77% of the sites within the
w = 0.9 breakage threshold. As we demonstrate next, this
number is lower due to the limitations of traversing snapshots
(Sec. 4.1) and the rules are more effective when tested on
sites in the wild.
AutoFR vs. EasyList: Validation In The Wild. Next, we
apply the rules from AutoFR to the same sites they have been
created for, but this time on the real site (“in the wild”), not on
the site snapshots. For comparison, we also apply EasyList4
to the same set of Top–5K sites and we report our results
in Fig. 6(b) and Table 3 col. 2 and 4. AutoFR’s rules block
95% (or more) of ads with less than 5% breakage for 74% of
the site (i.e., within the operating point) as compared to 79%
for EasyList. For sites within the w threshold, AutoFR and
EasyList perform comparably at 86% and 87%, respectively
(row 2). Overall, our rules blocked 86% of all ads vs. 87%
by EasyList, within the w threshold (row 3). Some sites fall
below the w threshold partly due to limitations discussed in
App. D.1.2, including limitations of AdGraph [33].

To further confirm our results for AutoFR and EasyList,
we randomly selected 272 sites (a sample size out of 933

4For a fair comparison, we parse EasyList and utilize delimiters (e.g., “$”,
“||”, and “ˆ”) to identify URL-based filter rules and keep them.

10

��� ��� ��� ��� ��� ���
$YRLGLQJ�%UHDNDJH���ಜt�

���

���

���

���

���

���

%
OR
FN
LQ
J�
$
GV
��

�
& $
�

Z

��
�

�

���

���

���

���

����

1
XP

EH
U�R
I�6

LWH
V

(a) AutoFR (Snapshots)

��� ��� ��� ��� ��� ���
$YRLGLQJ�%UHDNDJH���ಜt�

���

���

���

���

���

���

%
OR
FN
LQ
J�
$
GV
��

�
& $
�

Z

��
�

�

���

���

���

���

����

1
XP

EH
U�R
I�6

LWH
V

(b) AutoFR (In the Wild)

��� ��� ��� ��� ��� ���
$YRLGLQJ�%UHDNDJH���ಜt�

���

���

���

���

���

���

%
OR
FN
LQ
J�
$
GV
��

�
& $
�

Z

��
�

�

���

���

���

���

����

1
XP

EH
U�R
I�6

LWH
V

(c) EasyList (In the Wild)

Figure 6: AutoFR (Top–5K). All sub-figures exhibit similar patterns. First, the filter rules were able to block ads with minimal breakage for
the majority of sites. Thus, the top-right bin (the operating point) is the darkest. Second, there are edge cases for sites with partially blocked
ads within the w threshold (right of w line) and sites below the w threshold (left of w line). Fig. 19 explains how to read these plots. See Table 3,
col. 1, 2, and 4, for additional information.

��� ��� ��� ��� ��� ���
$YRLGLQJ�%UHDNDJH���ಜt�

���

���

���

���

���

���

%
OR
FN
LQ
J�
$
GV
��

�
& $
�

Z

��
�

�

���

����

����

1
XP

EH
U�R
I�6

LWH
V

(a) AutoFR (All Rules)

��� ��� ��� ��� ��� ���
$YRLGLQJ�%UHDNDJH���ಜt�

���

���

���

���

���

���

%
OR
FN
LQ
J�
$
GV
��

�
& $
�

Z

��
�

�

���

����

����

1
XP

EH
U�R
I�6

LWH
V

(b) AutoFR (Rules from� 3 sites)

��� ��� ��� ��� ��� ���
$YRLGLQJ�%UHDNDJH���ಜt�

���

���

���

���

���

���

%
OR
FN
LQ
J�
$
GV
��

�
& $
�

Z

��
�

�

���

����

����

1
XP

EH
U�R
I�6

LWH
V

(c) EasyList (In the Wild)

Figure 7: Testing Filter Rules on New Sites (Top 5K–10K, In the Wild). We create two filter lists, Fig. 7(a) with all rules from W09-Dataset
and Fig. 7(b) that contains rules that were created for�3 sites. We test them in the wild on the Top–5K to 10K sites (new sites) and show their
effectiveness along with EasyList (Fig. 7(c)). We observe that Fig. 7(b) performs better, blocking 8% more ads than Fig. 7(a). Fig. 19 explains
how to read these plots. Table 3, col. 6–8, contains additional information.

Sec. 5.1, Fig. 6, Top–5K Sec. 5.3.1 Sec. 5.3.3, Fig. 7, Top–5K to 10K

Au
to

FR
(S

na
ps

ho
ts)

(J
an

. 2
02

2)

Au
to

FR
(In

th
eW

ild
)

(J
an

. 2
02

2)

Au
to

FR
(*

Co
nfi

rm
)

(In
th

eW
ild

)

Ea
sy

Li
st

(In
th

eW
ild

)
(J

an
. 2

02
2)

)

Au
to

FR
(In

th
eW

ild
)

(J
ul

y
20

22
)

Au
to

FR
(A

ll
ru

le
s)

(In
th

eW
ild

)

Au
to

FR
(�

3
sit

es
)

(In
th

eW
ild

)

Ea
sy

Li
st

(In
th

eW
ild

)
Description (w=0.9) 1 2 3 4 5 6 7 8

1 Sites in operating point:
bCA�0.95, 1�B�0.95 62% 74% 85% 79% 72% 67% 73% 80%

2 Sites within w:
bCA >0, 1�B�0.9 77% 86% 85% 87% 82% 76% 80% 87%

3 Ads blocked within w:
Â`(CA⇥ bCA) / Â`CA; 1�B�0.9 70% 86% 84% 87% 78% 72% 80% 86%

Table 3: Results. We provide additional results to Fig. 6 and 7, within their respective sections. We explain the meaning of each row: (1) the
number of sites that are in the operating point (top-right corner of the figures), where filter rules were able to block the majority of ads with minimal
breakage; (2) the number of sites that are within w; and (3) the fraction of ads that were blocked across all ads within w. *Confirming via Visual
Inspection (In the Wild) (Sec. 5.1): col. 3 is based on a binary evaluation. As it is not simple for a human to count the exact number of missing images
and text, we evaluate each site based on whether the rules blocked all ads or not (i.e., bCA is either 0 or 1) and whether they caused breakage or not
(i.e., B is either 0 or 1). For col. 5 (Sec. 5.3.1), we repeat the same experiment of col. 2 during July 2022 for a longitudinal study of AutoFR rules.

11

H6/')4'1 :LWK�3DWK
�

��

��

��

��

3
HU
FH
QW
�R
I�5

XO
HV

��

�� ��

��

�

��

$XWR)5
(DV\/LVW

(a) Rule Types

��� �����

$XWR)5 (DV\/LVW

(b) Grouped by eSLD

Figure 8: Comparing AutoFR Rules to EasyList. Some rules are
common and some are unique to each approach. When comparing
rules, one must consider the right granularity.

sites to get a confidence level of 95% with a 5% confidence
interval), and we visually inspected them. In particular, we
looked for breakage not perfectly captured by automated
evaluation. Table 3 col. 3 summarizes the results and confirms
our results obtained through the automated workflow. We
find that 3% (7/272) of sites had previously undetected
breakage. For instance, the layout of four sites was broken
(although all of the content was still visible), and one site’s
scroll functionality was broken. Note that this kind of
functionality breakage is currently not considered by AutoFR.
We observed two sites that intentionally caused breakage (the
site loads the content, then goes blank) after detecting their
ads were blocked. AutoFR’s implementation currently does
not handle this type of adblocking circumvention.
Tuning AutoFR via Threshold w. AutoFR is the first ap-
proach that can be tuned per-site and explicitly allows to
express a preference. The FL author that uses AutoFR must
select the site to create rules for and express their preference
by tuning a knob (threshold w) , which controls the trade-
off between blocking ads vs. avoiding breakage. Results are
provided in App. D.1.5.

5.2 AutoFR vs. EasyList: Comparing Rules
We compare the rules generated per-site by AutoFR and
EasyList from Sec. 5.1. For a fair comparison, we only
consider EasyList rules that are triggered when visiting sites.

5.2.1 Rule Type Granularity

An important aspect to consider when comparing rules is
the suitable granularity of the rules that block ads while
limiting breakage. Fig. 8(a) breaks down the granularity of
rules by AutoFR and EasyList. We note that both exhibit
a similar distribution: eSLD rules are the most common,
while the other rule types are less common. Across all
granularities, there are 59 identical rules (e.g., ||pubwise.ioˆ,
||adnuntius.comˆ, and ||deployads.comˆ) between AutoFR
and EasyList, which represents 15% of EasyList rules.

Next, we focus on rules that are related, i.e., they share a
common eSLD but may differ in subdomain or path, to under-

stand why AutoFR generates rules that are coarser or finer-
grain than EasyList rules. In Fig. 8(b), we show that when
we group rules by eSLD, there are 78 common eSLDs, 60
(77%) of which have at least one identical rule. For example,
for mail.ru, both AutoFR and EasyList have ||ad.mail.ruˆ.

For 26 eSLD groups, AutoFR and EasyList rules differ
in granularity. First, 18 eSLDs have AutoFR rules that are
coarser-grained than EasyList. For instance, AutoFR has
||cloud f ront.netˆ but EasyList has 15 different rules based on
FQDNs like ||d2na2p72vtqyok.cloud f ront.netˆ. CloudFront
is a CDN that can serve resources for legitimate content,
ads, and tracking. As AutoFR generates per-site rules, it can
afford to be more coarse-grained because a particular site
may only use CloudFront for ads and tracking. However,
since EasyList rules that target CloudFront are not per-site,
they are more finer-grain to avoid breakage on other sites.

Second, six eSLDs have AutoFR rules that are finer-grain
than EasyList. For instance, for moatads.com, AutoFR has
||z.moatads.comˆ when EasyList has ||moatads.comˆ. Recall
in Sec. 4.1 that AutoFR generates rules with a conservative
approach when using site snapshots, and thus will consider
finer-grain rules for some cases to avoid breakage. Whereas
FL authors manually verify rules for EasyList and will know
that ||moatads.comˆ is more appropriate.

Lastly, four eSLDs share the same granularity
but contain rules that are not identical. For ex-
ample, for site pastemagazine.com, AutoFR has
||pastemagazine.com/common/ js/ads-gam-a9-ow. js,
while EasyList has pastemagazine.com/common/ js/ads-.
Partial paths within EasyList may extend the life of a filter
rule over time for some sites. We further evaluate this in
Sec. 5.3.1. AutoFR can extend to partial paths in the future.

5.2.2 Understanding Unique Rules

We investigate why AutoFR generates rules that are not
present in EasyList and vice versa. We found that when
grouped by eSLD (Fig. 8(b)), unique rules are due to the
design and implementation of our framework, as well as due
to site dynamics.
Methodology. To investigate each unique rule (either from
AutoFR or EasyList), we apply the rule to its corresponding
site snapshots (per-site) and extract the requests that were
blocked. We manually investigate these requests as follows.
For images, we visually decide whether it is an ad. For
scripts, we use our domain knowledge and keywords (e.g.,
“advertising”, “bid”) to examine the source code to discern
whether they affect ads, tracking, functionality, or legitimate
site content. When we cannot determine the nature of the
request (e.g., due to obfuscated JS code), we fall back to
applying the rule and evaluating its effectiveness via visual
inspection, following the methodology in Sec. 5.1.
Findings. Depicted in Fig. 8(b), the differences in rules when
grouped by eSLDs are due to three main reasons.

1. AutoFR Framework: Our framework exhibits sev-

12

eral strengths when generating rules. 48% (105/220)
of the unique eSLDs for AutoFR have rules that
are valid but seem challenging for a FL author to
manually craft. Within this set, 19% (20/105) are
first-party (e.g., ||kidshealth.org/.../inline_ad.html),
52% (55/105) block resources that involve both ads
and tracking (e.g., ||snidigital.comˆ), 23% (24/105)
block ad-related resources served by CDNs (e.g.,
||cdn. f antasypros.com/realtime/media_trust. js), and
42% (44/105) block ad-related resources served through
seemingly obfuscated URLs. We conclude that AutoFR can
create rules that are not obviously ad-related (e.g., by looking
at keywords in the URL) but are effective nonetheless.

Next, we explain how certain design decisions behind
AutoFR’s framework can lead to missed EasyList rules. First,
AutoFR focuses on rules that block at least some ads (due
to Eq. (3a)), which is why AutoFR ignored 10% (28/279)
of unique eSLDs from EasyList that are responsible for
purely tracking requests. Second, we choose to generate
rules that block ads across all 10 site snapshots of a site, not
just one site snapshot, to be robust against site dynamics. In
addition, we choose to stop exploring the hierarchical action
space when we find a good rule following the intuition from
Sec. 3.2.1, which improves the efficiency of AutoFR. Of
course, these design decisions can be altered depending on
the user’s preference. When we do so, we find that the overlap
in Fig. 8(b) goes from 22% (78/357) to 35% (124/357). For
example, adtelligent.com and adscale.de are new common
eSLDs found when we remove these design decisions.

