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Abstract

Document retrieval is a key stage of stan-
dard Web search engines. Existing dual-
encoder dense retrievers obtain representations
for questions and documents independently, al-
lowing for only shallow interactions between
them. To overcome this limitation, recent au-
toregressive search engines replace the dual-
encoder architecture by directly generating
identifiers for relevant documents in the candi-
date pool. However, the training cost of such
autoregressive search engines rises sharply as
the number of candidate documents increases.
In this paper, we find that large language mod-
els (LLMs) can follow human instructions to
directly generate URLs for document retrieval.

Surprisingly, when providing a few Query-
URL pairs as in-context demonstrations,
LLMs can generate Web URLs where nearly
90% of the corresponding documents contain
correct answers to open-domain questions. In
this way, LLMs can be thought of as built-
in search engines, since they have not been
explicitly trained to map questions to doc-
ument identifiers. Experiments demonstrate
that our method can consistently achieve better
retrieval performance than existing retrieval
approaches by a significant margin on three
open-domain question answering benchmarks,
under both zero and few-shot settings. The
code for this work can be found at https:

//github.com/Ziems/llm-url.

1 Introduction

Along with the success of deep learning, dual-
encoder based retrievers have become the domi-
nant method for Web searching (Zhu et al., 2021;
Zhao et al., 2022). For example, DPR (Karpukhin
et al., 2020) employs two independent encoders to
encode the question and the document respectively,
then estimates their relevance by computing a sin-
gle similarity score between two representations.

ada-001

babbage-001

curie-001
davinci-001

davinci-002/003

0%

20%

40%

60%

80%

100%

0.1 1 10 100 1000
U

R
L 

M
at

ch

# Parameters (Billions)

Figure 1: Successful URL reconstructions by differ-
ent size of GPT-3 as URL generators. The models are
prompted with the first 100 words of a Wikipedia page
then tasked with generating the URL of the page they
came from. Tested on 10k Wikipedia pages sampled
from the top 100k most frequent Wikipedia entities.

However, these methods suffer from two ma-
jor drawbacks. First, the representations of ques-
tions and documents are typically obtained inde-
pendently in modern dual-encoder dense retrieval
models (Karpukhin et al., 2020), allowing for only
shallow interactions between them (Khattab et al.,
2021). Second, the question or document repre-
sentation is embedded into a single dense vector,
potentially missing fine-grained information when
computing the similarity between the two vector
representations (Khattab and Zaharia, 2020).

Instead of computing similarity between ques-
tion and document embeddings, autoregressive
search engines aim to directly generate document
identifiers then map them to complete documents
in the predetermined candidate pool. This approach
has attracted increasing interest in information re-
trieval (IR) and related fields (Tay et al., 2022;
Bevilacqua et al., 2022; Wang et al., 2022). Com-
pared to dual-encoder dense retrieval methods, au-
toregressive search engines enjoy a number of ad-
vantages. First, autoregressive generation models
produce document identifiers by performing deep
token-level cross-attention, resulting in a better esti-
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mation than shallow interactions in dense retrievers.
Second, autoregressive search engines have been
shown to have strong generalization abilities, out-
performing BM25 in a zero-shot setting (Tay et al.,
2022). While it is theoretically possible to scale an
autoregressive search engine to the size of a large
language model (LLM), such as GPT-3 with 175B
parameters, in practice it is not feasible due to the
computational overhead of training such a large au-
toregressive search engine from scratch (Tay et al.,
2022). To reduce the high training cost of autore-
gressive search engine, a smaller model size is pre-
ferred. However, the results of our pilot study in
Figure 1 show smaller language models are sig-
nificantly worse at mapping passages to document
identifiers than larger ones. Moreover, different
retrieval tasks can have unique retrieval require-
ments. One task may require a model to retrieve
factual evidence to support or refute a claim (i.e.,
fact checking) (Onoe et al., 2021) while another
may require a model to retrieve specific trivia infor-
mation about an entity (i.e., entity linking) (Petroni
et al., 2021; Zhang et al., 2022). It would be better
if the retriever was capable of generalizing to new
retrieval tasks with only a few examples.

