Example-Guided Synthesis of Relational Queries

Aalok Thakkar
University of Pennsylvania
Philadelphia, USA
athakkar@cis.upenn.edu

Rajeev Alur
University of Pennsylvania
Philadelphia, USA
alur@cis.upenn.edu

Abstract

Program synthesis tasks are commonly specified via input-
output examples. Existing enumerative techniques for such
tasks are primarily guided by program syntax and only make
indirect use of the examples. We identify a class of synthesis
algorithms for programming-by-examples, which we call
Example-Guided Synthesis (EGS), that exploits latent struc-
ture in the provided examples while generating candidate
programs. We present an instance of EGS for the synthesis
of relational queries and evaluate it on 86 tasks from three
application domains: knowledge discovery, program analy-
sis, and database querying. Our evaluation shows that EGS
outperforms state-of-the-art synthesizers based on enumer-
ative search, constraint solving, and hybrid techniques in
terms of synthesis time, quality of synthesized programs,
and ability to prove unrealizability.

CCS Concepts: - Information systems — Relational data-
base query languages; « Software and its engineering —
Automatic programming; Programming by example; « The-
ory of computation — Constraint and logic programming.

Keywords: Programming by example, Example-Guided Syn-
thesis

ACM Reference Format:

Aalok Thakkar, Aaditya Naik, Nathaniel Sands, Rajeev Alur, Mayur
Naik, and Mukund Raghothaman. 2021. Example-Guided Synthesis
of Relational Queries. In Proceedings of the 42nd ACM SIGPLAN In-
ternational Conference on Programming Language Design and Imple-
mentation (PLDI °21), June 20-25, 2021, Virtual, Canada. ACM, New
York, NY, USA, 17 pages. https://doi.org/10.1145/3453483.3454098

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).

PLDI °21, June 20-25, 2021, Virtual, Canada

© 2021 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-8391-2/21/06.
https://doi.org/10.1145/3453483.3454098

Aaditya Naik
University of Pennsylvania
Philadelphia, USA
asnaik@cis.upenn.edu

Mayur Naik
University of Pennsylvania
Philadelphia, USA
mhnaik@cis.upenn.edu

Nathaniel Sands
University of Southern California
Los Angeles, USA
njsands@usc.edu

Mukund Raghothaman
University of Southern California
Los Angeles, USA
raghotha@usc.edu

1 Introduction

Program synthesis aims to automatically synthesize a pro-
gram that meets user intent. While the user intent is classi-
cally described as a correctness specification, synthesizing

programs from input-output examples has gained much trac-
tion, as evidenced by the many applications of programming-
by-example and programming-by-demonstration, such as

spreadsheet programming [25], relational query synthesis [51,
57], and data wrangling [19, 33]. Nevertheless, their scalabil-
ity remains an important challenge, and often hinders their

application in the field [5].

Existing synthesis tools predominantly adapt a syntax-
guided approach to search through the space of candidate
programs. While the search does involve evaluating can-
didate programs on certain inputs, and checking if a pro-
gram is consistent with the given input-output examples,
the examples are used as a black-box, that is, only the val-
ues of inputs and outputs matter and not how these values
are constructed. For instance, the indistinguishability opti-
mization [56] considers two expressions equivalent if they
produce same outputs on the inputs currently under consid-
eration, and restricts the search to try out only inequivalent
subexpressions. It uses the examples to accelerate the search
but does not use the structure of the training data to gener-
ate candidates. While constraint solving techniques encode
the synthesis problem as a set of constraints that encode
both the syntactic structure and consistency with the given
input-output examples together [2, 32, 48], an off-the-shelf
SMT solver is used to solve the resulting constraints with no
particular optimization to exploit the structure of examples.

In contrast, PBE-based program synthesizers such as Flash-
Fill [24] examine the structure in the inputs and outputs, and
the common patterns between them, to focus the search on
candidate programs that are more likely to be consistent
with the given examples. Other notable examples of such
techniques include FlashRelate [9] and Golem [41]. These
techniques are typically more scalable than their purely
syntax-guided counterparts. We therefore believe that this
is a promising method to address the challenge of scalabil-
ity, and is worthy of investigation, particularly in contexts
where the rich set of syntactic features renders the space of

https://doi.org/10.1145/3453483.3454098
https://doi.org/10.1145/3453483.3454098

PLDI 21, June 20-25, 2021, Virtual, Canada

programs too large for syntax-guided approaches. Motivated
by these observations, we identify algorithms whose order
of program generation depends on latent structure in the
training data (as opposed to purely black-box access through
an evaluation oracle) as being “example-guided”.

In this paper, we present an example-guided technique for
program synthesis in the setting of relational queries, i.e.,
declarative logic programs where the input-output examples
are tabular relations. Relational queries find applications in
domains such as knowledge discovery, program analysis, and
in querying databases. Such relational data representations
are ubiquitous in practice and form the basis of database
query languages such as SQL, Datalog [1], SPARQL [42],
Cypher [20], as well as their variants for querying code, such
as PQL [37], LogiQL [22], and CodeQL [8].

While this has prompted several recent tools for synthe-
sizing relational queries from examples [32, 47, 57], all of
these approaches are syntax-guided. We recognize that there
is an opportunity for applying the example-guided approach
for the synthesis of relational queries due to the natural cor-
respondence between the elements occurring in the tuples
of both the input and output relations.

Our main technical contribution in this paper is to develop
an example-guided algorithm to synthesize relational queries.
This algorithm, which we call EGS, uses co-occurrence pat-
terns in the provided input and output tuples to guide the
search through candidate programs. We formalize these co-
occurrence patterns by introducing the concept of a constant
co-occurrence graph, and establish a correspondence between
its sub-graphs and the candidate programs being enumer-
ated. As a consequence, the synthesis problem reduces to one
of finding a sub-graph with appropriate properties, which
the EGS algorithm solves by maintaining a priority queue,
in a manner similar to existing syntax-guided algorithms.

At each step, the algorithm evaluates the current candidate
program, and incrementally expands it based on its immedi-
ate neighborhood in the constant co-occurrence graph. This
enables us to prioritize programs based on their accuracy,
rather than on purely syntax-guided metrics such as size or
likelihood. This prioritization metric is similar to that used
in decision tree learning [45], and enables rapid convergence
to the target concept. Furthermore, the correspondence be-
tween candidate programs and the constant co-occurrence
graph guarantees completeness of the EGS algorithm, i.e.,
when the sub-graph cannot be extended any further, we can
prove that there is no program which is consistent with the
given input-output examples, thus avoiding divergence of
the search process [27].

We have implemented EGS for the fragment of relational
algebra queries that involve multi-way joins, unions, and
negation. We evaluate it on a suite of 86 tasks from three ap-
plication domains: knowledge discovery, program analysis,
and database queries. We also compare it to three state-of-
the-art synthesizers: SCYTHE [57], which uses enumerative

Aalok Thakkar, Aaditya Naik, Nathaniel Sands, Rajeev Alur, Mayur Naik, and Mukund Raghothaman

search; ILASP [31], which is based on constraint solving; and
PrROSYNTH [47], which uses a hybrid approach. Our exper-
iments demonstrate that EGS outperforms these baselines
in synthesis time and the quality of synthesized programs.
Moreover, the completeness guarantee of EGS enables it to
prove 7 of these tasks as unsolvable. In contrast, SCYTHE fails
to terminate on 5 of these benchmarks, and the syntactic
bias mechanisms in ILASP and PROSYNTH limit their search
to a finite space: notably, exhausting this space does not
necessarily imply unsolvability.

In summary, this paper makes the following contributions:

1. We identify a category of algorithms for PBE, called Exam-
ple-Guided Synthesis, which exploit the latent structure
in the provided examples while generating candidate pro-
grams.

2. We develop an example-guided algorithm named EGS for
synthesizing relational queries by leveraging patterns in
a data structure called the constant co-occurrence graph,
and efficiently enumerating candidate programs using this
structure.

3. We show that EGS outperforms state-of-the-art synthesis
tools based on enumerative search, constraint solving, and
hybrid techniques across multiple dimensions, including
running time, quality of synthesized programs, and in
proving unsolvability.

The rest of the paper is organized as follows. Section 2
illustrates the example-guided synthesis approach. Section 3
formulates the relational query synthesis problem. Section 4
presents the core EGS algorithm for synthesizing relational
queries. Section 5 extends the core algorithm to support
multi-column output relations, union, and negation. Sec-
tion 6 presents our empirical evaluation. Section 7 discusses
related work and Section 8 concludes.

2 Overview

We begin by presenting an overview of the example-guided
synthesis (EGS) framework. As an example, consider a re-
searcher who has data describing traffic accidents in a city
and who wishes to explain this data using information about
the road network and traffic conditions.

2.1 Problem Setting

We present this data in Figure 1. Suppose that at a given
instant, accidents occur on Broadway and Whitehall. The re-
searcher observes that these streets intersect, that they both
had traffic, and that the traffic lights on both streets were
green. They generalize this observation, and find that the
resulting hypothesis, that an accident occurs at every pair of
streets with similar conditions, is consistent with the data.
One may formally describe their hypothesis as the following
Horn clause:

Example-Guided Synthesis of Relational Queries

PLDI ’21, June 20-25, 2021, Virtual, Canada

Liberty St

Broadway
HasTraffic,
Crashes HasTraffi GreenSignal
asTraffic, M
quadway GreenSignal & William St
Whitehall

LIBERTY ST Intersects GreenSignal
- Broadway Liberty St E{S:gwg%/
s Broadway Wall St Willia?/n St
E Broadway Whitehall Whitehall
s WALLST S Liberty St Broadway
S Liberty St~ William St
g Wall St Broadway HasTraffic
s Wall St William St q
Whitehall ~ Broadway Broﬁ‘ way
William St Liberty St %‘lhasr; st
William St~ Wall St Whitehall
(b)

QQ HasTraffic

Wall St

Intersects

HasTraffic,

GreenSignal
Whitehall

(©

Figure 1. Data describing traffic conditions in a city: (1a) Map of the city, (1b) listing of the input and output relations, and (1c)
the induced constant co-occurrence graph, G;. We would like to explain the accidents occurring on Broadway and Whitehall.

Crashes(x) :- Intersects(x, y),
HasTraffic(x),HasTraffic(y),
GreenSignal(x),GreenSignal(y), (1)

where x and y are universally quantified variables ranging
over street names, “:-” denotes implication “<”, and “,” de-
notes conjunction. Our goal in this paper is to automate the
discovery of such hypotheses.