2. AutoFR Implementation: Our implementation of Alg. 1
focuses on visual components (e.g., using Ad Highlighter
to detect ads) and how filter rules affect them. The rules
generated are as good as the components that we utilize. First,
AutoFR misses 28% (78/279) of unique eSLDS from Ea-
syList because Ad Highlighter can only detect ads that contain
transparency logos. However, AutoFR rules are still effective
when compared to EasyList, as shown in Sec. 5.1 and Table 3.
This demonstrates that we do not necessarily need to replicate
all rules from EasyList to be effective. Second, 18% of
unique eSLDs from AutoFR can affect both ads and func-
tionality (e.g., cdn.ampproject.org/v0/amp-ad-0.1.js for ads,
amp-accordion-0.1.js for functionality). AutoFR balances the
trade-off between blocked ads and breakage, see Sec. 5.1.

3. Site Dynamics can also lead to differences in the site
resources between site snapshots vs. the in the wild evaluation.
Due to this, 18% (50/279) of unique eSLDs on the EasyList
side did not appear in our W09-Dataset. Thus, AutoFR did
not get an opportunity to generate these rules. Conversely, 5%
(11/220) of unique eSLDs from AutoFR appear in EasyList
but were not triggered during the evaluation of EasyList
rules. This can be mitigated by increasing the number of
site snapshots used in AutoFR’s rule generation or applying
EasyList more times during our in the wild evaluation.
Although, recall that we already do these steps for 10 times.

�����. � ����.
̩�1RGHV

����

����

����

����

����

(
&
'
)�
�6
LWH
V�

�����. � ����.
̩�(GJHV

����. � ���.
̩�85/

$OO�2WKHU�6LWHV������ 6LWHV�WR�5HUXQ�����

Figure 9: D Site Snapshots between July vs. January 2022. The
differences in site snapshots for nodes, edges, and URLs. A positive
change in the x-axis denotes that July had more of the respective
factor, while a zero denotes no change.

Takeaways. The difference in the granularity of related rules
generated by AutoFR and EasyList is mainly because AutoFR
creates rules per-site. Unique rules to AutoFR or EasyList
are due to the design and implementation of our framework
and site dynamics. These differences are acceptable because
the effectiveness of the rules from AutoFR and EasyList is
comparable. This is crucial from a practical standpoint.

5.3 Robustness of AutoFR Filter Rules
AutoFR generates rules for a particular site and uses snapshots
collected at a particular time. Next, we investigate and discuss
how well these rules perform over time, across different sites,
and in adversarial scenarios.

5.3.1 How Long-lived are AutoFR Rules?

Sites change naturally over time, which may result in changes
in the site snapshots, and eventually into changes in the filter
rules. We show that AutoFR rules remain effective for a long
time and can be rerun fast when needed to update.
Efficacy of Rules Over Time. We re-apply per-site rules
generated in January 2022 (Sec. 5.1) to the same sites in
July 2022 and summarize the results in Table 3 (col. 5). We
find that the majority of AutoFR rules are still effective after
six months. 72% of sites (down only by 2%) still achieve
the operating point (row 1), and 82% (down by 4%) achieve
1�B�0.9 (row 2). Even more interestingly, we found only
6% of the sites now no longer have all or any ads blocked in
July. For those few sites, which we refer to as “sites to rerun”,
we can rerun AutoFR; this takes 1.6 min-per-site on average.
Site Snapshots Over Time. We recollect site snapshots for
our entire W09-Dataset in July 2022 and associate them
with the results of re-applying the rules above. For the 6%
of sites that AutoFR needs to rerun, we report the changes in
their corresponding snapshots. Fig. 9 reports the changes in
snapshots of the same site between January and July in terms
of different nodes, edges, and URLs. It also compares the
differences for all sites, with those 6% sites to rerun AutoFR.
For all other sites, 50% and 70% of sites have more than ±1K
changes in nodes and edges, respectively; while 40% of sites
have more than ±100 changes in URL nodes. Compared to

13

í���

í���

���

̩�
-D
FF
DU
G�
6
LP
�

�Y
V�
�-
XO
\�
��
�

-X
O\�
��

-X
O\�
��

-X
O\�
��

-X
O\�
��

-X
O\�
��

$X
JX
VW�
�

$X
JX
VW�
�

$X
JX
VW�
��

$X
JX
VW�
��

$X
JX
VW�
��

$X
JX
VW�
��

$X
JX
VW�
��

6H
SWH
PE
HU�
�

6H
SWH
PE
HU�
�

6H
SWH
PE
HU�
�

6H
SWH
PE
HU�
��

�

��

��

6
LWH
V�
WR
�5
HU
XQ

�V
LQ
FH
�-
XO
\�
��
�

Figure 10: Longitudinal Study Every Four Days. We conduct a
finer-grain longitudinal study of 100 sites over a two-month period.
We find that over time, site snapshots will become less similar (i.e.,
negative D Jaccard similarity), often denoting that rules may be less
effective. FL authors can rerun AutoFR on these sites that change
more frequently to output effective rules.

sites to rerun, 75% of sites have more than ±1K changes in
nodes and edges, while 65% of sites have more than ±100
changes in URL nodes. As expected, the snapshots of the
sites to rerun indeed change more than other sites. However,
AutoFR’s rules remain effective on the vast majority of sites
whose snapshots do not significantly change.
Why do Rules become Ineffective? For the sites that need
to be rerun, we conduct a comparative analysis of how rules
change by rerunning AutoFR on those sites. We find that 23%
of these sites have completely new rules than before, which is
typically due to a change in ad-serving infrastructure on the
site. 40% of the sites need some additional rules (some older
rules still work), which is due to additional ad slots on the
site. In addition, 9% of the sites have changes in their paths.
Lastly, 29% of these sites have the same rules as before. We
deduce that this is because the rules are the best we can do
without pushing breakage beyond the acceptable threshold w.
Takeaways. AutoFR rules need to be updated for a small
fraction of sites (6% of Top–5K in six months), which demon-
strates that AutoFR generates robust rules over time. AutoFR
can be rerun for these sites at an average of 1.6 min-per-site.

5.3.2 How Frequently Should We Run AutoFR?

Next, to understand how often FL authors should run AutoFR
over time, we provide a finer-grain longitudinal study of
every four days for two months to study how site snapshots
change and the sites that need AutoFR to be rerun. We choose
every four days because this is how often EasyList is updated
and deployed to end-users. In addition, we choose to focus on
100 sites, two-thirds of which are sampled from W09-Dataset
and one-third is sampled from the set of 6% of sites that
need to rerun in July (from Sec. 5.3.1). Fig. 10 illustrates our

two-month results, using July 15, 2022, as our baseline. In
this study, using Jaccard similarity, our comparison considers
the relationship between HTML, JS, and CSS (different
nodes within site snapshots). To do so, we retrieve the path
from the root to every URL node for every site snapshot. We
then convert these paths to strings and use them to calculate
the Jaccard similarity between the site snapshots of July 15
to subsequent dates shown in the figure.

As expected, we arrive at the same conclusion as Sec. 5.3.1.
As time passes, the similarity between site snapshots will
naturally decrease, which denotes that there are sites where
our rules are no longer effective, and we need to rerun
AutoFR on them. For our 100 sites, we ran AutoFR on
13 sites only once (e.g., weheartit.com, legit.ng), three
sites twice (e.g., buzz f eednews.com), and two sites three
or more times (e.g., npr.org), within two months. In terms
of the time between the reruns of AutoFR, we find that
one site (e.g., charlotteobserver.com) varied between
four to 10 days from August 12 to September 13. This
was due to path changes that would evade our rules like
||charlotteobserver.com/.../0a086549941921c9ac8e. js.
Similarly, one site (e.g., npr.org) varied from two weeks
to one month. In addition, two sites had runs that
were 1–2 weeks apart (e.g., AutoFR found additional
rules for amaru jala.com). Lastly, one site had runs that
were one month apart (e.g., liputan6.com went from
||googlesyndication.comˆ to a new rule, ||in f eed.idˆ). By the
end of this study, the similarity of site snapshots decreased
by 10% (compared to site snapshots of July 15), and we ran
AutoFR 27 times on 18 unique sites within two months.
Takeaways. We find that each site will naturally change over
time, causing site snapshots to be less similar. More changes
often denote a higher possibility of rules being evaded. Over-
all, 18% of 100 sites needed a rerun of AutoFR. FL authors
can periodically rerun AutoFR on sites that tend to change
frequently in terms of weekly to monthly reruns. AutoFR
minimizes the human effort for updating rules over time.

5.3.3 From Per-Site Rules To Global Filter Lists

AutoFR generates URL-based filter rules for a particular site.
Similarly, EasyList supports per-site rules as well. It currently
contains ⇠800 per-site rules. Although these rules are guaran-
teed to perform well on the sites that they have been designed
for (as demonstrated in Sec. 5.1), it is not guaranteed that the
same rules are as effective when applied to other sites, i.e.,
used as “global” rules.
Collateral Damage. In Fig. 11, we report the potential
collateral damage, defined as the sum of breakage (Â B),
caused when AutoFR rules are treated as global rules. Rules
are considered global when applied to sites other than the
ones they have been created for. We observe that they
tend to block tag managers (e.g., ||googletagmanager.comˆ,
||adobedtm.comˆ), CDNs or cloud storage services (e.g.,
||cloud f lare.comˆ, ||amazonaws.comˆ, ||rlcdn.comˆ), third-

14

��
�

&ROODWHUDO�'DPDJH���t�
__JRRJOHWDJPDQDJHU�FRPA

__UOFGQ�FRPA
__FRRNLHODZ�RUJA

__DPD]RQDZV�FRPA
__DGREHGWP�FRPA
__FORXGIODUH�FRPA

__ELQJ�FRPA
__FRQVHQVX�RUJA

__MTXHU\�FRPA
__FORXGIODUHLQVLJKWV�FRPA)L

OWH
U�5

XO
HV
�E
\�
$
XW
R)
5

�1
RW
�LQ
�(
DV
\/
LV
W�

��
��
��

�
�

�
�
�
�

�

Figure 11: Collateral Damage of Global Rules. AutoFR rules are
generated per-site and can potentially cause breakage when applied
to other sites (i.e., treated as a global rule). We report the rules that are
unique to AutoFR (i.e., not part of EasyList), ordered by decreasing
total collateral damage (ÂB) that they cause to site snapshots within
Full-W09-Dataset. We can see that most of these rules (93%) cause
negligible collateral damage (below 10 on the x-axis). Note that the
possible max ÂB of each rule is the size of the dataset.

��
�

��
�

1XPEHU�RI�6LWHV
__GRXEOHFOLFN�QHWA

__JRRJOHV\QGLFDWLRQ�FRPA
__JRRJOHWDJVHUYLFHV�FRPA
__JRRJOHWDJPDQDJHU�FRPA
__DPD]RQ�DGV\VWHP�FRPA
__JRRJOH�DQDO\WLFV�FRPA

__SXEPDWLF�FRPA
__FORXGIURQW�QHWA

__IDVWO\�QHWA
__LQGH[ZZ�FRPA

__UXELFRQSURMHFW�FRPA
__DVVHWV�KHDUVWDSSV�FRPA

__PGSFGQ�FRPA
__DGOLJKWQLQJ�FRPA

__DGVDIHSURWHFWHG�FRPA
__WLTFGQ�FRPA
__FULWHR�QHWA
__KWOELG�FRPA

__FRRNLHODZ�RUJA
__JRRJOHDSLV�FRPA

)L
OWH
U�5

XO
HV
�E
\�
$
XW
R)
5

���
���

���
��
��

��
��

��
��

��
��
��
��
��
��
��
��
��
��
��

$XWR)5
0DWFK�Z��(/

Figure 12: Top–20 Filter Rules by AutoFR for Top–5K Sites.
They include the main advertising and tracking services, such as
Alphabet (doubleclick.net), Amazon (amazon-adsystem.com), and
PubMatic (pubmatic.com). Thus, they are likely to generalize well.

party libraries (e.g., || jquery.comˆ), and cookie consent forms
(e.g., ||cookiekaw.orgˆ, ||consensu.orgˆ). These rules target
domains that can serve legitimate content and ads across dif-
ferent sites. Thus, adopting a per-site rule into a global rule
is nontrivial because the rule may not block as many ads or
may cause more breakage (i.e., collateral damage). It is not a
problem distinct to AutoFR. Our discussions with EasyList
authors confirmed that new rules are created per-site. They
become global rules when FL authors know that the same
rules are effective for other sites. FL authors rely on feedback
from users to know when global rules either are ineffective or
cause collateral damage on unknown sites [6].
Towards Global Filter Lists. Although we cannot guarantee,
in advance, how well per-site rules will perform on other sites,
we can try heuristics and assess their performance. Intuitively,
if the same filter rule is generated by AutoFR across multiple
sites, then it has a better chance of generalizing to new

���

���

� � � � � � � � � ��
3RSXODULW\�7KUHVKROG

����

����

$
YH
UD
JH

%ORFNLQJ�$GV�� �&$�
$YRLGLQJ�%UHDNDJH�
���ಜt�
5HZDUG����

Figure 13: Selecting Per-Site Rules into Global Filter Lists. After
creating the per-site AutoFR rules for each site (with w = 0.9), we
create 10 global filter lists. “Popularity 1” means that a rule is selected
into the global list if it was generated in at least one site; “popularity
10” means that a rule is selected if it was generated for at least 10 sites.
Once selected, the rules are now treated as global rules. We apply
these global filter lists on our Full-W09-Dataset site snapshots and
plot the average blocking ads, avoiding breakage, and reward.

sites. We denote this as the “popularity” of a rule. Fig. 12
shows the Top–20 AutoFR most common rules across sites.
They intuitively make sense as they belong to widely used
advertising and tracking services. Therefore, we utilize these
heuristics as criteria to select AutoFR rules to include in filter
lists. Once selected, we now treat them as global rules. As
the popularity increases, the global filter list contains fewer
global rules, resulting in fewer blocked ads but less breakage.
We show the results in Fig. 13.