In this work, we explore the use of in-context
demonstrations to prompt LLMs to directly gen-
erate web URLs for document retrieval, namely
LLM-URL. Surprisingly, we find that by provid-
ing a few (query, URL) pairs as contextual demon-
strations, large language models (e.g. GPT-3) gen-
erate Web URLs where nearly 90% of the cor-
responding documents contain answers to open-
domain questions. In this way, LLMs can be
thought of as built-in search engines, as they have
not been explicitly trained to map questions or
documents to identifiers. Instead of using newly-
created document identifiers, LLM-URL leverages
existing and widely used document identifiers di-
rectly, i.e., URLs. We compare our approach to
existing document retrieval methods on three differ-
ent open-domain question answering (QA) datasets:
WebQ (Berant et al., 2013), NQ (Kwiatkowski
et al., 2019), and TriviaQA (Joshi et al., 2017).
Further, to avoid exceeding the limit on the number
of input tokens of LLMs, we employ an unsuper-
vised passage filtering module to remove irrelevant
portions of supporting documents. To summarize,
our main contributions are as follows:

1. We reveal that LLMs are built-in autoregres-
sive search engines capable of document re-

trieval by directly generating Web page URLs
under both zero and few-shot settings.

2. We show retrieving documents by generating
URLs with LLMs significantly outperforms
existing methods for document retrieval, as
measured by Recall@K. Further, we show
that breaking the retrieved documents into pas-
sages then using a ranker to filter the passages
significantly reduces the number of support-
ing passages while maintaining high recall.

3. We show the retrieved documents improve
downstream QA performance as measured by
EM when compared to baseline methods.

2 Related Work

2.1 Traditional Document Retrievers

Traditional methods such as TF-IDF and BM25
explore sparse retrieval strategies by matching the
overlapping contents between questions and pas-
sages (Robertson and Zaragoza, 2009; Chen et al.,
2017; Yang et al., 2019). DPR (Karpukhin et al.,
2020) revolutionized the field by utilizing dense
contextualized vectors for passage indexing. It
is first initialized as a pretrained BERT model,
then trained discriminatively using pairs of queries
and relevant documents, with hard negatives from
BM25. Recent research has improved DPR via
better training strategies (Xiong et al., 2020; Qu
et al., 2021; Zhang et al., 2023a) and passage re-
ranking (Mao et al., 2021; Yu et al., 2021; Ju
et al., 2022). However, representations of ques-
tions and documents are typically obtained inde-
pendently in modern dual-encoder dense retrieval
models (Karpukhin et al., 2020; Xiong et al., 2020),
allowing for only shallow interactions between
them (Khattab et al., 2021).

2.2 Autoregressive Search Engines

Recent works have investigated the use of auto-
regressive language models to generate identifier
strings for documents as an intermediate target for
retrieval (Yu et al., 2022), such as Wikipedia page
titles (De Cao et al., 2020), root-to-leaf paths in
a hierarchical cluster tree (Tay et al., 2022), or
distinctive n-grams that can be mapped to full pas-
sages (Bevilacqua et al., 2022). Since the series
of work was carried out almost simultaneously by
different research groups, they are often referred
to multiple different names in the literature, such
as autoregressive search engine, differential search



Document: The 
club was founded 
in Baltimore, 
Maryland in 1901, 
and moved to New 
York in 1903.
From 1923 to …

Answer: 1903
Query: When did the Yankees 
move to New York? Which 3 
URLs would have the answer?

Large Language Model

Passage
Reader

URL::https://en.wikipedia.org
/wiki/New_York_Yankees

Passage
Ranker

Figure 2: The overall pipeline of our proposed LLM-URL. Given a question, LLM-URL first generates a set
of URLs which are extracted from the generated text. The URLs are retrieved from the Internet then broken into
passages which are ranked and filtered such that only the most relevant are kept. Finally, these passages are given
as input to a reader model along with the original question to generate a final answer.

index (DSI), and neural document indexers (NDI).
Compared to traditional dense document retrievers,
these methods leverage a generation model to pro-
duce the document indexes. By forcing the genera-
tion model to explain every token in the question
and document using cross-attention, the genera-
tion abilities of the model significantly improve.
Our work is closely related to these works, show-
ing experimentally that properly prompting pre-
trained large language models can achieve better
performance than traditional dense retrieval mod-
els (Ouyang et al., 2022; Yu et al., 2023) .

