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Abstract

Despite many valuable advances in the do-
main of online convex optimization over the
last decade, many machine learning and net-
working problems of interest do not fit into
that framework due to their nonconvex ob-
jectives and the presence of constraints. This
motivates us in this paper to go beyond con-
vexity and study the problem of stochas-
tic continuum-armed bandit with long-term
constraints. For noiseless observations of
constraint functions, we propose a generic
method using a Bayesian approach based on
a class of penalty functions, and prove that
it can achieve a sublinear regret with respect
to the global optimum and a sublinear con-
straint violation (CV), which can match the
best results of previous methods. Addition-
ally, we propose another method to deal with
the case where constraint functions are ob-
served with noise, which can achieve a sublin-
ear regret and a sublinear CV with more as-
sumptions. Finally, we use two experiments
to compare our methods with two benchmark
methods in online optimization and Bayesian
optimization, which demonstrates the advan-
tages of our algorithms.

1 Introduction

Multi-armed bandit (MAB) is a sequential decision
process where a player chooses an arm it from a finite
number of arms 1, ..., n and then receives a random
reward Xit from that arm (Lattimore and Szepesvári,
2020). In stochastic bandits, the reward of each arm
is realized from a distribution with an unknown mean.

Proceedings of the 25th International Conference on Artifi-
cial Intelligence and Statistics (AISTATS) 2022, Valencia,
Spain. PMLR: Volume 151. Copyright 2022 by the au-
thor(s).

Its metric for an algorithm with time horizon T is
called regret, which is defined as:

RT =
T∑
t=1

[µ∗ − µit ].

where µ∗ = maxi µi and µi is the mean reward of arm
i. We hope an algorithm to produce a sublinear re-
gret, i.e., RT = o(T ), which means that we can obtain
the optimal reward asymptotically in terms of time-
average.

If the set of arms X is continuous and closed,
then the problem becomes a continuum-armed bandit
(Agrawal, 1995). At each round, the player chooses a
decision xt from X and then receives an i.i.d. random
reward f t(xt) with an unknown mean function f(xt)
that may be nonconvex. Same with multi-armed ban-
dit, the objective of an algorithm with time horizon T
is to produce a sublinear regret, which is defined as

RT =
T∑
t=1

[f(x∗)− f(xt)].

where x∗ = arg maxx∈X f(x).

There are many approaches for this problem (Agrawal,
1995; Cope, 2009; Auer et al., 2007; Kleinberg, 2004;
Singh, 2021; Chowdhury and Gopalan, 2017) with dif-
ferent assumptions of f . A well-known method among
these is via a Bayesian approach, which assumes that
f lies within some Reproducing Kernel Hilbert Space
(RKHS) and then utilizes the framework of Gaussian
process (GP) regression (Shi and Choi, 2011). There
are several works using this approach with theoretical
results. in the paper (Srinivas et al., 2009), the au-
thors proposed a UCB-type algorithm called GP-UCB
and achieved the regret of O(

√
T (B
√
γT +γT log3/2 T )

with high probability, where B is the bound of RKHS
norm of the reward function, and γT is a quantity re-
lated to X and the kernel function of GP used in the
algorithm. The authors in the paper (Chowdhury and
Gopalan, 2017) improved GP-UCB with a new method
called IGP-UCB, which relaxed the assumption of
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noise distribution in the paper (Srinivas et al., 2009)
and achieved a better regret of O(

√
T (B
√
γT + γT ))

with a high probability. The authors also proposed
a method based on Thompson sampling, achieving a

regret of O
(√

TγT ((γT + log(1/δ))d log(BdT ))
)

with

probability 1− δ, where d is the dimension of X .

In this paper, we consider a more complex setup, where
the chosen decisions in the bandit process are also
required to satisfy some long-term constraints, i.e.,
1
T

∑T
t=1 g(xt) � 0. Here g(x) = [g1(x), ..., gm(x)] is

a stacked vector of m constraint functions that may
be nonconvex. The form of g(x) is unknown to us,
but its value can be observed (possibly with random
noise) after making a decision. Different from previous
works on constrained MAB (Badanidiyuru et al., 2013;
Agrawal and Devanur, 2016, 2014; Immorlica et al.,
2019; Madani et al., 2004; Xia et al., 2015), our setup
assumes continuous action space with continuous re-
ward and constraint functions that may be nonconvex.
The details of the setup along with some applications
will be presented in Section 3. Meanwhile, we will use
two metrics to measure the performance of an algo-
rithm solving this problem, which are called regret and
constraint violation (CV). Their definitions will also be
detailed in Section 3. It is noted that these two metrics
were widely used in previous works on online convex
optimization (OCO) with long-term constraints. We
will discuss these works in Section 1.1 and compare
their setup with ours. Same with OCO, we hope our
algorithm to have a sublinear regret and a sublinear
CV concurrently.

For the above setup, our paper is the first work to
propose methods with theoretical guarantees of a sub-
linear regret and a sublinear CV using a Bayesian ap-
proach. We will present two methods for two cases,
where the constraint function values are observed
without or with noise, respectively. Both methods as-
sume that the reward function is observed with ran-
dom noise. The contributions of our papers are as
follows:

• We first show that for generic penalty approaches
using a Lagrangian-like transformation, it is im-
possible to get a sublinear regret and a sublinear
CV if there is no update of multipliers or penalty
functions. The details of this claim will be shown
in Section 4.

• Motivated by the above observation, we explore a
multiplicative form of multiplier-updates and then
propose a method called GP-UCB with Noiseless
Constraints for noiseless constraint observations.
This method adopts a broad class of penalty
functions described by properties that are new
in penalty approaches, which enables a flexible

choice based on applications. These new proper-
ties can also lead to a better understanding to-
wards the use of penalty-based approaches in on-
line optimization. The details of this method will
be presented in Section 5.

• For the above method, we also highlight the trade-
off between regret and CV in its results. By
changing the total iterations of the outer-loop and
the inner-loop of our design, both regret and CV
can be sublinear with the regret Õ(

√
T γ̃T ) match-

ing the lower-bound of Bayesian optimization us-
ing SE kernel up to a logarithmic factor, or the CV
Õ(
√
T ) matching the best result among previous

methods for OCO with long-term constraints (c.f.
Section 1.1). Here γ̃T will be defined in Section 5.

• For noisy constraint observations, we change the
rule of multiplier-updates and switch to a lin-
ear penalty function to avoid “noise amplifica-
tion” brought by the penalty function used in
the first method. This method, called GP-UCB
with Noisy Constraints, can achieve the regret of
Õ(T 3/4γ̃√T ) and the CV of Õ(T 3/4) with more
assumptions needed than the first method. The
proof of this result involves how to tackle the noise
in the multiplier-updates, which may be interest-
ing in its own right. The details of this method
will be presented in Section 6.

• Through simulations of two problems, we demon-
strate the efficiency of our algorithms compared
with benchmark methods in online convex opti-
mization and Bayesian optimization. This part
will be presented in Section 5 of Supplementary
Material.

Since online convex optimization with long-term con-
straints and constrained Bayesian optimization (BO)
are closely related to our problem, in the following
subsection we will discuss previous works on these two
topics and point out our advantages over these meth-
ods.