We analyze in detail two global filter lists. First, “popularity
1” treats all AutoFR per-site rules as global rules, which serves
as a baseline for comparison. Second, “popularity 3” denotes
AutoFR rules that were generated from � 3 sites. Fig. 13
reveals that this has the highest average reward. Note that
selecting the popularity threshold based on the average reward
implicitly considers collateral damage because it encompasses
breakage (Eq. (3)). We apply these global filter lists on the
Tranco Top 5K–10K sites in the wild. Fig. 7 and Table 3 col.
5–6 show the results. As expected, we see that the global
filter list created from rules that appeared in� 3 sites perform
better than the list with all rules. Moreover, Fig. 7(b) compares
relatively well against Fig. 7(c) (EasyList): 73% of sites are
in the desired operating point (top-right corner), vs. 80% by
EasyList (row 1, col. 7–8). Overall, the rules generated from
the Top–5K sites were able to block 80% of ads on the Top
5K–10K sites. This shows good generalization of AutoFR
rules across unseen sites, which agrees with Fig. 12.

5.3.4 Evading URL-based Filter Rules
AutoFR generates URL-based filter rules, which EasyList
also supports. Well-known evasion techniques for URL-based
filter rules, such as randomizing URL components, affect
both AutoFR rules and EasyList rules [40]. The strength of
AutoFR is that new rules can be learned automatically and
quickly (e.g., in 1.6 min-per-site on average) when old ones

15

are evaded. Publishers and advertisers can also try to specifi-
cally evade AutoFR [40, 66]. For example, they can put ads
outside of iframes, use different ad transparency logos, or
split the logo into smaller images, preventing Ad Highlighter
from detecting ads [66]. This impacts our reward calculations.
Defense approaches include the following. At the component
level, we can try to improve Ad Highlighter to handle new
logos or look beyond iframes, replace Ad Highlighter with a
better future visual perception tool, or pre-process the logos
to remove adversarial perturbations [34]. At the system level,
as an adversarial bandits problem, where the reward received
from pulling an arm comes from an adversary [8].

6 Conclusion & Future Directions
Summary. The filter list curation follows a human-in-the-
loop approach: (1) the rules are manually created, visually
evaluated, and maintained; and (2) the FL author has to
carefully balance between blocking ads vs. avoiding breakage.
We introduced the AutoFR framework to automate the
process of generating URL-based filter rules to block ads
from scratch. Our implementation of the framework allows
it to learn rules without relying on existing rules created
by humans. Our evaluation showed that AutoFR is efficient
and performs comparably to EasyList. Thus, we envision
that AutoFR will be used by the adblocking community to
automatically generate and update filter rules at scale.
Future Directions. AutoFR provides a general framework
for automating filter rule generation. In this paper, we focused
specifically on the commonly used URL-based rules for
blocking ads on browsers, but we envision several extensions
and applications. The AutoFR framework can be extended
to include: (1) the creation of global rules, in addition to
site-specific rules, (2) rules that block tracking; (3) other
types of filter rules, such as element hiding rules, e.g., using
the concept of CSS specificity to leverage the hierarchy; (4)
functionality (beyond visual) breakage, e.g., by testing click
functionality for buttons and links; (5) new visual detection
modules for images and ads on sites as these become
available. AutoFR can also be applied to other platforms,
such as mobile, smart TVs, and VR devices, as there is
a need for better platform-specific filter lists, in terms of
coverage and breakage [58,68,69]. On mobile and smart TVs
specifically, one could leverage existing tools to automatically
explore apps or mobile browsers [16, 43, 58, 69].
Availability. The AutoFR implementation, generated filter
rules, and the dataset are available at [39].

Acknowledgments
This work is supported in part by the National Science
Foundation under award numbers 1956393, 1900654,
1815666, 2051592, 2102347, 2103038, 2103439, 2105084,
and 2138139. We would like to thank the USENIX Security
reviewers for their feedback, which helped to improve the
paper. We would like to thank Stelios Stavroulakis for his help

during the early stages of this work. Lastly, special thanks
to the filter list community, including Ryan Brown, Arthur
Kawa, and Peter Lowe, who provided valuable insight into
the human process of creating and maintaining filter rules.

References
[1] Z. Abi Din, P. Tigas, S. T. King, and B. Livshits.

PERCIVAL: Making in-browser perceptual ad blocking
practical with deep learning. In 2020 USENIX
Annual Technical Conference (USENIX ATC 20), pages
387–400, July 2020.

[2] Adblock Plus. Sentinel is online. https://blog
.adblockplus.org/blog/sentinel-is-online.
Archived at https://perma.cc/RNV9- 5M5B.
(Accessed on 01/24/2022).

[3] Adblock Plus. The world’s # 1 free ad blocker. https:
//adblockplus.org/. (Accessed on 01/22/2022).

[4] AdGuard. Mobile filters. https://raw.githubus
ercontent.com/AdguardTeam/FiltersRegistry/
master/filters/filter_11_Mobile/filter.txt.
(Accessed on 01/25/2022).

[5] AdGuard. Network-wide software for any os: Windows,
macos, linux. https://adguard.com/en/adguard
-home/overview.html. (Accessed on 01/04/2022).

[6] M. Alzirah, S. Zhu, Z. Xing, and G. Wang. Er-
rors, misunderstandings, and attacks: Analyzing the
crowdsourcing process of ad-blocking systems. In
Proceedings of the Internet Measurement Conference,
Amsterdam, Netherlands, Oct. 2019. ACM.

[7] P. Auer, N. Cesa-Bianchi, and P. Fischer. Finite-time
analysis of the multiarmed bandit problem. Machine
learning, 47(2):235–256, 2002.

[8] P. Auer and C.-K. Chiang. An algorithm with nearly
optimal pseudo-regret for both stochastic and adversar-
ial bandits. In Conference on Learning Theory, pages
116–120, New York, NY, June 2016. PMLR.

[9] Backlinko. Ad blockers usage and demographic
statistics in 2022. https://backlinko.co
m/ad-blockers-users. Archived at https:
//perma.cc/BG5J-B3FS. (Accessed on 01/27/2022).

[10] C. Barrett. Filterlists. https://filterlists.com/.
Archived at https://perma.cc/KE8N- S6DE.
(Accessed on 01/27/2022).

[11] S. Bhagavatula, C. Dunn, C. Kanich, M. Gupta, and
B. Ziebart. Leveraging machine learning to improve
unwanted resource filtering. In Proceedings of the
2014 Workshop on Artificial Intelligent and Security
Workshop, pages 95–102. ACM, Nov. 2014.

16

https://blog.adblockplus.org/blog/sentinel-is-online
https://blog.adblockplus.org/blog/sentinel-is-online
https://perma.cc/RNV9-5M5B
https://adblockplus.org/
https://adblockplus.org/
https://raw.githubusercontent.com/AdguardTeam/FiltersRegistry/master/filters/filter_11_Mobile/filter.txt
https://raw.githubusercontent.com/AdguardTeam/FiltersRegistry/master/filters/filter_11_Mobile/filter.txt
https://raw.githubusercontent.com/AdguardTeam/FiltersRegistry/master/filters/filter_11_Mobile/filter.txt
https://adguard.com/en/adguard-home/overview.html
https://adguard.com/en/adguard-home/overview.html
https://backlinko.com/ad-blockers-users
https://backlinko.com/ad-blockers-users
https://perma.cc/BG5J-B3FS
https://perma.cc/BG5J-B3FS
https://filterlists.com/
https://perma.cc/KE8N-S6DE

[12] T. Boroushaki, I. Perper, M. Nachin, A. Rodriguez,
and F. Adib. Rfusion: Robotic grasping via rf-visual
sensing and learning. In Proceedings of the 19th ACM
Conference on Embedded Networked Sensor Systems,
pages 192–205, Coimbra, Portugal, Nov. 2021.

[13] Brave. Pagegraph: Wiki. https://github.com/b
rave/brave-browser/wiki/PageGraph. Archived
at https://perma.cc/78Q9-4KQX. (Accessed on
01/28/2022).

[14] S. Bubeck, T. Wang, and N. Viswanathan. Multiple
identifications in multi-armed bandits. In Proceedings
of the 30th International Conference on International
Conference on Machine Learning, pages 258–265,
Atlanta, GA, June 2013. PMLR.

[15] W. Cao, J. Li, Y. Tao, and Z. Li. On top-k selection
in multi-armed bandits and hidden bipartite graphs. In
C. Cortes, N. Lawrence, D. Lee, M. Sugiyama, and
R. Garnett, editors, Advances in Neural Information
Processing Systems, volume 28, Montreal, Canada, Dec.
2015. Curran Associates, Inc.

[16] D. Cassel, S.-C. Lin, A. Buraggina, W. Wang, A. Zhang,
L. Bauer, H.-C. Hsiao, L. Jia, and T. Libert. Omnicrawl:
Comprehensive measurement of web tracking with
real desktop and mobile browsers. In Proceedings
on Privacy Enhancing Technologies, volume 1, pages
227–252, Sydney, Australia, July 2022.

[17] Q. Chen, P. Snyder, B. Livshits, and A. Kapravelos.
Detecting filter list evasion with event-loop-turn gran-
ularity javascript signatures. In IEEE Symposium on
Security and Privacy (SP), pages 1715–1729, May 2021.

[18] Chrome. Chrome devtools protocol: Network domain.
https://chromedevtools.github.io/devtool
s-protocol/tot/Network/#type-Initiator.
(Accessed on 01/21/2022).

[19] Chrome. Chrome devtools protocol: Page domain.
https://chromedevtools.github.io/devtools-
protocol/tot/Page/#method-setLifecycleEven
tsEnabled. (Accessed on 01/06/2022).

[20] ChromeDriver. Webdriver for chrome: Performance
log. https://chromedriver.chromium.org/logg
ing/performance-log. (Accessed on 01/06/2022).

[21] G. Dulac-Arnold, N. Levine, D. J. Mankowitz, J. Li,
C. Paduraru, S. Gowal, and T. Hester. Challenges of real-
world reinforcement learning: definitions, benchmarks
and analysis. Machine Learning, 110(9):2419–2468,
2021.

[22] EasyList. EasyList. https://easylist.to/.
Archived at https://perma.cc/T7S2- TZKH.
(Accessed on 01/21/2022).

[23] EasyPrivacy. EasyPrivacy. https://easylist
.to/easylist/easyprivacy.txt. (Accessed on
01/21/2022).

[24] S. Elmalaki. Fair-iot: Fairness-aware human-in-the-
loop reinforcement learning for harnessing human
variability in personalized iot. In Proceedings of the
International Conference on Internet-of-Things Design
and Implementation, pages 119–132. ACM, May 2021.

[25] S. Elmalaki, H.-R. Tsai, and M. Srivastava. Sentio:
Driver-in-the-loop forward collision warning using mul-
tisample reinforcement learning. In Proceedings of the
16th ACM Conference on Embedded Networked Sensor
Systems, pages 28–40, Shenzhen, China, Nov. 2018.

[26] Fusion.js. Documentation. https://fusionjs.com/.
(Accessed on 01/20/2022).

[27] V. Gabillon, M. Ghavamzadeh, and A. Lazaric. Best
arm identification: A unified approach to fixed budget
and fixed confidence. In Proceedings of the 25th
International Conference on Neural Information
Processing Systems, pages 3212–3220, Lake Tahoe,
Nevada, Dec. 2012. Curran Associates Inc.