3 Proposed Method

In this section we describe a new method, which
we refer to as LLM-URL, that employs a large
language model (LLM) to perform effective and
efficient web document retrieval for knowledge-
intensive NLP tasks such as open-domain question
answering (ODQA).

ODQA is a two step process consisting of a re-

triever and a reader. Given a question q, the goal
of the retriever is to find the top-n passages Pn

relevant to answering q. Given q and the top-n
relevant passages Pn, the goal of the reader is to
use internal knowledge along with Pn to generate
a correct answer a to question q. The passage re-
triever plays an essential role in this process. When
Pn contains more passages that have the correct
answer, the reader has a higher chance of finding
it. Instead of heavily training a dedicated retriever,

our LLM-URL solves the problem in a different
way as shown in Figure 2.

Given a question q, our LLM-URL should find
a set of relevant passages to Pn and give it to
the reader. First, it prompts a LLM (e.g., GPT-
3) to directly generate m URLs for q. By de-
fault, it uses “Which m Wikipedia URLs would
have the answer?” as the instruction which is ap-
pended to each input question as the prompt. We
also append the beginning of the Wikipedia URL
(https://en.wikipedia.org/wiki) to the end
of the prompt to encourage the generation of URLs
and restrict generation to the Wikipedia article
URL format. As LLM has the ability of in-context
learning, we take this advantage to enable the few-
shot setting in the prompt. The prompt described
above also includes a series of in-context demon-
strations. Each demonstration contains a question
sampled from the training set following the prompt
described above. At the end of each demonstration,
m URLs which point to gold-labeled documents
are listed. In the zero-shot setting, the original
prompt is used without any demonstrations. In the
few-shot setting, the original prompt appended to a
series of d demonstrations (d=10 in this work).

Given the prompt, the LLM returns a generated
sequence of tokens. Ideally these tokens would con-
struct a sequence of m separated URLs. In practice,
the generated sequence often has extra information
such as a proposed answer that is unreliable and
needs to be filtered. We use a regular expression to
extract all URLs from the sequence and discard all

https://en.wikipedia.org/wiki
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Figure 3: We prompt LLM-URL to generate m docu-
ments and measure the recall as m increases. Signifi-
cant recall improvements are seen when m is small but
as it increases the marginal benefit decreases.

extra information. This also filters out many URLs
that are improperly formatted. After extraction,
GET requests are made using the extracted URLs
and the contents of each retrieval is used to create
a set of fetched documents Df . Often, |Df | < m
because some of the generated URLs do not follow
a correct format or do not point to real web pages
on the Internet.

The set of fetched documents Df can be passed
directly to a reader if m is a small value or the
reader being used can handle many large docu-
ments. However, this is usually not the case. Often,
Df needs to be filtered such that only a small num-
ber of the most relevant passages are given to the
reader. To do this, our LLM-URL first breaks each
document d 2 Df into a set of small passages. The
passages from each document are collected into a
new set, Pf . A scoring function is used to quantify
the relevance of each passage with respect to the
question q, with high values indicating high rele-
vance with respect to q and low scores indicating
low relevance. A simple scoring function such as
BM25 can be used or a more complex one such as
DPR (Karpukhin et al., 2020) can. The passages
in Pf are then sorted from highest to lowest and
the top n are kept as Pn. Finally, Pn are given to a
reader along with q to generate an answer.