1.1 Related Works

1.1.1 Online Convex Optimization with
Long-term Constraints

Similar to our setup, online convex optimization
(OCO) is also a sequential decision process where a re-
ward function value f t(xt) is observed after a decision-
maker chooses an action xt. The major difference
is that in OCO, f t can be arbitrary (not necessar-
ily i.i.d. from some distribution), but must be convex
(Hazan, 2019). For OCO with long-term constraints,
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Regret CV f t gt

(Mahdavi et al., 2012) Õ(T 1/2) Õ(T 3/4) Arbitrary1, Convex Deterministic, Convex

(Chen and Giannakis, 2018)2 Õ(V (x∗1:T )T 1/2) Õ(T 1/2) Arbitrary1, Convex Arbitrary1, Convex

(Cao and Liu, 2018) Õ(T 1/2∆(T )1/2) Õ(T 3/4∆(T )1/4) Arbitrary1, Convex Arbitrary1, Convex

Our work Õ(T 3/4γ̃√T ) Õ(T 1/2) Stochastic, Nonconvex Deterministic, Nonconvex

Our work Õ(T 3/4γ̃√T ) Õ(T 3/4) Stochastic, Nonconvex Stochastic, Nonconvex

Table 1: The results of our paper and previous works on OCO with long-term constraints in the bandit setting.
Here Õ means neglecting log terms. V (x∗1:T ), ∆(T ) and γ̃√T are problem-related quantities defined in the

corresponding papers (1 In fact, f and g are required to be bounded in these papers. 2 Only f t has bandit
feedback. The forms of gt are known to the decision-maker).

constraint function values gt(xt) are also observed af-

ter an action xt with requirements 1
T

∑T
t=1 g

t(xt) � 0.
gt can be assumed to be deterministic (Mahdavi et al.,
2012), stochastic (i.i.d. from some distribution) (Yu
et al., 2017; Eryilmaz and Srikant, 2007) or arbitrary
across t (Chen and Giannakis, 2018; Chen et al., 2017;
Cao and Liu, 2018), but must be convex as well. Mean-
while in OCO, the forms of f t and gt can be assumed
to be known or unknown after an action is chosen at t,
and the later setup is referred as bandit setting (Chen
and Giannakis, 2018; Cao and Liu, 2018). Obviously
our setup belongs to bandit setting.

Same with our paper, two performance metrics,
namely regret and constraint violation, are used for
OCO with long-term constraints and the objective of
an algorithm is to make both metrics sublinear. In
Table 1, we summarize the results of previous works
on OCO with long-term constraints in the bandit set-
ting, and compare them with ours. Here we can see
that convexity is essential for OCO algorithms because
gradients are utilized to make the next decision. On
the contrary, our method does not rely on convexity,
which can be applied to many nonconvex problems
such as machine learning (Mei et al., 2018) and net-
work optimization (Lee et al., 2005). Meanwhile, in
the bandit setting, it is hard to check convexity of f t

and gt without knowing their forms. Thus our method
has a broader application in practice.

1.1.2 Constrained Bayesian Optimization

Bayesian optimization (Frazier, 2018) is a global op-
timization method for blackbox problems, which also
utilizes the framework of GPs. The techniques of BO
will be introduced in Section 2 as a basis of our meth-
ods.

Constrained Bayesian optimization aims to solve

max
x∈X

f(x)

s.t. gi(x) ≤ 0, i = 1, ...,m

where the forms of f(x) and gi(x) are unknown. The
objective of constrained BO is to get the global max-

imum of the above problem with as few evaluations
of f and gi as possible. Constrained BO approaches
aim at finding an optimal solution to the constrained
problem, regardless of how they are reached. In con-
trast, our setup is also concerned with the sequence of
solutions that are observed in the process, which need
to satisfy a sublinear regret and a sublinear CV. In
fact, previous methods on constrained BO are predom-
inantly empirical without rigorous performance met-
rics and theoretical results. Instead, their performance
was only tested by experiments, and measured by the
running time to get the optimal point in a certain com-
puting environment.

According to different classes of utility functions used
in the algorithms, previous works on constrained BO
can be classified as expected-improvement type (Gard-
ner et al., 2014; Letham et al., 2019; Gelbart et al.,
2014; Picheny et al., 2016; Ariafar et al., 2019) ,
entropy-search type (Hernández-Lobato et al., 2016;
Perrone et al., 2019) and Thompson-sampling type
(Eriksson and Poloczek, 2021). To the best of our
knowledge, there does not exist a UCB-type method
for constrained Bayesian optimization in previous lit-
erature. We hope our work to inspire such a design
with a similar Bayesian approach.

2 Preliminaries on Bayesian
Approaches

As a basis of our paper, we first review backgrounds
of Bayesian optimization (BO) in this section. Clas-
sical Bayesian optimization methods aim to solve a
black box problem maxx∈X f(x), where the form of
f is unknown. Instead, we can observe f(xs) (possi-
bly with noise) after we inquire a point xs. BO uses
a machine learning approach, called Gaussian process
(GP) regression (Shi and Choi, 2011), to find the op-
timal point of the above problem. First, we put a GP
prior on f and get its posterior distribution after an
inquiry of f . Then, we choose the next inquiry point
and update the posterior distribution of f . When the
posterior distribution is considered to be informative
enough of the optimal point, we can get the final result
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Algorithm 1 IGP-UCB(f(x), k, B,R, λ, δ, S)

1: Input: Prior GP (0, k), parameters B,R, λ, δ, S.
2: for s = 1, ..., S do
3: Set βs = B +R

√
2(γs−1 + 1 + log(1/δ)).

4: Choose xs = arg maxx∈X {µs−1(x) +
βsσs−1(x)}.

5: Obtain noisy observation of f(xs).
6: Perform update to get µs and σs using (3) and

(4).
7: end for
8: Output: x1, ..., xS .

from it. The main component of BO is how to choose
the next inquiry point of f based on the current pos-
terior distribution to minimize the number of inquiries
needed in the whole process.

In general, BO uses a utility function u to de-
termine the next inquiry point, i.e., xs+1 =
maxx∈X E[u(x)|x1:s], where x1:s = [x1, ..., xs] are pre-
vious inquiries and xs+1 is the next inquiry we will
choose. Here, the expectation is taken with re-
gard to the current posterior distribution based on
x1:s. Different kinds of utility functions produce dif-
ferent classes of BO methods, including Expected-
Improvement (EI), Upper Confidence Bound (UCB),
Thompson Sampling (TS), and so on. The reader may
refer to (Frazier, 2018) for more details.

IGP-UCB method proposed in the paper (Chowdhury
and Gopalan, 2017) uses a similar technique to the
above discussion. In this algorithm, we assume that f
is observed with independent R-subGaussian noise ε
with unknown forms. We also assume that f belongs
to some Reproducing Kernel Hilbert Space (RKHS)
Hk with kernel k and that f has a bounded RKHS
norm, i.e., ||f ||k < B for some constant B. This as-
sumption constrains the complexity of f . For RKHS,
the reader may refer to (Hofmann et al., 2005) for more
details. Two popular choices of k are square exponen-
tial (SE) kernel and Matérn kernel, defined as

kSE(x, x′) = exp(−w2/2u2) (1)

kMatérn(x, x′) =
21−ν

Γ(ν)
(
w
√

2ν

u
)νBν(

w
√

2ν

u
) (2)

where w = ||x − x′|| encodes the similarity between
two points x, x′. u > 0 and ν > 0 are hyperparame-
ters in these functions and Bν(·) is the modified Bessel
function. Algorithm 1 shows a typical procedure of
IGP-UCB. Here δ is a parameter that will be shown
in Lemma 1, λ is some positive constant and

µs(x) = ks(x)T (Ks + λI)−1y1:s (3)

σ2
s(x) = k(x, x)− ks(x)T (Ks + λI)−1ks(x) (4)

are the mean and covariance function of the poste-
rior distribution after observing x1:s by regarding the
distribution of observation noise as N (0, λ). Ks =
[k(x, x′)]x,x′∈{x1,...,xs} is the kernel matrix at time s
and ks(x) = [k(x1, x), ..., k(xs, x)]T .

For IGP-UCB, we can see that its utility function is
a linear combination of µs−1(x) and σs−1(x), which
is inspired by the exploitation-exploration tradeoff in
bandit problems (Lattimore and Szepesvári, 2020). It
has the following theoretical performance:

Lemma 1 (Theorem 3 of (Chowdhury and Gopalan,
2017)). Assume that ||f ||k < B and εs is independent
sampled from some R-subGaussian distribution. Then,
running IGP-UCB for a function f lying in the RKHS
Hk leads to

RS =
S∑
s=1

[f(x∗)− f(xs)]

= O(B
√
SγS +

√
SγS(γS + log(1/δ)))

with a probability of at least 1 − δ, where x∗ =
arg maxx∈X f(x).

Here, γs is called information gain with time horizon
s and can be bounded given the knowledge of domain
X and kernel function k (Chowdhury and Gopalan,
2017). The newest result for the bounds of γS can be
found in the paper (Vakili et al., 2021).