[28] A. Gleave, M. Dennis, C. Wild, N. Kant, S. Levine,
and S. Russell. Adversarial policies: Attacking deep
reinforcement learning. In International Conference
on Learning Representations, Apr. 2020.

[29] D. Gugelmann, M. Happe, B. Ager, and V. Lenders. An
automated approach for complementing ad blockers’
blacklists. In Proceedings on Privacy Enhancing
Technologies, volume 2, pages 282–298, Philadelphia,
PA, June 2015.

[30] S. Heinecke and L. Reyzin. Crowdsourced pac learning
under classification noise. In Proceedings of the AAAI
Conference on Human Computation and Crowdsourcing,
volume 7, pages 41–49, Skamania Lodge, WA, Oct.
2019.

[31] M. Ikram and M. A. Kaafar. A first look at mobile
ad-blocking apps. In 2017 IEEE 16th International
Symposium on Network Computing and Applications
(NCA), pages 1–8, Cambridge, MA, Oct. 2017.

[32] N. Immorlica, K. A. Sankararaman, R. Schapire, and
A. Slivkins. Adversarial bandits with knapsacks. In
2019 IEEE 60th Annual Symposium on Foundations of
Computer Science (FOCS), pages 202–219, Baltimore,
MD, Nov. 2019.

[33] U. Iqbal, P. Snyder, S. Zhu, B. Livshits, Z. Qian, and
Z. Shafiq. Adgraph: A graph-based approach to ad and
tracker blocking. In IEEE Symposium on Security and
Privacy (SP), pages 763–776, May 2020.

17

https://github.com/brave/brave-browser/wiki/PageGraph
https://github.com/brave/brave-browser/wiki/PageGraph
https://perma.cc/78Q9-4KQX
https://chromedevtools.github.io/devtools-protocol/tot/Network/#type-Initiator
https://chromedevtools.github.io/devtools-protocol/tot/Network/#type-Initiator
https://chromedevtools.github.io/devtools-protocol/tot/Page/#method-setLifecycleEventsEnabled
https://chromedevtools.github.io/devtools-protocol/tot/Page/#method-setLifecycleEventsEnabled
https://chromedevtools.github.io/devtools-protocol/tot/Page/#method-setLifecycleEventsEnabled
https://chromedriver.chromium.org/logging/performance-log
https://chromedriver.chromium.org/logging/performance-log
https://easylist.to/
https://perma.cc/T7S2-TZKH
https://easylist.to/easylist/easyprivacy.txt
https://easylist.to/easylist/easyprivacy.txt
https://fusionjs.com/

[34] X. Jia, X. Wei, X. Cao, and H. Foroosh. Comdefend:
An efficient image compression model to defend
adversarial examples. In 2019 IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR),
pages 6077–6085, Los Alamitos, CA, June 2019. IEEE
Computer Society.

[35] S. Katariya, L. Jain, N. Sengupta, J. Evans, and
R. Nowak. Adaptive sampling for coarse ranking. In
International Conference on Artificial Intelligence and
Statistics, pages 1839–1848, Playa Blanca, Lanzarote,
Canary Islands, Apr. 2018. PMLR.

[36] R. Kleinberg. Nearly tight bounds for the continuum-
armed bandit problem. In L. Saul, Y. Weiss, and
L. Bottou, editors, Advances in Neural Information
Processing Systems, volume 17, pages 697–704,
Vancouver, Canada, Dec. 2004. MIT Press.

[37] R. Kleinberg and T. Leighton. The value of knowing a
demand curve: Bounds on regret for online posted-price
auctions. In 44th Annual IEEE Symposium on Founda-
tions of Computer Science, pages 594–605, Cambridge,
MA, Oct. 2003.

[38] J. Kurkowski. tldextract: Accurately separate the tld
from the registered domain and subdomains of a url, us-
ing the public suffix list. https://github.com/john-
kurkowski/tldextract. (Accessed on 01/07/2022).

[39] H. Le. AutoFR Project Page. https://athinagr
oup.eng.uci.edu/projects/ats-on-the-web/.
(Accessed on 01/05/2023).

[40] H. Le, A. Markoupoulou, and Z. Shafiq. CV-Inspector:
Towards automating detection of adblock circumven-
tion. In The Network and Distributed System Security
Symposium (NDSS), Feb. 2021.

[41] V. Le Pochat, T. Van Goethem, S. Tajalizadehkhoob,
M. Korczyński, and W. Joosen. Tranco: A research-
oriented top sites ranking hardened against manipula-
tion. In The Network and Distributed System Security
Symposium (NDSS), San Diego, CA, Feb. 2019.

[42] L. Li, W. Chu, J. Langford, and R. E. Schapire. A
contextual-bandit approach to personalized news
article recommendation. In Proceedings of the 19th
International Conference on World Wide Web, pages
661–670, Raleigh, NC, Apr. 2010.

[43] Y. Li, Z. Yang, Y. Guo, and X. Chen. Droidbot: a
lightweight ui-guided test input generator for android.
In 2017 IEEE/ACM 39th International Conference on
Software Engineering Companion (ICSE-C), pages
23–26, Buenos Aires, Argentina, May 2017.

[44] A. Locatelli, M. Gutzeit, and A. Carpentier. An optimal
algorithm for the thresholding bandit problem. In M. F.
Balcan and K. Q. Weinberger, editors, Proceedings
of The 33rd International Conference on Machine
Learning, volume 48 of Proceedings of Machine
Learning Research, pages 1690–1698, New York, NY,
June 2016. PMLR.

[45] P. Lowe. Blocking with ad server and tracking server
hostnames. https://pgl.yoyo.org/adservers/.
(Accessed on 01/05/2022).

[46] MDN. Text: Web APIs. https://developer.mozi
lla.org/en-US/docs/Web/API/Text. (Accessed on
01/06/2022).

[47] H. Minhas. Project moonshot: Experimentation with ma-
chine learning based ad blocking. https://www.yout
ube.com/watch?v=1nJfvtvOOs0. Archived at https:
//perma.cc/CMJ7-QJLR. (Accessed on 01/28/2022).

[48] mozdev. Adblocker. https://web.arch
i v e . o r g / w e b / 2 0 0 2 1 2 0 6 0 2 1 4 3 8 / h t t p :
//adblock.mozdev.org/. (Accessed on 01/28/2022).

[49] Mozilla. Background CSS: Cascading style sheets.
https://developer.mozilla.org/en-US/docs/W
eb/CSS/background. (Accessed on 01/31/2022).

[50] NetworkX. Documentation. https://networkx.org/.
(Accessed on 01/06/2022).

[51] NextDNS. The new firewall for the modern internet.
https://nextdns.io/. (Accessed on 01/27/2022).

[52] pfBlockerNG. IP blocking guide. h t t p s :
//www.sunnyvalley.io/docs/network-secu
rity-tutorials/pfblockerng#ip-blocking.
(Accessed on 01/25/2022).

[53] Pi-hole. Network-wide ad blocking. https:
//pi-hole.net/. (Accessed on 01/03/2022).

[54] Puppeteer. Documentation: networkidle.
https://github.com/puppeteer/puppeteer
/blob/main/docs/api.md#pagegobackoptions.
(Accessed on 01/24/2022).

[55] A. Rakhlin and K. Sridharan. Bistro: An efficient
relaxation-based method for contextual bandits. In
Proceedings of The 33rd International Conference on
Machine Learning, pages 1977–1985, New York, NY,
June 2016. PMLR.

[56] scrapinghub. Python parser for adblock plus filters.
https://github.com/scrapinghub/adblockpa
rser. Archived at https://perma.cc/DN46-678C.
(Accessed on 01/07/2022).

18

https://github.com/john-kurkowski/tldextract
https://github.com/john-kurkowski/tldextract
https://athinagroup.eng.uci.edu/projects/ats-on-the-web/
https://athinagroup.eng.uci.edu/projects/ats-on-the-web/
https://pgl.yoyo.org/adservers/
https://developer.mozilla.org/en-US/docs/Web/API/Text
https://developer.mozilla.org/en-US/docs/Web/API/Text
https://www.youtube.com/watch?v=1nJfvtvOOs0
https://www.youtube.com/watch?v=1nJfvtvOOs0
https://perma.cc/CMJ7-QJLR
https://perma.cc/CMJ7-QJLR
https://web.archive.org/web/20021206021438/http://adblock.mozdev.org/
https://web.archive.org/web/20021206021438/http://adblock.mozdev.org/
https://web.archive.org/web/20021206021438/http://adblock.mozdev.org/
https://developer.mozilla.org/en-US/docs/Web/CSS/background
https://developer.mozilla.org/en-US/docs/Web/CSS/background
https://networkx.org/
https://nextdns.io/
https://www.sunnyvalley.io/docs/network-security-tutorials/pfblockerng#ip-blocking
https://www.sunnyvalley.io/docs/network-security-tutorials/pfblockerng#ip-blocking
https://www.sunnyvalley.io/docs/network-security-tutorials/pfblockerng#ip-blocking
https://pi-hole.net/
https://pi-hole.net/
https://github.com/puppeteer/puppeteer/blob/main/docs/api.md#pagegobackoptions
https://github.com/puppeteer/puppeteer/blob/main/docs/api.md#pagegobackoptions
https://github.com/scrapinghub/adblockparser
https://github.com/scrapinghub/adblockparser
https://perma.cc/DN46-678C

[57] Selenium. Selenium automates browsers. https:
//www.selenium.dev/. (Accessed on 01/06/2022).

[58] A. Shuba, A. Markopoulou, and Z. Shafiq. NoMoAds:
Effective and efficient cross-app mobile ad-blocking.
In Proceedings on Privacy Enhancing Technologies,
volume 4, pages 125–140, Barcelona, Spain, July 2018.
Sciendo.

[59] S. Siby, U. Iqbal, S. Englehardt, Z. Shafiq, and C. Tron-
coso. WebGraph: Capturing advertising and tracking
information flows for robust blocking. In 31st USENIX
Security Symposium (USENIX Security), Boston, MA,
Aug. 2022. USENIX Association.

[60] A. Sjösten, P. Snyder, A. Pastor, P. Papadopoulos, and
B. Livshits. Filter list generation for underserved
regions. In Proceedings of The Web Conference 2020,
pages 1682–1692, Taipei, Taiwan, Apr. 2020. ACM.

[61] P. Snyder, A. Vastel, and B. Livshits. Who filters
the filters: Understanding the growth, usefulness and
efficiency of crowdsourced ad blocking. In Proceedings
of the ACM on Measurement and Analysis of Computing
Systems, volume 4. ACM, June 2020.

[62] Statcounter. Desktop screen resolution stats worldwide.
https://gs.statcounter.com/screen-resolu
tion-stats/desktop/worldwide. (Accessed on
01/20/2022).

[63] G. Storey, D. Reisman, J. R. Mayer, and A. Narayanan.
The future of ad blocking: An analytical framework and
new techniques. CoRR, abs/1705.08568, 2017.

[64] R. Sutton and A. Barto. Reinforcement learning: an in-
troduction. The MIT Press, Cambridge, Massachusetts
London, England, 2018.

[65] The Open Group. XVFB. https://www.x.org/re
leases/X11R7.6/doc/man/man1/Xvfb.1.xhtml.
(Accessed on 01/06/2022).

[66] F. Tramèr, P. Dupré, G. Rusak, G. Pellegrino, and
D. Boneh. Adversarial: Perceptual ad blocking meets
adversarial machine learning. In Proceedings of the
2019 ACM SIGSAC Conference on Computer and
Communications Security, pages 2005–2021, London,
UK, Nov. 2019.

[67] Tranco. Information on the tranco list with ID XV9N.
https://tranco-list.eu/list/XV9N/full.
Archived at https://perma.cc/V76V- 9JS2.
(Accessed on 01/31/2022).

[68] R. Trimananda, H. Le, H. Cui, J. Tran Ho, A. Shuba,
and A. Markopoulou. OVRseen: Auditing network
traffic and privacy policies in oculus vr. In 31st USENIX

Security Symposium (USENIX Security), Boston, MA,
Aug. 2022. USENIX Association.

[69] J. Varmarken, H. Le, A. Shuba, A. Markopoulou,
and Z. Shafiq. The tv is smart and full of trackers:
Measuring smart tv advertising and tracking. In
Proceedings on Privacy Enhancing Technologies,
volume 2, pages 129–154. Sciendo, July 2020.

[70] R. J. Walls, E. D. Kilmer, N. Lageman, and P. D.
McDaniel. Measuring the impact and perception
of acceptable advertisements. In Proceedings of the
Internet Measurement Conference, pages 107–120,
Tokyo, Japan, 2015. ACM.

[71] J. Wang, C. Song, and H. Yin. Reinforcement
learning-based hierarchical seed scheduling for greybox
fuzzing. In The Network and Distributed System
Security Symposium (NDSS), Feb. 2021.