Advantages of LLM-URL : Existing autore-
gressive retrieval methods such as DSI and SEAL
use a pre-trained large language model then fine
tune it to take questions as input and generate rel-
evant document identifiers as output (Tay et al.,
2022; Bevilacqua et al., 2022). Both DSI and
SEAL do extensive experiments on a variety of doc-
ument identifiers which are generated by a heav-
ily trained language model. Examples of these

identifiers include unstructured atomic identifiers,
naively structured string identifiers, hierarchical
document clustering, and others. LLM-URL in-
stead uses pre-existing document identifiers that
exist on the internet: URLs. Using URLs instead
of the aforementioned identifiers has multiple ad-
vantages. URLs often contain words related to
the information they link to, allowing for strong
association of topics with their URLs. For exam-
ple, the title of each Wikipedia page is used in its
URL, allowing the LLM is able to directly generate
the URL by leveraging semantic information from
the question. To validate the importance of URLs
themselves, we also experiment with prompting the
LLM to generate Wikipedia titles instead of URLs
and find Recall@1 significantly reduces compared
to prompting for URL generation. We believe this
is because the URL format itself helps prompt the
model for specific information in a specific format.
Further, the use of URLs allows us to simply ob-
tain the evidence document via a HTTP request
without any need of training a model or building an
index to find the mapping between identifiers and
documents.

4 Experiments

In this section, we present and discuss results from
our experiments to “directly” demonstrate that our
LLM-URL is a strong retriever and “indirectly”
show that it achieves competitive performance on
the ODQA task against state-of-the-art solutions.

Large Language Model: Following Figure 1,
the large language model we use to generate URLs
for our experiments is GPT-3 text-davinci-003 with
greedy decoding and a temperature of 0. A variety
of different prompts are tested for generating URLs,
but little difference in performance is observed, so
we simply use the best performing prompt which
is discussed in Section 3.

Datasets: We use three ODQA datasets includ-
ing Web Questions, Natural Questions, and Trivia
QA. We use them to perform evaluation on both the
task of document or passage retrieval and ODQA
itself.

4.1 Retrieval

We expect retrievers to find the most relevant doc-
uments and/or passages. We conduct experiments
on both document retrieval and passage retrieval.



Method Document Recall@1 Document Recall@10
WebQ NQ TriviaQA WebQ NQ TriviaQA

Contriever (Izacard et al., 2021) 63.8 53.2 60.6 63.8 80.8 82.5
BM25 (Robertson and Zaragoza, 2009) 49.5 47.2 63.0 81.5 76.8 82.3
Google API 61.1 55.5 51.4 - - -

LLM-URL (Zero-Shot) 76.8 61.7 71.3 87.7 83.2 85.5
LLM-URL (Few-Shot) 79.7 62.6 73.5 89.9 83.9 86.8

Table 1: Document retrieval as measured by Recall@k. Google API Recall@10 results are left out due to high
cost.

Method Passage Recall@1 Passage Recall@10 Passage Recall@100
WebQ NQ TriviaQA WebQ NQ TriviaQA WebQ NQ TriviaQA

Contriever 18.2 18.8 34.0 55.7 54.8 67.9 79.8 79.6 83.3
BM25 19.1 22.8 46.2 51.8 55.6 71.7 76.6 79.6 83.9

LLM-URL (Zero-Shot) 22.2 24.0 46.7 63.1 60.6 76.6 83.8 78.3 83.6
LLM-URL (Few-Shot) 22.3 25.5 49.1 64.8 60.8 77.8 85.9 79.0 84.8

Table 2: Passage retrieval as measured by Recall@1, Recall@10 and Recall@100. Here LLM-URL is equipped
with BM25 to perform the ranking task.

Evaluation metrics. Recall@k (k=1, 10, 100) is
calculated by measuring the percentage of docu-
ments or passages in the top-k which contain one of
the gold labeled answers while exact match is calcu-
lated by the percentage of predicted answers which
match one of the gold labeled answers. While
LLM-URL is not constrained by which URLs can
be generated for document retrieval, we restrict
all generations to Wikipedia URLs only for fair
comparison, as discussed in Section 3 All baseline
models also use Wikipedia for retrieval, with some
fetching documents in real time and others fetching
from an offline corpus.