3 Problem Setup

In this paper, we consider a stochastic continuum-
armed bandit problem with long-term constraints,
where in each iteration, the decision-maker chooses
an action xt from a compact set X , and then ob-
serves a random reward value f t(xt) and m constraint
values {gtj(xt)}mj=1. In our setup, we assume that
f t(xt) = f(xt) + εt, where the randomness of f t

comes from a zero-mean random variable εt indepen-
dent across t. For {gtj(xt)}mj=1, we will consider two
cases. In the first case, gtj(xt) = gj(xt), ∀j is determin-
istic. And in the second case, gtj(xt) = gj(xt) + εtj , ∀j
is stochastic, where εtj is a zero-mean random variable
from some unknown distribution independent across
t. Meanwhile, the forms of f and gj , ∀j are unknown
and possibly nonconvex. Our target is to maximize
our expected reward f(x) with long-term constraints

satisfied in expectation, i.e., 1
T

∑T
t=1 gj(xt) ≤ 0 for any

j. We assume that X includes the area satisfying all
constraints.

Similar to multi-armed bandit (Lattimore and
Szepesvári, 2020), we need a fixed optimal point x∗

not related to T as the benchmark, which is defined as
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any global optimum of

max
x∈X

f(x)

s.t. gj(x) ≤ 0, j = 1, ...,m. (5)

With regard to x∗, an algorithm of time-horizon T
aims for a sublinear regret :

RT =
T∑
t=1

[f(x∗)− f(xt)] = o(T ), (6)

and a sublinear constraint violation (CV):

VT = ||[
T∑
t=1

g(xt)]
+|| = o(T ), (7)

where g(x) is [g1(x), .., gm(x)] and [a]+ means element-
wise max(0, a) in vector a. Note that our definition

of x∗ ensures that lim supt→∞
1
T

∑T
t=1 gj(x

∗) ≤ 0.
Therefore, achieving both a sublinear regret and a sub-
linear CV implies that, asymptotically on the average,
the algorithm performs as well as the best fixed strat-
egy in hindsight. In OCO, there are also some other
definitions of regret and CV. We will briefly discuss
them in Section 2 and Section 4 of Supplementary Ma-
terial.

Now we give two examples of our setup in the areas of
machine learning and network optimization.
Hyperparameter Tuning: Hyperparameter tuning
(Joy et al., 2016) is a hot topic recently due to the
success of deep neural networks. Hyperparameters like
neural network structures and stepsize choices in the
optimizer can have a great impact on the final result
of deep learning. We can describe this problem in our
framework as follows. After choosing a hyperparame-
ter xt, we can obtain the training errors Et(xt) from
the neural network, which is stochastic due to the ran-
domness of the optimizer such as SGD (Bottou, 2010).
Meanwhile, for each hyperparameter choice, we have
a completion time gt(xt) of the training, which is also
stochastic due to the optimizer. For most hyperpa-
rameters, there are no explicit forms of the mean E(·)
and g(·) (Goodfellow et al., 2016). If we want to obtain
the optimal hyperparameter while making the whole
tuning process complete before a time threshold T in
expectation, we can apply our setup.
Data Rate Allocation Problem: Suppose a router
wants to set data rates for d servers from a range
[0, Ci] for Server i. After allocating a data rate xi(t)
for Server i at time t, it will give back a utility value
Ui(xi(t)) + εi(t), such as quality of service (QoS) (Lee
et al., 2005), which involves random measurement er-
rors εi(t). Meanwhile, define hti(xi(t)) as the electric-
ity cost of Server i by choosing xi(t), which may be

deterministic or random due to electricity price fluc-
tuation and link quality perturbation. Then in this
example, f t =

∑d
i=1(Ui(xi(t)) + εi(t)) and gt(x(t)) =∑d

i=1 h
t
i(xi(t))−B, where B is the time-averaged elec-

tricity budget. We can apply our setup if we want to
maximize the actual total utility with a time-averaged
electricity cost constraint satisfied in expectation.

In the following section, we will discuss a class of
strategies that can be useful for our problem. Moti-
vated by the insights of the discussion, we will propose
two algorithms for noiseless and noisy observations of
gj ’s, respectively. Meanwhile, throughout the paper,
we always assume that

Assumption 1. f is observed with independent R-
subGaussian noise ε.

Here the independence is defined with regard to any
other noise.

4 Generic Penalty Approach

An intuitive strategy to deal with our setup to trans-
form the original constrained problem into an uncon-
strained one and then utilize some unconstrained ban-
dit optimization algorithm. In this paper, we focus on
the strategy of appending a generic penalty function
to the objective as follows:

f(x)−
m∑
j=1

κjΛ(gj(x)), (8)

where Λ(·) is some penalty function and κj is a mul-
tiplier for constraint j. Despite the generality of this
strategy, the main difficulty is how to choose κj and
Λ(·) for our setup. Previous penalty approaches are
mainly used for gradient-related methods (see Chap-
ter 5 of (Bertsekas, 2014)), thus may not be suitable
for our setup without knowledge of gradients.

First, we make the following impossibility claim:

Proposition 1. For any fixed choices of κj and Λ(·)
in (8), and any unconstrained bandit optimization al-
gorithm M that can produce a sublinear regret for its
objective function, applying M to (8) will fail to yield
a sublinear regret and a sublinear CV for all forms of
f(x) and g(x) in our setup.

Proof. Construct f(x) and g(x) defined in a compact
set X as f(x) =

∑m
j=1 κjΛ(gj(x))−(x−c)2 and g(x) =

x, where c is some positive constant and the point
x = c is included in X . Suppose that applying M to
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(8) with time horizon T gives us

T∑
i=1

[f(x∗Λ)−
m∑
j=1

κjΛ(gj(x
∗
Λ))− f(xt) +

m∑
j=1

κjΛ(gj(xt))]

= o(T ),

where x∗Λ is the global optimum of (8). By our con-
struction,

T∑
i=1

[f(x∗Λ)−
m∑
j=1

κjΛ(gj(x
∗
Λ))− f(xt) +

m∑
j=1

κjΛ(gj(xt))]

=
T∑
t=1

(xt − c)2 = o(T )

Since
∑T
t=1(xt − c)2 ≥ −2c

∑T
t=1 xt + c2T , we have∑T

t=1 g(xt) =
∑T
t=1 xt ≥ cT/2 − o(T ), which is not

sublinear.

From the above observation, we can see that that how
to update κj or Λ(·) in the process of the algorithm is
essential to getting both sublinear regret and sublin-
ear CV performances. In the following two sections,
we will propose two algorithms based on two ways of
multiplier-updates, which can deal with noiseless and
noisy constraint observations, respectively.

5 Noiseless Constraint Observations

In this section, we assume that gj , ∀j is observed with-
out noise. We will present a penalty approach based
on a multiplicative form of performing multiplier-
updates. For this multiplier-update strategy (Step 4 of
Algorithm 2), we find a class of penalty functions with
the form Λ(x) = ψ(x) − 1 that can achieve a sublin-
ear regret and a sublinear CV by our algorithm called
GP-UCB with Noiseless Constraints. The details of
the algorithm are shown in Algorithm 2, where ψ(·)
needs to satisfy the following properties:

Assumption 2. 1. ψ(x) is convex for x ∈ X . More-
over, ψ(x) = 1 when x ≤ 0 and ψ(x) is strictly in-
creasing when x ≥ 0.
2. ψ(x)ψ(y) ≥ ψ(x+ y) for x ∈ X and y ∈ X .

Property (1) makes Λ(gj(x)) = 0 for gj(x) ≤ 0 and
Λ(gj(x)) > 0 for gj(x) > 0, and gives a larger penalty
for a larger constraint violation. Property (2) is a new
characteristic used in our paper, which does not ap-
pear in previous penalty approaches (Bertsekas, 2014)
to the best of our knowledge. It is also the most impor-
tant one because it will lead to the final performance
results of Algorithm 2 (see the proof of Theorem 1 for
details). A broad class of penalty functions can satisfy

Algorithm 2 GP-UCB with Noiseless Constraints

1: Initialize c and κ1
j = 1 for all j.

2: for l = 1, ..., L do
3: Run IGP-UCB(f(x) −

∑m
j=1 κ

l
j(ψ(gj(x)) −

1), kl, B,R, λ, δ/L, S) for S iterations to pro-
duce {x1

l , ..., x
S
l }, while obtaining S observations

{f(xsl ) + εsl }Ss=1 and {gj(xsl )}Ss=1, ∀j sequentially
with the above outputs, where εsl is the observa-
tion noise of f .

