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Abstract

We review the theory of nuclear collective vibrations evolved over decades
from phenomenological quasiclassical picture to sophisticated microscopic
approaches. The major focus is put on the underlying microscopic mechanisms
of emergent effects, which define the properties of giant resonances and soft
modes. The response of atomic nuclei to electromagnetic and weak fields is
discussed in detail. Astrophysical implications of the giant resonances and soft
modes are outlined.

H. Liang (!)
Department of Physics, Graduate School of Science, The University of Tokyo, Tokyo, Japan
e-mail: haozhao.liang@phys.s.u-tokyo.ac.jp

E. Litvinova
Department of Physics, Western Michigan University, Kalamazoo, MI, USA

National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI,
USA
e-mail: elena.litvinova@wmich.edu

© Springer Nature Singapore Pte Ltd. 2022
I. Tanihata et al. (eds.), Handbook of Nuclear Physics,
https://doi.org/10.1007/978-981-15-8818-1_16-1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-8818-1_16-1&domain=pdf
mailto:haozhao.liang@phys.s.u-tokyo.ac.jp
mailto:elena.litvinova@wmich.edu
https://doi.org/10.1007/978-981-15-8818-1_16-1


2 H. Liang and E. Litvinova

Introduction

The first ideas about the collective motion in atomic nuclei are associated with
the name of Arkady Migdal and his seminal article “Quadrupole and dipole γ -
emission from nuclei” (Migdal 1945). Based on a semiclassical analysis of the
induced nuclear dipole moment in a uniform electric field and on the electric dipole
sum rule, a relation between the average energy of the electric dipole transitions and
the symmetry term of the Weizsäcker’s binding energy formula was established.
Independently of Migdal, Goldhaber and Teller (1948) obtained expressions for
the resonance energy of classical harmonic oscillations of protons with respect to
neutrons while analyzing the experimental data of Baldwin and Klaiber (1947) on
the photoabsorption and photofission, where a broad peak in the cross sections with
the centroid above 10 MeV was observed. Since these pivotal works, the collective
oscillation of the proton and neutron Fermi liquids against each other is associated
with the dipole excitations and acquired the name of giant dipole resonance (GDR),
as it was found dominant in the observed photoabsorption spectra of all nuclei.
Because of its very pronounced character, the GDR dominated the studies of nuclear
collective excitations for decades; see a recent comprehensive review in Ishkhanov
and Kapitonov (2021). During this time, other giant resonances, including the
charge-neutral giant monopole resonance (GMR) and giant quadrupole resonance
(GQR) as well as the charge-exchange (also called spin-isospin) isobaric analog
state (IAS), Gamow-Teller resonance (GTR), and spin-dipole resonance (SDR),
have also been discovered and investigated (Osterfeld 1992; Harakeh and can der
Woude 2001; Ichimura et al. 2006; Paar et al. 2007; Roca-Maza and Paar 2018).

A microscopic interpretation of the GDR has become possible within the shell
model concept introduced by Mayer and Jensen (1955), which was realized, in
particular, by Wilkinson in (1956). In the single-particle shell model, the electric
dipole excitations are formed by the one-particle-one-hole (1p1h) transitions from
the occupied shell to the nearest unoccupied shell. In this picture, the GDR
centroid should be close to the mean separation energy between the shells while
the transition energies group within a relatively narrow energy interval. However,
this model disagrees with the collective nature of the GDR and, moreover, strongly
underestimates its energy observed in experiment.

The next major step in the theoretical description of the GDR was made with
the understanding that the residual interaction between the particles and holes
has to be included in the theory (Elliot and Flowers 1957; Brown and Bolsterli
1959). The random phase approximation (RPA), originally developed for electronic
systems (Bohm and Pines 1951), became very successful in resolving the conflict
between the single-particle and collective features of the GDR. Since then, RPA was
employed as a major theoretical tool for investigating nuclear collective excitations,
because of the relative simplicity of its general equations (Ring and Schuck
1980). Formulated in the mean-field basis and invoking the notion of the effective
residual interaction, RPA is compatible with various implementation algorithms.
It was, thus, widely applied to the description of collective excitations of various
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multipolarities (Paar et al. 2007; Roca-Maza and Paar 2018), which were actively
studied experimentally, too (Osterfeld 1992; Harakeh and can der Woude 2001;
Ichimura et al. 2006).

Thus, RPA was recognized quite early as a good approach to the gross features
of nuclear spectra, such as the locations of the main peaks and the sum rules of col-
lective excitations (Migdal 1967). However, the quantitative description of the giant
resonance’s width formation, which originates from the damping effects, required
extensions beyond RPA. Bohr and Mottelson (1969, 1975) came with the idea that
the spectra can be further refined, if the coupling between the single-particle and
emergent collective degrees of freedom is taken into account. Since then, various
realizations of this idea, among which the nuclear field theory (NFT) (Bertsch
et al. 1983) and the quasiparticle-phonon model (QPM) (Soloviev 1992) were the
most prominent ones, explained successfully many of the observed phenomena.
Although based on the effective Hamiltonians of quasiparticles and phonons with
phenomenological interactions, these concepts can be, in fact, linked to the non-
perturbative versions of quantum-field-theory-based equations of motion (EOM) for
the fermionic correlation functions in nuclear medium (Ring and Schuck 1980). The
EOM method developed and further elaborated, e.g., in Rowe (1968) and Schuck
(1976), being, in principle, exact, allows for a hierarchy of approximations to the
dynamical kernels of the equations for the one-fermion and two-time few-fermion
propagators. The full resummations in the particle-hole (ph) and particle-particle
(pp) channels, which are implied in the non-perturbative versions of those kernels
truncated at the two-body level, can be mapped to the kernels of NFT and QPM.

In the latter theories, such kernels originate from the particle-vibration coupling
(PVC) (Bohr and Mottelson 1969, 1975; Bertsch et al. 1983; Kamerdzhiev et al.
1997) or multiphonon (Soloviev 1992; Ponomarev et al. 1999; Savran et al. 2006;
Lo Iudice et al. 2012) configurations, which are associated with the emergent col-
lective phenomena in the strongly coupled regimes. The abovementioned mapping
to the fermionic EOMs, addressed, in particular, in Litvinova and Schuck (2019),
has to be corrected for the accurate lowest-order limit (Ring and Schuck 1980);
however, such corrections are found to be small for nuclear systems (Van Giai and
Thieu 1983). Unfortunately, in the past decades, the computational capabilities did
not allow for the calculations within large and complex model spaces as well as
for keeping direct connections to the underlying bare nucleon-nucleon forces in
the interaction kernels. Nevertheless, the semi-phenomenological PVC and QPM
models based on the effective in-medium interactions or G-matrix theory (Bertsch
et al. 1983; Kamerdzhiev et al. 1997; Ponomarev et al. 1999; Lo Iudice et al.
2012; Mahaux et al. 1985; Tselyaev 1989; Pankratov et al. 2011) provided over
the years the important knowledge about the coupling between the single-particle
and collective degrees of freedom in nuclei. Later, such approaches were linked
to the contemporary density functional theories (DFT) (Litvinova and Ring 2006;
Litvinova et al. 2008, 2010; Litvinova and Wibowo 2018; Tselyaev et al. 2016; Niu
et al. 2015; Saperstein et al. 2016; Shen et al. 2020), advancing the PVC models
to the self-consistent frameworks. Recently, a few attempts of combining the multi-
phonon approaches with the so-called optimized chiral interactions were presented
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(De Gregorio et al. 2017; Knapp et al. 2014). This method demonstrated some
promising results for light nuclear systems; however, a satisfactory description of
heavy nuclei was only possible by introducing an additional three-body interaction
with a free strength parameter.

Under the assumption of weak coupling, in the leading approximation, the
dynamical kernels are composed of the products of one-fermion propagators and
fully neglect the higher-rank ones. Although this assumption is not fully justified
for nuclear systems, such approaches to the nuclear responses as the second RPA
(Yannouleas et al. 1983) show reasonably good results for nuclear excitations in
various channels. For instance, Drozdz et al. (1990) presented a comprehensive
review on the nuclear spin-isospin responses in medium-mass nuclei with the G-
matrix interaction and showed a systematic improvement of the description of this
type of responses, as compared to RPA. More recent implementations of the second
RPA with the effective interactions of Skyrme type were devoted mostly to the
neutral giant resonances (Grasso and Gambacurta 2020) and demonstrated some
progress after applying the subtraction technique proposed originally in Tselyaev
(2013). Very interesting attempts of the second RPA calculations for nuclear excited
states investigated the potential of this approach to advance the ab initio theories to
medium-mass nuclei (Papakonstantinou and Roth 2009). Developments in a similar
direction based on modern interactions showed a substantial progress on the single-
particle dynamical kernels with perturbative treatments of various kinds (Soma et al.
2013; Cipollone et al. 2013; Lu et al. 2017) and on analogous concepts for nuclear
response to the electromagnetic probes (Bacca et al. 2013; Raimondi and Barbieri
2019).

