31-2 - STRUCTURAL EVOLUTION OF SUBDUCTION INITIATION AND EARLY COOLING: INSIGHTS FROM THE EASTON METAMORPHIC SUITE, NORTHWEST WASHINGTON

8:00 AM - 6:00 PM

Cargo Room (The Whitney Peak Hotel)

Booth No. 5

Abstract

Exhumed high pressure/low temperature metamorphic belts provide evidence of subduction processes at depth, but the mechanisms by which subduction zones initiate and evolve to steady thermal state remain contested due to a paucity of recovered subduction infancy rocks. The Easton metamorphic suite in northwest Washington is a Jurassic-Cretaceous subduction complex that preserves a high-grade metamorphic sole inferred to have formed during subduction initiation. Near Gee Point, WA, coherent garnet amphibolite, hornblende-bearing white mica quartzose schist, and underlying garnet blueschist are characterized by their proximity to overlying serpentinized peridotite and the presence of blocks and layers of foliated and unfoliated metasomatic rock. These highgrade rocks are exposed in a series of northeast vergent, steeply inclined, tight-isoclinal folds that post-date regional high pressure/low temperature metamorphism. Two shear zones dip steeply to the southwest, concordant to adjacent blueschist-greenschist, quartzose schist, and amphibolite fabrics. Pervasive retrogression from amphibolite to blueschist-greenschist facies from high to low structural levels is documented at the map, outcrop, and micro scale. Amphibolites contain a foliation defined by aligned hornblende. or in places are weakly foliated. Retrogression of amphibolite is associated with a welldeveloped glaucophane-white mica-chlorite fabric that wraps older garnet and hornblende, with pargasite cores rimmed by glaucophane and chlorite. Both garnet blueschist and quartzose schist preserve at least one younger foliation. Prior ⁴⁰Ar/³⁹Ar thermochronology and thermobarometry are consistent with a cooling subduction zone, from amphibolite facies conditions of 760C at >167 Ma to <400C at ~163 Ma. Paired garnet ¹⁷⁶Lu-¹⁷⁶Hf geochronology and ⁴⁰Ar/³⁹Ar thermochronology samples will elucidate the timing of (1) proposed subduction initiation, (2) early subduction zone cooling rates, and (3) two shear zones that deformed the Easton metamorphic suite.

Geological Society of America Abstracts with Programs. Vol. 55, No. 4, 2023 doi: 10.1130/abs/2023CD-387478

© Copyright 2023 The Geological Society of America (GSA), all rights reserved.

Author

Nick Cunetta

Western Washington University

Authors

Elizabeth Schermer

Western Washington University

Sean Mulcahy Western Washington University

View Related