4: Set κl+1
j = κljψ

(
1
S

∑S
s=1 gj(x

s
l )
)
, ∀j

5: end for
6: Output: {{xsl }Ll=1}Ss=1.

these two properties for any compact set X , e.g,

ψ(x) =

{
1 x ≤ 0
(cx+ 1)n x ≥ 0

(9)

ψ(x) =

{
1 x ≤ 0
exp(cx) x ≥ 0

(10)

where n ≥ 1 and c > 0 are some constants.

Algorithm 2 can be regarded as an epoch-based algo-
rithm. For epoch l, we will run the IGP-UCB method
for f(x) −

∑m
j=1 κ

l
j(ψ(gj(x)) − 1) to produce S de-

cisions for S iterations. At the end of each epoch,
we will update the multiplier for each constraint as

κl+1
j = κljψ

(
1
S

∑S
s=1 gj(x

s
l )
)

. The updates will force

the outputs of the next epoch towards the region
within the constraints by enlarging the multiplier of
constraints where 1

S

∑S
s=1 gj(x

s
l ) > 0.

The analysis of Algorithm 2 needs the following as-
sumption.

Assumption 3. Fl(x) := f(x)−
∑m
j=1 κ

l
j(ψ(cgj(x))−

1) belongs to some RKHS Hkl with ||Fl||kl < B.

This assumption constrains the complexity of Fl(x) so
that we can use a Bayesian approach to get a guar-
anteed performance. Because κlj is different for each
l, we may need a different kernel function kl for each
epoch to satisfy the above assumption. See (Picheny
et al., 2016) for how to determine the kernel and its
hyperparameters.

Now we can show the performance results of Algorithm
2.

Theorem 1. Assume that an unconstrained maxi-
mizer x∗∗ = arg maxx∈X f(x) exists and f(x∗∗) < ∞.
If Assumption 1-3 are satisfied, then running Algo-
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rithm 2 with time horizon T = LS leads to

RLS =
L∑
l=1

S∑
s=1

[f(x∗)− f(xsl )]

= O(BL
√
Sγ̃S + L

√
Sγ̃S(γ̃S + log(L/δ))) (11)

VLS = ||[
L∑
l=1

S∑
s=1

g(xsl )]
+||

= O

(
Sψ−1

+

(
L+ (BL

√
γ̃S
S

+ L

√
γ̃2
S + γ̃S log(L/δ)

S
)

))
(12)

with probability at least 1 − δ, where ψ−1
+ (x) is the

inverse function of ψ(x) when x ≥ 0 and γ̃S is the
maximal information gain with time horizon S among
{kl}Ll=1.

Proof. See Section 1 of Supplementary Material.

Remark 1. From the proof of Theorem 1, we can
replace the IGP-UCB method in the inner loops of
Algorithm 2 by other unconstrained bandit optimiza-
tion algorithms (such as GP-TS (Chowdhury and
Gopalan, 2017)) that produce a sublinear regret for
f(x)−

∑m
j=1 κ

l
j(ψ(gj(x))− 1), then we can get a simi-

lar result to Theorem 1. Therefore Algorithm 2 can be
considered as a universal method for our setup.

Now we turn to the discussion of Theorem 1.

5.1 Choice of ψ(·)

For simplicity, we assume that kl’s in Algorithm 2 are
all SE kernel functions (1) as an example. The results
for other kernel functions can be similarly analyzed
using the bound of γT in the paper (Vakili et al., 2021).

From (Vakili et al., 2021), we know that for SE kernel
functions, γS = O(logd+1 S) where d is the domain
dimension. Applying it to (11), we have the bounds of
regret as

RLS = O(BL

√
S logd+1 S

+ L

√
S(log2d+2(S) + logd+1(S) log(L/δ))) (13)

For CV, from (12) we can see that to make it sublinear,
we need n > 1 if we choose (9) as ψ(·). To obtain the
optimal order of CV, we need to choose (10) as ψ(·),
which gives the following result:

VLS = O(S log(L+ (BL

√
logd+1 S

S

+ L

√
log2d+2 S + logd+1 S log(L/δ)

S
))) (14)

From the above results, Algorithm 2 achieves a sub-
linear regret and a sublinear CV as long as L = o(T )
or S = o(T ). Particularly, if we choose L = O(log T ),
then the regret matches the lower bound of Bayesian
optimization algorithms using SE kernel (Table 1 of
(Vakili et al., 2021)) up to a logarithmic factor.

Meanwhile, even though ψ(x) = exp(cx) gives
the optimal order of CV in our theoretical
analysis, it makes the multiplier-update, i.e.,

κl+1
j = κlj exp

(
1
S

∑S
s=1 cgj(x

s
l )
)

, too aggressive when

1
S

∑S
s=1 gj(x

s
l ) is a large value. As a result, it is easy

to make κl+1
j overflow by applying the above update.

If so, (9) can be used with a suitable n chosen based
on the range of g(x).

5.2 Impacts of L and S

In this section, we want to discuss the effects of S and
L on the performance of Algorithm 2, which are total
inner iterations and total outer iterations, respectively.
From (13) and (14), we can see that RLS has a higher
order in terms of L and VLS has a higher order in terms
of S. This is also true for (11) and (12) if γ̃S = o(

√
S),

which is necessary to make RLS sublinear. Since T =
LS, there exists a tradeoff between the bounds of these
two metrics. In the extreme case, if we let L to be
constant, then (11) recovers the regret bound of the
original IGP-UCB (Chowdhury and Gopalan, 2017),
but meanwhile the CV is no longer guaranteed to be
sublinear from (12).

This tradeoff can be understood intuitively as fol-
lows. If we make S larger, then by running IGP-
UCB longer in Algorithm 2, we have a smaller value
of 1

S

∑S
s=1[f(x∗l ) −

∑m
j=1 κ

l
j(ψ(gj(x

∗
l )) − 1) − f(xsl ) +∑m

j=1 κ
l
j(ψ(gj(x

s
l ))−1)], where x∗l = arg maxxX [f(x)−∑m

j=1 κ
l
j(ψ(gj(x))−1)]. From the proof of Theorem 1,

1
S [
∑S
s=1 f(x∗)−f(xsl )] is upper-bounded by the above

value, thus the bound of time-averaged regret is also
smaller. On the other hand, larger S leads a smaller
L since T = LS. Then the updates of multiplier are
less frequent, which may make the multiplier not large
enough (because multipliers can only be enlarged in
the updates) and thus lead to a larger CV. See Figure
1 of Supplementary Material for our demonstration of
this tradeoff via an experiment.

Particularly, if L = S and ψ(x) = exp(x), then
both metrics are sublinear if γ̃S + log S

δ = o(
√
S),

which is determined by X and the kernels used in
the algorithm. The original IGP-UCB (Chowdhury
and Gopalan, 2017) has the same requirement (with-
out the log term) for a sublinear regret, and it holds
when kl is an SE kernel or a Matérn kernel with a
certain ν by the bounds of γS shown in the paper



A Bayesian Approach for Stochastic Continuum-armed Bandit with Long-term Constraints

(Vakili et al., 2021). Particularly, we have RT =

Õ(B
√
T 3/2γ̃√T + T 3/4γ̃√T ) and VT = Õ(

√
T ) with

a high probability for Algorithm 2 by neglecting the
log terms. Compared with previous methods of OCO
shown in Table 1, the CV of Algorithm 2 matches the
best bound without assuming that both f and g are
convex.

When the constraint function values are observed
with noise, Algorithm 2 is not applicable because
the penalty function ψ(·) will amplify the observation
noise of gj since ψ(·) is at least higher than 1st-order
from the discussion in Section 5.1. This motivates us
to propose another method in the next section.

6 Noisy Constraint Observations

In this section, we assume that the observations of
constraints contain subGaussian noise, i.e.,

Assumption 4. gj is observed with independent R-
subGaussian noise εj for each j.

Here the independence is defined with regard to any
other noise.

To deal with this case, we change the rule of multiplier
updates from a multiplicative form to an additive one
and adopt a linear penalty function so that the noise of
gj will not be amplified. The method, called GP-UCB
with Noisy Constraints, is shown in Algorithm 3. It
needs the following assumption similar to Assumption
3:

Assumption 5. Gl(x) := f(x) −
∑m
j=1 κ

l
jgj(x) be-

longs to some RKHS Hkl with ||Gl||kl < B.