The Exact Equation of Motion for Nuclear Response and
Approximate Methods

The conventional ways of deriving the equations describing nuclear collective
vibrations can be found in many textbooks; however, they are mostly confined
by the RPA equations, either in the matrix or in the linear response forms; see,
for instance, Ring and Schuck (1980). A remarkably efficient finite-amplitude
method for solving the RPA equations numerically, without explicit calculations
of the interaction matrix elements, has been developed in Nakatsukasa et al.
(2007) and attracted intensive attention during the past decade. Going beyond
the static-kernel approximation, one can extend the RPA to higher-order RPAs,
the (quasi)particle-vibration coupling, and quasiparticle-phonon approaches by, for
instance, supplementing the traditional RPA 1p1h excitation operator with the terms
of growing complexity.

In contrast, in this chapter the authors derive the equations for nuclear collective
vibrations in a top-down way. They start from the exact equation of motion for
nuclear response, which allows for a hierarchy of approximations, including the
special cases of the second RPA, PVC, and QPM, as well as the conventional RPA.
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The nuclear response to an external field of one-body character is completely
determined by the response function

R(12, 1′2′) ≡ R12,1′2′(t − t ′) = −i〈T ψ†(1)ψ(2)ψ†(2′)ψ(1′)〉, (1)

which is a ground-state average of the time-ordered fermionic field operators ψ and
ψ† in the Heisenberg picture, such as

ψ(1) ≡ ψ1(t1) ≡ eiHt1ψ1e
−iH t1 , ψ†(1) ≡ ψ†

1 (t1) ≡ eiHt1ψ†
1 e−iH t1 . (2)

In Eqs. (1) and (2), the number subscripts denote the complete sets of single-particle
quantum numbers, and it is implied in Eq. (1) that t1 = t2 = t and t1′ = t2′ = t ′,
i.e., a two-time particle-hole correlation function is considered. Furthermore, the
convention h̄ = 1 is adopted throughout this chapter. The operator H in Eq. (2) is
the standard many-body fermionic Hamiltonian,

H = H(1) + V (2), (3)

confined, for definiteness, by the two-body interaction V (2). The one-body term

H(1) =
∑

12

t12ψ
†
1 ψ2 +

∑

12

v
(MF)
12 ψ†

1 ψ2 ≡
∑

12

h12ψ
†
1 ψ2 (4)

is defined by the matrix elements h12 which combine, in general, the kinetic energy
t and the mean-field v(MF) part of the interaction. The two-body interaction is
described by the operator

V (2) = 1
4

∑

1234

v̄1234ψ
†
1 ψ†

2 ψ4ψ3, (5)

where v̄1234 = v1234−v1243 is the antisymmetrized matrix element of the interaction
of two fermions in the vacuum. In this section, we will confine the formalism by the
nonrelativistic Hamiltonians; however, it can be straightforwardly generalized to
the relativistic ones, both bare and effective (Walecka 1974; Vretenar et al. 2005;
Meng et al. 2006; Liang et al. 2015; Meng 2016). By the related reasons, the
authors omit the details associated with the origin of the two-body interaction V (2)

assuming, however, its instantaneous, or time-independent, character. Furthermore,
the framework can also be directly extended by the three-body forces, which are
omitted here as the majority of implementations are confined by the two-body
Hamiltonians.

The Fourier image of the response function (1) in the energy (frequency) domain
reads

R12,1′2′(ω) =
∑

ν>0

[ ρν
21ρ

ν∗
2′1′

ω − ων + iδ
− ρν∗

12 ρν
1′2′

ω + ων − iδ

]
, (6)
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being the spectral expansion over the exact excited states |ν〉 of the many-body
system with the energies ων = Eν − E0 measured from the ground-state energy.
The residues of this expansion are the products of the transition densities

ρν
12 = 〈0|ψ†

2 ψ1|ν〉, (7)

which represent the weights of the pure particle-hole configurations in the single-
particle basis {1} on top of the ground state |0〉 in the exact excited states |ν〉.

The EOM for the response function can be generated by the differentiation of
Eq. (1) with respect to the time arguments. Differentiation with respect to t leads to

(i∂t +ε12)R12,1′2′(t−t ′) = δ(t−t ′)N121′2′ +i〈T [V,ψ†
1 ψ2](t)(ψ†

2′ψ1′)(t ′)〉, (8)

where the norm kernel is introduced as

N121′2′ = 〈[ψ†
1 ψ2,ψ

†
2′ψ1′ ]〉 = δ22′ 〈ψ†

1 ψ1′ 〉 − δ11′ 〈ψ†
2′ψ2〉. (9)

With the diagonal one-body density matrix, the norm simplifies to the form of
N121′2′ = δ11′δ22′(n1 − n2) ≡ δ11′δ22′N12, where n1 = 〈ψ†

1 ψ1〉 is identified with
the occupancy of the fermionic state 1. In Eq. (8) and in the following, ε12 = ε1 −ε2
with ε1 and ε2 being the eigenvalues of the one-body part of the Hamiltonian (4).

The differentiation of the last term on the right-hand side of Eq. (8) with respect
to t ′ generates the second EOM,

i〈T [V,ψ†
1 ψ2](t)(ψ†

2′ψ1′)(t ′)〉(−i
←−
∂t ′ − ε2′1′)= − δ(t − t ′)〈[[V,ψ†

1 ψ2],ψ†
2′ψ1′ ]〉

+ i〈T [V,ψ†
1 ψ2](t)[V,ψ†

2′ψ1′ ](t ′)〉. (10)

Combining Eqs. (10) and (8), after the Fourier transformation to the energy domain,
one obtains

R12,1′2′(ω) = R
(0)
12,1′2′(ω) +

∑

343′4′
R

(0)
12,34(ω)T34,3′4′(ω)R

(0)
3′4′,1′2′(ω), (11)

with the uncorrelated particle-hole response R(0)(ω),

R
(0)
12,1′2′(ω) = N121′2′

ω − ε21
= δ11′δ22′

n1 − n2

ω − ε21
, (12)

and the T -matrix T (ω), which is the Fourier image of

T12,1′2′(t − t ′) = N −1
12

[
− δ(t − t ′)〈[[V,ψ†

1 ψ2],ψ†
2′ψ1′ ]〉

+ i〈T [V,ψ†
1 ψ2](t)[V,ψ†

2′ψ1′ ](t ′)〉
]
N −1

1′2′ . (13)
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Thereby, the T -matrix is decomposed naturally into the instantaneous (static) T (0)

and time-dependent (dynamical) T (r) terms,

T12,1′2′(t − t ′) = ˜N −1
121′2′

(
T

(0)
12,1′2′δ(t − t ′) + T

(r)
12,1′2′(t − t ′)

)
, (14)

with ˜N121′2′ = N12N1′2′ and

T
(0)
12,1′2′ = −〈[[V,ψ†

1 ψ2],ψ†
2′ψ1′ ]〉,

T
(r)
12,1′2′(t − t ′) = i〈T [V,ψ

†
1 ψ2](t)[V,ψ

†
2′ψ1′ ](t ′)〉, (15)

where the superscript “(r)” indicates the retarded character of the dynamical term. It
is convenient to further transform Eq. (11) into a formally closed equation for R(ω),
similar to the Dyson equation for the one-fermion propagators, by introducing the
kernel K(ω) irreducible with respect to the uncorrelated particle-hole response R(0),
i.e.,

R(ω) = R(0)(ω) + R(0)(ω)K(ω)R(ω), (16)

where

T (ω) = K(ω) + K(ω)R(0)(ω)T (ω). (17)

In other words, K(ω) = T irr (ω), and it can also be decomposed into the
instantaneous and time-dependent parts as

K(t − t ′) = ˜N −1
(
K(0)δ(t − t ′) + K(r)(t − t ′)

)
, (18)

with

K(0) = T (0), K(r)(t − t ′) = T (r)irr (t − t ′). (19)

In a complete analogy to the case of one-fermion EOM, the decomposition of
the interaction kernel in Eqs. (14) and (18) into the static and time-dependent, or
dynamical, parts is a generic feature of the in-medium interaction in the particle-hole
channel and the direct consequence of the time independence of the bare interaction
V of Eq. (5).

After evaluating the commutators in Eq. (15) and introducing the two-fermion
density

ρij,kl = 〈ψ†
k ψ†

l ψjψi〉 = ρikρj l − ρilρjk + σ
(2)
ij,kl, (20)
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where σ
(2)
ij,kl represents its fully correlated part and the Roman indices have the same

meaning as the number indices, the static kernel takes the form of

K
(0)
12,1′2′ = N12v̄21′12′N1′2′ +

∑

jk

v̄2j2′kσ
(2)
1′k,1j +

∑

jk

v̄1′k1jσ
(2)
2j,2′k

− 1
2
δ11′

∑

jkl

v̄2jklσ
(2)
kl,2′j − 1

2
δ22′

∑

ijk

v̄j i1kσ
(2)
1′k,j i

− 1
2

∑

ij

v̄ij2′1σ
(2)
1′2,ij − 1

2

∑

kl

v̄21′klσ
(2)
kl,12′ . (21)

In this form, the first term isolates the contribution from the bare interaction, where
the norm factors are compensated by their inverses in Eq. (14). The remaining terms
of T 0 with the single-particle mean field are absorbed in the single-particle energies
by the substitution ε1 → ε̃1 = ε1 + Σ

(0)
11 , where Σ

(0)
11 = ∑

ij v̄1i1j 〈ψ†
i ψj 〉, in

the uncorrelated response of Eq. (12). Thereby, Eq. (21) gives the exact form of
the static kernel which, in the absence of correlations contained in the quantities
σ (2) and T (r), reduces the EOM (16) to the well-known RPA. The static part of
the in-medium two-fermion interaction kernel in the particle-hole channel is shown
diagrammatically in Fig. 1.