This problem can be naturally formalized as a programming-
by-examples (PBE) task. Given a set of input facts I encoded
as relations, and a set of desirable and undesirable output
facts, O* and O~ respectively, we seek a program which de-
rives all of the tuples in O* and none of the tuples in O~. In

our example, we implicitly assume that the data is completely
labelled, so that

O* = { Crashes(Broadway), Crashes(Whitehall) },
and O~ is the set of all other streets,

O~ = { Crashes(Liberty St), Crashes(Wall St),
Crashes(William St) }.

Traditional methods for PBE use syntax-guided enumera-
tive techniques that search the space of candidate programs.
In our example, a candidate program would be a Horn clause
with the premise consisting of one or more of HasTraffic,
GreenSignal, or Intersects literals.

A naive approach is to enumerate all candidate programs
in order of increasing size till we find a consistent hypoth-
esis. For the running example, we will have to enumerate
more than 12 X 10° candidate programs before discovering
the one shown in Equation 1. Unsurprisingly, most work
on program synthesis has focused on reducing the size of
this search space: in our context, tools such as ALPS and
PROSYNTH restrict the search space by only looking for pro-
grams composed of rules from a fixed finite set of candidate
rules [47, 52], while ILASP constrains the space through
“mode declarations” that bound the number of joins (in our

case conjunctions) and the number of variables used [31, 32].
On the other hand, ScYTHE, a synthesis tool for SQL queries,
first finds “abstract” queries that over-approximate the de-
sired output, and then searches for concrete instantiations of
these abstract queries that are consistent with the data [57].

2.2 Example-Guided Enumeration

At their core, these techniques generate candidates using
the syntax of the target concept and do not exploit patterns
present in the underlying data. Consider the alternative rep-
resentation of the training data shown in Figure 1c, summa-
rizing input facts I. We call this the constant co-occurrence
graph Gy: every constant is mapped to a vertex, and the
edges indicate the presence of a tuple in which the con-
stants occur simultaneously. Now focus on the portion of the
graph surrounding Whitehall. Of the 18 tuples present in the
data, only 4 tuples refer to this street: GreenSignal(Whitehall),
HasTraffic(Whitehall), Intersects(Whitehall, Broadway), and
Intersects(Broadway, Whitehall). These tuples suggest the
following candidate queries:

q1: Crashes(x) :- GreenSignal(x),
g2 : Crashes(x) :- HasTraffic(x),
qs : Crashes(x) :- Intersects(x,y), and

qs: Crashes(x) :- Intersects(y, x).

Notice that all four of these queries produce the desirable
tuples Crashes(Whitehall) and Crashes(Broadway), but also
produce several undesirable tuples: two undesirable tuples
by ¢1 and ¢, and three undesirable tuples by g3 and g4 re-
spectively.

Each of these candidate programs can be made more spe-
cific by considering sets of tuples. For example, one can ex-
tend the set C; = { GreenSignal(Whitehall) } which produces
q1 with a new tuple HasTraffic(Whitehall) to obtain:

gs : Crashes(x) :- GreenSignal(x),HasTraffic(x). (2)

PLDI 21, June 20-25, 2021, Virtual, Canada

In contrast to gy, this query only produces one undesirable
tuple, namely, Crashes(William St).

Instead of directly enumerating candidate programs, the
EGS algorithm tracks enumeration contexts: Each such con-
text is a set of input tuples obtained from a connected sub-
graph of the co-occurrence graph Gy, and can be generalized
into a candidate program by systematically replacing its
constants with fresh variables.

Our main insight is that the only tuples which increase
the specificity of an enumeration context are those which
are directly adjacent to it in the co-occurrence graph. For
example, consider context Cs = { GreenSignal(Whitehall),
HasTraffic(Whitehall) } which produces the query ¢s in Equa-
tion 2. Observe in Figure 1c that there are exactly two tu-
ples incident on Cs: t = Intersects(Whitehall, Broadway)
and t’ = Intersects(Broadway, Whitehall). We conclude that
there are exactly two contexts which need to be enumerated
as successors to Cs, namely: Cg = CsU{t} and C; = Cs U {t'}.
These contexts respectively produce the candidate queries:

gs : Crashes(x) :- GreenSignal(x),HasTraffic(x),
Intersects(x,y), and
q7 : Crashes(x) :- GreenSignal(x), HasTraffic(x),

Intersects(y, x).

The EGS algorithm repeatedly strengthens the enumer-
ation context C with new tuples until it finds a solution
program. For example, after five rounds of iterative strength-
ening, the context grows to include the tuples:

C = { GreenSignal(Whitehall), HasTraffic(Whitehall),
Intersects(Whitehall, Broadway),
GreenSignal(Broadway), HasTraffic(Broadway) }, (3)

which, when used to explain Crashes(Whitehall), produces
the desired solution in Equation 1.

2.3 Prioritizing the Enumeration Process

Figure 2 presents the overall architecture of the EGS algo-
rithm. It maintains a set of enumeration contexts, organized
as a priority queue, and repeatedly extends each of these
contexts with a new tuple, in an example-guided manner.
Each enumeration context can be naturally abstracted into
a candidate query, as discussed in Section 2.2, and the pro-
cedure returns as soon as it finds an explanation which is
consistent with the data. The priority function depends on
both the size of the candidate program, and its accuracy on
the training data, and we formally define it in Section 4.3.
Additionally, because the training data is finite, the co-
occurrence graph is also finite, and therefore the EGS algo-
rithm will eventually exhaust the space of enumeration con-
texts. At this point, Lemma 4.2 guarantees the non-existence
of a program which is consistent with the training data, thus
proving the completeness of the synthesis procedure.

Aalok Thakkar, Aaditya Naik, Nathaniel Sands, Rajeev Alur, Mayur Naik, and Mukund Raghothaman

Priority queue of enumeration contexts

.J ‘ -~

Consistent?

No

Examples

Enumerator l—)| Evaluator

f)

Figure 2. Architecture of the EGS algorithm.

While the approach of iteratively strengthening candidate
queries is similar to that followed by decision tree learning
algorithms [23, 45], a notable difference is the presence of
the queue in EGS, which holds alternative candidate explana-
tions. The difference between the two algorithms is therefore
similar to the difference between breadth-first search and
greedy algorithms, with EGS being biased towards producing
small candidate programs.

In our example, a syntax-guided prioritization would be
forced to enumerate all programs with less than five joins,
which induces an extremely large search space: SCYTHE takes
approximately 16 seconds to find a consistent query and
ILASP takes approximately 2 seconds, while the EGS algo-
rithm returns in less than one second.

2.4 Disjunctions and Multi-Column Outputs

For ease of presentation, the core EGS algorithm that we
develop in Section 4 will focus on the case where we have a
single desirable tuple with a single field, but with multiple
undesirable tuples. Subsequently, in Section 5, we will ex-
tend this core algorithm to: (a) the case of multiple desirable
tuples, by generalizing the space of target concepts to unions
of conjunctive queries, (b) to multi-column output relations
by iteratively explaining the fields of the desired tuples, and
(¢) to queries with negation, by pushing the negation opera-
tor to the individual literals, and constructing target concepts
in negation normal form.

3 The Relational Query Synthesis Problem

In this section, we briefly review the syntax and semantics
of relational queries and formulate the relational query syn-
thesis problem.

3.1 Syntax and Semantics of Relational Queries

A relational query Q is a set of Horn clauses. To define their
syntax, we start by fixing a set of input relation names 7 and
output relation names O. Each relation name R € 7 U O is
associated with an arity k. A literal, R(v1, vz, . . ., Uk), consists
of a k-ary relation name R with a list of k variables.

Then, a Horn clause is a rule of the form:

Rh (ﬁh) - Rl (ﬁ]),Rz(ﬁz), ce ,Rn (ﬁn)>

where the single literal on the left, Ry, (iiy,), is the head, or the
conclusion which follows from the set of premises, R; (1),

Example-Guided Synthesis of Relational Queries

Ry (i), ..., Ry(iiy), called the body. The literals in the body
are drawn from 7 while R;, € O. To bound the set of values
that each variable may assume, we will follow convention
and require that every variable in the head appear at least
once in the body.

The semantics of a relational query is interpreted over
a data domain D whose elements are called constants. For
simplicity of formalization, we are assuming that there is
a single type. The synthesis framework and its theoretical
guarantees can be extended to support typed constants and
typed relations.

A tuple, R(cy, g, - . ., Ck), is a k-ary relation name R with a
list of k constants from D. It is an input (resp. output) tuple
if R € I (resp. R € O).

Next, we define rule instantiation as follows: Given a map
v from variables to the data domain D, replace the rule’s
variables x with constants v(x):

Rp(0(uip)) <= Ri(0(ii1)), Re(0(ii2)), . .., Ru(v(in)).

For example, consider the query g5 from Equation 2. One
can systematically replace its variables according to the map
{x — Whitehall} to obtain the rule instantiation:

Crashes(Whitehall) <= GreenSignal(Whitehall),
HasTraffic(Whitehall).

We say that a tuple ¢ is derivable from input tuples I if there
exists a rule r and a map v such that on instantiating » with
v, the head tuple Ry (v(iiy)) is t, and each of the tuples in the
body R;(v(i;)) occur in I. Then, a relational query Q takes
input tuples I and returns output tuples O = [Q](I) as the
set of all tuples that are derivable from I using rules in Q.

In the literature, each individual rule is also called a con-
Jjunctive query (CQ), and a set of rules is also called a union
of conjunctive queries (UCQ). Conjunctive queries are also
called select-project-join (SPJ) queries because of their repre-
sentation in relational algebra, and also correspond to queries
expressed using the select-from-where idiom in SQL.

In the running example from Section 2, we have I =
{HasTraffic, GreenSignal, Intersects}, O = {Crashes}, and
the data domain D = {Broadway, Wall St, Liberty St, Whitehall,
William St}. The program in Equation 1 is an example of a
conjunctive query.

3.2 Problem Formulation

Our ultimate goal is to synthesize relational queries which
are consistent with a given set of examples. In this context,
an example consists of input and output tuples; the user has
labeled the output tuples as either positive or negative. The
objective then is to synthesize a program which is consistent
with the examples, that is, a program which derives all of
the positive tuples and none of the negative tuples.

Problem 3.1 (Relational Query Synthesis Problem). Given
input relation names I, output relation names O, input tuples I,

PLDI ’21, June 20-25, 2021, Virtual, Canada

and output tuples partitioned as O and O™, return a relational
query Q such that O* C [Q] (I) and O~ N[Q] (I) = 0, if such
a query exists, and unsat otherwise.

We call the triple M = (I, 0%, 07) an example, and a query
Q is said to be consistent with it if Ot C [Q](I) and O~ N
[ol(n) = 0.