Algorithm 3 is an epoch-based method with a similar
structure to Algorithm 2. However, due to the exis-
tence of the noise in the multiplier-updates, the proof
of its performance results are far more complex. Since
Algorithm 3 utilizes a less sharp penalty function, it
needs more assumptions to guarantee the performance,
which are listed as follows.

Assumption 6. |f(x)| ≤ Q and |gj(x)| ≤M for each
j and x ∈ X .

Assumption 7. There is a point y s.t. gj(y) ≤
−ε, ∀j, where ε > 0.

Assumption 6 requires the objective and the constraint
functions to be bounded within X , otherwise linear
functions cannot incur enough penalty to constraint
violation. Assumption 7 is Slater’s condition (Boyd
et al., 2004), which is commonly-used in constrained
optimization. With these assumptions, we have the
following results for Algorithm 3.

Theorem 2. If Assumption 1 and 4-7 are satisfied

Algorithm 3 GP-UCB with Noisy Constraints

Initialize κ1
j = 0 for all j.

for l = 1, ..., L do
Make the following S decisions sequentially:

{x1
l , ..., x

S
l } = IGP-UCB(f(x)−

m∑
j=1

κljgj(x), kl,

B,

√√√√(1 +
m∑
j=1

(κlj)
2)R, λ, δ/(2L), S),

while obtaining S observations {f(xsl ) + εsl }Ss=1 and
{gj(xsl ) + εsl,j}Ss=1, ∀j sequentially with the above
outputs, where εsl is the observation noise of f and
εsl,j is the observation noise of gj .

Set κl+1
j = [κlj + µ

∑S
s=1(gj(x

s
l ) + εsl,j)/S]+, ∀j

end for
Output: {{xsl }Ll=1}Ss=1.

with ε > 4(R
√

2γ̃S + 2 + 2 log 2L
δ )
√

(S + 2)γ̃S/S +

2R(
√

4m/S+
√

log(2L/δ)/S), then running Algorithm

3 with time horizon T = LS with µ = O(1/
√
L) leads

to

RLS = O

(
L(B +

√
γ̃S + log

2L

δ
)
√
Sγ̃S + S

√
L

)
VLS = O(L

√
S log(L/δ) + S

√
L)

with a probability at least 1−δ, where γ̃S is the maximal
information gain with time horizon S among {kl}Ll=1.

Proof. See Section 3 of Supplementary Material.

Remark 2. Unlike Algorithm 2, it is nontrivial to
extend our results to the case where IGP-UCB in Al-
gorithm 3 is replaced by other unconstrained methods.

The proof of Theorem 2 is different from Theorem
1 due to the fact that the noise in the observa-
tion of f(x) −

∑m
j=1 κ

l
jgj(x) is

√
1 +

∑m
j=1(κlj)

2R-

subGaussian. If the values of κlj are related to time
horizon l, then we cannot directly utilize Lemma 1
in our proof, where the subGaussian parameter is as-
sumed to be constant. Therefore, we take most efforts
to prove the order of κlj to get the final result, which
is the most difficult part of our proof.

Compared with Algorithm 2, Algorithm 3 suffers from
a higher order of CV due to the existence of noise
in the constraint observations and the fact that a
linear penalty function cannot incur a penalty that
is as strong as the one in Algorithm 2. Particu-
larly, if we choose L = S, then we achieve RT =



Zai Shi, Atilla Eryilmaz

Õ(B
√
T 3/2γ̃√T + T 3/4γ̃√T ) and VT = Õ(T 3/4) with

a high probability by neglecting the log terms, and
the regret is in the same order with the one of
Algorithm 2 selecting L = S. Similar to Algo-
rithm 2, both metrics are sublinear if γ̃S + log 2S

δ =

o(
√
S). Meanwhile with this choice, the right hand

side of ε > 4(R
√

2γ̃S + 2 + 2 log 2L
δ )
√

(S + 2)γ̃S/S +

2R(
√

4m/S +
√

log(2L/δ)/S) in Theorem 2 won’t
increase as L and S increase, which becomes ε >

4(R
√

2γ̃1 + 2 + 2 log 2
δ )
√

3γ̃1 +2R(
√

4m+
√

log(2/δ)).

7 Conclusion

In this paper, motivated by problems from diverse
domains, we presented two provably good Bayesian
methods for stochastic continuum-armed bandit with
long-term constraints. Specifically, when the con-
straint value is observed without noise, we used a
class of penalty functions based on a multiplicative
form of multiplier-updates in our first method to get
a bound of constraint violation that can match the
best result of previous methods, along with a sublin-
ear regret. For the case of noisy constraint observa-
tions, we proposed another method based on an ad-
ditive way of multiplier-updates with a linear penalty
function to avoid noise amplification, which can pro-
duce a sublinear CV and the same order of regret with
the first method. By conducting two experiments,
we demonstrated the efficiency of our algorithms com-
pared with two methods in online convex optimization
and Bayesian optimization.
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Improved rates for the stochastic continuum-armed
bandit problem. In International Conference on
Computational Learning Theory, pages 454–468.
Springer, 2007.

Ashwinkumar Badanidiyuru, Robert Kleinberg, and
Aleksandrs Slivkins. Bandits with knapsacks. In
2013 IEEE 54th Annual Symposium on Foundations
of Computer Science, pages 207–216. IEEE, 2013.

Dimitri P Bertsekas. Constrained optimization and La-
grange multiplier methods. Academic press, 2014.
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Supplementary Material:
A Bayesian Approach for Stochastic Continuum-armed Bandit with

Long-term Constraints

A Proof of Theorem 1

Within epoch l of Algorithm 2, we can utilize Lemma 1 in the main paper for IGP-UCB to give the following
result due to Assumption 1 and 3:

With probability at least 1 − δ/L, we have:

S∑
s=1

[f(x∗l )−
m∑
j=1

κlj(ψ(gj(x
∗
l ))− 1)− f(xsl ) +

m∑
j=1

κlj(ψ(gj(x
s
l ))− 1)] = O(B

√
SγlS +

√
SγlS(γlS + log(L/δ)))

(15)

for an l, where x∗l = arg maxx∈X f(x)−
∑m
j=1 κ

l
j(ψ(gj(x))− 1) and γlS is information gain with time horizon S

for kl.

Meanwhile, by the definition of x∗ and x∗l , we have

f(x∗) = f(x∗)−
m∑
j=1

κlj(ψ(gj(x
∗))− 1)

≤ f(x∗l )−
m∑
j=1

κlj(ψ(gj(x
∗
l ))− 1)

since gj(x
∗) ≤ 0, ∀j. Applying the above inequality to (15), we have

S∑
s=1

[f(x∗)− f(xsl ) +
m∑
j=1

κlj(ψ(gj(x
s
l ))− 1)] = O(B

√
SγlS +

√
SγlS(γlS + log(L/δ))) (16)

for an l with probability at least 1 − δ/L. Now by the union bound, with probability at least 1 − δ, we have

L∑
l=1

S∑
s=1

[f(x∗)− f(xsl ) +

m∑
j=1

κlj(ψ(gj(x
s
l ))− 1)] = O(BL

√
Sγ̃S + L

√
Sγ̃S(γ̃S + log(L/δ))) (17)

To bound RLS =
∑L
l=1

∑S
s=1(f(x∗) − f(xsl )), we need to bound

∑L
l=1

∑S
s=1 κ

l
j(ψ(gj(x

s
l )) − 1) for any j. By

convexity of ψ(·), we have

L∑
l=1

κlj

S∑
s=1

(ψ(gj(x
s
l ))− 1) ≥ S

L∑
l=1

κlj(ψ(
S∑
s=1

gj(x
s
l )/S)− 1) (18)

Since κl+1
j = κljψ(

∑S
s=1 gj(x

s
l )/S) from Algorithm 2, we have Sκlj(ψ(

∑S
s=1 gj(x

s
l )/S) − 1) = S(κl+1

j − κlj).