The dynamical part T (r) of the kernel T , after evaluating the commutators of
Eqs. (15), is decomposed as

2

+ − 

v−
2’2

=

v−

2’

1’11 1’

1’1

2 2’

T (0)
v− − 

v−2’2

1’ 11 1’

2 2’

−

v−

2

2’

1’

1  −

v−
2

2’

1’

1

1_
2

1_
2

1_
2

1_
2

Fig. 1 Diagrammatic representation of the static part of the kernel T
(0)

12,1′2′ defined by Eqs. (15)
and (21). The lines with arrows denote fermionic propagators, while the rectangular blocks stand
for the antisymmetrized nucleon-nucleon interaction v̄ and the two-body density ρ of Eq. (20).
(The figure is adopted from Litvinova and Schuck 2019)
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T
(r)
12,1′2′(t − t ′) = T

(r;11)
12,1′2′(t − t ′) + T

(r;12)
12,1′2′(t − t ′) + T

(r;21)
12,1′2′(t − t ′) + T

(r;22)
12,1′2′(t − t ′),

(22)
where

T
(r;11)
12,1′2′(t − t ′) = − i

4

∑

jkl

v̄j2kl〈T (ψ†
1 ψ†

j ψlψk)(t)
∑

mnp

(ψ†
mψ†

nψpψ1′)(t ′)〉v̄nm2′p, (23)

T
(r;12)
12,1′2′(t − t ′) = i

4

∑

jkl

v̄j2kl〈T (ψ†
1 ψ†

j ψlψk)(t)
∑

npq

(ψ†
2′ψ

†
nψqψp)(t ′)〉v̄n1′pq, (24)

T
(r;21)
12,1′2′(t − t ′) = i

4

∑

ijk

v̄j i1k〈T (ψ†
i ψ†

j ψkψ2)(t)
∑

mnp

(ψ†
mψ†

nψpψ1′)(t ′)〉v̄nm2′p, (25)

T
(r;22)
12,1′2′(t − t ′) = − i

4

∑

ijk

v̄j i1k〈T (ψ†
i ψ†

j ψkψ2)(t)
∑

npq

(ψ†
2′ψ

†
nψqψp)(t ′)〉v̄n1′pq, (26)

and shown diagrammatically in Fig. 2. The operator products in Eqs. (23), (24), (25),
and (26) define the correlated 2p2h propagators

G(543′1′, 5′4′31) = 〈T (ψ†
1 ψ†

3 ψ5ψ4)(t)(ψ
†
4′ψ

†
5′ψ3′ψ1′)(t ′)〉. (27)

Thus, the particle-hole response function (1) is the solution of the integral
equation

R12,1′2′(ω) = R̃12,1′2′(ω) +
∑

343′4′
R̃12,34(ω)

(
K

(0)
34,3′4′ + K

(r)
34,3′4′(ω)

)
R3′4′,1′2′(ω),

(28)

where K
(r)
12,1′2′(ω) = T

(r)irr
12,1′2′(ω) and the mean-field response R̃12,1′2′(ω) is defined

as

R̃12,1′2′(ω) = δ11′δ22′
ñ1 − ñ2

ω − ε̃21
, (29)

with the occupancies ñi in the basis, which diagonalizes εi . Because of the
two-time nature of the response function, its EOM reduces to the equation with
only one energy (frequency) variable in the energy domain. The kernel K(ω),
which is split into the static and dynamical parts, contains all the in-medium
nucleonic correlations, which are, in principle, completely determined by the bare
interaction v̄.

However, in practice, consistent calculations of both the static and dynamical
kernels are technically very difficult, and the difficulties are of a conceptual
character. An accurate computation of the static kernel requires the correlated two-
body density, and the dynamical kernel is based on the correlated 2p2h propagator.
While the two-body density can be extracted from the response function in the
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T       =(r;12) v−
v−

2
2 ’4

3

5

1

1 ’
3 ’

5 ’
4 ’

121’2’

3 ’3T       =(r;11) v− v−

5 ’

4 ’
2 2 ’

1 1 ’

4

5121’2’

4 ’
T       =(r;22)

v−v−

2 2 ’

1 1 ’

4
3

5

3 ’

5 ’

121’2’

v−
v−T       =(r;21)

2
2 ’

1
1 ’

4

5

5 ’

4 ’

3 ’3121’2’

G

G

G

G

Fig. 2 Diagrammatic representation of the four components of the dynamical kernel T (r)
12,1′2′ (t−t ′)

of Eqs. (23), (24), (25), and (26). The blocks G are associated with the corresponding time-ordered
operator products

static limit, the correlated 2p2h propagator, in principle, requires a solution of the
respective EOM.

Alternatively, the 2p2h propagator can be approximated by various cluster
expansions over lower-rank propagators. The solutions neglecting completely the
dynamical kernel are the simplest approaches to the nuclear response, which
correspond to the RPA. Typically the RPA is formulated in terms of the transition
densities (7). Indeed, substituting the spectral form of R12,1′2′(ω) in Eq. (6) into
Eq. (28) and dropping the dynamical kernel K(r), in the vicinity of the pole ω → ων ,
one obtains the equation

ρν
12 = ñ2 − ñ1

ω − ε̃12

∑

34

K
(0)
21,43ρ

ν
34 (30)

for the transition density ρν . Identifying its matrix elements with the Xν and
Y ν amplitudes as Xν

ph = ρν
ph and Y ν

ph = ρν
hp, Eq. (30) can be brought to the

conventional 2 × 2 block matrix form (Ring and Schuck 1980). Retaining the
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full correlated static kernel leads to the self-consistent RPA (Schuck et al. 2021),
while neglecting the terms with two-body correlations σ (2) implies the ordinary
RPA. In the latter case, for a reasonable description of the observed spectra, the
bare interaction should be replaced by an effective interaction, either schematic
or derived from the DFT. Such interactions are designed to take into account
the neglected correlations in a static approximation by absorbing them in the
parameters. This type of approaches comprises most of the modern applications
of RPA. The quasiparticle RPA (QRPA) (Ring and Schuck 1980) can be obtained
analogously in the basis of the Bogoliubov quasiparticles (Bogoljubov et al. 1958).

Another type of approaches goes beyond (Q)RPA by retaining also the dynamical
kernel K(r). These approaches can be further classified by the approximations
employed for the treatment of this kernel, which is irreducible in the particle-
hole channel. The possible cluster expansions of the generic 2p2h propagator (27)
entering all the four terms (23), (24), (25), and (26), which satisfy this condition
and do not involve the correlated propagators of more than two fermions, are the
following:

(i) The completely uncorrelated factorization reads

G(0)irr (543′1′, 5′4′31) = 〈T (ψ†
1 ψ†

3 )(t)(ψ3′ψ1′)(t ′)〉0

×〈T (ψ5ψ4)(t)(ψ
†
4′ψ

†
5′)(t

′)〉0, (31)

i.e., it is a product of two uncorrelated antisymmetrized propagators, such as

〈T (ψ†
1 ψ†

3 )(t)(ψ3′ψ1′)(t ′)〉0 = 〈T ψ†
1 (t)ψ1′(t ′)〉0〈T ψ†

3 (t)ψ3′(t ′)〉0

−〈T ψ†
1 (t)ψ3′(t ′)〉0〈T ψ†

3 (t)ψ1′(t ′)〉0, (32)

where the subscript “0” indicates the uncorrelated character of the quantity.
This type of dynamical kernel is shown diagrammatically in Fig. 3 for the term
T

(r;11)irr
12,1′2′ (t − t ′) of Eq. (23). It illustrates explicitly the 2p2h content of this

approach, which corresponds to various versions of the second RPA (Yannouleas
et al. 1983; Drozdz et al. 1990; Grasso and Gambacurta 2020; Papakonstantinou
and Roth 2009; Raimondi and Barbieri 2019).

=

4
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1

3
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v−
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4’

v−

−

4
2

3
5

2’
4’

3’
5’

v− v−
2 2’

1 1’

AS

Fig. 3 Diagrammatic representation of the uncorrelated contributions (i) to the (11)-component
of the dynamical kernel T

(r;11)irr
12,1′2′ (t − t ′) irreducible with respect to the particle-hole propagator.