The user may often be interested in variants of the query
synthesis problem. We mention a few such extensions which
can be reduced to Problem 3.1:

1. Find a relational query which is simultaneously con-
sistent with multiple input-output examples, M; =
(I, 07,07), Mz = (I, 03, 05), ..., Mp, = (Ip, 0;,0).

2. Given I, and an exhaustively specified set of output
tuples O, find a program P such that [P]|(I) = O.

Our running example has a single input-output example:
(I, { Broadway, Whitehall },{ Liberty St, Wall St, William St })
where I is described in tables HasTraffic, GreenSignal, and
Intersects in Figure 1b. Hereafter, we assume that the data
domain D is implicitly specified as the set of all constants
that occur in the set of input tuples.

4 Example-Guided Synthesis Algorithm

In this section and the next, we formally describe the EGS
algorithm for synthesizing relational queries. For ease of
presentation, we first develop our core ideas for the case of a
single desirable output tuple with a single column, ¢t = R(c).
Given a set of input tuples I, the target tuple ¢, and a set
of undesirable output tuples, the ExplainCell algorithm
produces a query which is consistent with the example
(I, {t}, O7). We extend this synthesis procedure to solve for
multi-tuple multi-column output relations in Section 5.

The query is constructed by analyzing patterns of co-
occurrence of constants in the examples, which we sum-
marize using the constant co-occurrence graph. We first for-
malize this graph, and then introduce enumeration contexts
as a mechanism to translate these patterns into relational
queries. We conclude the section with a description of the
ExplainCell procedure which searches for appropriate enu-
meration contexts using the co-occurrence graph.

4.1 The Constant Co-occurrence Graph

Recall that the data domain D is the set of all constants
which appear in the input tuples ¢ € I. Then, the constant
co-occurrence graph, Gr = (D, E), is a graph whose vertices
consist of constants in D and with labeled edges E which are

defined as:

E ={c; N ¢; | input tuple R(cy,¢p,...,cx) €I}, (4)

In other words, there is an edge ¢ —& ¢’ iff there is a tu-
ple t in the input relation R which simultaneously contains
both constants ¢ and ¢’. Observe that this makes each edge
bi-directional. If constants ¢ and ¢’ occur in a tuple t, we

PLDI 21, June 20-25, 2021, Virtual, Canada

say that ¢t witnesses the edge ¢ —R ¢’. The constant co-
occurrence graph induced by the example of Figure 1b is
shown in Figure Ic.

The main insight of this paper is that patterns in the train-
ing data can be inferred by examining the co-occurrence
relationships between constants. We express these patterns
as subgraphs of the co-occurrence graph: as a consequence,
the final ExplainCell procedure of Algorithm 1 reduces to
the problem of enumerating subgraphs of Gj.

4.2 Enumeration Contexts

An enumeration context is a non-empty subset of input tuples,
C C I. Equation 3 shows an example of an enumeration
context. As Algorithm 1 explores Gy, it builds these contexts
out of the tuples which witness each subsequent edge.

We can naturally translate a context C = {R;(¢1), R2(&2),
..., R,(¢,)} and an output tuple t = R(¢) into a conjunctive
query rc; as follows:

reee : R(0) - Ry(31),Re(¥2), .. ., Ru(Tn), 5)

where the head R(9) and body literals R;(d;) are obtained
by consistently replacing the constants in the output tuple
t = R(¢) and in the contributing input tuples R(¢;) with fresh
variables v.. We say that a context C explains a tuple t when
the rule r¢,; is consistent with (I, {¢}, 07).

Recall from Section 3 that a rule may be instantiated by
replacing its variables with constants, analogous to the pro-
cess of specialization. In contrast, the procedure to obtain
rc— from the context C and output tuple ¢ may be viewed
as a process of generalization. This correspondence between
enumeration contexts and rule instantiations allows us to
state the following theorem:

Theorem 4.1. Given an example M = (I, {t}, O™), there ex-
ists a context C C I explaining t if and only if there exists a
conjunctive query consistent with the example.

Proof Sketch. Clearly, if context C explains ¢, then, by defini-
tion, ro, is consistent with example M. Conversely, if there
is a conjunctive query Q consistent with M, then let v be
a valuation map deriving t in query Q. Then, consider the
context C C I to be the set of tuples that occur in the premise
of the rule in Q when it is instantiated with . Observe that
rcese is the rule in query Q and hence the context C C I
explains t. O

If a context C explains a tuple t and if C € C’, then C’
also explains t. We can therefore apply Theorem 4.1 with
the largest available context, C = I, i.e. the set of all input
tuples, to prove the following lemma, which establishes the
decidability of the relational query synthesis problem:

Lemma 4.2. The given instance of the relational query syn-
thesis problem M = (I, {t}, O) admits a solution if and only
if ri; is consistent with M.

Aalok Thakkar, Aaditya Naik, Nathaniel Sands, Rajeev Alur, Mayur Naik, and Mukund Raghothaman

4.3 Learning Conjunctive Queries

See Algorithm 1 for a description of the ExplainCell proce-
dure, which forms the core of the EGS synthesis algorithm.
See Figure 2 for a graphical description of its architecture.

The algorithm maintains a priority queue L of enumera-
tion contexts and iteratively expands these contexts by draw-
ing on adjacent tuples from the constant co-occurrence graph
Gr. It initializes this priority queue in Step 2, with all input
tuples t’ that contain the target concept c. In the case of our
running example, to explain the tuple Crashes(Broadway), we
would initialize L to {Cy, Cy, C3, C4}, with C; = {GreenSignal
(Broadway)}, C; = {HasTraffic(Broadway)}, C3 =
{Intersects(Whitehall, Broadway)}, and C; = {Intersects
(Broadway, Whitehall) }. These contexts result in the queries
q1—q4 shown in Section 2.2. It subsequently iterates over the
elements of L, and enqueues new contexts for later process-
ing in Step 3(c)ii. In Step 3b, the algorithm returns the first
enumeration context which is found to be consistent with
the training data.

Algorithm 1 ExplainCell(l,R(c),07), where t = R(c) is
an output tuple with a single field. Produces an enumeration
context C C Gy such that r¢,; is consistent with the example
(I {t}, 0).
1. Let Gy = (D, E) be the constant co-occurrence graph.
2. Initialize the priority queue, L:

L = {{t’} | t’ €I contains the constant c}. (6)
Each element C € L is a subset of the input tuples,
Ccl

3. While L # 0:

a. Pick the highest priority element C € L, and remove
it from the queue: L := L\ {C}.
b. If rc_; is consistent with (I, {t}, O7), then return C.
c. Otherwise:
i. Let N = {c € D | 3’ € C where t’ contains c}.
ii. For each constant ¢ € N, edge e = ¢ —R ¢ in
Gr, and for each additional input tuple t’ € I\ C
which witnesses e, update:

L=LuU{CuU{t'}}.

4. Now, since L = (, return unsat.

A critical aspect of the ExplainCell algorithm is the pri-
ority function which arranges elements of the queue L. The
EGS algorithm permits two choices for this priority function:
We could consider the enumeration contexts in ascending
order of their size, so that:

p1(C) = -IC].

This would guarantee the syntactically smallest solution
which is consistent with the data. Alternatively, we could
organize the enumeration contexts in lexicographic order

Example-Guided Synthesis of Relational Queries

of their scores, defined as the number of undesirable tuples
eliminated per literal,

107\ [reee [(DI

score(C) =]

and the size of the context, so that:
p2(C) = (score(C), —|C]).

For example, the score of the contexts C; from Section 2.2
is 1.0 tuples/literal, as it eliminates one undesirable tuple,
Crashes(Wall St), using one literal. On the other hand, the
context C3 does not eliminate any undesirable tuples, so that
its score is 0. Similarly, the context Cs eliminates two unde-
sirable tuples, Crashes(Wall St) and Crashes(Liberty St) using
two literals, therefore resulting in the score 1.0 tuples/literal.
Therefore we have p,(C1) > p2(Cs) > p2(Cs).

In this way, the priority function p, simultaneously priori-
tizes enumeration contexts with high explanatory power and
small size, and is inspired by decision tree learning heuris-
tics which greedily choose decision variables to maximize
information gain. In practice, we have found this function p,
to result in faster synthesis times than p; without incurring
a significant increase in solution size, and we therefore use
this function in our experiments in Section 6. We remark
that the solution desired by the user may not always be the
smallest conjunctive query which is consistent with the data,
and searching for small solutions can sometimes result in
overfitting. We further discuss this issue in Section 6.4.

After enumerating all possible contexts, if the algorithm
has not found any context which explains the training data,
Lemma 4.2 implies that the problem does not admit a solution.
The following theorem formalizes this guarantee:

Theorem 4.3 (Completeness). Given example M = (I, {t},07),
where t = R(c), ExplainCell(I, t,O7) returns a context C C

I such that the query rcw; is consistent with (I, {t},07) if
such a query exists, and returns unsat otherwise.

Proof Sketch. In the first direction, if ExplainCell(Z,t,07)
returns a context C then, by construction, rc,; is consistent
with (I, {t}, O7). To prove the converse, we assume for sim-
plicity that the graph Gy is connected. If ExplainCell(Z, t,07)
returns unsat, then the last context considered in the loop in
Step 3 must have been the set of all input tuples, C = I. From
Lemma 4.2, it follows that the problem is unsolvable. O

5 Extensions of the Synthesis Algorithm

In this section, we extend the central ExplainCell proce-
dure described in Algorithm 1 with the ability to synthesize
output relations of any arity and with any number of tuples,
and also to synthesize queries which require negation.

As an example, we consider the problem of learning kin-
ship relations from the training data in Figure 3. We have two
binary (two column) input relations, father and mother, and

PLDI ’21, June 20-25, 2021, Virtual, Canada

| Mufasa |[Sarabi

] | Jasiri |(Sarafina)
[

| Kopa |(Kiara]

Figure 3. Example of a genealogy tree, used as training
data to learn the programs Pgrandparent and Psip1ing. Sarabi,
Sarafina, Nala, and Kiara are female while Mufasa, Jasiri,
Simba, and Kopa are male.

we would like to learn queries which describe grandparents
and siblings.

5.1 Multi-Column Outputs

In order to support multi-column outputs, we explain the
fields of the tuple one at a time. Say the output table has
k columns, and we wish to explain a tuple of the form t =
R(ey, ¢, . - ., c). We modify the ExplainCell procedure to
synthesize explanatory contexts C; € C; € ... C Cr € I
such that each context C; explains the first i fields of t, that
is, they explain t[1..i] = R;(c1, ¢z, - - ., ¢;). We call this object
the i-slice of t. We also refer to slices of entire relations such
as O*[1..i] and O~[1..i] by lifting the slicing operation to
sets of tuples in the natural manner.