Therefore, along with κ1
j = 1, we have

S
L∑
l=1

κlj(ψ(
S∑
s=1

gj(x
s
l )/S)− 1) = S(κl+1

j − κ1
j ) = S(

L∏
l=1

ψ(
S∑
s=1

gj(x
s
l )/S)− 1) (19)
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By Assumption 2, we have

L∏
l=1

ψ(
S∑
s=1

gj(x
s
l )/S) ≥ ψ(

L∑
l=1

S∑
s=1

gj(x
s
l )/S) (20)

Now, since 0 ≤ ∆ = f(x∗∗)− f(x∗) <∞ by the assumption, along with (18),(19) and (20), we have

−LS∆ =
L∑
l=1

S∑
s=1

(f(x∗)− f(x∗∗))

≤
L∑
l=1

S∑
s=1

(f(x∗)− f(xsl ))

≤ O
(
BL
√
Sγ̃S + L

√
Sγ̃S(γ̃S + log(L/δ))

)
− S

m∑
j=1

(ψ(
L∑
l=1

S∑
s=1

gj(x
s
l )/S)− 1). (21)

with probability at least 1 − δ. Therefore,

S
m∑
j=1

(ψ(
L∑
l=1

S∑
s=1

gj(x
s
l )/S)− 1) ≤ LS∆ +O

(
BL
√
Sγ̃S + L

√
Sγ̃S(γ̃S + log(L/δ))

)
(22)

with probability at least 1 − δ. Since ψ(
∑L
l=1

∑S
s=1 gj(x

s
l )/S)− 1 ≥ 0 for any j, we have

S(ψ(
L∑
l=1

S∑
s=1

gj(x
s
l )/S)− 1) = O

(
LS +BL

√
Sγ̃S + L

√
Sγ̃S(γ̃S + log(L/δ))

)
for any j with probability at least 1 − δ, which results in

L∑
l=1

S∑
s=1

gj(x
s
l ) = O

(
Sψ−1

+ (L+ (BL
√
γ̃S/S + L

√
γ̃S(γ̃S + log(L/δ))/S))

)
for any j with probability at least 1 − δ from (22). The above bound gives the final result of CV.

Meanwhile, since S
∑m
j=1(ψ(

∑L
l=1

∑S
s=1 gj(x

s
l )/S)− 1) ≥ 0, we have

RLS = O(BL
√
Sγ̃S + L

√
Sγ̃S(γ̃S + log(L/δ))) with a probability at least 1 − δ from (21).

B Performance of Algorithm 2 for Other Definitions of Regret

We note that there are some works, such as Yu et al. (2017), which define regret as
∑T
t=1[f t(x∗)− f t(xt)] with

x∗ = arg maxx∈X {
∑T
t=1 f

t(x) s.t. g(x) � 0}. In our setup, f t is a realization of f at time t. So it is easy to extend
our results to this regret by a similar proof to the one of Theorem 1, with assumptions that an unconstrained
maximizer x∗∗ = arg maxx∈X

∑L
l=1

∑S
s=1 f

s
l (x) exists and fsl (x∗∗) <∞ for any l and s. Here fsl (x) = f(x) + εsl

is a realization at iteration s of epoch l in Algorithm 2. The only difference in this extension is to utilize the

Hoeffding inequality for |
∑S
s=1 f

s
l (x) − Sf(x)| to get a bound of

∑S
s=1[fsl (x∗) − fsl (xsl ) +

∑m
j=1

κl
j

c ψ(cgj(x
s
l ))]

based on (15). Then following the same procedure of the proof for Theorem 1, we can get the result which has
the same order with Theorem 1.

C Proof of Theorem 2

For epoch l of Algorithm 3, we cannot directly use Lemma 1 in the main paper to give an intermediate result

like (15). It is because the distribution of total observation noise for f(x)−
∑m
j=1 κ

l
jgj(x) is

√
1 +

∑m
j=1(κlj)

2R-

subGaussian and κlj can be related to l due to the multiplier update. Meanwhile, from Theorem 1 of Chowdhury
and Gopalan (2017), we have the following lemma.
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Lemma 2. With Assumption 1, 4 and 5, for a given η > 0 we have

||ε1:s
l +

m∑
j=1

κljε
1:s
l,j ||2((Kt+ηI)−1+I)−1 ≤ 2(1 +

m∑
j=1

(κlj)
2)R2 log(

2L
√

det((1 + η)I +Ks)

δ
) (23)

simultaneously over all s > 0 for an l with probability at least 1 − δ/(2L), where ε1:s
l = [ε1

l , .., ε
s
l ] and ε1:s

l,j =

[ε1
l,j , .., ε

s
l,j ] are previous observation noise in epoch l, Ks is an s × s matrix defined in Section 2 of the main

paper, ||x||A =
√
xTAx for a matrix A and I is an s× s identity matrix.

Now following the same proof procedure of Lemma 1 in the main paper, we can get the following lemma:

Lemma 3. With probability at least 1− δ/(2L), we have

S∑
s=1

[f(x∗l )−
m∑
j=1

κljgj(x
∗
l )− f(xsl ) +

m∑
j=1

κljgj(x
s
l )]

≤ 4

B +

√√√√(1 +
m∑
j=1

(κlj)
2)R

√
2(γlS + 1 + log

2L

δ
)

√(S + 2)γlS (24)

for an l, where x∗l = arg maxx∈X f(x)−
∑m
j=1 κ

l
jgj(x) and γlS is information gain with time horizon S for kl.

Denote the above event as El(δ).

Meanwhile, by positivity of κlj , the definition of x∗ and x∗l , we have

f(x∗) ≤ f(x∗)−
m∑
j=1

κljgj(x
∗) ≤ f(x∗l )−

m∑
j=1

κljgj(x
∗
l )

So using the event El(δ), for an l

S∑
s=1

[f(x∗)− f(xsl ) +
m∑
j=1

κljgj(x
s
l )]

≤ 4

B +

√√√√(1 +

m∑
j=1

(κlj)
2)R

√
2(γlS + 1 + log

2L

δ
)

√(S + 2)γlS (25)

with probability at least 1 − δ/(2L).

Now, since κl+1
j = [κlj + µ

∑S
s=1(gj(x

s
l ) + εsl,j)/S]+ ≥ κlj + µ

∑S
s=1(gj(x

s
l ) + εsl,j)/S, we have

κL+1
j ≥ µ

L∑
l=1

S∑
s=1

(gj(x
s
l ) + εsl,j)/S (26)

Also define another event Gl(δ) as√√√√ m∑
j=1

(
S∑
s=1

εsl,j)
2 ≤ 2R(

√
4mS +

√
S log(2L/δ)),

which occurs with probability at least 1− δ/(2L) for an l from Theorem 8.3 of lec. Using the events {Gl(δ)}Ll=1

and (26), we have

VLS ≤
S||κL+1||

µ
+

L∑
l=1

√√√√ m∑
j=1

(
S∑
s=1

εsl,j)
2 ≤ S||κL+1||

µ
+ 2RL(

√
4mS +

√
S log(2L/δ)) (27)
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with probability at least 1− δ/2, where κl = [κl1, ..., κ
l
m]. From (25) and (27), we find that to obtain the bounds

of RLS and VLS , it is important to bound ||κl||. We will do it in the following.

Since κl+1
j = [κlj + µ

∑S
s=1(gj(x

s
l ) + εsl,j)/S]+, we have

(κl+1
j )2 ≤ (κlj + µ

S∑
s=1

(gj(x
s
l ) + εsl,j)/S)2

which leads to
S∑
s=1

κlj(gj(x
s
l ) + εsl,j) ≥ S

(κl+1
j )2 − (κlj)

2

2µ
− Sµ

2
(
S∑
s=1

(gj(x
s
l ) + εsl,j)/S)2

≥ S
(κl+1
j )2 − (κlj)

2

2µ
− µ

S
[(

S∑
s=1

gj(x
s
l ))

2 + (
S∑
s=1

εsl,j)
2]

So using the event Gl(δ) along with the assumption |gj(x)| ≤M and Cauchy-Swartz inequality, we have for an l

m∑
j=1

S∑
s=1

κljgj(x
s
l ) ≥ S

||κl+1||2 − ||κl||2

2µ
−mSµM2 − 4µR2(

√
4m+

√
log(2L/δ))2

− 2R||κl|| · (
√

4Sm+
√
S log(2L/δ)) (28)

with probability at least 1 − δ/(2L).
From Assumption 7, there is a point y s.t. gj(y) ≤ −ε, ∀j, where ε > 0. Using this point and El(δ), we have

S∑
s=1

[f(y)−
m∑
j=1

κljgj(y)− f(xsl ) +
m∑
j=1

κljgj(x
s
l )]

≤
S∑
s=1

[f(x∗l )−
m∑
j=1

κljgj(x
∗
l )− f(xsl ) +

m∑
j=1

κljgj(x
s
l )]

≤ 4

B +

√√√√(1 +
m∑
j=1

(κlj)
2)R

√
2(γlS + 1 + log

2L

δ
)

√(S + 2)γlS

≤ 4

(
B + (1 + ||κl||)R

√
2(γlS + 1 + log

2L

δ
)

)√
(S + 2)γlS (29)

for an l with probability at least 1 − δ/(2L), where the last inequality comes from positivity of κlj .