“AS” includes all the antisymmetrized contributions
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(ii) Another possibility is to retain correlations in one of the two-body prop-
agators in the factorization of the dynamical kernel. In this case, the irreducible
correlated 2p2h propagator G reads

G(c)irr (543′1′, 5′4′31)

= 〈T (ψ†
1 ψ†

3 )(t)(ψ3′ψ1′)(t ′)〉〈T (ψ5ψ4)(t)(ψ
†
4′ψ

†
5′)(t

′)〉0

+ 〈T (ψ†
1 ψ†

3 )(t)(ψ3′ψ1′)(t ′)〉0〈T (ψ5ψ4)(t)(ψ
†
4′ψ

†
5′)(t

′)〉

+ 〈T (ψ†
1 ψ5)(t)(ψ

†
5′ψ1′)(t ′)〉〈T (ψ†

3 ψ4)(t)(ψ
†
4′ψ3′)(t ′)〉0

+ 〈T (ψ†
1 ψ5)(t)(ψ

†
5′ψ1′)(t ′)〉0〈T (ψ†

3 ψ4)(t)(ψ
†
4′ψ3′)(t ′)〉 − AS, (33)

where the upper index “(c)” indicates the presence of one two-fermion correlation
function in each term of the expansion and “AS” stands for all the antisymmetric
terms corresponding to the terms shown explicitly. This approximation to the
dynamical kernel is illustrated diagrammatically in Fig. 4 for the term T

(r;11)irr
12,1′2′ (t −

t ′) of Eq. (23). It can be mapped to the class of approaches, which model the
dynamical kernel in terms of the particle-vibration coupling. This mapping is exact,
if the pairing γ µ± and normal gµ± phonon vertices as well as the respective
propagators ∆

(±)
µ and D

(±)
µ are defined as

γ
µ(+)
12 =

∑

34

v1234α
µ
34, γ

µ(−)
12 =

∑

34

β
µ
34v3412,

∆(σ )
µ (ω) = σ

ω − σ (ω
(σσ )
µ − iδ)

,

g
ν(σ )
13 = δσ,+1g

ν
13 + δσ,−1g

ν∗
31 , gν

13 =
∑

24

v̄1234ρ
ν
42,

D(σ )
ν (ω) = σ

ω − σ (ων − iδ)
, (34)

with σ = ±1, via the normal and anomalous transition densities

ρν
12 = 〈0|ψ†

2 ψ1|ν〉, α
µ
12 = 〈0|ψ2ψ1|µ〉, β

µ
12 = 〈0|ψ†

2 ψ†
1 |µ〉. (35)

This mapping is shown diagrammatically in Fig. 5, and it expresses the mechanism
of emergence of the collective degrees of freedom associated with phonons. One can
see, for instance, that, if this mapping is applied to the first and the third terms on
the right-hand side of Fig. 4, together with an analogous mapping of the remaining
components of T (r)irr , the dynamical kernel takes the form of the conventional NFT-
PVC approach (Bertsch et al. 1983; Kamerdzhiev et al. 1997; Mahaux et al. 1985;
Tselyaev 1989; Litvinova et al. 2007, 2008; Litvinova and Wibowo 2018; Tselyaev
et al. 2016; Niu et al. 2015; Egorova and Litvinova 2016; Robin and Litvinova
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Fig. 4 Diagrammatic representation of the singly correlated approximation (ii) to the (11)-
component of the dynamical kernel T

(r;11)irr
12,1′2′ (t − t ′) irreducible with respect to the particle-hole

propagator. The rectangular blocks R(ph) correspond to the particle-hole response, while those
containing R(pp) and R(hh) are the analogous correlated propagators of two particles and two
holes, respectively

v vR(ph)=

v v(pp)= G

Fig. 5 The exact mapping of the phonon vertices (empty and filled circles) and propagators (wavy
lines and double lines) onto the bare interaction (squares, antisymmetrized v̄ and plain v) and
two-fermion correlation functions (rectangular blocks R(ph) and G(pp)) in a diagrammatic form.
Lines with arrows stand for fermionic particles (right arrows) and holes (left arrows). Top: normal
(particle-hole) phonon. Bottom: pairing (particle-particle) phonon, as introduced in Eq. (34). (The
figure is adopted from Litvinova and Schuck 2019)

2018). The remaining terms, such as the second and fourth terms on the right-hand
side of Fig. 4, are not explicitly associated with the phonon exchange and represent
a different type of correlations.

(iii) More of the essential dynamics can be included if both of the pairwise
propagators in the factorization of the dynamical kernel are exact and contain all
correlations. The irreducible intermediate 2p2h propagator in this case reads

G(cc)irr (543′1′, 5′4′31)

= 〈T (ψ†
1 ψ†

3 )(t)(ψ3′ψ1′)(t ′)〉〈T (ψ5ψ4)(t)(ψ
†
4′ψ

†
5′)(t

′)〉

+ 〈T (ψ†
1 ψ5)(t)(ψ

†
5′ψ1′)(t ′)〉〈T (ψ†

3 ψ4)(t)(ψ
†
4′ψ3′)(t ′)〉 − AS, (36)

and its diagrammatic image is given in Fig. 6. Remarkably, this type of dynam-
ical kernel absorbs the maximal amount of the correlations via the two-fermion
correlation functions, and it takes the simplest form among the three dynamical
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Fig. 6 Same as in Fig. 4 but for the doubly correlated approximation (iii)

kernels defined by Eqs. (31), (33), and (36). It has the minimal amount of terms
and eliminates the single-particle propagators. By the mapping shown in Fig. 5,
this kernel can be related with the QPM or multiphonon models (Soloviev 1992;
Ponomarev et al. 1999; Lo Iudice et al. 2012; Lenske and Tsoneva 2019) and with
the extensions of the PVC approaches (Litvinova and Schuck 2019; Litvinova et al.
2010; Shen et al. 2020).

It should be noted that most of the implementations of the dynamical kernels
(i)–(iii) listed above used the effective interactions, instead of the bare interaction
v̄ and, simultaneously, the same effective interactions to approximate the entire
static kernel. This means that in such approaches, the many-body correlations are
distributed differently between the static and dynamical kernels. Such a deficiency
is, then, compensated by a subtraction procedure proposed in Tselyaev (2013).
On the other hand, the class of beyond-(Q)RPA approaches based on the bare
interaction (Knapp et al. 2014; Papakonstantinou and Roth 2009; Bacca et al.
2013; Raimondi and Barbieri 2019; Bacca 2014) does not demonstrate a consistent
performance of the quality comparable to that of the approaches employing the
effective interactions. The listed ab initio implementations have a common feature
that the dynamical kernels are not related to the static kernels as it is required by
the exact EOM. Instead, various preprocessing methods, such as the in-medium
similarity renormalization group (Hergert et al. 2016) or Brückner’s G-matrix
(Dickhoff and Barbieri 2004), are applied to the bare interaction, with a subsequent
application of one of the standard many-body methods.

Another difficulty may arise from the use of the reference mean fields in the
numerical implementation. Such auxiliary mean fields have to be subtracted from
the interacting part of the Hamiltonian and, thus, go through all the commutators
in both the static and dynamical kernels. This is done, in particular, for the static
one-fermion kernel in Dickhoff and Barbieri (2004). However, new terms with
few-fermion propagators appear in the dynamical kernels that produce additional
nontrivial nonlinearities in the resulting EOMs. These terms and their roles in the
emergent properties of the dynamical kernels have to be carefully analyzed, both
analytically and quantitatively.

Nuclear Spectral Calculations

The response theory and the associated diagonalization approach are widely applied
to the description of nuclear excited states. The response function (1) is partic-
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ularly convenient as it is directly related to the excitation energies and transition
probabilities, which is obvious from its spectral expansion (6). In experiments, the
transition probabilities and their derivatives with respect to the energy variable are
commonly extracted from the measured cross sections. The strength function as a
result of the response to a given external field associated with the operator F can be
defined as

S(ω) =
∑

ν>0

[
|〈ν|F †|0〉|2δ(ω − ων) − |〈ν|F |0〉|2δ(ω + ων)

]
, (37)

where the summation over ν runs through all the excited states |ν〉. The matrix
element of the transition between the ground and excited states, in the case of one-
body external field operator, reads

〈ν|F †|0〉 =
∑

12

〈ν|F ∗
12ψ

†
2 ψ1|0〉 =

∑

12

F ∗
12ρ

ν∗
21 . (38)

In the numerical implementations, the delta-functions in Eq. (37) are approximated
by the Lorentz distribution,

δ(ω − ων) = 1
π

lim
∆→0

∆

(ω − ων)2 + ∆2 , (39)

so that

S(ω) = 1
π

lim
∆→0

∑

ν

[
|〈ν|F †|0〉|2 ∆

(ω − ων)2 + ∆2 − |〈ν|F |0〉|2 ∆

(ω + ων)2 + ∆2

]

= − 1
π

lim
∆→0

*
∑

ν

[ |〈ν|F †|0〉|2
ω − ων + i∆

− |〈ν|F |0〉|2
ω + ων + i∆

]

= − 1
π

lim
∆→0

*Π(ω). (40)

The quantity Π(ω) is the polarizability of the many-body system,

Π(ω)=
∑

ν

[ |〈ν|F †|0〉|2
ω − ων + i∆

− |〈ν|F |0〉|2
ω + ων + i∆

]
=

∑

ν

[ Bν

ω − ων + i∆
− B̄ν

ω + ων + i∆

]

(41)
with the transition probabilities defined as

Bν = |〈ν|F †|0〉|2, B̄ν = |〈ν|F |0〉|2. (42)

Thus, the strength function associated with the given external field operator F can
be computed with the aid of the response function (1):



16 H. Liang and E. Litvinova

SF (ω) = − 1
π

lim
∆→0

*
∑

121′2′
F12R12,1′2′(ω + i∆)F ∗

1′2′ . (43)

In principle, the strength function (43) should reproduce all the states excited by the
operator F , if the response function (1) is computed exactly. The latter is, however,
a difficult task, as it follows from its EOM (28) and from the explicit expressions for
the respective interaction kernels K(0) and K(r). As discussed before, in practice,
various approximations are applied to these kernels. The finite imaginary part
∆ of the energy variable introduces a smooth envelope of the strength function;
otherwise, it would look as a series of infinitely narrow peaks of infinite height.
Smoothing of such a distribution is, thus, useful for representation purposes and has
no physical meaning, if the theory is exact. Since the latter is practically never the
case, the smearing parameter may absorb the effects that are not taken into account
explicitly in the dynamical kernel K(r) and, thus, mimic the missing fragmentation
effects. As the experimental data usually have finite-energy resolution, the resulting
spectral peaks also have finite widths and heights. The common agreement is, thus,
that, for a fair comparison between theory and experiment, the smearing parameter
∆ used in the calculations should be comparable with the experimental energy
resolution. As the physical observable is the transition probability, its value should
not depend on the smearing parameter. Indeed, at the peaks of the strength function,
the following relationship holds:

Bν = lim
∆→0

π∆S(ων), (44)

which points out that the choice of the smearing parameter does not affect
the transition probabilities, although Eq. (44) gets, obviously, less accurate with
larger ∆.