For example, consider the task of learning the grandparent
relation from the input data in Figure 3. Consider the output

labels:

O" = {grandparent(Sarabi, Kiara) }
O~ = {grandparent(Sarabi, Simba)}

Then, in order to find a query consistent with M = (I, 0*,07),
we will first search for a context C; € I which explains
t[1] = grandparent;(Sarabi), and then grow it to C, which
explains t = £[1..2] = grandparent(Sarabi, Kiara).

Observe that the negative examples also need to be sliced
appropriately. In this example, the search for a context consis-
tent with (I, O*[1], O~ [1]) would fail since O*[1] = O~ [1] =
{grandparent(Sarabi)}, making this instance unrealizable.
We therefore define the forbidden i-slice, F; as the set of tuples

tr = (cy, ¢y ..., ;) of arity i such that every extension of t¢
into a k-ary tuple, t. = (c{,cj,...,c,..., cl’c), is destined to
appear in O™: t, € O~. We achieve this by formally defining:

Fi=07[1.i]\ (U\ O)[1..i], (7)

where U = D¥ is the set of all k-ary tuples over the data do-
main. In the grandparent example we have F; = 0, resulting
in the sliced example:

M; = (I, {t[1]}, F1) = (I, {grandparent;(Sarabi)}, 0).

Now, we wish to find C; € C; C I such that r¢, 1] is
consistent with M; and rc,.,; is consistent with M. We can
find C; by calling ExplainCell(Z, ¢[1], F;), which will give

PLDI 21, June 20-25, 2021, Virtual, Canada

us the result:
C; = {mother(Sarabi, Simba)}.
To grow it to C,, we modify the ExplainCell procedure to
inijtialize the worklist L in Equation 6 as:
L ={C; U{t} |Vt € I containing Kiara}
= {C; U {father(Simba, Kiara)},
C; U {mother(Nala, Kiara)}}.

More formally, we define the ExplainCellc, (I, t[1..i], F;)
procedure by modifying the initialization step of Equation 6
so that:

L={Ci_;U{t'} | t' €I contains t[i]}. (8)

We then follow the same process to expand the subgraph
one edge at a time, which in case of our running example
produces the context:

C, = {mother(Sarabi, Simba), father(Simba, Kiara)}

We formally present the ExplainTuple procedure in Algo-
rithm 2. The completeness guarantee of Theorem 4.3 carries
over as:

Lemma 5.1. Given a context C;_y which explains a sliced ex-
ample M;_y = (I, {t[1...(i — 1)]}, Fi-1), ExplainCellc, (I,

t[1..i], F;) returns a context C; C I such that the queryrc,:[1..4]
is consistent with M = (I, {t[1..i]}, F;) if such a query exists,

and returns unsat otherwise.

Algorithm 2 ExplainTuple(l, t,07). Given a tuple t with
arity k > 1, synthesizes a context C which is consistent with

the example (I, {t},07).

1. Let t = R(cy, ¢, ..., Ck).
2. Initialize the context Cy = 0.
3. Fori € {1,2,...,k}, in order:
a. Construct the forbidden i-slice, F; as in Equation 7.
b. Define C; = ExplainCellc, (I t[1..i], F;). If the
procedure fails, return unsat.
4. Return Cy.

5.2 Unions of Conjunctive Queries

Observe that while the context generated above captures the
concept:

grandparent(x,y) :- mother(x, z), father(z, y),

the assumption of a single output tuple does not allow us to
express the full grandparent relation (involving both grand-
father and grandmother concepts). We therefore extend the
tool to allow for multiple positive output tuples and extend
the query language to support disjunctions, that is, we now
synthesize unions of conjunctive queries (UCQ). Suppose we
are given:

O* = {grandparent(Sarabi, Kiara),

Aalok Thakkar, Aaditya Naik, Nathaniel Sands, Rajeev Alur, Mayur Naik, and Mukund Raghothaman

grandparent(Mufasa, Kopa),
grandparent(Jasiri, Kopa),
grandparent(Sarafina, Kiara)}
O~ = {grandparent(Mufasa, Kiara),
grandparent(Sarafina, Nala)}

In order to find a UCQ consistent with M = (I, 0%, 07), we
use a divide-and-conquer strategy: We separately synthe-
size a conjunctive query that explaining each desired tuple,
and then construct their union. Because the rules are non-
recursive, it follows that their union is consistent with the
training data. In the running example, we get the following
queries for each of the four tuples in O*:

q1: grandparent(x,y) :- father(x, z), father(z, y).
qz : grandparent(x,y) :- father(x, z),mother(z,y).
qs : grandparent(x,y) :- mother(x, z), father(z, y).
qs : grandparent(x,y) :- mother(x, z),mother(z,y).

Observe that the UCQ with the rules {q1, 2, g3, q4} is con-
sistent with (I, O*, O7). This approach is similar to the tech-
nique used by EUSOLVER which first synthesizes small pro-
grams that conform to portions of the full specification, and
then glues them together using conditional statements and
case splitting operators provided by the target language [56].

In order to implement this procedure, we maintain a set of
unexplained output tuples O, which is initialized to O*, and
repeatedly generate conjunctive queries explaining tuples
t € O’ until all tuples are explained. We construct these con-
junctive queries by invoking the ExplainTuple procedure of
Section 5.1. We formally describe this process in Algorithm 3.
Using the completeness guarantee of the ExplainTuple pro-
cedure, we have:

Lemma 5.2. Given example M = (I,0*,07), LearnuCQ(l,
O*,07) returns a union of conjunctive queries Q consistent
with M, if such a query exists, and returns unsat otherwise.

5.3 Negation

Finally, we extend the EGS algorithm to synthesize queries
with negation. Similar to propositional formulas, UCQs also
admit negation normal forms, where the negation operators
are pushed down all the way to the individual literals. For
example, a rule of the form:

r: R(x,y,z) = =(Ri(x), R (y)), R3(2).
can instead be written as the disjunction of two rules:
ri: R(xy,2) = =Ri(x),Rs(2).
r2: R(x,y,2) = =Ry (y), Rs(2).

We therefore limit ourselves to learning UCQs in negation
normal form. In our implementation, the user identifies input
relation names that can possibly be negated in the final result.
For an input relation name R of arity k, let I(R) denote the

Example-Guided Synthesis of Relational Queries

Algorithm 3 EGS(I,0%,07). Given an example M =
(I,0*,07), finds a UCQ Q consistent with M if such a query
exists, and returns unsat otherwise.

1. Initialize Q to be the empty query, Q := 0.
2. Initialize the set of still-unexplained tuples, O’ := O*.
3. While O is non-empty:

a. Pick an arbitrary tuple t € 0.

b. Synthesize an explanation,

C; = ExplainTuple(l,t,07),
and construct g; = rc,—¢.

c. If synthesis fails, return unsat.
d. Otherwise, update:

Q= QU {g:}, and 0’ := 0"\ [¢] (D).
4. Return Q.

set of tuples in I labeled with R. Given the data domain D,
we explicitly construct the negated relation —R with the
following tuples:

I(=R) = {R(?) | ¢ € D* and R(?) ¢ I(R)}.

We add —R to the set of input relations and find a solution
using Algorithm 3, exactly as before.

Consider, for example the task to learn the sibling relation
from the training data in Figure 3. Suppose we are given:

O" = {sibling(Kopa, Kiara)}
O™ = {sibling(Kopa, Kopa)}.

We can show that no strictly positive program exists which
can distinguish the tuples sibling(Kopa, Kiara) and sibling
(Kopa, Kopa) as our hypothesis space does not support the
inequality check, Kopa # Kiara. If we allow negation, a
query consistent with (I, 0%, 07) is:

sibling(x,y) :- mother(z, x),mother(z, y), =(x = y).

We can encode the relation —(x = y) using a two-column re-
lation table that pairs unequal constants. We call this relation
neq, and define it as:

I(neq) = {(c,c’) e D* | c # ¢'}.

With this additional input relation, EGS is able to solve for
the desired concept in less than one second.

6 Experimental Evaluation

We have implemented the EGS algorithm in Scala compris-
ing 2200 lines of code. We have provided the code as sup-
plementary material with this paper, and will release it as
open-source. In this section, we evaluate it to answer the
following questions:

Q1. Performance: How effective is EGS on synthesis tasks
from different domains in terms of synthesis time?

Q2. Quality of Programs: How do the programs synthe-
sized by EGS measure qualitatively?

PLDI ’21, June 20-25, 2021, Virtual, Canada

Q3. Unrealizability: How does EGS perform on synthesis
tasks that do not admit a solution?

We present our benchmark suite in Section 6.1 and the three
baselines against which we compare EGS in Section 6.2. We
present our empirical findings for Q1-Q3 in Sections 6.3-6.5.

We performed all experiments on a server running Ubuntu
18.04 LTS over the Linux kernel version 4.15.0. The server
was equipped with an 18 core, 36 thread Xeon Gold 6154
CPU running at 3 GHz and with 394 GB of RAM. Note
that EGS is single-threaded and is CPU-bound rather than
memory-bound on all benchmarks. Therefore, similar results
should be obtained on laptops and desktop workstations with
similarly-clocked processors.

6.1 Benchmark Suite

We evaluate the EGS algorithm on a suite of 86 synthesis
tasks. Of these, 79 admit a solution, meaning there exists a re-
lational query which can perfectly explain their input-output
examples. These 79 benchmarks are from three different do-
mains: (a) knowledge discovery, (b) program analysis, and
(c) database queries.

Knowledge discovery. These benchmarks comprise 20 tasks
that involve synthesizing conjunctive queries and unions of
conjunctive queries frequently used in the artificial intelli-
gence and database literature.

Program analysis. These benchmarks comprise 18 tasks
that involve synthesizing static analysis algorithms for im-
perative and object-oriented programs.

Database queries. These benchmarks comprise 41 tasks
that involve synthesizing database queries. These tasks, orig-
inally from StackOverflow posts and textbook examples, are
obtained from Scythe’s benchmark suite [57].

There are seven additional benchmarks that do not admit
a solution. We describe them in Section 6.5.

Table 1 presents characteristics of all 86 benchmarks, in-
cluding the number of input-output relations, number of
input-output tuples, and whether the intended programs
involve disjunctions (V) or negations (—). In total, 17 tasks
involve disjunctions while 9 of them involve negations. For
each benchmark, we provide an exhaustive set of positive
output tuples. The tuples not in the positive set are implicitly
labelled as negative. This data is provided upfront and not
in an interactive fashion. Following our problem setup in
Section 3.1, the programs synthesized by EGS do not con-
tain constants. However, some of our benchmarks, such as
adjacent-to-red, require distinguished constants, such as
the rule target(x) :- edge(x,y), color(y, red), which refer-
ences the color red. In these cases, we provide an additional
input table isRed(x) containing a single tuple (red) that
EGS can use to synthesize the query.