Meanwhile from (28) and Assumption 6, we have with probability at least 1 − δ/(2L),

S∑
s=1

[f(y)−
m∑
j=1

κljgj(y)− f(xsl ) +
m∑
j=1

κljgj(x
s
l )]

≥ −2SQ+ S
m∑
j=1

κljε+
S∑
s=1

m∑
j=1

κljgj(x
s
l )

≥ −2SQ+ Sε||κl||+ S
||κl+1||2 − ||κl||2

2µ

−mSµM2 − 4µR2(
√

4m+
√

log(2L/δ))2 − 2R||κl|| · (
√

4Sm+
√
S log(2L/δ)) (30)

for an l, where the second inequality utilize the positivity of κlj . Now from (29), (30) and the union bound, we
have for an l

− 2SQ+ Sε||κl||+ S
||κl+1||2 − ||κl||2

2µ
−mSµM2 − 4µR2(

√
4m+

√
log(2L/δ))2−

2R||κl|| · (
√

4Sm+
√
S log(2L/δ)) ≤ 4

(
B + (1 + ||κl||)R

√
2(γlS + 1 + log

2L

δ
)

)√
(S + 2)γlS (31)
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with probability at least 1 − δ/L. Meanwhile, using Gl(δ) with the multiplier-update relation, we have

||κl|| ≥ ||κl+1|| − ||κl+1 − κl|| ≥ ||κl+1|| − (
√
mµM + 2µR(

√
4m+

√
log(2L/δ))/S) (32)

with probability at least 1 − δ/(2L). Now we will prove the following bound using (31) and (32) by induction.

||κl|| ≤
√
mµM + 2µR(

√
4m+

√
log(2L/δ))/S)

+
2Q+ 4(B +R

√
2(γlS + 1 + log 2L

δ ))
√

(S + 2)γlS/S +mµM2 + 4µR2(
√

4m+
√

log(2L/δ))2/S

ε− 4(R
√

2(γlS + 1 + log 2L
δ ))
√

(S + 2)γlS/S − 2R(
√

4m/S +
√

log(2L/δ)/S)
, (33)

which occurs for an l with probability at least 1 − δ/L.

• From the requirement of Theorem 2, the above bound is positive. Since κ1
j = 0 for all j, the above bound

is right for κ1.

• Suppose that ||κl|| is less or equal to the right-hand side of (33)

• If ||κl+1|| is larger than the right-hand side of (33), then from (32),

||κl|| >
2Q+ 4(B +R

√
2(γlS + 1 + log 2L

δ ))
√

(S + 2)γlS/S +mµM2 + 4µR2(
√

4m+
√

log(2L/δ))2/S

ε− 4(R
√

2(γlS + 1 + log 2L
δ ))
√

(S + 2)γlS/S − 2R(
√

4m/S +
√

log(2L/δ)/S)
.

By (31) and the above inequality, we have ||κl+1||2 < ||κl||2, which leads to contradiction. Therefore, ||κl+1||
is also less and equal than the right-hand side of (33)

Since µ = O(1/
√
L), ||κl|| = O(1) from (33) when both L and S goes to infinity. Therefore from (28) and (33),

we have

−
m∑
j=1

L∑
l=1

S∑
s=1

κljgj(x
s
l ) = O(S

√
L+ L

√
S log(L/δ)) (34)

with probability at least 1 − δ because (28) happens due to the event Gl(δ), and (33) happens due to the two
events Gl(δ) and El(δ). It leads to

RLS =
L∑
l=1

S∑
s=1

[f(x∗)− f(xsl )] = O

(
L(B +

√
γ̃S + log

2L

δ
)
√
Sγ̃S + S

√
L

)

with probability at least 1 − δ by (25) and (34) because (25) happens due to the event El(δ) and (34) happens
due to the events Gl(δ) and El(δ).

From (27) and (33),

VLS = O(L
√
S log(L/δ) + S

√
L)

with probability at least 1− δ because (27) happens due to the event Gl(δ) and (33) happens due to the events
Gl(δ) and El(δ).

D Performance of Algorithm 3 for Other Definitions of CV

There are some works such as Chen and Giannakis (2018); Cao and Liu (2018) defining CV as ||[
∑T
t=1 g

t(xt)]
+||

for time-varying constraint functions gt. Since in our setup, gtj(x) = gj(x) + εj where εj is from a subGaussian
distribution, we can get the result of this CV based on our result of Theorem 2 by using the Hoeffding inequality,
which yields the same order with our result.
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Figure 1: Mean regret and CV of Algorithm 2 with different L and S applied for the first experiment

E Experiments

In this section, we will conduct two experiments to demonstrate the efficiency of our methods through comparison
with two benchmarks. The first benchmark is constrained OCO with bandit feedback proposed in Cao and Liu
(2018), and the second is ADMMBO proposed in Ariafar et al. (2019) as a representation of constrained BO.
The section numbers mentioned in the following are referred as the ones in this appendix if there is no explicit
statement.

E.1 Test Problem with a Small Feasible Region

First, we use one synthetic function to test our methods, which were also used in previous works on constrained
BO Ariafar et al. (2019); Gardner et al. (2014). Consider our setup with two-dimensional X = [0, 6]2, f(x) =
− sin(x(1)) − x(2) and g(x) = sin(x(1)) sin(x(2)) + 0.95. This is a challenging problem since both reward and
constraint functions are highly nonlinear. Meanwhile, the feasible area g(x) ≤ 0 within X is very small, which
makes the problem more difficult.

E.1.1 Noiseless Constraint Observations

First we consider the case where f(x) is observed with a Gaussian noise sampled from N (0, 0.01) and g(x) is
observed without noise. The reason why we use the noise variance of 0.01 is that the optimal value is already
very small, which is around −0.25.

Here we want to use this experiment to demonstrate the effects of L and S for Algorithm 2. We use ψ(x) = exp(x)
and set S = 20. We use Matérn kernel with ν = 2.5 as the kernel function. Figure 1 shows the average regret and
CV of Algorithm 2 with different L and S, each for 20 runs. From the figure, we can see that regret-CV tradeoff
happens for the three choices connected by arrows. The reason why it does not happen for the other two choices
may be due to the constant factor in the bounds. But still, we can see that more frequent multiplier-updates
can help reduce the CV of our algorithm.

Now we compare Algorithm 2 with constrained OCO with bandit feedback and ADMMBO for this problem. In
the following, we choose S = 20 while the other hyperparameters are the same with the above. The hyperpa-
rameters in the OCO method are set to achieve the best performance. The original code of ADMMBO for this
problem can be accessible at https://github.com/SetarehAr/ADMMBO, where we add noise to the observation
values of the reward function.

In Figure 2, we show the boxplots of the time-averaged regret and time-averaged CV for these three methods.
Each method is run for 100 times starting from different initial points. For Algorithm 2 and OCO, we choose
the total time horizon to be 350 and plot the boxplots for every 20 iterations, while for ADMMBO, we cannot
do that because it has its own stopping criteria (the change of a parameter is less than a threshold). Therefore,
the time horizon of ADMMBO is limited to be around 90 for these 100 runs and the boxplots are plotted for
every 5 iterations. From the figure, we can see clearly that the regret and CV of Algorithm 2 are sublinear with
a high probability, whereas the regret and CV of the other two methods are almost linear after few iterations.
For OCO, the reason is that f and g are both nonconvex and the algorithm may be stuck at zero gradient points
that are suboptimal. For ADMMBO, the method is not designed for our performance metrics even though using
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(c) Time-averaged regret of ADMMBO
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(d) Time-averaged CV of ADMMBO
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(f) Time-averaged CV of OCO

Figure 2: Boxplots of Algorithm 2, OCO and ADMMBO over 100 runs for Section E.1.1
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Figure 3: Comparison of Algorithm 2, OCO and ADMMBO in terms of means over 100 runs for Section E.1.1.

a Bayesian approach as well.