In the next subsections, the authors overview some examples of realistic nuclear
response calculations, on both the RPA and beyond-RPA levels. The major focus
is put on the recent theoretical achievements in the description of nuclear col-
lective modes, while comprehensive reviews including early studies can be found
in Ishkhanov and Kapitonov (2021), Paar et al. (2007), Roca-Maza and Paar (2018),
Bertsch et al. (1983), Kamerdzhiev et al. (1997, 2004), Drozdz et al. (1990),
and Garg and Colò (2018).

Electromagnetic and Isoscalar Response
The electromagnetic response is the most studied type of nuclear response as it can
be induced by the most accessible experimental probes with photons (Ishkhanov
and Kapitonov 2021; Harakeh and can der Woude 2001; Savran et al. 2013).
The corresponding excitation operators are classified by the transferred angular
momentum L and parity π . The electric operators have natural parity, i.e., π =
(−1)L, and are defined as
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F00 = e

Z∑

i=1

r2
i , F1M = eN

A

Z∑

i=1

riY1M(r̂i ) − eZ

A

N∑

i=1

riY1M(r̂i ),

FLM = e

Z∑

i=1

r L
i YLM(r̂i ), L ≥ 2, (45)

where e stands for the proton charge, YLM(r̂) are the spherical harmonics, and Z

and N are the numbers of protons and neutrons in a nucleus, respectively. The
expression for L = 1 contains the “kinematic” charges to account for the center-
of-mass motion. Otherwise, the electric excitation operators (45) imply only the
interaction of the projectiles with the charged protons and no interaction with the
neutrons. The corresponding isoscalar operators with zero isospin transfer contain
summations over all the nucleons and no electric charge, if they are not associated
with the electric probes. The isoscalar dipole operator reads

F
(0)
1M =

A∑

i=1

(r3
i − ηri)Y1M(r̂i ), (46)

where η = 5〈r2〉/3, and the second term in the brackets eliminates the spurious
translational mode (Garg and Colò 2018). The superscript “(0)” indicates the
isoscalar character of the operator, ∆T = 0, in contrast to the operators (45),
which are often classified as isovector ones with ∆T = 1. The magnetic multipole
operators are of the unnatural parity π = (−1)L+1 and of a more complex nature.
Magnetic resonances are associated with the spin transfer and, generally, do not
exhibit pronounced collectivity (Tselyaev et al. 2020). Therefore, the authors focus
on the electric multipole transitions in this section.

The response of strongly correlated systems to external perturbations manifests
some generic features of the excitation spectra, which can be captured by a
schematic model proposed by Brown and Bolsterli (1959), see also Ring and Schuck
(1980). In this model, which adopts a separable effective multipole-multipole
interaction, the RPA excitation spectrum contains two highly collective states,
the low-frequency and the high-frequency ones. These two states are formed by
the coherent particle-hole contributions from the uncorrelated ph-excitations (with
respect to the Hartree-Fock or the phenomenological mean-field vacuum), when
the interaction is switched on. The remaining ph states are mostly non-collective
and lie between the two collective solutions. In the RPA calculations with more
realistic interactions, the resulting spectrum depends on the nature of the residual
interaction and on the quality of the numerical implementation. The general gross
structure of the spectrum remains as in the Brown-Bolsterli model, but the main
collective solutions undergo some fragmentation, the so-called Landau damping.
Typically, the low-energy solutions are not very collective in the L = 0 and L = 1
channels but acquire collectivity at larger angular momentum transfer L ≥ 2. The
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high-energy ones are associated with collective oscillations, which involve all the
nucleons. Taking into account the dynamical kernel, in any of the approximations
discussed above, induces further fragmentation of the ph states due to their coupling
to more complex configurations. This effect is a consequence of the pole structure
of the dynamical kernel. The fine details of the obtained spectra vary depending on
the approximation to K(r).

Figure 7 illustrates microscopic calculations of the isoscalar monopole, isoscalar
quadrupole, and isovector dipole responses in 208Pb of Tselyaev et al. (2016).
The strength distributions were obtained with various Skyrme interactions in both
the RPA and beyond-RPA model that includes the particle-vibration coupling in
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Fig. 7 Isoscalar monopole (left), isoscalar quadrupole (middle), and isovector dipole (right)
strength distributions in 208Pb in the units of the energy-weighted sum rules per MeV for L = 0
and L = 2 and as a photoabsorption cross section [σ (E) defined in Eq. (47)] for the dipole mode.
The RPA results are shown by the blue dashed lines, and the beyond-RPA PVC extensions are
given by the red solid lines. The experimental data for the GDR (Belyaev et al. 1995) and for the
GMR and GQR (Youngblood et al. 2004) are shown by the brown lines with error bars. (The figure
is adopted from Tselyaev et al. 2016)
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the time blocking approximation (TBA), which results in the PVC dynamical
kernel of the NFT type (ii). The calculations are done with a relatively large
smearing parameter of the order of 1 MeV. The case of the quadrupole response is
a clear illustration of the Brown-Bolsterli picture, while in the dipole and monopole
channels the low-energy peak is not distinguishable. It is possibly too weak in the
electromagnetic dipole channel, while in the monopole case it can be suppressed
by the monopole selection rule. The giant resonances at high frequencies are,
however, well pronounced showing up as broad peaks dominating the spectra. The
fragmentation due to PVC shows up as a broadening of the giant resonance also in
all the three channels; however, the effect is weaker for the monopole response. The
latter occurs due to the partial cancellation between the self-energy K(r;11), K(r;22)

and phonon-exchange K(r;12), K(r;21) terms, that is typical for the PVC kernels
in the L = 0 channel (Bortignon et al. 1998; Litvinova et al. 2007). The use of a
large smearing parameter in the calculations for the dipole response to reproduce the
data, as compared with the experimental energy resolution, indicates the deficiency
of fragmentation originating from the PVC mechanism. This can be attributed to
the underestimated phonon collectivity in the Skyrme-RPA calculations employed
for obtaining the phonon characteristics and/or to the deficiency of the PVC model
space. While the choice of the smearing parameter looks more adequate with respect
to the experimental resolution in the L = 0 and L = 2 cases, the RPA-PVC
calculations underestimate the peak height of the GMR and, in some cases, the
centroid of the GQR. Thus, the currently available Skyrme-RPA-PVC results for
208Pb call for further refinement of the Skyrme interactions and/or of the employed
many-body calculation schemes.

Figure 8 shows the cross sections of the total dipole photoabsorption in four
medium-mass spherical nuclei obtained within the relativistic QRPA (Paar et al.
2003) (RQRPA, black dashed curves) and the relativistic quasiparticle TBA (Litvi-
nova et al. 2008) (RQTBA, red solid curves), compared with the neutron data (blue
error bars) from National Nuclear Data Center. This cross section is defined as

σE1(E) = 16π3e2

9h̄c
E SE1(E), (47)

i.e., with the additional energy factor in front of the strength distribution, which
slightly emphasizes the high-energy part of the response. These calculations also
employ the PVC dynamical kernel in its NFT form, which has been generalized
to the superfluid phase, i.e., to the coupling between the superfluid quasiparticles
and phonons (Litvinova et al. 2008; Litvinova and Tselyaev 2007). The in-medium
interaction is of the effective meson-exchange origin and adjusted to bulk nuclear
properties in the framework of the covariant DFT (Vretenar et al. 2005; Meng et al.
2006; Meng 2016) with the NL3 parametrization (Lalazissis et al. 1997). In the
fully self-consistent calculation scheme, the RQRPA generally produces the dipole
strength, which is mostly concentrated in a narrow energy region. The localization
of the centroid is reproduced fairly well, as compared with the data.
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Fig. 8 Total dipole photoabsorption cross section in stable medium-mass nuclei. (The figure is
adopted from Broglia and Zelevinsky 2013; Meng 2016)

The total transition probability is another characteristic of the GDR, which
is typically reproduced well in the (Q)RPA approaches. The most robust related
quantity is the energy-weighted sum rule (EWSR),

SE1 =
∑

ν

EνBν = 9h̄2e2

8mp

NZ

A
, (48)

which is proportional to the cross section integrated over the energy variable. The
right-hand side of Eq. (48) is calculated by transforming the sum into a double
commutator of the dipole excitation operator and the system Hamiltonian, under the
assumption that the interaction between nucleons has no momentum dependence. In
this case, the potential energy part commutes with the excitation operator and, thus,
does not contribute to the sum rule. The relation (48) is, therefore, valid for any
Hamiltonian without momentum dependence in the two-body sector and known as
Thomas-Reiche-Kuhn sum rule. Modern energy density functionals (EDFs), such
as the Skyrme, Gogny, and relativistic ones, yield the effective interactions, which
depend on the nucleonic momenta, so that a 10–20% or even larger enhancement of
the dipole EWSR can be obtained in the (Q)RPA calculations (Trippa et al. 2008)
as well as in experiments, where the measurements span sufficiently broad energy
intervals (National Nuclear Data Center).