[72] Wayback Machine. Internet archive. https:
//archive.org/web/. (Accessed on 01/05/2022).

[73] Y. Xu, B. Kumar, and J. D. Abernethy. Observation-
free attacks on stochastic bandits. In M. Ranzato,
A. Beygelzimer, Y. Dauphin, P. Liang, and J. W.
Vaughan, editors, Advances in Neural Information
Processing Systems, volume 34, pages 22550–22561.
Curran Associates, Inc., Dec. 2021.

[74] Z. Yang, W. Pei, M. Chen, and C. Yue. Wtagraph: Web
tracking and advertising detection using graph neural
networks. In IEEE Symposium on Security and Privacy
(SP), pages 1540–1557, San Francisco, CA, May 2022.

[75] L. Yu, W. Xie, D. Xie, Y. Zou, D. Zhang, Z. Sun,
L. Zhang, Y. Zhang, and T. Jiang. Deep reinforcement
learning for smart home energy management. IEEE
Internet of Things Journal, 7(4):2751–2762, 2019.

[76] S. Zhu, X. Hu, Z. Qian, Z. Shafiq, and H. Yin. Measuring
and disrupting anti-adblockers using differential execu-
tion analysis. In The Network and Distributed System
Security Symposium (NDSS), San Diego, CA, Feb. 2018.

19

https://www.selenium.dev/
https://www.selenium.dev/
https://gs.statcounter.com/screen-resolution-stats/desktop/worldwide
https://gs.statcounter.com/screen-resolution-stats/desktop/worldwide
https://www.x.org/releases/X11R7.6/doc/man/man1/Xvfb.1.xhtml
https://www.x.org/releases/X11R7.6/doc/man/man1/Xvfb.1.xhtml
https://tranco-list.eu/list/XV9N/full
https://perma.cc/V76V-9JS2
https://archive.org/web/
https://archive.org/web/

Ref. Notation Definitions

Site Feedback (i.e., information received from the environment)

Task 1 reqs Set of outgoing requests
Task 3 hits The filter rules that blocked requests
Sec. 3.2.2 CA, CI , CT Counters for ads, images, text
Task 4 Site dynamics Changes in page content (images, text),

ads, and outgoing network requests

Derived from Site Feedback

Sec. 3.2.1 AH Hierarchical action space, action = rule
Sec. 3.2.2 CA, CI , CT Base representation of site `
Eq. (1) bCA, bCI , bCT Difference between base representation of

site ` and when a filter rule is applied
Eq. (2) B 2 [0,1] The fraction of page that is broken. 1 =

entire page is visually broken

Policy: Multi-arm bandits with Upper Bound Confidence

Sec. 3.2.3 Qt(a) Expected reward of action a
Sec. 3.2.3 Ut(a) Confidence of Q(a), higher values mean

we should explore action a more.
Sec. 3.2.3 c>0 Exploration factor for UCB
Sec. 3.2.3 a2(0,1] Learning step size for updating Q(a)
Sec. 3.2.3 Q0(a) Initial Q(a) for arms

Trade-off: Blocking ads vs. Avoiding breakage (Fig. 19)

Sec. 3.2.2 bCA Blocking ads, 1 = blocked all ads
Sec. 3.2.2 1�B Avoiding breakage, 1 = no breakage
Sec. 3.2.2 w2 [0,1] User preference to avoiding breakage
Eq. (3) RF Reward function
Sec. 5.3.3 ÂB Potential collateral damage (global rule)

Effectiveness of Filter Rules (Task 3, Fig. 19)

Eq. (3a) Bad Rules that don’t block ads
Eq. (3b) Potential Blocked ads below w threshold
Eq. (3c) Good Blocked ads w/in. w threshold

Table 4: Notations and their references within the paper.

APPENDICES
Due to space constraints, many additional implementation de-
tails, results, and discussions are deferred to these appendices.

A Filter Lists
Filter Rules. Filter rules for the web (on desktop and mobile)
have grown out of the need to block ads and tracking
(A&T), without causing breakage, as they affect user-facing
software (e.g., browsers and apps). They typically block at
the HTTP-level and are distributed to millions of users using
web extensions and built-in browser adblocking. There are
different filter rules for blocking A&T. Some block outgoing
network requests based on URLs, while others hide HTML
elements (such as DOM elements) and abort JS execution.

Beyond browsers, OS-wide filter rules are increasingly
adopted on mobile [31, 58] and smart TV [69]. In addition,
DNS-based lists like Pi-Hole [53], AdGuard Home [5], and
NextDNS [51], block based on hostnames. They can be
applied network-wide; IP-based rules are compatible with
firewall software like pfBlockerNG [52].

���� ���� ���� ���� ���� ���� ����
�

���

����

����

����

)L
OWH
U�/
LV
WV

$GV
0DOZDUH
7UDFNLQJ
3KLVKLQJ
2WKHUV

Figure 14: Filter Lists over Time. We illustrate the growth of
open-source filter lists between 2016–2022, categorized by different
purposes like ads, malware, and tracking. The most popular purpose
is to block ads.

Filter Lists. Filter rules are compiled into open-sourced filter
lists (FL) that are maintained by domain experts or individual
power users such as Peter Lowe [45]. These lists are curated
for different languages, devices, and purposes. For example,
the most popular filter list for blocking ads, EasyList [22],
has 22 language-specific versions, while AdGuard provides a
mobile-specific filter list to block ads [4]. Similarly, the most
popular tracking filter list for the web is EasyPrivacy [23].
Filter Lists over Time. To motivate our focus on URL-based
filter rules to block ads by AutoFR, we conduct a longitudinal
analysis of filter lists over the years. We discover that
filter rules for blocking ads are the most prevalent. To do
so, we analyze filterlists.com, a repository of open-source
filter lists [10]. Using Wayback Machine [72], we extract
information about the filter lists within the past six years
(up to when the site was established). Fig. 14 depicts the
growth of filter lists and categorized to showcase their
Top–4 purposes: ads, malware, tracking, and phishing. Other
purposes include blocking annoyances (e.g., popups and
cookie consent dialogs), crypto-mining scripts, and social
tracking. By 2022, there are over 2.1K different filter lists for
42 diverse purposes that are supported by 44 software tools
(e.g., Adblock Plus (ABP), uBlock Origin, Pi-Hole, AdGuard
Home, Opera). In addition, when we consider popular tools
based on their compatibility with filter lists, we observe that
80% of the Top–10 tools all support URL-based filter rules.

B AutoFR in a Controlled Environment
In this section, we provide additional details on the imple-
mentation of AutoFR that complements Sec. 4. App. B.1
describes how we detect when a site is finished with loading
its content and ads. App. B.2 details how we build our action
space per-site. App. B.3 explains how we build site snapshots.
Lastly, Fig. 4 illustrates an example of how AutoFR works
end-to-end within a controlled environment.

B.1 Knowing When a Site is Done Loading
We explain how we can provide a best-effort approach when
visiting a site, which affects our Alg. 1 every time we visit

20

Figure 15: Action Space AH . We illustrate an truncated example of AH with a root (dashed border). Solid! are initiator edges. Dashed 99K
are finer-grain edges between eSLD to FQDN filter rules, etc... Orange, blue, and black solid borders represent eSLD, FQDN, and With Path
filter rules, respectively. They align directly with Table 1. As shown in Fig. 20, action spaces can be quite large.

a site for real. A challenge to ad-related web measurements
is knowing when sites are finished loading to end the visit
(including when ads are done loading). Prior work commonly
imposes a time limit to the visit for all sites [33, 40].

We address this challenge by using heuristics to min-
imize and adapt the waiting time necessary for each
site. Specifically, using Selenium [57], we access the
browser’s performance logs [20], which are events for
life cycles for network requests. In addition, we enable
“Page.setLifecycleEventsEnabled” from Chrome DevTools
Protocol to consider the events from the page’s (and iframes)
life cycle [19]. We wait until there are less than four events
within one second before injecting JS to capture counters
of ads, images, and texts. This approach is similar to how
other tools (e.g., Puppeteer [54]) know when a page is done
loading. If it exceeds 45 seconds, we timeout to deal with
sites with automatic videos playing.

B.2 Building the Action Space
We provide additional details on how we construct the action
space, as discussed in Sec. 4.2, and showcase a big-picture
example in Fig. 15. It is constructed from the set of outgoing
network requests collected from the INITIALIZE procedure
(Alg. 1), which comprises multiple visits to the site. We
collect the outgoing network requests using Selenium [20].
Its edges are based on rule dependencies from Sec. 3.2.1.
Finer-Grain Dependency. For every request, we use
tldextract [38] to convert the request into its eSLD, FQDN,
and With Path formats (if applicable), and then convert them
into URL-based filter rule syntax as shown in Table 1. We
add edges from eSLD! FQDN!With Path. We refer to

these edges as “finer-grain” edges.
Initiator Dependency. We further improve AH by consider-
ing the “initiator” of each request. We follow the intuition
that if only ads.com initiates requests to bids.com, then the
agent should try ads.com first. We do not need to try bids.com
if it is effective. Consequently, this makes AH taller and
reduces the number of arms the agent needs to explore per
run of the multi-arm bandit, as described in Sec. 3.3.

We use the initiator call stack provided by Chrome
DevTools Protocol [18], which is already part of the collected
web requests. The top of this stack is the script that initiates
the request. When no call stack is available, we fallback to
the “documentURL” of the request, which is the URL of the
frame from which the request was made. For example, if the
request was made within an iframe, then the documentURL
will be the URL of the iframe. Recall that the initiator request
should already have three nodes that correspond to it (e.g.,
eSLD, FQDN, and With Path nodes), and the request itself
should have the same. We then add edges from the initiator
eSLD node to the request eSLD node, and so forth for other
granular nodes. We refer to these edges as “initiator” edges.
Finally, for all nodes that do not have a parent, we put the
root node as their parent. Note that we avoid adding duplicate
nodes and edges that would cause cycles.

B.3 Building Site Snapshots
We provide details on how to build site snapshots, which is
complementary to Sec. 4.1.
1. Collecting Raw AdGraphs. We utilize the AdGraph
browser [33] with Ad Highlighter to determine the number of
ads. We use XVFB [65] to simulate a virtual display, which

21

(a) Ads on gulfnews.com (b) Ads on urdupoint.com

Figure 16: Ad Highlighter. We illustrate two examples of how Ad
Highlighter overlays ads that it identifies using a red background and
the label “Ad Identified.”

makes it possible to run our environment in a headless server
(and cloud services). We use a display size of 2560px width
and 3240px height, which is wider than the most popular
screen size for desktops in 2021 [62] and three times as tall.
At the end of each visit, we take a screenshot for audibility
and save the AdGraph file. We repeat this step until we collect
the desired number of snapshots, and each must contain at
least one ad.
2. Annotating Site Snapshots. Recall that we are only
concerned with the visual components of a site, such as ads,
images, and texts (CA, CI , CT). However, AdGraph does not
know which nodes are visible to the user, and thus we must
annotate nodes that are important. We build upon the method-
ology in App. C.2.2, where we simply capture the counters
and return them. Here, we need to make AdGraph know
specifically where we got those counters from. This annota-
tion is illustrated in Fig. 5. The core idea is to use JS to make
changes to the HTML so that AdGraph can capture them, al-
lowing us to associate site snapshot nodes with three attributes
“FRG-image=true”, “FRG-textnode=true”, or “FRG-ad=true”.
This annotation is illustrated in Fig. 5 with filled backgrounds.

For visible images, we add a new attribute “FRG-
image=true” to the HTML element. This translates to a new
node in our site snapshot that references the image node,
allowing us to now mark the image node (within the site
snapshot) with “FRG-image=true” as well.

For visible text, since they are not HTML elements, we
cannot add an attribute to them. We devise a different
approach. We find that each AdGraph node keeps track of its
previous sibling node in the HTML structure. Therefore, for
every visible textnode that we identify using JS, we add a new
HTML “<FRG-TextNode>” element right after the textnode.
This causes AdGraph to pick this up as a new site snapshot
node with a reference to the previous sibling node (the actual
textnode we want). We post-process the raw file to mark the
real textnode within the snapshot with “FRG-textnode=true”
using the previous sibling node information as a guide.