4.1.1 Document Retrieval

Baselines: Contriever (Izacard et al., 2021) and
BM25 (Robertson and Zaragoza, 2009) are usu-
ally used for passage retrieval. Contriever is a
dual encoder which uses a dot product between
dense representations of a question and passage
to calculate relevance. BM25 is a sparse retriever
which uses the overlapping contents between ques-
tion and passage to calculate relevance. Because
we use the same passage size to chunk Wikipedia
documents, we were able to map their retrieved
passages back to the original documents. We use
Google API (Brin and Page, 1998) restricted to
Wikipedia as a third baseline to retrieve relevant
documents given a question.

Existing works such as DSI and SEAL have in-
vestigated the use of autoregressive language mod-

els to generate identifier strings for documents as
an intermediate target for retrieval. DSI is a Trans-
former which has been trained to map directly
from question to document identifiers by memo-
rizing the contents of the entire corpus (Tay et al.,
2022). SEAL is a variant of DSI which uses ngrams
as document ids to improve retrieval performance
(Bevilacqua et al., 2022). Neither DSI nor SEAL
report retrieval results on full documents and do
not have publicly available implementations, so
they are left out and discussed in Table 3 and Sec-
tion 4.1.2 on passage retrieval.

Unlike the baselines, our LLM-URL employs
an LLM. It has two settings: zero-shot and few-
shot. In the zero-shot setting, no in-context demon-
strations are given whereas in the few-shot setting
a few demonstrations are appended to the prompt.

Results: The results of our document retrieval
experiments are shown in Table 1. In this setting
Recall@k is calculated directly after the documents
are retrieved with no intermediary steps. LLM-
URL significantly outperforms baseline methods
on all datasets for both Recall@1 and Recall@10.
Specifically, zero-shot LLM-URL improves doc-
ument Recall@1 relatively by 20.4%, 11.2%, and
13.2% over the strongest baseline on WebQ, NQ,
and TriviaQA, respectively. Few-shot LLM-URL
further expands the improvement to 24.9%, 12.8%,
and 16.7%, respectively. URLs can be extracted
from the large-scale parameters of LLMs, and these
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Figure 4: The percentage of valid URLs generated
from LLM-URL as the total number of generated
URLs m increases from 1 to 10. As m increases, in-
valid URL generations become more frequent.

Method Recall@1 Recall@10

DSI1 25.1 56.6
SEAL1

26.3 74.5

LLM-URL (Zero-Shot) 24.0 60.6
LLM-URL (Few-Shot) 25.5 60.8
1
explicitly trained for retrieval on NQ

Table 3: Passage retrieval as measured by Recall@1
and Recall@10. LLM-URL is equipped with BM25
for passage ranking. Other datasets are left out due to
not being reported in either paper and no public imple-
mentations.

URLs can lead to more accurate documents than
what existing methods can retrieve. Both the LLM
parameters and in-context demonstrations are sig-
nificantly useful in document retrieval.

Figure 3 shows Recall scores converge when
the number of generated URLs m increases. Due
to the diminishing returns from increasing m, our
experiments do not explore values of m greater
than 10.

Are the generated URLs valid? It is worth not-
ing that the generated URLs are not always valid.
Some generated URLs do not have valid URL syn-
tax and some point to Wikipedia pages that do not
exist. Rarely, URLs will be generated for domains
aside from Wikipedia. For fair comparison, all of
these faulty URLs are discarded and only docu-
ments coming from valid Wikipedia articles are
kept.

Further analysis is done to measure the ratio of
valid Wikipedia URLs while the total number of
generated URLs m increases from 1 to 10, shown
in Figure 4. The number of valid URL generations
remains surprisingly high (i.e., higher than 68%)
as m increases from 1 to 10. However, the rate of

Method Zero-Shot QA EM
WebQ NQ TriviaQA

Contriever + InstructGPT 16.8 19.1 52.4
BM25 + InstructGPT 16.0 20.5 53.3
Google + InstructGPT 19.9 27.8 58.7
GenRead (InstructGPT) 24.8 28.2 59.3

DSI1 + FiD - 31.42 -
SEAL1 + FiD - 43.6 41.8

InstructGPT (no docs.) 18.6 20.9 52.6
LLM-URL (Zero-Shot) 28.1 26.4 60.1
LLM-URL (Few-Shot) 29.0 27.3 60.7

1
explicitly trained for retrieval on NQ

2
result from Bevilacqua et al. (2022)

Table 4: Zero-shot open-domain QA performance as
measured by exact match (EM). All LLM-URL mod-
els use InstructGPT as the reader unless otherwise
stated.

valid generations appears to fall off as m increases,
indicating there are diminishing returns from each
marginal increase of m.