Adding the dynamical kernels, which satisfy the consistency conditions between
the self-energy K(r;11), K(r;22) and the exchange K(r;12), K(r;21) terms, should
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not violate the EWSR (Tselyaev 2007). In particular, the (quasi)particle-vibration
coupling (QPVC) kernels of the NFT form (ii) satisfy this condition, if the numerical
implementation is performed properly. Thus, the EWSR conservation serves as a
very good test for such implementations. Accordingly, the energy centroid remains
intact. The subtraction procedure (Tselyaev 2013), which is applied to eliminate
the double counting of the QPVC effects in EDFs, induces a slight violation of the
EWSR, because it modifies the static part of the kernel and pushes the centroid
slightly upward, so that the resulting position of the major peak is back to its
(Q)RPA position. Otherwise, the dynamical kernel alone shifts the major peak to
lower energy. This is a desirable feature in the ab initio implementations, such as
the second RPA of Papakonstantinou and Roth (2009). However, if an effective
interaction is employed for the dynamical kernel, the major peak is already well
positioned in (Q)RPA, so that its downward shift by the dynamical kernel is well
compensated by the subtraction. This procedure is quite simple and consists of the
replacement,

K̃(0) + K̃(r)(ω) → K̃(0) + δK̃(r)(ω) = K̃(0) + K̃(r)(ω) − K̃(r)(0), (49)

i.e., the dynamical kernel in the static approximation ω = 0 is subtracted from
the dynamical kernel itself. The energy-independent combination K̃(0) − K̃(r)(0),
thus, stands for the effective interaction freed from the long-range effects taken
into account by K̃(r)(ω). The “˜” sign in Eq. (49) marks the kernels, where
the effective interaction is employed, that is, the entire static kernels K̃(0) and
the interaction matrix elements in the topologically equivalent dynamical kernels
K̃(r)(ω) computed in various approximations.

One can further see from Fig. 8 that the coupling between the superfluid quasipar-
ticles and phonons included within the RQTBA provides a sizable fragmentation of
the GDR. Due to the inclusion of a large number of the phonon modes, the final
strength distribution acquires nearly a Lorentzian shape, though relatively small
values of the smearing parameter, ∆ = 200 keV for the Sn isotopes and ∆ =
400 keV for Sr and Zr, were used in both the RQRPA and RQTBA calculations. The
choice of these parameters was based on the estimate of the continuum contribution,
which was not included explicitly.

In principle, the particle escaping to the continuum plays a role in the formation
of the width of the high-frequency resonances above the particle emission threshold.
The latter is the minimal energy, at which the nucleon emission is possible, often
called nucleon binding, or separation, energy, and its typical value is ∼7–10 MeV
for stable medium-mass and heavy nuclei. Loosely bound exotic nuclei with strong
dominance of one type of nucleons (protons or neutrons) are characterized by lower
separation energies for the excess nucleons. For example, in neutron-rich nuclei,
neutrons are loosely bound and have a lower separation energy than protons and
vice versa. The effect of the single-particle continuum in the (Q)RPA and beyond-
(Q)RPA calculations can be taken into account within the method first proposed
in Shlomo and Bertsch (1975) for RPA, later extended to QRPA (Tselyaev et al.
2016; Kamerdzhiev et al. 1998; Hagino and Sagawa 2001; Matsuo 2002; Khan
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et al. 2002; Daoutidis and Ring 2009) and QRPA+QPVC (Litvinova and Tselyaev
2007). The complete inclusion of the single-particle continuum in these methods
is achieved by employing the coordinate-space representation for the (Q)RPA
propagator and the final EOM, while the QPVC part of the propagator in Litvinova
and Tselyaev (2007) is transformed to the coordinate space via the single-particle
wave functions. In Tselyaev et al. (2016), a modification of this method was
proposed for the numerical solution of the response EOM in the discrete basis of
the single-particle states with the box boundary condition. Both the original and
modified methods are based on constructing the mean-field propagator from the
regular and irregular single-particle wave functions as the mean-field solutions with
the Coulomb asymptotics.

The single-particle continuum included in the calculations presented in Fig. 7
does not play a very important role in the description of medium-mass and heavy
nuclei, producing a typical continuum width of the order of 100 keV for each
single peak in the spectrum above the particle threshold, although the role of
continuum increases dramatically in light nuclei, especially the loosely bound ones.
Clear examples are given in Tselyaev et al. (2016). The inclusion of multiparticle
continuum in (Q)RPA and its extensions was not addressed in the nuclear physics
literature until now, though effects of two-nucleon evaporation should become
sensible already at the GDR centroid energy and further escape of more nucleons
can affect the GDR’s high-energy shoulder. Further details of the calculations
presented in Figs. 7 and 8 can be found in Litvinova et al. (2008) and Tselyaev
et al. (2016), respectively.

The described models with various types of dynamical kernels, although quite
successful, still have not reached the spectroscopic accuracy of even hundreds
of keV in the description of excitation spectra and other properties of medium-
mass and heavy nuclei, which can be associated with these spectra. Despite the
convincing progress on both the beyond-(Q)RPA methods and the EDFs, it remains
unclear to what degree the lack of accuracy should be attributed to the imperfections
of the EDFs, truncations in the beyond-(Q)RPA calculation schemes, unavoidable
with the present computational capabilities, or principal limitations of these many-
body methods. Up until now, the best-quality nuclear response calculations beyond
(Q)RPA include up to the (correlated) 2p2h (Litvinova et al. 2008, 2010; Niu
et al. 2015; Gambacurta et al. 2015; Robin and Litvinova 2016, 2019), in rare
cases 3p3h (Lo Iudice et al. 2012; Litvinova and Schuck 2019; Lenske and
Tsoneva 2019; Ponomarev 1999; Savran et al. 2011), configuration complexity with
the current computational capabilities. Direct comparison between the 2p2h and
3p3h calculations within the same implementation schemes indicates that the latter
higher-rank configurations (i) improve the results noticeably and (ii) the effect of
the inclusion of 3p3h configurations, in addition to 2p2h ones, is weaker than the
effect of the inclusion of 2p2h configurations beyond (Q)RPA. The former points
to the importance of the 3p3h configurations, and the latter means that the theory
exhibits saturation with respect to the configuration complexity.

An example is given in Fig. 9, where 3p3h configurations were included in
the “two quasiparticles coupled to two phonons” (2q ⊗ 2phonon) scheme for the
electromagnetic dipole response of 42,48Ca. This was achieved by implementing the
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Fig. 9 Giant dipole resonance in 42,48Ca calculated within the R(Q)RPA, R(Q)TBA, and
EOM/R(Q)TBA3 approaches (Litvinova and Schuck 2019), in comparison with the experimental
data (Erokhova et al. 2003; National Nuclear Data Center). (The figure is adopted from Litvinova
and Schuck 2019)

dynamical QPVC kernel of type (iii) in an iterative cycle. Namely, after computing
and selecting the most relevant RQRPA phonon modes (without dynamical kernels),
the dynamical QPVC kernel (ii) was constructed, and the RQTBA response was
calculated for the most relevant J π (J ≤ 6) channels of natural parity. After that,
the obtained response functions were recycled in the dynamical kernel (iii) of the
EOM for the dipole response. This scheme was originally proposed in Litvinova
(2015) within the quasiparticle time blocking approximation and later re-derived
starting from the bare Hamiltonian and implemented numerically in Litvinova and
Schuck (2019). The approach was named EOM/RQTBA3 due to its construction.
The total photoabsorption cross section obtained within EOM/RQTBA3 (red solid
curves) is plotted in Fig. 9 together with the results of RQRPA (black dot-dashed
curves), RQTBA (blue dashed curves), and experimental data (green curves and
circles) of National Nuclear Data Center.

The GDR in calcium isotopes was investigated within the RQTBA framework
in Egorova and Litvinova (2016) with the focus on the role of the 2q ⊗ phonon

configurations in the width of the GDR. It was found that these configurations result
in the formation of the spreading width and improve significantly the agreement
to data as compared to RQRPA. Nevertheless, although the authors used a large
model space of the 2q ⊗ phonon configurations with the RQRPA phonons, the
total width of the GDR was still underestimated. In addition, on the high-energy
shoulder of the GDR, the cross sections were systematically underestimated. A
similar situation was reported in Tselyaev et al. (2016), for QTBA calculations
with various Skyrme forces. These observations pointed out that further refinement
of the dynamical kernels may be necessary. Now with the EOM/RQTBA3, taking
into account more complex 2q ⊗ 2phonon configuration, we can see that these
problems can be potentially resolved. Indeed, from Fig. 9 one can see that the new
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higher-rank configurations in EOM/RQTBA3 cause additional fragmentation of the
GDR and, thus, intensify the spreading of the strength to both higher and lower
energies. Technically, this is the consequence of the appearance of the new poles in
the resulting response function. These new poles rearrange the energy balance of the
strength distribution in both the low-energy and the higher-energy sectors, however,
without violating the dipole EWSR (Litvinova and Schuck 2019).