For visible ads, annotating is much more challenging
because Ad Highlighter overlays an ad iframe inside the
iframe and not the actual HTML tag itself. The core idea
is to figure out if the iframe content contains this overlay
and then annotate the top-level element (its tag) as an ad.
However, there are several limitations: (1) JS injection cannot
access content within third-party iframes as it is sand-boxed
(first-party cannot access content within the iframe and vice
versa); and (2) ads are complex and can have many nested
iframes and the Ad Highlighter overlay can be deep inside
one of the nested iframes. To address these limitations, we
utilize the following methodology. First, we start at the
top level (site) and find all visible iframes. Second, we
conduct a depth-first search traversal of these iframes using
Selenium’s “switchTo” feature that allows us to switch into
the context of individual iframes. Third, once inside the
context of each iframe, we inject JS to find the Ad Highlighter
overlay element (bypassing the limitation from before). If the
element is found, we mark the very top iframe element with
“FRG-ad=true”, otherwise, we continue with the traversal.
3. JS Dependency. AdGraph does not keep track of how
scripts depend on each other. For instance, if JS script A
calls a method from JS Script B before adding an HTML
element, it will only capture JS Script A! DIV. Recall that
this information is available in the initiator call stack of a
web request in App. B.2. Thus, we transfer this information
to the site snapshot as well. This relationship is shown in
Fig. 5: JS Script B! JS Script A! DIV.
4. Save the Site Snapshot. We use NetworkX [50] to save
site snapshots as “.graphml” files to be used by AutoFR.

B.3.1 Site Snapshots vs. Action Spaces

Although both site snapshots (App. B.3 and Fig. 5) and
action spaces (App. B.2 and Fig. 15) are graph-based, they
contain different information and are constructed differently.
First, site snapshots represent one visit to a site and capture
more than just information about network requests, e.g.,
HTML structure and JS script usage. Thus, there can be
multiple site snapshots for a given site. Site snapshots have
no notion of eSLD and FQDNs, they only consider the entire
URLs. Conversely, action spaces are constructed from the
set union of network requests based on multiple visits to a
site, which results in one action space per-site. Nodes are
created by converting URLs to different granular filter rules,
as described in Table 1. In addition, action spaces do not have
any information about HTML structure and JS.

C AutoFR in a Live Environment (AutoFR-L)
In this section, we provide the full details of how we imple-
mented AutoFR in a live setting, referred to as AutoFR-L (i.e.,
it visits the site for real during the initialize phase or when
an arm is pulled). App. C.1 explains the differences between
AutoFR (that runs using site snapshots) vs. AutoFR-L.
In App. C.2, we detail the implementation and evaluate

22

Environment (Live)

Docker

Agent (Python)

Policy
(Python)

Action Space
(NetworkX)

2. Action (a)
(Python)

Output
(Text File)

Filter
Rules

User of
AutoFR

Site (ℓ)

Configs
(𝑤)

Hits by Action
(JS)

b. Extract requests (Selenium)

Updates

1. Selects

Docker

a. Visit site n times (Selenium)

5. Stop

Chomium
Browser

Ad
Highlighter

4. Repeat

In
iti

al
iz

e
A

ut
oF

R
 A

lg
or

ith
m

3. Reward
(JS, Python)

Adblocker
Plus

Apply action
using same

Docker image

Figure 17: AutoFR-L Example Workflow (Live Environment).
INITIALIZE (a–b, Alg. 1): (a) spawns n=10 docker instances and vis-
its the site until it finishes loading; (b) extracts the outgoing requests
from all visits and builds the action space. We run the RL portion
of AUTOFR procedure (steps 1–4). Lastly, AutoFR outputs the filter
rules at step 5, e.g., ||s.yimg.com/rq/darla/4-10-0/html/r-sf.html. Note
that we do not use AdGraph or site snapshots in this version.

AutoFR-L vs. AutoFR using a sample of sites. Fig. 17
illustrates an example of how AutoFR-L works end-to-end.

C.1 AutoFR vs. AutoFR-L (Implementation)
This section complements Sec. 4, where we presented the
implementation of AutoFR in a controlled environment
(i.e., based on site snapshots). There, we argued that an
implementation of AutoFR that exactly mimics the human
process, would need to interact with sites and test different
rules in a live environment, which would be slow and
expensive, albeit strictly better than the human FL author
process. In this appendix, we describe the implementation
of this live version, which we refer to as AutoFR-L. It is
worth emphasizing that the distinction between controlled
(i.e., based on snapshots) and “live” in the implementation of
AutoFR applies only to the training phase, i.e., during the trial
and evaluation of candidate filter rules. Once the filter rules
are generated with either version of the implementation, they
can be applied or tested on any site in the wild. This is the
case in the evaluation of AutoFR in the main paper (Sec. 5),
as well as in the evaluation of AutoFR-L in App. C.2.3.

Fig. 17 outlines how we implement AutoFR in a live
environment (AutoFR-L). This means that it visits the site
for real at every time step t of the algorithm. It corresponds
to our formulation of the problem in Fig. 1(b). To simplify
our explanation, we follow the same outline as Sec. 4.

C.2 AutoFR-L Implementation
Agent. The implementation of the agent, policy, and action
space is the same as Sec. 4.2 with details in App. B.2.
Environment (Live). The environment allows the agent
to apply an action in a live setting. In particular, it visits
a site ` for real and applies the filter rule using Adblock
Plus [3]. It then captures the necessary site feedback (e.g.,
ads, images, text, hits) using JS injection and calculates the
reward, and returns it back to the agent. A visit to a site for

real is explained in App. C.2.2. Importantly, it has a high cost
and we deem it impractical, as discussed in Sec. 4.

C.2.1 Ad Highlighter

As discussed in Sec. 4.3, we rely on Ad Highlighter [63] to
capture the number of ads during a visit to a site; a real-life
example is shown in Fig. 16. Ad Highlighter works in the
following ways. Within every iframe, it finds all images and
SVGs, or HTML elements that contain the background-url
style (e.g., spans, a tags, and divs), and calculates their 625-bit
image hash. It calculates a Jaccard similarity score between
the image hash and the set of known hashes (hard-coded), if
the similarity is above 0.8, it marks it as an ad by overlaying
it with the word “AdChoice Identified.” We modify Ad
Highlighter to listen to a custom event so that we can
extract the number of ads it identified using JS injection. Ad
Highlighter is easily extendable using JS. It also allows us
to audit its effectiveness visually using a browser. In addition,
the similarity matching threshold is easily tuned to improve
the precision of the tool. Ad Highlighter has high precision;
we explain this in App. D.1.3.

C.2.2 Visiting a (Live) Site

Visiting a live site involves the same setup as described in
Sec. B.3 when collecting raw AdGraphs. However, we use
the Chromium browser this time with Ad Highlighter and
a customized ABP (taken from [40]). We use Selenium to
toggle off any filter lists that are by default loaded. As a
result, ABP will start off with no filter rules loaded.
Applying Action a. To apply our action (filter rule), we do the
following methodology as [40]. First, we use flask, a python
web server to locally serve our custom filter rules. We then
utilize a customized ABP extension with the browser [40].
This allows us to load the custom filter rules being served by
flask. In addition, we can retrieve the filter rules that blocked
any outgoing requests (i.e., hits). To do so, we trigger a
custom event that ABP responds to. ABP will add the hits
information in JSON format into the body of the page. We
then retrieve it from the page by injecting JS using Selenium.
Capturing Site Feedback. To capture the number of ads
(CA), we rely on Ad Highlighter, as described in Sec. 4.3. For
CI , we inject custom JS to retrieve images, similar to [40].
It considers all visible images (e.g., with height and width
> 2px and opacity > 0.1) or HTML elements that have a
background-url set [49]. Similarly, for CT , we inject custom
JS to find all visible textnodes, which are locations of texts
and not the individual word count [46]. This allows us to deal
with dynamic sites that can serve personalized content. For ex-
ample, a news site can display the same layout for five articles,
each article contains one title and one description. The articles
may change upon separate visits, but our approach allows
us to still retrieve the same number for text (e.g., CT =5⇥2)
without worrying about the change in the content itself. Using
Selenium, we are able to collect the outgoing network requests

23

��� ��� ��� ��� ��� ���
$YRLGLQJ�%UHDNDJH���ಜt�

���

���

���

���

���

���

%
OR
FN
LQ
J�
$
GV
��

�
& $
�

Z

��
�

�

��

��

��

��

���

1
XP

EH
U�R
I�6

LWH
V

(a) AutoFR-L (Sample–100)

��� ��� ��� ��� ��� ���
$YRLGLQJ�%UHDNDJH���ಜt�

���

���

���

���

���

���

%
OR
FN
LQ
J�
$
GV
��

�
& $
�

Z

��
�

�

��

��

��

��

���

1
XP

EH
U�R
I�6

LWH
V

(b) AutoFR (Sample–100)

��� ��� ��� ��� ��� ���
$YRLGLQJ�%UHDNDJH���ಜt�

���

���

���

���

���

���

%
OR
FN
LQ
J�
$
GV
��

�
& $
�

Z

��
�

�

��

��

��

��

���

1
XP

EH
U�R
I�6

LWH
V

(c) EasyList (Sample–100)

Figure 18: AutoFR-L vs. AutoFR. We sample 100 sites from our W09-Dataset and compare the results between AutoFR-L, AutoFR, and
EasyList. AutoFR performs slightly better than AutoFR-L: 86% vs. 83%, for sites within w threshold of AutoFR and AutoFR-L, respectively.
Fig. 19 explains how to read these plots. See Table 5, col. 1–3, for additional information.

App. C.2.3, Fig. 18 Sampled–100

AutoFR-L
(Sampled)

AutoFR
(Sampled)

EasyList
(Sampled)

Description (w=0.9) 1 2 3

1 Sites in operating point: bCA�0.95, 1�B�0.95 73% (73/100) 80% (80/100) 79% (79/100)

2 Sites within w: bCA >0, 1�B�0.9 83% (83/100) 86% (86/100) 85% (85/100)

3 Ads blocked within w: Â`(CA⇥ bCA) / Â`CA; 1�B�0.9 83% (320/387) 86% (321/375) 86% (324/375)

Table 5: AutoFR-L vs. AutoFR. We provide the same information as Table 3 but for the comparison between AutoFR-L and AutoFR in
App. C.2.3. Note that row 3 has different totals because AutoFR-L was run as a different experiment, while AutoFR and EasyList is a subset
of the results from Sec. 5.1.

(reqs) from the browser, including the initiator information,
a call stack that connects how scripts call each other and also
which script initiated the request, as discussed in App. B.2.
Rewards. We calculate rewards with python, as explained
in Sec. 3.2.2.

C.2.3 Evaluating AutoFR-L vs. AutoFR
This section provides evaluation for AutoFR-L that comple-
ments Sec. 5.1. AutoFR-L runs Alg. 1 in a live environment
by visiting the site for real at each iteration of the multi-arm
bandit. It learns directly from the response of the site, while
AutoFR can only infer the response through the use of site
snapshots (Sec. 4.1). Our objective is to show that Alg. 1 can
be implemented with a live environment, AutoFR-L, and to
explore how AutoFR-L differs from AutoFR.
Real-world Scenario. Since AutoFR-L learns in a live
environment, we opt for a more realistic experiment setup.
Recall in Sec. 3.3 that the agent traverses the action space AH ,
using one run of multi-arm bandit per layer of the hierarchy.
We consider the scenario where the agent is a FL author and
has only one hour per run of multi-arm in our Alg. 1; thus,
treating time as a budget. The number of iterations within
the multi-arm bandit run is now dependent on how long a
visit to the site takes. Once the hour expires, the agent moves

on to the next multi-arm bandit run, if necessary.

Experiment Setup. Due to the high cost of AutoFR-L, we
rely on sampling 100 sites from our W09-Dataset in Table 2.
We denote this as the Sampled-100-Dataset. For each site, we
apply AutoFR-L using the same parameters as App. D.1.1.
Recall that this entails the agent visiting the site for real.
Once AutoFR-L is done, we evaluate its filter rules using the
automated process in App. D.1.3.

AutoFR vs. AutoFR-L (In the Wild). Our results are
displayed in Fig. 18(a) for AutoFR-L, Fig. 18(b) for AutoFR,
and Fig. 18(c) for EasyList, including additional results in
Table 5 columns 1–3, respectively. Overall, we find that
AutoFR-L achieves the same visual pattern of effectiveness
as AutoFR and EasyList. It can block the majority of sites
within the w threshold. Using Table 5, we find 73% of sites
fall into the operating point (row 1, col. 1) and 83% of sites
are within the threshold w (row 2). AutoFR-L and AutoFR
blocks similar proportions of ads: 83% vs. 86% of ads from
AutoFR-L and AutoFR, respectively (row 3, col. 1 and 2).