4.1.2 Passage Retrieval

Baselines: Four methods, including Contriever,
BM25, DSI (Tay et al., 2022), and SEAL (Bevilac-
qua et al., 2022), were introduced in Section 4.1.1.
Google API was used for document retrieval and
not applied to passages.

Results: The results of our passage retrieval ex-
periments are shown in Table 2. In this setting
Recall@k is calculated on the top-k passages
ranked by the ranker instead of just on the raw doc-
uments shown in Table 1. LLM-URL performs
slightly better than baseline methods for Recall@1
and Recall@10 and as well as baseline methods
for Recall@100. In the zero-shot setting, LLM-
URL improves relative Recall@1 by 16.2%, 5.3%,
and 1.1% with respect to the strongest baseline on
WebQ, NQ, and TriviaA respectively. The few-shot
setting of LLM-URL expands the improvement
to 16.8%, 11.8%, and 6.3%, respectively. For Re-
call@10, similar improvements can be seen.

For Recall@100, performance is better relative
to baseline models for all datasets except NQ. In
the zero-shot setting, LLM-URL improves the rel-
ative Recall@100 by 5.0% for WebQ and performs
slightly worse than the best baseline method on NQ
and TriviaQA by 1.7% and 0.4% respectively. The
few-shot setting of LLM-URL for Recall@100
shows a slight improvement on WebQ and Trivi-



aQA, but performs slightly worse than the strongest
baseline on NQ.

Despite being limited to only the passages from
10 documents, LLM-URL performs better than
baseline methods for smaller k and performs as
well as baseline methods for higher values of k.

The comparison between LLM-URL and exist-
ing document identifier-based methods such as DSI
and SEAL are shown in Table 3. For Recall@1,
zero-shot LLM-URL performs slightly worse than
the best baseline by 8.8%. This performance gap is
slightly smaller in the few-shot setting with LLM-
URL performing 3.1% worse than the best baseline.
For Recall@10, zero-shot LLM-URL performs
worse than the best baseline by 18.7%. Few-shot
LLM-URL performs only slightly better than the
zero-shot setting, performing worse than the best
baseline by 18.4%.

4.2 Open-Domain Question Answering

Evaluation metric: We use exact match (EM),
which is short for exact string match with the cor-

rect answer, because the goal of ODQA is to find
an exact answer to any question using Wikipedia
articles.

Results: Here we discuss the downstream QA
performance of LLM-URL. In this setting, an an-
swer only has an exact match if the normalized gen-
erated text is within the list of acceptable answers to
a question. When combined with InstructGPT as a
reader, LLM-URL performs significantly better on
WebQ and slightly better on TriviaQA when com-
pared with the best performing baseline methods.
On NQ, LLM-URL+InstructGPT performs worse
than baseline NDIs and only slightly worse than
the best remaining baseline. In the zero-shot set-
ting, LLM-URL+InstructGPT improves upon the
best baseline method by 13.3% and 1.3% on WebQ
and TriviaQA respectively. LLM-URL +Instruct-
GPT performs worse than the best baseline method
by 39.5% on NQ. In the few-shot setting, LLM-
URL+InstructGPT performs better than the best
baseline method by 16.9% and 2.3% on WebQ and
TriviaQA respectively. LLM-URL+InstructGPT
performs worse than the best baseline method by
37.4% on NQ.