Response of nonspherical nuclei to external probes, in general, is more difficult to
calculate microscopically. Already on the QRPA level, the 2q model space expands
dramatically, as compared to the spherical case. The reason is the lifted degeneracy
of j -orbitals, because the total angular momentum is not a good quantum number
in nonspherical geometries. Therefore, QRPA calculations are numerically very
expensive even in axially deformed nuclei (Arteaga and Ring 2008). In particular,
such calculations require numerical evaluation of the enormous amount of matrix
elements of the nucleon-nucleon interaction, which makes deformed QRPA pro-
hibitively difficult even in the DFT frameworks. See also Péru and Goutte (2008)
and Toivanen et al. (2010) for the studies along this direction. A very elegant
numerical solution was proposed in Nakatsukasa et al. (2007), where the finite-
amplitude method (FAM), avoiding direct computation of the interaction matrix
elements, was developed and employed for RPA calculations of the response of
deformed nuclei. Later on, the FAM-RPA was generalized to superfluid nuclei as
FAM-QRPA (Oishi et al. 2016; Nikšić et al. 2013; Kortelainen et al. 2015).

An example of FAM-QRPA calculations for the GDR in axially deformed nuclei
is shown in Fig. 10, in terms of the total dipole photoabsorption cross sections (Oishi
et al. 2016). The calculations were performed with the Skyrme DFT. The available
experimental data were also shown. In general, the double-hump shape of the GDR
in axially deformed nuclei is attributed to the deformation, while the ratio of the
peak energies corresponds to the ratio of the major axes of the nuclear ground-state
ellipsoid. The main observation from the Skyrme FAM-QRPA calculations shown
in Fig. 10 is that the typical frequencies of the GDR are fairly well reproduced.
The width and the plateau top of the distribution are well understood as the total
J = 1 strength is a sum of K = 0 and |K| = 1 modes excited on ground
states with prolate deformations. The remaining discrepancies between the QRPA
calculations and experimental data were attributed by the authors to the peculiarities
of the Skyrme interaction and to the missing effects beyond QRPA. Indeed, since
considerably larger smearing than the experimental energy resolution is needed in
these FAM-QRPA calculations to reproduce the data, the effects beyond QRPA are
necessary for further improvements. The work in this direction is under way (Zhang
et al. 2022).

Spin-Isospin Response
The nuclear spin-isospin response, also known as the charge-exchange excitations,
corresponds to the transitions from the ground state of the nucleus (N,Z) to the
final states in the neighboring nuclei (N ∓ 1, Z ± 1) in the isospin lowering T− and
raising T+ channels, respectively. These excitations can take place spontaneously,
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Fig. 10 Dipole photoabsorption cross sections for Gd, Dy, and Er (left), and for Yb, Hf, and W
(right) isotopes as a function of photon energy, obtained in the FAM-QRPA calculation with the
Skyrme interaction and the smearing parameter ∆ = 1.0 MeV. Calculations with ∆ = 0.5 MeV
are given for comparison (dotted lines). (The figure is adopted from Oishi et al. 2016)

e.g., in the famous β decays, or be induced by external fields, e.g., in the charge-
exchange reactions, such as (p, n) or (3He, t). Nuclear spin-isospin responses are
categorized into different modes according to the nucleons with spin-up and spin-
down oscillating either in phase, the non-spin-flip modes with S = 0, or out of
phase, the spin-flip modes with S = 1. The important modes, which have attracted
an extensive attention experimentally and theoretically, include the isobaric analog
state with S = 0, J π = 0+, Gamow-Teller resonance with S = 1, J π = 1+, and
spin-dipole resonance with S = 1, J π = 0−, 1−, 2− (Osterfeld 1992; Ichimura
et al. 2006; Paar et al. 2007; Roca-Maza and Paar 2018).

The corresponding operators of these charge-exchange excitations read

F±
IAS =

A∑

i=1

τ±(i),

F±
GTR =

A∑

i=1

[1 ⊗ −→σ (i)]J=1τ±(i),
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F±
SDR =

A∑

i=1

[riY1(i) ⊗ −→σ (i)]J=(0,1,2)τ±(i), (50)

where Y is the spherical harmonics and σ and τ are the Pauli matrices of spin and
isospin degrees of freedom, respectively. The corresponding non-energy-weighted
sum rules (NEWSR), S− − S+ = ∑

ν B−
ν − ∑

ν B+
ν , are

S−
IAS − S+

IAS = N − Z,

S−
GTR − S+

GTR = 3(N − Z),

S−
SDR − S+

SDR = 9
4π

[
N〈r2〉n − Z〈r2〉p

]
, (51)

where the GTR one is the famous model-independent Ikeda sum rule, while the SDR
one involves the root-mean-square radii of protons and neutrons and is considered
to be an alternative way for measuring neutron skin thickness (Krasznahorkay et al.
1999; Yako et al. 2006). For neutron-rich nuclei, the excitations in the T+ channel
are significantly suppressed by the Pauli principle, and thus S− alone approximately
represents the NEWSR.

The GTR, which is the most studied nuclear spin-isospin response, is related to
both the spin-orbit and isospin properties of nuclear systems. Although this relation-
ship is not direct and clouded by complex many-body correlations, experimental
data on the GTR can be used to constrain the respective terms in the effective
interactions and EDFs. For instance, one of the recently developed and widely
used Skyrme effective interactions, SAMi (Roca-Maza et al. 2012), has acquired
improved spin-isospin properties by achieving an accurate description of GTR peak
energies. Meanwhile, in the relativistic framework, it is found that on the (Q)RPA
level an accurate description of GTR peak energies can be achieved in a fully self-
consistent way by taking the Fock terms of the meson-exchange interactions into
account (Liang et al. 2008; Niu et al. 2013, 2017).

Overall, RPA and QRPA with effective interactions (Borzov 2003; Sarriguren
2013; Paar et al. 2004; Liang et al. 2008; Niu et al. 2013, 2017) produce reasonable
results for the major GTR peak. However, reproducing the detailed strength distri-
bution is impossible within these approaches neglecting the dynamical correlations.
Moreover, since the total strength is constrained by the model-independent Ikeda
sum rule, it is exhausted within the relatively narrow energy interval, because of
the model space limitations of (Q)RPA. This causes, to a large extent, the well-
known quenching problem (Osterfeld 1992). The overall situation is similar to
that with electromagnetic excitations, and the GTR is considerably affected by the
effects beyond RPA. While SRPA calculations for the GTR have been reported
already in 1990 (Drozdz et al. 1990), calculations with the (Q)PVC kernels based
on modern density functionals, both relativistic NL3 (Marketin et al. 2012; Robin
and Litvinova 2016, 2018, 2019) and nonrelativistic Skyrme (Niu et al. 2015), have
become available more recently. Lately, SRPA calculations were also advanced to
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the Skyrme EDF framework (Gambacurta et al. 2020). Despite technical differences
between the various implementations, all the extensions beyond (Q)RPA improve
the description of the GTR considerably. In the cases of neutron-rich nuclei,
where the low-energy part of the GTR spectrum is associated with spontaneous beta
decay, the description of beta decay rates are improved by up to one or two orders
of magnitude, compared to those obtained in (Q)RPA (Robin and Litvinova 2016;
Litvinova et al. 2020).

The role of QPVC effects is illustrated in Fig. 11 for the response of the
neutron-rich tin isotopes 130,132,136Sn to the GT− operator, obtained within the
proton-neutron version of RQTBA (pnRQTBA) with the QPVC dynamical kernel,
which was originally developed in Robin and Litvinova (2016). These calculations
are compared to the proton-neutron RQRPA (pnRQRPA) without the dynamical
kernel, and the presented spectra are displayed on the energy scales relative to the
parent nuclei. The most general observation from these calculations is that QPVC
leads to a similar degree of fragmentation as in non-charge-exchange channels,
which is somewhat higher in nuclei with larger isospin asymmetry. In turn, this
fragmentation redistributes the strength in the low-energy sector, in particular, in the
Qβ energy window. This leads to faster beta decay in the pnRQTBA calculations,
improving significantly the agreement with experimental data (National Nuclear
Data Center), as compared to pnRQRPA. The corresponding half-lives are shown
in the right panel of Fig. 11. More examples, details, and discussions are presented
in Robin and Litvinova (2016). Furthermore, the pnRTBA has been generalized
recently to finite temperature in Litvinova et al. (2020), which allowed applications
to beta decay in stellar environments.
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The most advanced calculations with the PVC kernel included, in addition to
the standard NFT terms, also the ground-state correlations (GSC) caused by PVC
(GSCPV C). These correlations were introduced and discussed in detail, for instance,
in Kamerdzhiev et al. (1997, 2004), where their role in the spin-flip magnetic dipole
excitations was found significant. As the GTR also involves the spin-flip process,
an important contribution from the GSC-PVC is expected. It can be especially
significant in the GT+ branch in neutron-rich nuclei, where these correlations were
found to be solely responsible for the unblocking mechanism (Robin and Litvinova
2019). An example is given in Fig. 12, where the GT± strength distributions in
90Zr are shown in comparison with the data of Yako et al. (2005) and Wakasa
et al. (1997). In the GT− branch of the response, the inclusion of the PVC effects
within the pnRTBA leads to an overall fragmentation and broadening of the strength
distribution, as compared to the pnRRPA (not shown). In the GT+ branch, in
principle, the GSC of RPA (GSCRPA) can unlock transitions from particle to hole
states, but such transitions appear only above 7 MeV with very low probabilities.
The inclusion of PVC in the pnRTBA with only the standard NFT forward-going
diagrams in the PVC kernel induces almost no change. However, the inclusion of the
GSCPV C associated with backward-going PVC processes has a very strong effect
on the GT+ strength. These correlations cause fractional occupancies of the single-
particle states of the parent nucleus, which leads to new transitions from particle to
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particle state and from hole to hole state. For instance, the peak around 4.5 MeV
appears mainly due to the π1g9/2 → ν1g7/2 and π2p3/2 → ν2p1/2 transitions,
with the corresponding absolute values of the transition densities (7) of 0.347 and
0.182, respectively.