We observe that AutoFR-L creates 464 filter vs. 62 filter
rules from AutoFR for the Sampled-100-Dataset. The rules
from AutoFR-L cover 67% (42/62) of rules from AutoFR.
This is not surprising as AutoFR-L is limited by the time

24

��� ��� ��� ��� ��� ���
$YRLGLQJ�%UHDNDJH���ಜt�

���

���

���

���

���

���
%
OR
FN
LQ
J�
$
GV
��

�
& $
�

Z

��
�

2SHUDWLQJ�SRLQW
%ORFNHG�DGV�EXW
EUHDNDJH�EH\RQG�Z

%ORFNHG�DGV
ZLWKLQ�Z

�

��

��

��

��

���

1
XP

EH
U�R
I�$

FW
LR
QV

Figure 19: Trading-off Blocking Ads vs. Breakage, via Param-
eter w. This figure depicts a heatmap of rules applied on a site and
the (bCA, 1�B) they achieve. It is desirable to select rules that block
many ads within the breakage threshold w (1�B�w); ideally, filter
rules close to the top-right corner operating point (bCA=1, 1�B =1).
We set the threshold w = 0.9 as an example. Rules to the left of w
(1�B < w) block ads but cause more breakage than is tolerable,
while ones to the right of w (1�B�w) are acceptable.

budget. As a result, it does not have time to converge to a
more precise (or minimal) set of effective rules. For instance,
for large action spaces, it may only have time to select certain
arms once and will not learn that some arms are non-critical
to blocking ads for the site, as discussed in Sec. 3.3. Although,
as noted, this did not stop AutoFR-L from being effective
overall. Lastly, we find that 42% (195/464) of rules are within
EasyList, 41% (189/464) are in EasyPrivacy.

D Evaluation
This section provides additional details, results, and eval-
uation that complement Sec. 5. App. D.1 continues our
evaluation of AutoFR’s per-site rules.

D.1 Filter Rules Evaluation Per-Site Cont’d
This section is complementary to Sec. 5.1. In App. D.1.1,
we discuss our parameter selection and experiment setup.
App. D.1.2 and App. D.1.3 provide additional evaluations of
AutoFR in the wild. App. D.1.4 describes how we validated
the capturing of images and text. Lastly, in App. D.1.5, we
discuss how w affects the output of AutoFR.

D.1.1 Parameter Selection for AutoFR

Selecting w. We select w = 0.9 to represent a user who
has similar interests to FL authors but has a slightly higher
tolerance for breakage. This user wants filter rules that block
ads with minimal breakage. We further explore how changing
w affects the output of AutoFR in Sec. 5.1 and App. D.1.5.
Hyper-parameters Selection. As explained in Sec. 3.3, we
have several hyper-parameters that need to be tuned. We list
the choices of these hyper-parameters as follows:

� ��� ���� ����
&RXQW

���

���

���

(
&
'
)

$FWLRQ�6SDFHV

1RGHV
([SORUHG

�. ��. ��.
&RXQW

6LWH�6QDSVKRWV

1RGHV
(GJHV

� ��� ���
6HFRQGV

���

���

���

(
&
'
)

$XWR)5�5XQ�WLPH

� � � � � ��
)LOWHU�5XOHV�SHU�6LWH

)LOWHU�5XOHV

Figure 20: AutoFR Information.: Action Space (top–left): 75% of
action graphs have 800 nodes or fewer. AutoFR only needs to explore a
fraction of the action space to find effective rules. Site Snapshots (top–
right): 75% of site snapshots contain 10K nodes or fewer. AutoFR
Run–time (bottom–left): 75% of sites take a minute or less to execute
the multi-arm bandit portion of Alg. 1. Filter Rules (bottom–right):
For 75% of sites, AutoFR generated three filter rules or fewer.

• Initial estimates (Q0): We use the optimistic initial value
approach for MAB [64]. Every filter rule may block ads
if the MAB selects it. However, we do not want to go
too far above zero, as the rules that are “potentially good”
need to converge near zero (see Sec. 3.3). Hence, we chose
Q0 = 0.2 as an initial value. This allows every filter rule
to be tested by the MAB agent.

• Learning rate (a): We use an adaptive learning rate a= 1
N[a]

to update the Q(a) values. Here, N[a] is the number of
times the action a has been selected. We adopted this
approach over a constant learning rate to capture the fact
that rules can vary in their effectiveness. For example,
on one extreme, if the rule googlesyndication.com gets
r = 1 for the first 10 pulls by the MAB but then does not
work at all on the 11th pull (r=�1), then Q(a) would be
dramatically affected with a high constant learning step.

• Exploration rate for UCB (c): We set the exploration rate
for UCB c=1.4, to encourage AutoFR to explore the arms
without prolonging the convergence of the algorithm greatly
(e.g., c=2 causes the convergence to take twice as long).

Capturing Site Dynamics. We capture site dynamics by
visiting the site multiple times, as discussed in Sec. 3.3 and
Fig. 21. To figure out how many visits we will need, we take
motivation from prior work [40], which encapsulated the site
dynamics in terms of how many eSLDs are captured after
every new visit. To guide our selection, we visit 100 random
sites within the Tranco Top–5K for 10 visits per-site. For
each site, we looked at how many new eSLDs are captured
after every visit incrementally. We find that by the fifth visit,
we have already captured 80% of the possible eSLDs from
the 10 visits. Thus, we pick 10 visits for a site to capture its

25

� � ��
6LWH�9LVLWV

���

���

���

���

���

���

&
RP

SO
HP

HQ
WD
U\
�

�(
&
'
)

H6/'

Figure 21: Site Dynamics based on eSLDs. We show the number
of eSLDs we capture with multiple visits to each site; here, each line
represents one site (for a sample of 100 sites from the Top–5K). By
the fifth visit, we see that we already capture about 80% of eSLDs
(from the set union of all eSLDs by the 10 visits per-site) for the
majority of sites.

dynamics, which more than doubles prior work [40, 76].
Making EasyList Comparable. EasyList is a state-of-the-
art filter list for adblocking on the web [22]. However, it
contains rules beyond URL-based filter rules, such as element
hiding rules. As a result, we make EasyList more comparable
to our URL-based filter rules: we parse the list and utilize
delimiters (e.g., “$”, “||”, and “ˆ”) to identify URL-based
filter rules and keep them. As a result, our results in Sec. 5
for EasyList are based only on its URL-based rules.
Automated Evaluation of Filter Rules for a Site. For
Sec. 5.1– 5.3, we will utilize an automated approach to
evaluate the effectiveness of filter rules and plot the results
in a trade-off figure like Fig. 19. We discuss the limitations
of this automated approach and confirm our results with an
independent visual inspection experiment by the authors in
Sec. 5.1 and App. D.1.3.

• In the Wild: If we are testing rules in the wild, we apply rules
to a site (for real) 10 times and capture the site feedback CA,
CI , CT , as described in Sec. 4.1. We then average the values
and use that to calculate our trade-off terms of blocking ads
bCA (Eq. (1)) and avoiding breakage 1�B (Eq. (2)).

• Site Snapshots: If we are testing rules in a controlled
environment, we will apply the filter rules to each set of
10 site snapshots, representing a site, to emulate the visits
to the site. We proceed with the same calculations for the
trade-off terms.

Cloud-based Experiments For our large-scale experiments
in Sec. 5.1 (Top–5K) and 5.3.3 (Top 5K–10K), we use the
Tranco list [41, 67]. Since we run our experiments in the US
region, we customize the list with popular sites for the US
only. Next, we set up AutoFR and AutoFR-L using Amazon’s
Web Services (AWS) and EC2. Specifically, we use EC2 in-
stance type m5.2xlarge that has eight vCPU, 32GB memory,
and 35GB storage. For each site, we make sure that Ad High-
lighter can detect at least one ad before applying AutoFR or

��
�

��
�

1XPEHU�RI�6LWHV
__GRXEOHFOLFN�QHWA�WKLUG�SDUW\

__DGQ[V�FRPA
__DPD]RQ�DGV\VWHP�FRPA
__JRRJOHWDJVHUYLFHV�FRPA

__SXEPDWLF�FRPA�WKLUG�SDUW\
__SDJHDG��JRRJOHV\QGLFDWLRQ�FRPA

__UXELFRQSURMHFW�FRPA
__RSHQ[�QHWA

__PRRNLH��FRPA
__�OLIW�FRPA

__LQGH[ZZ�FRPA
__VPDUWDGVHUYHU�FRPA�WKLUG�SDUW\

__UILKXE�FRPA
__PRDWDGV�FRPA

__DGIRUP�QHW�VHUYLQJ��WKLUG�SDUW\
__VSRW[FKDQJH�FRPA

__DGVDIHSURWHFWHG�FRPA
__PO����FRPA

__DGV�WZLWWHU�FRPA
__HP[GJW�FRPA

)L
OWH
U�5

XO
HV

���
���
���
���
���
���
���

���
���

���
���
���
���
���
���
���
���
���

���
���

Figure 22: Top–20 Filter Rules by EasyList for Top–5K Sites.
We apply EasyList to the same Top–5K sites in Sec. 5.1 and show the
popular filter rules by the number of sites that they “hit” on (Task 3).
This plot is complementary to Fig. 12.

AutoFR-L. Specifically, we visit each site three times and only
consider sites with an average number of ads larger than zero.

D.1.2 Additional Per-Site Evaluation

We provide an additional evaluation of our results from
Sec. 5.1. In addition, Fig. 19 illustrates an example of how
to read our trade-off plots.
Cost of Running AutoFR (Controlled vs. Live Environ-
ment). Recall our discussion in Sec. 4, where we estimated
that it would take 13 hours to run AutoFR in a live environ-
ment and $1.3 to run in the cloud per-site. To explore the cost
of running AutoFR in a controlled environment, we leverage
our Full-W09-Dataset. We discover that it takes 49 seconds
to save a snapshot on average (across 10.4K snapshots).
Since each site contains 10 site snapshots, that takes between
49 to 490 seconds (with or without parallelism using Docker).
In addition, it takes 47 seconds on average to run AutoFR
after the collection of site snapshots. Altogether, it takes 1.6
to 9 minutes to run AutoFR per-site. Compared with our live
estimate, the controlled AutoFR is 87 to 488 times faster. In
terms of cost, this would cost up to $0.015 vs. $1.3 per-site
(pro-rate cost).
Characterization of Filter Rules. AutoFR generated 361
distinct rules for the Top–5K and we feature the Top–20 in
Fig. 12. Furthermore, the filter rules belong to a diverse set of
ads and tracking (A&T) domains and resources. To determine
whether our rules belong to A&T domains, we adopt the
approach from prior work [33, 69] and compare the eSLD
version of our filter rules to popular EasyList (advertising)
and EasyPrivacy (tracking) filter lists [22, 23]. We observe
that 31% (111/361) of the rules appear in EasyList. In fact,
70% of our Top–20 rules in Fig. 12 also occur in EasyList.
When we compare our Top–20 directly to EasyList’s Top–20,

26

shown in Fig. 22, we see an overlap of 40% in terms of
eSLD. From the remaining rules, 30% (108/361) appear
in EasyPrivacy. The appearance of tracking-related rules
highlights the relationship between ads and tracking; and
we surmise that blocking tracking scripts may stop (or
interfere) with the serving of ads (e.g., ||intergient.comˆ,
||t1.daumcdn.net/ad f it/adunit_style/).

We rely on keywords (e.g., “ads”, “track”, “bid”,
”advert”) and source code inspection to classify the
remaining 142 filter rules. We discover 27% (38/142)
of filter rules are A&T. For instance, we find A&T
domains (e.g., ||adhouse.proˆ), ad resources (e.g.,
||ad.gmw.cn/html/indexbanner_800_5.htm), and A&T
JS scripts. Some scripts are patently ad-related based on the
URL (e.g., ||www.yourtango.com/prebid_25062018. js) and
some are not (e.g., ||www.startelegram.com/static/yozons-
lib/core. js). We find 10% (15/142) may cause functionality
breakage, as they target jQuery, Cloudflare’s Rocket Loader,
and Learn Dash related scripts5. However, this is a known
limitation since AutoFR utilizes visual components of a
site. We consider the remaining unknown and address this
limitation by evaluating the effectiveness of our filter rules
in Sec. 5.1 and App. D.1.3.
Additional Insights. Fig. 20 provides insights into different
aspects of AutoFR and Alg. 1. We observe that the size of
action graphs vary across the Top–5K and that their hierar-
chical structure ensures that AutoFR only needs to explore a
fraction of the action space to find filter rules — considerably
reducing the work necessary for filter rule generation. Next,
site snapshots are large graphs which emphasize the complex
dynamics of how sites are loaded. However, AutoFR remains
efficient, only needing a minute to execute for 75% of the
sites in the Full-W09-Dataset. Lastly, we find that AutoFR
generates three filter rules or fewer for 75% of sites. This
is partly due to the dominance of a few players in the ad
ecosystem within the Top–5K sites, explained in Sec. 5.3.3.
Limitations. Recall that we have a fixed width and height
for our virtual display, as explained in Sec. 4.1. We find that
sites that have lazy loading images (i.e., images that load
only within view of the virtual display) and infinite scrolling
(i.e., more content can appear if the user scrolls down) can
affect the way we extract the counters of images and texts.
For example, we capture different CI values when we visit
harpersbazaar.com without filter rules and with filter rules.
This is because blocking ads can bring content upwards
and cause lazy loading of images to be displayed. When we
compare this with a visual inspection of that site, we find
that the rules blocked all ads, and no discernible images were
missing. AutoFR treats this unexpected content as breakage,
as described in Sec. 3.2.2. This limitation affects how we
generate filter rules for AutoFR. In addition, it affects our
automated evaluation process unilaterally and does not bias

5These scripts provide JS features and page loading optimizations.

our results towards AutoFR or EasyList for Sec. 5.
A possible way to address this limitation is to scroll down

to force all content to load. However, we find that this is a
challenge to do consistently so that additional dynamics are
not introduced, especially across different sites and across
multiple visits to the same site. For example, how do we
deal with sites that infinitely load more content as you scroll
down? Thus, as a good starting point, we chose to stick with
no scrolling while using a relatively large virtual display, as
mentioned in App. B.3.
AdGraph Limitations. We find that AdGraph may
not attribute images to the JS script that created
them when a site uses React [26]. For instance, Aut-
oFR created rules that blocked resources military-
times.com/pf/dist/components/combinations/default.js,
a JS script for both first-party functionality and ads upon
inspection. However, our snapshots did not capture that
blocking would affect images. Thus, upon applying the rule
in the wild, we find that it blocked all ads but also blocked
legitimate images. Using visual inspection, we identify six
such sites that used React-related scripts.