To make the comparison of these three methods more straightforward, we also plot the means of their performance
metrics over the 100 runs and put them together in Figure 3. Since the whole time horizon of ADMMBO is only
around 90, we only show the first 100 iterations of Algorithm 2 and OCO for a more clear illustration. From
the figure, we can see that the mean regret and CV of Algorithm 2 are both sublinear, and their time-averaged
values tend to 0 in the whole process. For OCO, its performance metrics almost never change after few iterations.
It may be stuck at some suboptimal point. For ADMMBO, its performance metrics are also worse than our
method.

E.1.2 Noisy Constraint Observations

In this part, we assume that the constraint g(x) is also observed with noise sampled from N (0, 0.01). We choose
the variance to be 0.01 due to the small values of g(x). Other problem settings are the same with Section
E.1.1. Now we apply Algorithm 3, constrained OCO with bandit feedback and ADMMBO to this problem.
Particularly in Algorithm 3, we choose µ = 0.5 in its multiplier update. Other hyperparameters of Algorithm 3
are the same with Algorithm 2 in Section E.1.1. The hyperparameters in the OCO method are set to achieve
the best performance.

In Figure 4, the boxplots of time-averaged regret and time-averaged CV are shown for these three methods.
The experiment setup is the same with Section E.1.1, and the time horizon of ADMMBO is still limited to 90
because of its stopping criteria. From the figures, we can see that the regret and CV of Algorithm 3 are still
sublinear. However, the convergence of the time-averaged CV is slower than Algorithm 2, which is predicted by
our theoretical results. For the methods of OCO and ADMMBO, the reduction of the time-averaged regret and
CV is much smaller compared with Algorithm 3. Compared with Figure 4c, ADMMBO produces more outliers
with larger regrets than the case in Section E.1.1. On the other hand, it is surprising that its CV is better than
the noiseless case in the last few iterations compared with Figure 2c. We don’t know the reason since it uses a
more complex utility function (expected improvement) and has no theoretical results for our metrics. For OCO,
it has almost the same performance with the one shown in Figure 2, and it is achieved by using a smaller stepsize
in this experiment (η in Cao and Liu (2018)).

In Figure 5, we plot the means of the performance metrics for these three methods and put them together for
comparison similar to Section E.1.1. It is much easier to see that Algorithm 3 has the best performance among
these three methods, and meanwhile a slower convergence of the time-averaged CV compared with Algorithm 2.

E.2 Data Rate Allocation Problem

In this part, we will consider the data rate allocation problem mentioned in Section 3 of the main paper. This
experiment is based on the first experiment of Lee et al. (2005). Suppose that there are 4 servers with 2 classes
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(d) Time-averaged CV of ADMMBO
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Figure 4: Boxplots of Algorithm 3, OCO and ADMMBO over 100 runs for Section E.1.2.
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Figure 5: Comparison of Algorithm 3, OCO and ADMMBO in terms of means over 100 runs for Section E.1.2.
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of utility functions:

Ui(x(i)) = ci

(
1

1 + exp(−ai(x(i)− bi))
+ di

)
, for i = 1, 3 (35)

Ui(x(i)) = ci(log(aix(i) + bi) + di), for i = 2, 4 (36)

where x(i) is the data rate allocated for Server i from range [0, 2]. ai, bi, ci and di are all constants, whose
values are set to be the same with the first experiment of Lee et al. (2005). Each utility function can represent
QoS for different classes of service Lee et al. (2005) and is observed with a measurement error sampled from
N (0, 0.01). Meanwhile, we assume that the electricity cost for the data rates x = [x(1), x(2), x(3), x(4)] is
h(x) = 1 + 0.2x(1) + 0.4x(2) + 0.8x(3) + 1.2x(4) and the time-averaged electricity budget is B = 3. Different
coefficients represent the electricity pricing in different locations and h([0, 0, 0, 0]) = 1 represents the electricity
cost for the infrastructure. For this problem g(x) = 0.2x(1) + 0.4x(2) + 0.8x(3) + 1.2x(4)− 2.

E.2.1 Noiseless Constraint Observations

Still, we first consider the case where g(x) is observed without noise. We apply Algorithm 2, constrained OCO
with bandit feedback and ADMMBO to this problem. The hyperparameters of Algorithm 2 in this experiment
are the same with Section E.1.1. The hyperparameters of OCO are set to achieve its best performance. For
ADMMBO, we modify its code of a 4d example at https://github.com/SetarehAr/ADMMBO.

The boxplots of these three algorithms are shown in Figure 6 in terms of the time-averaged utility and CV, where
the time horizon of Algorithm 2 and OCO is set to be 350 and the one of ADMMBO is limited to around 50 due
to its stopping criteria. All these algorithms are run for 100 times. Since we do not know the optimal value of
this problem, we only show the expected utility achieved by each method here. From the figures, we can see
that the CV of Algorithm 2 is sublinear and its time-averaged values approach 0 as T increases. Its expected
utility also converges to a certain value. Compared with Algorithm 2, ADMMBO and OCO have higher utility
values, but these values are achieved with a time-averaged CV away from 0 with a high probability. The CV of
ADMMBO is more random because it is not designed for our performance metrics. For OCO, it can still achieve
zero time-averaged CV with a certain probability, but most of the runs are stuck at suboptimal points due to
nonconvexity of utility functions.

The means of their performance metrics are presented in Figure 7. We only show the first 100 iterations of
Algorithm 2 and OCO for ease of comparison. This figure demonstrates the efficiency of our algorithm for
satisfying the long-term constraint.

E.2.2 Noisy Constraint Observations

In this part, g(x) is also observed with random noise sampled from a uniform distribution Unif([−0.2, 0.2]), where
the noise is due to the variation of electricity pricing. We use this problem to test Algorithm 3 in comparison
with constrained OCO with bandit feedback and ADMMBO. The hyperparameters of Algorithm 3 are the same
with Section E.1.2, and the ones of OCO are set to achieve the best performance.

In Figure 8, we present the boxplots of these three methods over 100 runs. Particularly, the first two figures show
that the CV of Algorithm 3 is sublinear, whose time-averaged values approach 0, and that its expected utility
converges to a certain value. Compared with Figure 6b, the convergence of the time-averaged CV in Algorithm
3 is slower than the one in Algorithm 2, which demonstrates our theoretical results. For the other two methods,
their time-averaged CV is away from 0, which makes their higher utility values meaningless.

In Figure 9 we plot the means of the performance metrics over 100 runs for these three methods. In terms of
means, only our method can let the time-averaged CV approach zero after a few iterations. Interestingly, the
time-averaged CV of our method first increases and then decreases. It is because initially the multiplier is too
small. After the update of the multiplier in Algorithm 3, the new value can give an appropriate penalty for
constraint violations.
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(b) Time-averaged CV of Algorithm 2
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(c) Time-averaged utility of ADMMBO
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(d) Time-averaged CV of ADMMBO
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(e) Time-averaged utility of OCO
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Figure 6: Boxplots of Algorithm 2, OCO and ADMMBO over 100 runs for Section E.2.1. Here ”Utility” means
the value of the utility function without measurement errors.
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Figure 7: Comparison of Algorithm 2, OCO and ADMMBO in terms of means over 100 runs for Section E.2.1.
Here ”Utility” means the values of the utility function without measurement errors.
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(a) Time-averaged utility of Algorithm 3
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(b) Time-averaged CV of Algorithm 3
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(c) Time-averaged utility of ADMMBO
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(d) Time-averaged CV of ADMMBO
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(e) Time-averaged utility of OCO
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(f) Time-averaged CV of OCO

Figure 8: Boxplots of Algorithm 3, OCO and ADMMBO over 100 runs for Section E.2.2. Here ”Utility” means
the values of the utility function without measurement errors.
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Figure 9: Comparison of Algorithm 3, OCO and ADMMBO in terms of means over 100 runs for Section E.2.2.
Here ”Utility” means the values of the utility function without measurement errors.