PLDI 21, June 20-25, 2021, Virtual, Canada Aalok Thakkar, Aaditya Naik, Nathaniel Sands, Rajeev Alur, Mayur Naik, and Mukund Raghothaman

Table 1. Benchmark characteristics. For each benchmark, we summarize the number of input-output relations, number of
input-output tuples, and whether the intended programs involve disjunctions (V) or negations ().

Input Output Features

Name Brief description #Relations #Tuples | #Relations #Tuples
Knowledge Discovery
abduce learn relation induced by abduction [40] 2 12 1 8 \%
adjacent-to-red identify neighbors of red vertices [14] 4 18 1 4
agent discover strategy for agents on a map [31] 4 106 1 5 -
animals distinguishing animal classes [40] 9 50 4 17
cliquer compute 2-paths [47] 1 4 1 4
contains identify allergens in school lunches [50] 2 14 1 4
grandparent discover grandparents in a family tree [14] 2 8 1 7 -
graph-coloring identify incorrect vertex-coloring [14] 2 19 1 3
headquarters infer the state of headquarters [50] 2 9 1 4
inflammation bladder inflammation diagnosis [15] 12 640 1 49 V, =
kinship infer kinship in a family tree [14] 2 8 1 5 \%
predecessor learn predecessor relation on integers [14] 1 9 1 9
reduce infer symptoms reduced by common drugs [50] 2 10 1 6
scheduling identify conflicts in a schedule [31] 2 8 1 1 -
sequential learn 3 generations of ancestory [14] 2 9 3 17 \%
ship pair products with customers [47] 3 15 1 5
son identify the sons in a family tree [14] 3 12 1 3
traffic explain traffic collision [47] 3 18 1 2
trains distinguish train classes [14] 12 223 1 5
undirected-edge construct symmetric closure [14] 1 3 1 5 \%
Program Analysis
arithmetic-error analysis of division by zero errors [35] 3 11 1 1
block-succ basic block analysis 3 21 1 1
callsize memory allocation buffer checker for C 3 21 1 3
cast-immutable type casting checker for Java 3 15 1 2
downcast downcast safety checker for Java [52] 5 89 4 175 =
increment-float float increment checker for C 4 16 1 1
int-field integer lattice for points-to-analysis [35] 3 9 1 1
modifies-global identify functions that modify global variables 3 9 1 1
mutual-recursion identify mutual recursion 1 13 1 3
nested-loops infer nested loops with same variable 3 39 1 3
overrides infer overriding in Java 2 6 1 1
polysite polymorphic call-site inference for Java [52] 3 97 3 27
pyfunc-mutable identify mutable arguments to Python functions 3 19 1 2
reach step reachability in dataflow analysis 3 17 1 2
reaching-def reaching definition analysis 2 6 1 1
realloc-misuse memory reallocation checker for C 3 18 1 1
rvcheck return-value-checker in APISan [62] 4 74 1 2
shadowed-var variable shadowing analysis in Javascript 2 12 1 1
Database Queries
sql 1~ 41 | 41 SQL queries [57] | <6 <65 1 <20 v, =
Unsynthesizable Benchmarks
isomorphism differentiate isomorphic vertices in a graph 1 2 1 1 -
sql 42 ~ 44 3 unsynthesizable SQL queries [57] <2 <8 1 <4 -
traffic-extra-output | traffic benchmark with extra output tuple 3 18 1 3 -
traffic-missing-input | traffic benchmark without intersects relation 8 1 2 -
traffic-partial traffic benchmark with partial input-output 3 11 1 1 -

6.2 Baselines

We compare EGS with three state-of-the-art synthesizers
that use different synthesis techniques: ScYTHE [57], which
uses enumerative search; ILASP [32], which is based on con-
straint solving; and PRoSYNTH [47], which uses a hybrid
approach by combining search with constraint solving.

ILASP and PrRoSYNTH phrase the synthesis problem as a
search through a finite space of candidate rules. In order to
evaluate them on our benchmark suite, we generated can-
didate rules for each benchmark using mode declarations in
ILASP. A mode declaration is a syntactic restriction on the
candidate rules such as the length of the rule, number of

Example-Guided Synthesis of Relational Queries

times a particular relation can occur, and the number of dis-
tinct variables used. In our experiments we only focus on
the number of times an input relation occurs in a rule, and
the number of distinct variables used. Providing a suitable
set of mode declarations is a delicate balancing act: gener-
ous mode declarations can hurt scalability while insufficient
mode declarations can result in insufficient candidate rules
to synthesize the desired program. Given a query, one can re-
cover the minimum mode declarations required to generate
it. For example, for the program in Equation 1 in the running
example, we have the mode declarations:

#modeb (2, GreenSignal(var(V)), (positive)).

#modeb (2, HasTraffic(var(V)), (positive)).

#modeb (1, Intersects(var(V),var(V)), (positive)).

#modeh(Crashes(var(V))).

#maxv(2).
This specifies for each candidate rule the output relation
is Crashes, the input relations GreenSignal and HasTraffic
occur at most twice, Intersects occurs at most once, and at
most two distinct variables are used. This particular choice of
modes generates 97 rules. Increasing the mode declarations
results in a larger space of candidate rules. For our suite of
benchmarks, we observed that a given input relation occurs
in a rule at most thrice (such as in sequential), and the
number of distinct variables in a single rule are at most 10
(as in increment-float). This allowed us to generate two
set of candidate rules per benchmark:

1. Task-Agnostic Rule Set: Candidate rules where any given
input relation occurs at most thrice and the number of
distinct variables is at most 10, and

2. Task-Specific Rule Set: Candidate rules generated using the
minimum mode declarations for the desired program.

With a threshold of 300 seconds, the candidate rule enu-
merator timed out when generating the task-agnostic rule
set for 31 of the 79 benchmarks and the task-specific rule set
for 2 benchmarks. We summarize the number of candidate
rules generated per benchmark in Appendix A.

Similar to EGS, ScYTHE does not require a set of candi-
date rules, but the fragment of relational queries targeted
by ScyTHE is SQL (with selection, join, projection, constant
comparison, aggregation, and union). In order to compare
the four tools fairly, we disable SCYTHE’s support for aggrega-
tions. Also, SCYTHE supports complete labeling, that is every
tuple either occurs in O* or O7; therefore, we consider the
set of negative examples O~ to be all tuples of appropriate
arity that do not occur in O™.

6.3 Q1: Performance

We ran EGS and the three baselines (with PRoSYNTH and
ILASP with two sets of candidate rules each) on all 79 bench-
marks with a timeout of 300 seconds. We tabulate the results
in Appendix A, and present a graphical summary in Figure 4.

EGS runs fastest with an average runtime of under a sec-
ond and no timeouts. In fact, for all but 6 benchmarks, EGS

PLDI ’21, June 20-25, 2021, Virtual, Canada

100 A

104

time in seconds

7 D\D

0 10 20 30 40 50 60 70 80
solved instances

—— EGS
—e— Scythe

—v— ILASP(F)
—¥— ILASP(L)

—O— ProSynth(F)
—&— ProSynth(L)

Figure 4. Results of our experiments using EGS, Scythe,
ILASP, and ProSynth to solve a suite of 79 benchmarks. A
datapoint (n, t) for a particular tool indicates that it solved n
of the benchmarks in less than ¢ time. Note EGS was the only
tool to solve all 79 benchmarks. L and F refer to Task-Specific
and Task Agnostic Rule Sets respectively.

returns a solution in less than one second, and never takes
more than 33 seconds for any benchmark. ScyTHE takes an
average of 7.6 seconds for 62 benchmarks and times out on
17 of the rest.

When provided with a task-specific rule set, both ILASP
and PROSYNTH exhibit competitive performance on a subset
of the benchmarks, and return a solution in less than one
second for 57 and 51 benchmarks respectively. Still, their
performance suffers on the more complicated benchmarks,
and they exhibit timeouts on 7 and 21 of the 79 benchmarks,
respectively. However, when provided with a task-agnostic
rule set, the performance of both tools quickly degrades, and
they timeout on 51 and 77 benchmarks, respectively.

All three baselines are disadvantaged by the enumeration
required, and this causes EGS to outperform them, especially
on benchmarks with larger numbers of input tuples, larger
numbers of relations, or complex target queries. PROSYNTH
and ILASP sometimes outperform EGS when provided with
a task-specific choice of target rules on particularly simple
benchmarks. However, we emphasize that, in all these cases,
all three tools solve the problem in less than one second.

Notably, there are four benchmarks where EGS succeeds,
but where all other tools time out: animals, sequential,
downcast, and polysite. Upon examination, these bench-
marks reveal the situations which cause the baseline tech-
niques to underperform. For example, the animals bench-
mark involves classifying animals into their taxonomic classes
based on their characteristics which are represented through
9 input relations. The larger number of input relations in-
duces a complex search space causing SCYTHE to timeout.
Furthermore, ILASP enumerates over 2000 candidate rules,

PLDI 21, June 20-25, 2021, Virtual, Canada

even in the task-specific setting, causing both ILASP and
PROSYNTH to also timeout.

6.4 Q2: Quality of Programs

We investigated the quality of the synthesized programs for
each of the 79 benchmarks and observed that the program
synthesized by EGS captures the target concept. For all but
two cases, the programs generated by EGS also matched a
program crafted by a human programmer. The two outliers
are sequential and sql36. In sequential, one of the tasks
is to learn the great-grandparent relation. The desired
program has eight rules (each representing a combination of
the mother and father input relations to form rules of size
three); however, we are provided with only two output tuples,
and hence we learn a program with 2 rules that correctly
explains the data. This can be fixed by adding more training
data such that it covers all cases of the target concept. In case
of sq136, the task involves comparing numbers; however, the
input only includes the successor relation. The output of EGS
therefore unfolds the greater-than relation using a four-way
join of successors. While this is the smallest query that one
can generate consistent with the examples, a more succinct
query can be learned if we are provided an input table for
the greater-than relation. In general, we observe overfitting
when either there exists a program consistent with the input-
output examples that is smaller than the desired program (as
in the case of sequential) or when the training data does
not represent all of the desired features of the target program
(as in sql136). In general, one can overcome these cases by
providing a richer set input-output examples.

One may also observe overfitting when our heuristic gen-
erates a consistent but larger program. This is possible as the
priority function greedily optimizes over explanatory power
and size simultaneously. We have not observed this case in
any of our 78 benchmarks.