D.1.3 Confirming Results via Visual Inspection
In this section, we provide complementary details to Sec. 5.1.
Experiment Setup. We follow the FL author approach from
Task 3 to test the effectiveness of filter rules using visual
inspection. From our dataset of 933, we sample 272 sites to
achieve a confidence level of 95% with a confidence interval
of 5%. We set up our Chrome browser with Ad Highlighter
and ABP. We toggle off all filter lists within ABP. For each
site from our sample, we visit it and count the number of
ads that Ad Highlighter detects and their locations. We scroll
down as far as possible; if the site infinitely scrolls, we
limit our count to 10 ads. We then apply the filter rules that
AutoFR generated for that site using ABP, which lets users
add custom filter rules. Next, we reload the page and see if
ads are still displayed, and repeat the process as before with
scrolling. Furthermore, we take note of different kinds of
breakage: (1) missing images and text (not exact counts but
whether they were noticeably missing); and (2) if the layout
of the page is broken, functionality such as infinite scrolling
is broken, etc... Once done, we remove the custom filter rules
and repeat the process for another site. Importantly, since a
human can’t notice the exact number of missing images and
text, our evaluation is more binary: the rules either blocked
all ads or not and whether the rules caused breakage.
The Effectiveness of AutoFR. We provide our results in
Table 3 col. 3. Our filter rules can block all ads for 85%
(230/272) of sites without any breakage (rows 1 and 2). If
we only consider breakage caused by missing images and
text, this number goes up to 87% (236/272).
Breakage Analysis. We observe that 4% (10/272) of sites
had breakage. For instance, four sites had their layouts
broken (although the content is still visible), and one site

27

����

����

$
YH
UD
JH

���

����

��� ��� ��� ��� ��� ���
7KUHVKROG�Z

���

���&
RX
QW

%ORFNLQJ�$GV�� �&$�
$YRLGLQJ�%UHDNDJH�
���ಜt�
5HZDUG����
6LWHV�ZLWK�5XOHV
)LOWHU�5XOHV��x�

Figure 23: Effect of Breakage Threshold w. We run Aut-
oFR on our entire Full-W09-Dataset using a range of values for
w2 [0,0.1,...,1] and we show its effect on the generated filter rules and
on the trade-off between ads blocked and page breakage. Additional
details, for each value of w, are provided in App. D.1.5 and Fig. 24.

had the scrolling functionality broken. Recall that this kind
of breakage is currently not considered by AutoFR. Next, we
found that three sites had some images missing. One of the
reasons AutoFR did not detect this was because the images
were served with “<amp-img>” instead of the standard
“” tag. This can be easily addressed by updating how
we retrieve CA in Sec. 4.3. Lastly, we find two sites like
(gazeta.ru) that intentionally caused the whole site to go blank
after detecting their ads were blocked. Currently, AutoFR
does not deal with this type of aggressive circumvention.
Blocking Non-Transparency Ads. AutoFR can generate fil-
ter rules that even block ads that do not have ad transparency
logos. We observe that our filter rules could block all ads for
90% (44/49) of sites that also served non-transparency ads.
We surmise this is because a site will use the same approach
(or JS) to serve ads with and without ad transparency logos.
How Precise is Ad Highlighter at Detecting Ads? We count
a total of 1040 ads that were detected by Ad Highlighter.
We found five false positives (i.e., not ads), giving us a 99%
precision in ads. When we consider it in terms of sites, this
affected 2% of sites (5/272). False positives can appear due to
social widgets like Twitter and SoundCloud with play buttons
similar to AdChoice logos. Although we note that this does
not always happen for every embedded social widget.

D.1.4 Validating the Capture of Visible Images and Text

We validate our methodology of capturing the number of
visible images (CI) and text (CT) for a given site, as described
in Sec. C.2.2. To do so, we randomly sample 100 sites from
W09-Dataset and modify our custom JS in the following
ways. For images that we identify, we add a blue solid border;
for text, we append “(AutoFR)”. For each site, we visit the
site and inject the modified JS before taking a screenshot. We
then visually inspect the 100 screenshots to see whether the
images and text were captured; correctly capturing content
should be visible to the user and not part of ads.

w Filter Rules for womenshealthmag.com

0 ||doubleclick.netˆ, ||googlesyndication.comˆ,
||hearstapps.comˆ

0.1–
0.5

||doubleclick.netˆ,
||hearstapps.comˆ

0.6–
0.9

||doubleclick.netˆ, ||assets.hearstapps.comˆ,
||amazon-adsystem.comˆ, ||googletagmanager.comˆ

1

||doubleclick.netˆ,
||assets.hearstapps.com/moapt/moapt-hdm.latest. js,
||assets.hearstapps.com/moapt/moapt-bidder-pb.*. js,
||amazon-adsystem.comˆ, ||googletagmanager.comˆ

Table 6: Effects of w. We detail how w changes the generated rules
for one site, womenshealthmag.com. As w increases, some rules
will no longer be outputted, such as googlesyndication.com from 0
to 0.1. New rules, like googletagmanager.com, may be discovered,
from 0.5 to 0.6. While some rules will become more specific, like
assets.hearstapps.com/moapt/*. js rules at 1.

We observe our methodology has 100% precision in cap-
turing visible images and text. This is not surprising, as our
methodology relies on common approaches to display images
(using img tags, and “background-url”) and text (we only
consider HTML nodes with the type “TEXT_NODE” [46]).

Next, we evaluate the images and text that were missed.
First, we utilize the screenshots to find the locations of visible
content that were missed and keep track of their counts. Then,
we visit the site using a Chrome browser, inject the JS using
the Chrome Developer Tools, and inspect the HTML DOM
to determine the reason for missed content. We find that we
miss visible images and text because they are rendered using
< svg> or pseudo-elements. However, the majority of this
missed content is small icons for social media sharing (e.g.,
Facebook, Twitter), top menus, and footers. If we consider
the missed images as false negatives, we get a recall of 95%
for capturing visible images. For capturing visible text, we
get a recall of 99%. Future improvements to AutoFR can
consider < svg> for CI by modifying the JS. However, for
pseudo-elements, we would need to modify the browser to
capture these images. Fortunately, these are often used for
non-trivial images such as small icons.

D.1.5 Exploring the Effects of Threshold w

This appendix complements Sec. 5.1 and further explores
the effects of w. In Fig. 23, we showed how w affects Aut-
oFR’s performance by using our Full-W09-Dataset i.e., we
applied the filter rules to their corresponding site snapshots.
As the threshold w increases, there is less breakage, and the
ad blocking decreases slowly. Ad blocking is the highest at
w= 0: indeed, you can always block ads if you are willing
to break the entire page. The reward is also the highest at
w=0, as there is no constraint on breakage. Once we restrict
breakage, we see the trade-off that users must make: higher w
(e.g.,�0.8) will reduce breakage and the number of rules gen-

28

��� ��� ��� ��� ��� ���
$YRLGLQJ�%UHDNDJH���ಜt�

���

���

���

���

���

���
%
OR
FN
LQ
J�
$
GV
��

�
& $
�

�

���

���

���

���

����

1
XP

EH
U�R
I�6

LWH
V

(a) AutoFR: w=0

��� ��� ��� ��� ��� ���
$YRLGLQJ�%UHDNDJH���ಜt�

���

���

���

���

���

���

%
OR
FN
LQ
J�
$
GV
��

�
& $
�

Z

��
�

�

���

���

���

���

����

1
XP

EH
U�R
I�6

LWH
V

(b) AutoFR: w=0.5

��� ��� ��� ��� ��� ���
$YRLGLQJ�%UHDNDJH���ಜt�

���

���

���

���

���

���

%
OR
FN
LQ
J�
$
GV
��

�
& $
�

Z

��
�

�

���

���

���

���

����

1
XP

EH
U�R
I�6

LWH
V

(c) AutoFR: w=1

Figure 24: AutoFR across Different w (Top–5K). We run AutoFR on our entire Full-W09-Dataset using a range of w2 [0,0.5,1] and visualize
the effectiveness based on the trade-off of blocking ads vs. avoiding breakage. As w increases, there are more sites in operating point. Lower
w denotes that the user does not care about breakage, which causes less exploration of the action space for rules that fall in the operating point.

erated, even causing some sites not to have any rules. Thus,
the trade-off also depends on the individual sites. Some sites,
like histats.com, will have rules no matter the w, while others
can have no rules after a certain w, e.g., dailyherald.com has
no rules after w�0.5. This is expected, as AutoFR does not
control the effectiveness of a rule on a site but only learns it.
How does the Trade-off Change as w Increases? Fig. 24
illustrates the trade-off as w increases on the entire Full-W09-
Dataset for each individual w value. First, for low w’s, we
notice more breakage. This is not surprising as the user does
not care about breakage. As w increases, we can see that the
filter rules adhere to the threshold and mostly stay within it
(i.e., being on the right side of w). However, interestingly, we
observe that there are more sites that are in the operating point
of the plots (i.e., the top-right corner). This is because as the
user cares more about breakage, AutoFR is exploring more
of the action space (i.e., going down the hierarchy), and thus
more chances of candidate rules that are in the operating point.
How do Filter Rules Change as w Increases? Next, Table 6
deep dives into an example of how w changes the output
of AutoFR for one site. First, filter rules can go from being
part of the output to no longer part of the output, as shown
with the transition of ||googlesyndication.comˆ from w = 0
to w=0.1. Conversely, new rules may appear as w increases,
as evident with ||amazon-adsystem.comˆ between w = 0.5
and w = 0.6. Lastly, we observe that as w increases, rules
will be more specific, as shown with the progression of how
||hearstapps.comˆ changes from eSLD in w = 0, to FQDN
in w=0.6, then to a rule with a path in w=1.

29

	1 Introduction
	2 Background & Related Work
	3 AutoFR Framework
	3.1 Filter List Authors' Workflow
	3.2 Reinforcement Learning Formulation
	3.2.1 Actions
	3.2.2 Rewards
	3.2.3 Policy

	3.3 AutoFR Algorithm

	4 AutoFR Implementation
	4.1 Environment
	4.2 Agent
	4.3 blackAutomating Visual Component Detection

	5 Evaluation
	5.1 Filter Rule Evaluation Per-Site
	5.2 AutoFR vs. EasyList: Comparing Rules
	5.2.1 Rule Type Granularity
	5.2.2 Understanding Unique Rules

	5.3 Robustness of AutoFR Filter Rules
	5.3.1 blackHow Long-lived are AutoFR Rules?
	5.3.2 How Frequently Should We Run AutoFR?
	5.3.3 blackFrom Per-Site Rules To Global Filter Lists
	5.3.4 Evading URL-based Filter Rules

	6 Conclusion & Future Directions
	A Filter Lists
	B AutoFR in a Controlled Environment
	B.1 Knowing When a Site is Done Loading
	B.2 Building the Action Space
	B.3 Building Site Snapshots
	B.3.1 Site Snapshots vs. Action Spaces

	C AutoFR in a Live Environment (AutoFR-L)
	C.1 AutoFR vs. AutoFR-L (Implementation)
	C.2 AutoFR-L Implementation
	C.2.1 Ad Highlighter
	C.2.2 Visiting a (Live) Site
	C.2.3 Evaluating AutoFR-L vs. AutoFR

	D Evaluation
	D.1 Filter Rules Evaluation Per-Site Cont'd
	D.1.1 Parameter Selection for AutoFR
	D.1.2 Additional Per-Site Evaluation
	D.1.3 Confirming Results via Visual Inspection
	D.1.4 Validating the Capture of Visible Images and Text
	D.1.5 Exploring the Effects of Threshold w