In the calculations shown in Fig. 12, the theoretical GT+ and GT− strength
distributions were smeared with a parameter ∆ = 2 and 1 MeV, respectively,
to match the experimental energy resolutions. As in the case of electromagnetic
excitations, the pnRRPA calculations do not provide a good agreement with data;
therefore, they are not shown. In the GT− channel, the pnRTBA with GSCPV C

demonstrates a good agreement with the data up to ∼25 MeV, except for a small
mismatch of the position of the low-lying state. Remarkably, in the GT+ channel,
the GSC induced by PVC are solely responsible for the appearance of both the low-
energy peak at 4 MeV and the higher-energy strength up to ∼50 MeV. Above the
low-lying peak, even the pnRTBA GT+ strength alone largely underestimates
the data. It is well known, however, that at large excitation energy contributions
of the isovector spin-monopole (IVSM) mode become important. The data of Yako
et al. (2005) and Wakasa et al. (1997), in particular, also contain the contribution of
the IVSM excitations, which could not be disentangled from the GT transitions due
to technical difficulties. The IVSM modes are generated by response to the operator
F±

IV SM = ∑
i r2(i)

−→
Σ (i)τ±(i), which should be mixed with the GT response,

for instance, following the procedure of Terasaki (2018). It introduces the mixed
operator F±

α = ∑
i[1 + αr2(i)]−→Σ (i)τ±(i), where α is a parameter adjusted to

reproduce the magnitude of the theoretical low-energy GT strength. In this way, the
values α = 9.1 × 10−3 and α = 7.5 × 10−3 fm−2 were adopted for the GT+ and
GT− branches, respectively. After that, as one can see from Fig. 12, the resulting
strength above 25–30 MeV reasonably describes the data in the (p, n) branch, thus
highlighting the importance of both the GSCPV C and the IVSM contribution. In
the (n, p) channel, the results are also improved after adding the GSCPV C and the
IVSM in pnRTBA, so that a very good agreement of the overall strength distribution
is obtained also for GT−. Further details and discussions of this case can be found
in Robin and Litvinova (2019).

The nucleon-nucleon tensor force is another hot topic in the past two decades
(Sagawa and Colò 2014; Otsuka et al. 2020). Figure 13 displays the SDR strength
distributions in 208Pb in the T− channel. Panels (a)–(c) and (e)–(f) show the
J π = 0−, 1−, 2− multipoles, respectively, and panels (d) and (h) illustrate the total
strength distributions. The experimental data with the multipole decomposition were
obtained only recently with the polarized proton beam (Wakasa et al. 2012). It is
remarkable that the centroid energies of SDR in 208Pb are found to be E(1−) ≈
E(2−) < E(0−), instead of E(2−) < E(1−) < E(0−), conjectured by the most
conventional shell model and RPA calculations. The study of Bai et al. (2010)
analyzed the sensitivity of the SDR centroids to the properties of the tensor force.
It is shown that the conventional Skyrme RPA calculations without the tensor force,
in general, fail in reproducing the experimentally established relationship between
the centroids of the three components of the SDR. Only when the tensor force with



30 H. Liang and E. Litvinova

Fig. 13 Spin-dipole strength distributions in 208Pb, calculated by Skyrme RPA without and with
the tensor force. The discrete RPA results have been smoothed by ∆ = 2 MeV and compared with
the experimental data (Wakasa et al. 2012). (The figure is taken from Bai et al. 2010)

specific signs and strengths is included as, e.g., in the effective interactions T43 and
SLy5+TW, the centroid of the 1− component is significantly pushed down, while
that of the 2− component is slightly pushed up. In such a way, the experimental data
on the centroids order are reproduced.

In the relativistic framework, to include the tensor force, the Fock terms of
the meson exchange must be taken into account. This is the relativistic Hartree-
Fock (RHF) theory (Bouyssy et al. 1987; Long et al. 2006). It is, however, not
straightforward to identify the tensor effects in the RHF theory, because the tensor
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force is mixed together with other components, such as the central and spin-orbit
ones. For example, simply excluding the pion-nucleon coupling, which is known as
the most important carrier of the tensor force, leads to substantial changes also in the
central part of the mean field. The quantitative analysis of tensor effects in the RHF
theory was achieved for the first time in Wang et al. (2018), which allows fair and
direct comparisons with the corresponding results in the nonrelativistic framework.
It is found that the strengths of tensor force in the existing RHF effective interactions
are, in general, weaker than those in the nonrelativistic Skyrme and Gogny theories
(Wang et al. 2018, 2020). So far, the SDR in 208Pb has not been reproduced within
the RHF+RPA scheme yet, with reasonable strengths of the tensor force constrained
by the covariant symmetry. The study of this open question is in progress. One of
the possible ways is to establish a bridge between the relativistic and nonrelativistic
DFTs, by performing the nonrelativistic expansion with fast convergence (Guo and
Liang 2019, 2020; Ren and Zhao 2020).

Implications for Astrophysics and Outlook

In this chapter, the authors discuss the nuclear response theory – the exact equation
of motion and its hierarchy of approximations to the response function of an atomic
nucleus. On the one hand, it can be seen from the selected applications shown
above that the recent theoretical developments beyond RPA and their numerical
implementations have substantially improved the microscopic description of nuclear
spectral properties, in particular, compared to the phenomenological models and the
conventional RPA methods. On the other hand, it is also seen that further efforts on
advancing the nuclear response theory are needed to obtain an even more accurate
description of nuclear spectral properties.

Besides being an interesting theoretical problem, the response theory has many
applications, where accurate nuclear excitation spectra are required, especially at the
extremes of energy, mass, isospin, and temperature. The most prominent example
is nuclear astrophysics, in particular, the rapid neutron capture process (r-process)
nucleosynthesis in kilonova, core-collapse supernovae, and neutron star mergers
(Kajino et al. 2019). The nuclear response to the electric and magnetic dipole,
Gamow-Teller, and spin-dipole operators are the microscopic sources of the major
astrophysical reaction rates, such as the radiative neutron capture (n, γ ), electron
capture, β-decay, and β-delayed neutron emission. These rates are very sensitive
to the fine details of the calculated response, or strength functions, in the given
channels and needed for many nuclei, including those that are not accessible in
laboratory. The low-energy parts of the listed strength distributions are of particular
importance. The low-lying dipole strength, which is relevant for the (n, γ ) rates, was
studied very intensively during the past decades and associated with the neutron
skin oscillations. In the neutron-rich nuclei, lying on the r-process path in the
nuclear landscape, such oscillations form the pygmy dipole resonance, which can
affect the (n, γ ) rates considerably (Litvinova et al. 2009a,b; Savran et al. 2013;
Paar et al. 2007). The low-energy parts of the GTR and SDR are responsible for
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the beta decay and electron capture rates (Nikšić et al. 2005; Niu et al. 2013;
Mustonen and Engel 2016; Dzhioev et al. 2020). The recent developments have
demonstrated, in particular, that the weak reaction rates are affected considerably by
the nuclear correlations beyond (Q)RPA (Niu et al. 2013, 2015; Robin and Litvinova
2016, 2018; Litvinova et al. 2020; Litvinova and Robin 2021). Nevertheless, the
simplistic (Q)RPA theoretical reaction rates as well as the mean-field nuclear matter
equation of state are still employed in most of astrophysical simulations, while the
deficiencies of these approaches are even more amplified in stellar environments
(Arnould et al. 2007; Mumpower et al. 2016; Langanke et al. 2021; Cowan et al.
2021). Therefore, adopting the microscopic methods advanced beyond QRPA for
astrophysical simulations can be the first step on the way to a high-quality nuclear
physics input for such simulations.

The inability of the theory to provide accurate nuclear spectra impedes the
progress on other related disciplines, including the searches for the new physics
beyond the standard model in the nuclear domain, such as the neutrinoless double
β-decay and the electric dipole moment. These applications involve a delicate
interplay of numerous emergent effects beyond QRPA and, thus, also require
computation of consistency and accuracy, which are beyond the limits of current
state-of-the-art theoretical and computational approaches to nuclear response. A
major hope to resolve the issues discussed above is to reconcile consistently the
static and dynamical kernels of the EOMs for the nuclear response in various
channels, based on the lessons learned from the existing approaches. This has to
be complemented by a strong effort on the nuclear interactions, both on the bare
and the effective interactions, where the meson-exchange interactions (Machleidt
1989), the chiral effective field theory (χEFT) (Epelbaum et al. 2020; Van Kolck
2020), and the DFT (Meng 2016; Colò 2020) are the most promising ones.
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