We also manually inspected the outputs of the baselines.
The programs synthesized by PRoSyNTH and ILASP are iden-
tical to ours in the cases when the tools terminate (in both,
task-agnostic and task-specific rule sets). However, the pro-
grams synthesized by SCYTHE are neither small nor easy to
generalize. In many cases, including knowledge discovery
benchmarks such as adjacent-to-red, graph-coloring,
and scheduling, we find the synthesized queries to be in-
scrutable.

6.5 Q3: Unrealizability

To test the completeness guarantees provided by the EGS
algorithm, we evaluated it on 7 unrealizable benchmarks.
The results of these experiments are summarized in Table 2.

The first benchmark, isomorphism, is the simplest bench-
mark which does not admit a solution. In this benchmark,
we have the input I = {edge(a, b), edge(b, a)}, and attempt
to distinguish between the two vertices by specifying the

Aalok Thakkar, Aaditya Naik, Nathaniel Sands, Rajeev Alur, Mayur Naik, and Mukund Raghothaman

Table 2. Unrealizable benchmarks. For each benchmark, we
summarize runtimes on EGS and the three baselines. Note
that ScyTHE overfits sq142 and traffic-partial using op-
erators like comparisons and negation.

Benchmark ‘ EGS ‘ SCYTHE ‘ ILASP ‘ PrOSYNTH

isomorphism 0.1 - 0.2 12.4
sql42 0.2 1.79 0.6 -
sql43 0.1 - - -
sql44 0.1 - - -
traffic-extra-output 0.2 - 0.2 0.1
traffic-missing-input 0.1 - 0.1 0.4
traffic-partial 59.5 2.33 0.2 1.5

outputs, O* = {a} and O~ = {b}. From symmetry consid-
erations, it follows that the benchmark does not admit a
solution, and our algorithm successfully reports this in less
than one second, while SCYTHE times out on this benchmark,
and ILASP and PROSYNTH claim that there is no solution
with respect to the given mode declarations.

We remark that while ILASP and PRoSYNTH do not pro-
vide completeness guarantees like we do, Lemma 4.2 allows
us to also strengthen their claims. Observe that as the input I
has only two tuples, and any rule explaining the tuple needs
at most one join. This can be used to construct an upper
bound on the mode declaration which permits ILASP and
PROSYNTH to also prove the unrealizability of the benchmark.
However, as these mode declarations grow with the set I, we
observe time outs in other unrealizable benchmarks.

The next three benchmarks sql42-sql44 are sourced
from the ScYyTHE’s benchmark suite, and involve some form
of aggregation, which is unsupported by EGS. The task in
$ql42 is to assign row numbers to the tuples, in sq143 is to
get the top two records grouped by a given parameter, and in
sql44 is to sum items using several IDs from another table.
EGS proves the unrealizability of each of these tasks in less
than a second. For sql42, ScYTHE produces an overfitting
solution (using comparison operators) and ILASP proves the
absence of a solution in less than a second. The mode decla-
rations for these benchmarks were the same as that for the
task-agnostic rule set.

The final three unrealizable benchmarks are modifica-
tions of the running example generated by adding noise. In
traffic-extra-output we have a constant in the output
that does not occur in the input, in traffic-missing-input
we do not provide the Intersects input relation, and in
traffic-partial we remove certain input and output tu-
ples which are essential to explain the crashes. While ScyTHE
overfits a solution to traffic-partial using negation, EGS
takes about a minute to prove that there cannot exist a solu-
tion which does not involve negation or aggregations.

Example-Guided Synthesis of Relational Queries

7 Related Work

We discuss related work on program synthesis frameworks,
synthesis of logic programs, and example-guided search.

Program synthesis frameworks. General frameworks
have been proposed to specify program synthesis tasks. Sy-
GusS [3] formulates program synthesis as a computational
problem whose target is specified by a logical constraint and
a syntactic template. SKETCH [53, 54] allows the program-
mer to specify the synthesis task via a syntactic sketch in
high-level languages like C and Java. Rosette [55] extends
Racket with language constructs for program synthesis and
compiles it to logical constraints that are solved using SMT
solvers. PROSE [44] provides APIs to synthesize a ranked
set of programs that satisfy input-output examples.

Synthesis techniques underlying these frameworks are
typically based either on search or constraint solving. Search-
based techniques follow the counterexample-guided induc-
tive synthesis (CEGIS) [54] paradigm which combines a
search algorithm with a verification oracle. They use ex-
amples to implement a number of optimizations such as the
indistinguishability optimization to accelerate search [56,
57], divide-and-conquer strategies to complete enumerated
sketches [19, 28, 57], and probabilistic models of programs to
bias the search [17, 34, 38]. On the other hand, these tech-
niques are more broadly applicable, and EGS is not directly
extensible to domains beyond relational queries.

Lastly, the idea of explaining different tuples by different
rules, yielding a union of conjunctive queries, is reminiscent
of the search technique in EUSOLVER [4], which employs
a divide-and-conquer approach by separately enumerating
(a) smaller expressions that are correct on subsets of inputs,
and (b) predicates that distinguish these subsets. These ex-
pressions and predicates are then combined using decision
trees to obtain an expression that is correct on all inputs.
Akin to our approach, EUSolver also uses information-gain
based heuristics to learn compact decision trees.

Synthesis of logic programs. There is a large body of
work on synthesizing logic programs from examples [13].
Existing approaches to this problem are broadly classified
into Inductive Logic Programming (ILP), e.g. Metagol [39];
Answer Set Programming (ASP), e.g. ILASP [30]; program
synthesis, e.g. ProSynth [47] and Scythe [57]; and neural
learning, e.g. NTP [49].

Several of these approaches consider more general pro-
gram classes than relational queries, but fundamentally differ
from EGS in two respects: they are syntax-guided—and there-
fore require various forms of language bias mechanisms
upfront, such as templates (Metagol), mode declarations
(ILASP), and candidate rules (ProSynth)—and they do not
provide completeness guarantees.

Even bottom-up ILP algorithms that start with examples
require language biasing. These approaches use Plotkin’s

PLDI ’21, June 20-25, 2021, Virtual, Canada

least-general generalisation [43] to produce the most specific
clause that generalises the given examples. However, the
most specific clause can grow unboundedly and tools such
as Golem [41] use restrictions on the background knowledge
and hypothesis language to synthesize smaller programs.

Neural learning [16, 18, 49, 61] can handle tasks that in-
volve noise or require sub-symbolic reasoning. NeuralLP [61],
NLM [16], and JILP [18] model relation joins as a form of
matrix multiplication, which limits them to binary relations.
NTP [49] constructs a neural network as a learnable proof
(or derivation) for each output tuple up to a predefined depth
(e.g. < 2) with a few (e.g. < 4) templates, where the network
could be exponentially large when the depth or number of
templates grows. The predefined depth and a small number
of templates could significantly limit the class of learned
programs. Lastly, neural approaches face challenges of gen-
eralizability and data efficiency.

Example-guided search techniques. Following the cat-
egorization introduced in this paper, example-guided tech-
niques have previously been used for synthesizing regular
expressions, string transformations, and spreadsheet oper-
ators. FlashFill [24], a tool available in Microsoft Excel to
synthesize string transformations, uses input-output pairs to
generate trace expressions that map inputs to outputs, and
then uses these trace expressions to construct a program
which is consistent with the examples. FlashRelate [9], a tool
for extracting relational data from semi-structured spread-
sheets, uses positive examples to generate a graph of con-
straints and then reduces the synthesis problem to computing
a minimum spanning tree on this graph. Example-guided
techniques have also been used for filtering spreadsheet data
and synthesis of data completion scripts [59, 60].

Beyond synthesis, problems in domains such as graph
search, decision tree learning, and grammatical inference
also use example-guided techniques. Exact and approximate
algorithms for problems such as graph labelling [12, 26], min-
imum Steiner tree [29], and the traveling salesperson prob-
lem [10] heuristically leverage the patterns in the input graph
to optimize the search. Example-guided search also features
in machine learning, in particular for decision tree learning
algorithms such as ID3 and its variants. These algorithms
calculate information gain corresponding to each attribute in
the training data and use it to construct the tree in a bottom-
up fashion [23, 45]. Algorithms for automata learning—such
as for finding the smallest automaton which correctly classi-
fies a given set of labelled examples [6, 11, 21]—also similarly
exploit patterns in the training data.

8 Conclusion

We identified a class of synthesis techniques called Example-
Guided Synthesis. The essence of this approach is to use
the common patterns in the structure of input and output
examples to limit the search only to programs that explain

PLDI 21, June 20-25, 2021, Virtual, Canada

the data. We demonstrated EGS for synthesizing relational
queries from input-output examples. We evaluated EGS on
a diverse suite of tasks from the literature, and compared it
to state-of-the-art synthesizers. EGS is able to synthesize or
show unrealizability for all the tasks in a few seconds, and
produces programs that generalize better.

EGS can find application in designing developer tools that
allow non-expert end-users to generate relational queries,
which can be challenging to write, by providing only a small
set of input-output examples. Another compelling use case
is writing program analyses. Information from the analyzed
programs can be extracted and represented as relational data
[8]. The user can provide a set of output examples (for in-
stance by highlighting the section of code in an IDE), and
EGS can synthesize a hypothesis explaining the highlighted
outputs. An important challenge in these applications is in
improving the sample efficiency of the learning algorithm.
We emphasize Table 1 refers to the number of tuples in a
single example, rather than the number of labelled databases
needed. Additionally, while the problem of sample efficiency
is orthogonal to our goals in this paper, we expect the use
of background knowledge [58], active learning [7], and in-
teractive feedback mechanisms [36, 46, 63] to significantly
reduce the amount of data required for learning.

While EGS currently targets a rich set of features including
multi-way joins, union, and negation, we intend to extend
it in future to other useful features such as aggregation and
recursion. We also plan to explore extensions of EGS to
settings that involve larger input data, interactively labeled
output data, and noise in the examples.

Acknowledgments

We thank our shepherd, Xinyu Wang, and the anonymous
reviewers, whose feedback substantially improved this pa-
per. This research was supported in part by grants from the
AFRL (#FA8750-20-2-0501), ONR (#N00014-18-1-2021), and
the NSF (#1836822).

References

[1] Serge Abiteboul, Richard Hull, and Victor Vianu. 1994. Foundations of
Databases: The Logical Level (1st ed.). Pearson.

[2] Aws Albarghouthi, Paraschos Koutris, Mayur Naik, and Calvin Smith.
2017. Constraint-Based Synthesis of Datalog Programs. In Proceedings
of the International Conference on Principles and Practice of Constraint
Programming (CP).

[3] Rajeev Alur, Rastislav Bodik, Garvit Juniwal, Milo Martin, Mukund
Raghothaman, Sanjit Seshia, Rishabh Singh, Armando Solar-Lezama,
Emina Torlak, and Abhishek Udupa. 2013. Syntax-Guided Synthesis.
In Proceedings of Formal Methods in Computer-Aided Design (FMCAD).