Despite not being explicitly trained for retrieval,
LLM-URL+InstructGPT performs significantly
better than baseline methods for WebQ, achieves
on-par performance with existing methods for Triv-
iaQA, and performs slightly worse than existing
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Figure 5: Common vs Uncommon entity recall@1.
Common is defined as a question containing entities in
the top-1 million most common entities on Wikipedia.
LLM-URL performs much better when retrieving in-
formation about common entities.

methods for NQ.
Our results indicate LLM-URL could be a

promising solution to retrieval for a wide range of
knowledge intensive tasks with little to no training
data required.

4.3 Discussions

4.3.1 Time Sensitive Queries

There are a number of additional qualitative ben-
efits that LLM-URL has over existing methods.
One large advantage of LLM-URL is that the doc-
uments are retrieved in real time from the source.
So long as the source stays up to date without the
URL itself changing, our proposed method is ca-
pable of answering time sensitive queries without
any extra modifications.

In contrast, existing dual encoder approaches
such as Contriever require a document to be re-
encoded each time it changes. Existing methods
such as SEAL (Bevilacqua et al., 2022) and DSI
are also tricky to keep up to date for time sensitive
queries as the LLM would have to be retrained to
learn the new content of the updated documents.

4.3.2 Frequent Entities Analysis

Following (Mallen et al., 2022), we analyze the re-
trieval performance of LLM-URL when the gold-
labeled answer entity is common versus when it
is not. For each question-answer pair in a given
dataset we check to see if the labeled entity ex-
ists within the top one-million common entities
from Wikipedia. Using this, we split our dataset
into two distinct subsets: question-answer pairs
that contain a common entity and those that do
not. In measuring the performance of our model
on these two distinct sets across Web Questions,
Natural Questions, and TriviaQA, we find LLM-
URL performs significantly better on common en-



LLM-URL Exists Answer Contriever Answer BM25 Answer

wiki/Jellyfish 3 3 Smack (ship) 7 Collective noun 7
wiki/Collective_noun 3 7 Collective noun 7 Determiner 7
wiki/Smack_(group) 7 7 Cetacean intelligence 7 Glass sea creatures 7
wiki/Cnidaria 3 3 Well smack 7 Minotaur 7
wiki/Medusozoa 3 3 Plankton 7 Mass noun 7
wiki/Scyphozoa 3 3 Sperm whale 7 Well smack 7
wiki/Cubozoa 3 3 Loaded question 7 Nomenclature 7
wiki/Hydrozoa 3 3 Jabberwocky 7 Archomental 7
wiki/Staurozoa 3 3 Merrow 7 Honey Smacks 7
wiki/Rhizostomeae 3 3 Loaded question 7 Well smack 7

Table 5: Case study of retrieved documents from the question “A ’smack’ is a collective noun for a group of which

sea creatures?”. “Exists” means whether the URL points to a valid Wiki page. “Answer” means whether the
document contains the answer. We omit the prefix of generated URLs for brevity (https://en.wikipedia.org/).
For BM25 and Contriever, we show the document titles of the top-10 retrieved passages, respectively. The correct
answer is “jellyfish.”

tity question-answer pairs. The results of our analy-
sis are shown in Figure 5. Across all three datasets,
the recall of common-entity question-answer pairs
is many times greater than the recall from the rest
of the dataset.

Previous work has shown LLMs in the closed-
book setting, where the model must rely solely
on the information contained within its weights,
perform much better on common-entities versus
uncommon ones (Mallen et al., 2022). Our results
show this problem extends beyond the closed-book
setting and also applies to retrieval when using
LLM-URL. This also could explain the high word
count from documents we found when evaluating
LLM-URL. The average Wikipedia article is 644
words, but the average word count from Wikipedia
documents retrieved via LLM-URL was 10k. We
believe this discrepancy is caused by common en-
tities having much more detail in their Wikipedia
articles and in turn having much higher word count.

4.3.3 Case Study

In Table 5, we show a case study comparing LLM-
URL with two baseline retrieval methods, BM25
and Contriever, on the question “A ‘smack’ is a
collective noun for a group of which sea creatures?”
which is in the TriviaQA test set. The gold-labeled
answer to this question is “jellyfish”.