[4] Rajeev Alur, Arjun Radhakrishna, and Abhishek Udupa. 2017. Scal-
ing Enumerative Program Synthesis via Divide and Conquer. In Pro-
ceedings of International Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS).

[5] Rajeev Alur, Rishabh Singh, Dana Fisman, and Armando Solar-Lezama.
2018. Search-Based Program Synthesis. Commun. ACM 61, 12 (Nov.
2018), 84-93.

Aalok Thakkar, Aaditya Naik, Nathaniel Sands, Rajeev Alur, Mayur Naik, and Mukund Raghothaman

[6] Dana Angluin. 1978. On the complexity of minimum inference of
regular sets. Information and Control 39, 3 (1978).

[7] Behnaz Arzani, Kevin Hsieh, and Haoxian Chen. 2021. Interpret-able
feedback for AutoML systems. arXiv preprint arXiv:2102.11267 (2021).

[8] Pavel Avgustinov, Oege de Moor, Michael Peyton Jones, and Max
Schifer. 2016. QL: Object-oriented Queries on Relational Data. In Pro-
ceedings of the European Conference on Object-Oriented Programming
(ECOOP).

[9] Daniel W. Barowy, Sumit Gulwani, Ted Hart, and Benjamin Zorn. 2015.
FlashRelate: Extracting Relational Data from Semi-Structured Spread-
sheets Using Examples. SIGPLAN Not. 50, 6 (June 2015), 218-228.

[10] M. Bellmore and G. L. Nemhauser. 1968. The Traveling Salesman
Problem: A Survey. Operations Research 16, 3 (1968).

[11] A. W. Biermann and J. A. Feldman. 1972. On the Synthesis of Finite-
State Machines from Samples of Their Behavior. 21, 6 (1972).

[12] Daniel Brélaz. 1979. New Methods to Color the Vertices of a Graph.
Commun. ACM 22, 4 (April 1979), 251-256.

[13] Andrew Cropper, Sebastijan Dumancic, and Stephen H. Muggleton.
2020. Turning 30: New Ideas in Inductive Logic Programming. In
Proceedings of the 29th International Joint Conference on Artificial Intel-
ligence (IJCAI).

[14] Andrew Cropper and Stephen Muggleton. 2015. Logical Minimisation
of Meta-Rules Within Meta-Interpretive Learning. In Inductive Logic
Programming.

[15] Jacek Czerniak and Hubert Zarzycki. 2003. Application of Rough Sets
in the Presumptive Diagnosis of Urinary System Diseases. In Artificial
Intelligence and Security in Computing Systems.

[16] Honghua Dong, Jiayuan Mao, Tian Lin, Chong Wang, Lihong Li, and
Denny Zhou. 2019. Neural Logic Machines. In Proceedings of the 7th
International Conference on Learning Representations (ICLR).

[17] Kevin Ellis, Lucas Morales, Mathias Sablé-Meyer, Armando Solar-
Lezama, and Josh Tenenbaum. 2018. Learning Libraries of Subroutines
for Neurally-Guided Bayesian Program Induction. In Advances in
Neural Information Processing Systems (NeurIPS).

[18] Richard Evans and Edward Grefenstette. 2018. Learning Explanatory
Rules from Noisy Data. Journal of Artificial Intelligence Research 61
(2018).

[19] Yu Feng, Ruben Martins, Jacob Van Geffen, Isil Dillig, and Swarat
Chaudhuri. 2017. Component-based synthesis of table consolida-
tion and transformation tasks from examples. In Proceedings of the
ACM Conference on Programming Language Design and Implementation
(PLDI).

[20] Nadime Francis, Alastair Green, Paolo Guagliardo, Leonid Libkin, To-
bias Lindaaker, Victor Marsault, Stefan Plantikow, Mats Rydberg, Petra
Selmer, and Andrés Taylor. 2018. Cypher: An Evolving Query Lan-
guage for Property Graphs. In Proceedings of the International Confer-
ence on Management of Data (SIGMOD).

[21] E Mark Gold. 1978. Complexity of automaton identification from given
data. Information and Control 37, 3 (1978).

[22] Todd J. Green. 2015. LogiQL: A Declarative Language for Enterprise
Applications. In Proceedings of the Symposium on Principles of Database
Systems (PODS).

[23] J. Grzymala-Busse. 1993. Selected Algorithms of Machine Learning
from Examples. Fundam. Informaticae 18 (1993).

[24] Sumit Gulwani. 2011. Automating String Processing in Spreadsheets
Using Input-Output Examples. SIGPLAN Not. 46, 1 (Jan. 2011), 317-330.

[25] Sumit Gulwani, William R. Harris, and Rishabh Singh. 2012. Spread-
sheet data manipulation using examples. Communications of the ACM
(CACM) 55, 8 (2012).

[26] Dorit S. Hochba. 1997. Approximation Algorithms for NP-Hard Prob-
lems. SIGACT News 28, 2 (1997).

[27] Qinheping Hu, Jason Breck, John Cyphert, Loris D’Antoni, and Thomas
Reps. 2019. Proving Unrealizability for Syntax-Guided Synthesis.
In Computer Aided Verification, Isil Dillig and Serdar Tasiran (Eds.).

Example-Guided Synthesis of Relational Queries

(28]

[29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

(37]

(38]

(39]

(40]

[41]

(42]

(43]

[44]

(45]

(46]

(47]

(48]

Springer International Publishing, Cham, 335-352.

Susmit Jha, Sumit Gulwani, Sanjit A. Seshia, and Ashish Tiwari. 2010.
Oracle-Guided Component-Based Program Synthesis.

Marek Karpinski and Alexander Zelikovsky. 1997. New approximation
algorithms for the Steiner tree problems. Journal of Combinatorial
Optimization 1, 1 (1997).

Makr Law. 2018. Inductive Learning of Answer Set Programs. Ph.D.
Dissertation. Imperial College London.

Mark Law, Alessandra Russo, and Krysia Broda. 2014. Inductive Learn-
ing of Answer Set Programs. In Proceedings of the European Conference
on Logics in Artificial Intelligence (JELIA).

Mark Law, Alessandra Russo, and Krysia Broda. 2020. The ILASP
system for Inductive Learning of Answer Set Programs. CoRR
abs/2005.00904 (2020).

Vu Le and Sumit Gulwani. 2014. FlashExtract: a framework for data
extraction by examples. In Proceedings of the ACM Conference on Pro-
gramming Language Design and Implementation (PLDI).

Woosuk Lee, Kihong Heo, Rajeev Alur, and Mayur Naik. 2018. Accel-
erating Search-based Program Synthesis Using Learned Probabilistic
Models. In Proceedings of the ACM Conference on Programming Lan-
guage Design and Implementation (PLDI).

Magnus Madsen, Ming-Ho Yee, and Ondiej Lhotak. 2016. From Dat-
alog to Flix: A Declarative Language for Fixed Points on Lattices. In
Proceedings of the ACM Conference on Programming Language Design
and Implementation (PLDI).

Ravi Mangal, Xin Zhang, Aditya Nori, and Mayur Naik. 2015. A
user-guided approach to program analysis. In Proceedings of the Joint
Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering (ESEC/FSE).

M. Martin, B. Livshits, and M. Lam. 2005. Finding application errors and
security flaws using PQL: a program query language. In Proceedings
of the ACM International Conference on Object-Oriented Programming,
Systems, Languages, and Applications (OOPSLA).

Aditya Menon, Omer Tamuz, Sumit Gulwani, Butler Lampson, and
Adam Kalai. 2013. A Machine Learning Framework for Programming
by Example. In Proceedings of the International Conference on Machine
Learning (ICML).

Stephen Muggleton. 1991. Inductive Logic Programming. New Gener-
ation Computing 8, 4 (Feb. 1991).

Stephen Muggleton. 1995. Inverse Entailment and Progol. New Gener-
ation Computing 13, 3 (1995).

Stephen Muggleton and Cao Feng. 1990. Efficient Induction Of Logic
Programs. In New Generation Computing. Academic Press.

Jorge Pérez, Marcelo Arenas, and Claudio Gutierrez. 2009. Semantics
and Complexity of SPARQL. 34, 3 (2009).

Gordon D. Plotkin. 1970. A Note on Inductive Generalization. Machine
Intelligence 5 (1970), 153-163.

Oleksandr Polozov and Sumit Gulwani. 2015. FlashMeta: A Framework
for Inductive Program Synthesis. In Proceedings of the ACM Conference
on Object Oriented Programming Systems Languages and Applications
(OOPSLA).

J. R. Quinlan. 1986. Induction of decision trees. Machine Learning 1, 1
(1986).

Mukund Raghothaman, Sulekha Kulkarni, Kihong Heo, and Mayur
Naik. 2018. User-guided Program Reasoning Using Bayesian Inference.
In Proceedings of the 39th ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI 2018). ACM, 722-735.
Mukund Raghothaman, Jonathan Mendelson, David Zhao, Mayur Naik,
and Bernhard Scholz. 2020. Provenance-guided synthesis of Datalog
programs. In Proceedings of the ACM Symposium on Principles of Pro-
gramming Languages (POPL).

Andrew Reynolds, Morgan Deters, Viktor Kuncak, Cesare Tinelli, and
Clark W. Barrett. 2015. Counterexample-Guided Quantifier Instantia-
tion for Synthesis in SMT. In Proceedings of the International Conference

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

PLDI ’21, June 20-25, 2021, Virtual, Canada

on Computer Aided Verification (CAV).

Tim Rocktaschel and Sebastian Riedel. 2017. End-to-end Differen-
tiable Proving. In Advances in Neural Information Processing Systems
(NeurlIPS).

Stefan Schoenmackers, Oren Etzioni, Daniel S. Weld, and Jesse Davis.
2010. Learning First-Order Horn Clauses from Web Text. In Proceedings
of the Conference on Empirical Methods in Natural Language Processing
(EMNLP).

Yanyan Shen, Kaushik Chakrabarti, Surajit Chaudhuri, Bolin Ding,
and Lev Novik. 2014. Discovering queries based on example tuples.
In Proceedings of the International Conference on Management of Data
(SIGMOD).

Xujie Si, Woosuk Lee, Richard Zhang, Aws Albarghouthi, Paraschos
Koutris, and Mayur Naik. 2018. Syntax-guided Synthesis of Datalog
Programs. In Proceedings of the ACM Joint Meeting on European Soft-
ware Engineering Conference and Symposium on the Foundations of
Software Engineering (ESEC/FSE).

Armando Solar-Lezama. 2008. Program Synthesis by Sketching. Ph.D.
Dissertation. Advisor(s) Bodik, Rastislav.

Armando Solar-Lezama, Liviu Tancau, Rastislav Bodik, Sanjit Seshia,
and Vijay Saraswat. 2006. Combinatorial Sketching for Finite Programs.
In Proceedings of the 12th International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS
XII). ACM, 404-415.

Emina Torlak and Rastislav Bodik. 2013. Growing Solver-Aided Lan-
guages with Rosette. In Proceedings of the ACM International Sympo-
sium on New Ideas, New Paradigms, and Reflections on Programming
and Software (Onward!).

Abhishek Udupa, Arun Raghavan, Jyotirmoy V. Deshmukh, Sela
Mador-Haim, Milo M.K. Martin, and Rajeev Alur. 2013. TRANSIT:
Specifying Protocols with Concolic Snippets. In Proceedings of the
ACM Conference on Programming Language Design and Implementa-
tion (PLDI).

Chenglong Wang, Alvin Cheung, and Rastislav Bodik. 2017. Synthe-
sizing Highly Expressive SQL Queries from Input-output Examples.
In Proceedings of the 38th ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI 2017). ACM, 452-466.
Jingbo Wang, Chungha Sung, Mukund Raghothaman, and Chao Wang.
2021. Data-Driven Synthesis of Provably Sound Side Channel Anal-
yses. In Proceedings of the 43rd International Conference on Software
Engineering (To appear) (ICSE).

Xinyu Wang, Isil Dillig, and Rishabh Singh. 2017. Synthesis of Data
Completion Scripts Using Finite Tree Automata. Proc. ACM Program.
Lang. 1, OOPSLA, Article 62 (Oct. 2017), 26 pages.

Xinyu Wang, Sumit Gulwani, and Rishabh Singh. 2016. FIDEX: Fil-
tering Spreadsheet Data Using Examples. SIGPLAN Not. 51, 10 (Oct.
2016), 195-213.

Fan Yang, Zhilin Yang, and William Cohen. 2017. Differentiable learn-
ing of logical rules for knowledge base reasoning. In Advances in
Neural Information Processing Systems (NeurIPS).

Insu Yun, Changwoo Min, Xujie Si, Yeongjin Jang, Taesoo Kim, and
Mayur Naik. 2016. APISan: Sanitizing API Usages through Semantic
Cross-checking. In Proceedings of the USENIX Security Symposium.
Xin Zhang, Radu Grigore, Xujie Si, and Mayur Naik. 2017. Effective
interactive resolution of static analysis alarms. Proceedings of the
ACM on Programming Languages 1, OOPSLA, Article 57 (Oct. 2017),
30 pages.

PLDI 21, June 20-25, 2021, Virtual, Canada

A Runtime Comparisons

Aalok Thakkar, Aaditya Naik, Nathaniel Sands, Rajeev Alur, Mayur Naik, and Mukund Raghothaman

Table 3. Performance of EGS, ScyTHE, ILASP, and PRoSYNTH on 20 knowledge discovery benchmarks.

Benchmark EGS | Scythe ILASP ILASP ProSynth ProSynth #Rules #Rules
Task-Agnostic Task-Specific Task-Agnostic Task-Specific Task-Agnostic Task-Specific
Rule Set Rule Set Rule Set Rule Set
Knowledge Discovery
abduce 0.4 - - 6.1 - - - 4917
adjacent-to-red 0.4 1.5 365.7 0.3 - 0.8 209799 101
agent 0.8 - - 0.3 - 1.8 - 142
animals 0.4 - - - - - 1242184 2000
cliquer 0.3 0.7 1.0 0.2 - 0.7 1484 79
contains 0.3 0.8 176.1 0.2 - 0.1 7557 1
grandparent 0.5 - - 5.9 - - - 4917
graph-coloring 0.4 5.2 177.2 0.1 - 0.3 96079 23
headquarters 0.3 0.7 11.2 0.2 - 0.1 4057 1
inflammation 0.6 - - 3.0 - - - 847
kinship 0.5 - - 5.8 - - - 4917
predecessor 0.2 1.7 1.2 0.2 - 0.1 1484 5
reduce 0.3 0.7 114.8 0.1 - 0.1 7557 1
scheduling 0.4 1.5 336.7 0.1 - 0.2 160016 16
sequential 0.8 - - - - - - -
ship 0.3 1.3 - 1.2 - - - 1426
son 0.3 1.1 - 1.0 - - - 1199
traffic 0.5 6.5 143.9 0.3 - 0.7 93326 97
trains 0.4 - - 3.3 - - - 601
undirected-edge | 0.3 1.0 1.3 0.2 - 0.3 1484 79
Table 4. Performance of EGS, ScYTHE, ILASP, and PROSYNTH on 18 program analysis benchmarks.
Benchmark EGS | Scythe ILASP ILASP Prosynth Prosynth #Rules #Rules
Task-Agnostic Task-Specific Task-Agnostic Task-Specific Full Task-Specific
Rule Set Rule Set Rule Set Rule Set
Program Analysis
arithmetic-error 0.2 1.0 - 0.1 - 0.1 263853 13
block-succ 0.4 - - 9.9 - - - 9758
callsize 0.3 1.2 20.2 0.2 - 0.4 14446 11
cast-immutable 0.3 1.2 420.0 0.1 - 0.1 225108 18
downcast 1.8 - - - - - - 3392
increment-float 0.3 1.6 58.5 0.1 - 0.1 19594 10
int-field 0.3 0.5 - 0.3 - 0.2 - 109
modifies-global 0.3 0.7 23.3 0.1 - 0.1 17679 6
mutual-recursion | 0.3 1.3 1.2 0.2 - 0.1 1484 25
nested-loops 29 - - 1.1 - - - 1053
overrides 0.3 1.2 - 1.6 - - - 1804
polysite 3.8 - - - - - - 1025
pyfunc-mutable 0.4 2.0 17.0 0.2 - 0.1 12185 6
reach 0.3 1.0 545.3 0.3 - 0.2 256549 15
reaching-def 0.2 0.8 - 0.3 - 0.1 - 8
realloc-misuse 0.4 - - 0.1 - 0.2 669744 22
rvcheck 0.6 - - 29.0 - - - 20186
shadowed-var 0.3 1.8 - 0.3 - 0.2 13291 38

Example-Guided Synthesis of Relational Queries

Table 5. Performance of EGS, ScyTHE, ILASP, and PROSYNTH on 41 database querying tasks.

PLDI ’21, June 20-25, 2021, Virtual, Canada

Benchmark | EGS | Scythe ILASP ILASP Prosynth Prosynth #Rules #Rules
Task-Agnostic Task-Specific Task-Agnostic Task-Specific Task-Agnostic Task-Specific
Rule Set Rule Set Rule Set Rule Set
Relational Queries
sqlo1 0.4 1.4 108.3 0.3 - 2.7 82475 200
sqlo2 0.2 1.5 21.0 0.3 - 1.9 22073 212
5ql03 0.4 4.7 - 1.2 - 22.6 381295 752
sqlo4 0.4 3.3 - 0.2 - 0.1 763408 2
5ql05 0.2 2.5 4.6 0.2 - 0.1 1571 1
sqlo6 0.3 1.2 - 0.5 - 0.1 - 21
sqlo7 0.6 3.7 - 0.2 - 0.3 258271 36
5qlo8 0.3 - 21.4 0.1 - 0.1 14415 11
sql09 0.4 2.1 - 0.4 - 0.1 - 8
sql10 0.3 8.4 1.4 0.1 2.8 0.1 331 1
sql1l 0.2 49.7 40.8 0.2 - 0.1 14415 11
sql12 0.3 4.1 - 0.2 - 0.1 - 2
sql13 0.3 3.0 - 0.1 - 0.1 86032 3
sql14 0.4 2.3 - 0.2 - 0.1 182739 8
sql15 0.6 2.4 - 1.1 - - - 1461
sql16 0.4 10.4 - 0.6 - 0.1 - 3
sql17 0.3 4.8 - 0.2 - 0.1 187020 2
sql18 0.2 2.1 31.9 0.1 - 0.1 14403 1
sql19 0.5 3.1 - 1.7 - - - 1832
sql20 0.2 1.5 0.8 0.2 5.5 0.1 344 1
sql21 0.3 3.5 325.0 0.1 - 0.1 86032 3
sql22 1.9 6.3 92.5 0.2 - 1.1 54821 51
sql23 0.3 6.3 - 0.1 - 0.1 2037 2
sql24 0.2 1.4 10.9 0.1 - 0.1 1958 2
sql25 0.4 17.0 13.4 0.1 - 0.3 8946 9
sql26 0.3 14.7 11.2 0.1 - 0.1 4445 4
sql27 0.5 59 22.6 0.1 - 0.2 13810 18
sql28 0.3 8.2 403.5 0.2 - 0.1 181232 22
sql29 0.3 1.0 - 0.3 - 0.2 - 76
sql30 0.3 3.1 - 0.3 - 0.1 763408 2
sql31 0.4 2.1 73.1 0.2 - 2.5 53813 166
sql32 0.3 17.0 418.3 0.1 - 0.1 225108 18
sql33 0.4 2.8 - 4.6 - - - 6632
sql34 0.2 3.2 540.3 0.1 - 0.1 225108 18
sql35 0.7 - - 0.5 - 0.1 - 4
sql36 32.6 199.8 - - - - - 247986
sql37 0.7 12.7 - - - - - -
sql38 0.5 - 22.0 0.3 - 0.2 13810 18
sql39 6.8 11.7 - 4.9 - 1.7 - 325
sql40 0.3 6.5 - - - - - 559577
sql41 0.2 3.9 - 0.1 - 0.1 - 44

	Abstract
	1 Introduction
	2 Overview
	2.1 Problem Setting
	2.2 Example-Guided Enumeration
	2.3 Prioritizing the Enumeration Process
	2.4 Disjunctions and Multi-Column Outputs

	3 The Relational Query Synthesis Problem
	3.1 Syntax and Semantics of Relational Queries
	3.2 Problem Formulation

	4 Example-Guided Synthesis Algorithm
	4.1 The Constant Co-occurrence Graph
	4.2 Enumeration Contexts
	4.3 Learning Conjunctive Queries

	5 Extensions of the Synthesis Algorithm
	5.1 Multi-Column Outputs
	5.2 Unions of Conjunctive Queries
	5.3 Negation

	6 Experimental Evaluation
	6.1 Benchmark Suite
	6.2 Baselines
	6.3 Q1: Performance
	6.4 Q2: Quality of Programs
	6.5 Q3: Unrealizability

	7 Related Work
	8 Conclusion
	References
	A Runtime Comparisons