In the closed-book setting, InstructGPT mistak-
enly predicts “dolphins” as the answer. When using
Contriever to retrieve 10 passages from Wikipedia
given the query, none of the passages contains the
gold answer. For instance, Contriever retrieves pas-
sages about “smack”, a kind of fishing vessel, along

with other passages about sperm whales, plank-
ton, and other unrelated topics. Similar results are
found while using BM25 as the retriever.

In contrast, LLM-URL performs much better in
this scenario, retrieving 7 documents which contain
the answer. The top retrieved document is exactly
about the gold answer “jellyfish”. The fourth to the
tenth documents all talk about different types of
jellyfish. After being chunked into passages then
sorted by the ranker, the top 10 passages are con-
catenated. Among them, it contains “A group of
jellyfish is called a smack,” which contains the an-
swer to the question and comes directly from the
first retrieved document, titled “jellyfish.” When In-
structGPT is then prompted with these 10 passages
along with the question, the gold answer “jellyfish”
is correctly generated.

This case study highlights multiple advantages
of LLM-URL . First, LLM-URL finds documents
related to both the question and the answer. It di-
rectly locates documents that talks about “jellyfish”
instead while BM25 and Contriever locate docu-
ments related to the question only–not the answer.
Second, LLM-URL is more precise than BM25
or Contriever. In this case, 7 out of 10 generated
URLs from LLM-URL point to a Wikipedia doc-
ument that contains the answer. However, both
BM25 and Contriever fail to retrieve any docu-
ments containing the answer. Third, the set of docu-
ments retrieved by LLM-URL are complementary
to each other, while in BM25 or contriever, each
document in the top-10 is selected independently.
This is because the LLM is able to refer to previous

wiki/Jellyfish
wiki/Collective_noun
wiki/Smack_(group)
wiki/Cnidaria
wiki/Medusozoa
wiki/Scyphozoa
wiki/Cubozoa
wiki/Hydrozoa
wiki/Staurozoa
wiki/Rhizostomeae
https://en.wikipedia.org/


generated URLs before it generates the next one,
allowing each newly generated URL to be condi-
tioned on all the previous URLs. This leads to a
more informative evidence context in open-domain
question answering.

5 Conclusion and Future Work

In this paper, we explored whether large language
models can generate URLs prompted by human in-
structions for document retrieval. Surprisingly, we
found that by providing a few (query, URL) pairs
as in-context demonstrations, large language mod-
els (e.g. GPT-3) generated Web URLs where near
90% of the corresponding documents contain cor-
rect answers to open-domain questions in WebQ.
Furthermore, by breaking the retrieved documents
into passages then ranking them with BM25, we
showed a significant number of unnecessary pas-
sages could be filtered out while retaining high
recall, which outperformed baseline methods by a
significant margin.

There are numerous exciting directions for future
work. While a number of broad spectrum retrieval
benchmarks such as BIER (Thakur et al., 2021)
exist, it remains to be seen whether the few-shot
demonstrations shown in this work can be further
tuned for specific retrieval tasks. Promptagator
(Dai et al., 2022) shows significant performance
improvements can be achieved by tuning prompts
in a similar way.

Further, it remains to be seen whether fine tuning
the prompt for each individual question can further
improve the retrieval performance. As with Promp-
tagator, prior work has shown using clustering to
select diverse demonstrations for any given ques-
tion further improves retrieval performance as well
as downstream QA performance.

Limitations

Despite the strong performance on the presented
datasets, our approach is limited in its ability to
update knowledge state and adapt to new domains.
A major feature of retrieve-then-read is the ability
to swap in new documents when new information
is learned, such as temporally more recent docu-
ments, or adding in documents from a new domain
to quickly adapt to a new downstream task. Our
approach relies on a large language model to con-
tain all this knowledge and adding new knowledge
would likely require some retraining. In addition,
large generation models still suffer from hallucina-

tion errors, resulting in incorrect predictions. When
tasked with generating 10 URLs, LLM-URL may
only generate 6 or 7 which link to valid documents.
Finally, our approach involves very large language
models, slow web requests, and document process-
ing which may make it cumbersome to use in prac-
tice.
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